1
|
Ferrero G, Cardamone MD, Luca F, Bourk E, Ricci L, Liu W, Gao Y, Burrone G, Muhammad A, Chan S, Smith E, Fan TYC, Cutrupi S, Garcia-Bassets I, De Bortoli M, Rosenfeld MG, Perissi V. Nonproteolytic ubiquitination regulates chromatin occupancy by the NCoR/SMRT/HDAC3 corepressor complex in MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2502805122. [PMID: 40305047 DOI: 10.1073/pnas.2502805122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Tight regulation of gene expression is achieved through the coordinated action of transcription factors and cofactors that often can act as both repressors and activators in response to regulatory signals, with their activity modulated by context-specific signal transduction pathways that also impinge on their transient and cyclical recruitment to chromatin. However, the mechanisms underlying the intricate interplay between the regulatory strategies controlling cofactors' activity and localization across subcellar domains remain poorly understood. Here, we investigated the role of G-Protein Pathway Suppressor 2 (GPS2), a transcriptional cofactor critical for maintaining cellular homeostasis via regulation of mitochondrial biogenesis, stress response, lipid metabolism, insulin signaling, and inflammation, in MCF-7 breast cancer cells. By integration of biochemical assays with genome-wide RNA sequencing and Chromatin immunoprecipitation-Seq analyses, we show that nuclear GPS2 is required for licensing histone deacetylase 3 recruitment to chromatin via restricted ubiquitination by tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase previously shown to regulate the switch from repressive to activating functions of the nuclear receptor corepressor (NCoR)/silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) complex and here unexpectedly found to translocate to the nucleus in response to IL-1β stimulation. Nuclear TRAF6 is recruited to chromatin via direct interaction with the corepressors NCoR/SMRT, and TRAF6-mediated ubiquitination of TGF-beta activated kinase 1 (MAP3K7) binding protein 2 (TAB2), a facultative component of the NCoR/SMRT complex, contributes to corepressor clearance from target regulatory regions. Together, these results reveal an exquisite mechanism for coordinating the local regulation of cofactor activity with proinflammatory signaling pathways.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino) 10043, Italy
| | - Maria Dafne Cardamone
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Francesca Luca
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino) 10043, Italy
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Eliot Bourk
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Laura Ricci
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino) 10043, Italy
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Wen Liu
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Yuan Gao
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Giulia Burrone
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino) 10043, Italy
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
- Department of Computer Science, University of Torino, Torino 10149, Italy
| | - Akhirah Muhammad
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Stefanie Chan
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Emma Smith
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Ting-Yu Claire Fan
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Santina Cutrupi
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino) 10043, Italy
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Michele De Bortoli
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino) 10043, Italy
| | - Michael G Rosenfeld
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Valentina Perissi
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| |
Collapse
|
2
|
Regner MJ, Garcia-Recio S, Thennavan A, Wisniewska K, Mendez-Giraldez R, Felsheim B, Spanheimer PM, Parker JS, Perou CM, Franco HL. Defining the regulatory logic of breast cancer using single-cell epigenetic and transcriptome profiling. CELL GENOMICS 2025; 5:100765. [PMID: 39914387 PMCID: PMC11872555 DOI: 10.1016/j.xgen.2025.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 01/08/2025] [Indexed: 02/12/2025]
Abstract
Annotation of cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to understanding tumor biology. Herein, we present matched chromatin accessibility (single-cell assay for transposase-accessible chromatin by sequencing [scATAC-seq]) and transcriptome (single-cell RNA sequencing [scRNA-seq]) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell of origin for subtype-specific breast tumors and implement linear mixed-effects modeling to quantify associations between regulatory elements and gene expression in malignant versus normal cells. These data unveil cancer-specific regulatory elements and putative silencer-to-enhancer switching events in cells that lead to the upregulation of clinically relevant oncogenes. In addition, we generate matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing a conserved oncogenic gene expression program between in vitro and in vivo cells. This work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of cancer cells.
Collapse
Affiliation(s)
- Matthew J Regner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamila Wisniewska
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raul Mendez-Giraldez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brooke Felsheim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Philip M Spanheimer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hector L Franco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA.
| |
Collapse
|
3
|
Lin K, Wei L, Wang R, Li L, Song S, Wang F, He M, Pu W, Wang J, Wazir J, Cao W, Yang X, Treuter E, Fan R, Wang Y, Huang Z, Wang H. Disrupted methionine cycle triggers muscle atrophy in cancer cachexia through epigenetic regulation of REDD1. Cell Metab 2025; 37:460-476.e8. [PMID: 39729999 DOI: 10.1016/j.cmet.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 12/29/2024]
Abstract
The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (Ddit4) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice. Methionine supplementation restores DNA methylation of the Ddit4 promoter in a DNMT3A-dependent manner, thereby inhibiting activating transcription factor 4 (ATF4)-mediated Ddit4 transcription. Thus, with the identification of the methionine/SAM-DNMT3A/DNA hypomethylation-Ddit4/REDD1 axis, our study provides molecular insights into an epigenetic mechanism underlying cancer cachexia, and it suggests nutrient supplementation as a promising therapeutic strategy to prevent or reverse cachectic muscle atrophy.
Collapse
Affiliation(s)
- Kai Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an 223399, China
| | - Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; Nanjing Lupine (YuShanDou) Biomedical Research Institute Co. Ltd, Nanjing 210046, China
| | - Fei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Meiwei He
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210093, Jiangsu, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Wangsen Cao
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaozhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an 223399, China
| | - Eckardt Treuter
- Department of Medicine Huddinge, Biosciences and Nutrition Unit, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Department of Medicine Huddinge, Biosciences and Nutrition Unit, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 West Nantong Road, Yangzhou 225001, China.
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
4
|
Wang Y, Fan J, Meng X, Shu Q, Wu Y, Chu GC, Ji R, Ye Y, Wu X, Shi J, Deng H, Liu L, Li YM. Development of nucleus-targeted histone-tail-based photoaffinity probes to profile the epigenetic interactome in native cells. Nat Commun 2025; 16:415. [PMID: 39762271 PMCID: PMC11704063 DOI: 10.1038/s41467-024-55046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Dissection of the physiological interactomes of histone post-translational modifications (hPTMs) is crucial for understanding epigenetic regulatory pathways. Peptide- or protein-based histone photoaffinity tools expanded the ability to probe the epigenetic interactome, but in situ profiling in native cells remains challenging. Here, we develop a nucleus-targeting histone-tail-based photoaffinity probe capable of profiling the hPTM-mediated interactomes in native cells, by integrating cell-permeable and nuclear localization peptide modules into an hPTM peptide equipped with a photoreactive moiety. These types of probes, such as histone H3 lysine 4 trimethylation and histone H3 Lysine 9 crotonylation probes, enable the probing of epigenetic interactomes both in HeLa cell and hard-to-transfect RAW264.7 cells, resulting in the discovery of distinct interactors in different cell lines. The utility of this probe is further exemplified by characterizing interactome of emerging hPTM, such as AF9 was detected as a binder of histone H3 Lysine 9 lactylation, thus expanding the toolbox for profiling of hPTM-mediated PPIs in live cells.
Collapse
Affiliation(s)
- Yu Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Jian Fan
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qingyao Shu
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yincui Wu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Rong Ji
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yinshan Ye
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Xiangwei Wu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing Shi
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
- Beijing Institute of Life Science and Technology, Beijing, 102206, China.
| |
Collapse
|
5
|
Si Y, Ou H, Jin X, Gu M, Sheng S, Peng W, Yang D, Zhan X, Zhang L, Yu Q, Liu X, Liu Y. G protein pathway suppressor 2 suppresses aerobic glycolysis through RACK1-mediated HIF-1α degradation in breast cancer. Free Radic Biol Med 2024; 222:478-492. [PMID: 38942092 DOI: 10.1016/j.freeradbiomed.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Aerobic glycolysis has been recognized as a hallmark of human cancer. G protein pathway suppressor 2 (GPS2) is a negative regulator of the G protein-MAPK pathway and a core subunit of the NCoR/SMRT transcriptional co-repressor complex. However, how its biological properties intersect with cellular metabolism in breast cancer (BC) development remains poorly elucidated. Here, we report that GPS2 is low expressed in BC tissues and negatively correlated with poor prognosis. Both in vitro and in vivo studies demonstrate that GPS2 suppresses malignant progression of BC. Moreover, GPS2 suppresses aerobic glycolysis in BC cells. Mechanistically, GPS2 destabilizes HIF-1α to reduce the transcription of its downstream glycolytic regulators (PGK1, PGAM1, ENO1, PKM2, LDHA, PDK1, PDK2, and PDK4), and then suppresses cellular aerobic glycolysis. Notably, receptor for activated C kinase 1 (RACK1) is identified as a key ubiquitin ligase for GPS2 to promote HIF-1α degradation. GPS2 stabilizes the binding of HIF-1α to RACK1 by directly binding to RACK1, resulting in polyubiquitination and instability of HIF-1α. Amino acid residues 70-92 aa of the GPS2 N-terminus bind RACK1. A 23-amino-acid-long GPS2-derived peptide was developed based on this N-terminal region, which promotes the interaction of RACK1 with HIF-1α, downregulates HIF-1α expression and significantly suppresses BC tumorigenesis in vitro and in vivo. In conclusion, our findings indicate that GPS2 decreases the stability of HIF-1α, which in turn suppresses aerobic glycolysis and tumorigenesis in BC, suggesting that targeting HIF-1α degradation and treating with peptides may be a promising approach to treat BC.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Hongling Ou
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Jin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Manxiang Gu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Songran Sheng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkang Peng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dan Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiangrong Zhan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qingqing Yu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
6
|
Vladimir de la Rosa J, Tabraue C, Huang Z, Orizaola MC, Martin‐Rodríguez P, Steffensen KR, Zapata JM, Boscá L, Tontonoz P, Alemany S, Treuter E, Castrillo A. Reprogramming of the LXRα Transcriptome Sustains Macrophage Secondary Inflammatory Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307201. [PMID: 38549193 PMCID: PMC11132038 DOI: 10.1002/advs.202307201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Indexed: 05/29/2024]
Abstract
Macrophages regulate essential aspects of innate immunity against pathogens. In response to microbial components, macrophages activate primary and secondary inflammatory gene programs crucial for host defense. The liver X receptors (LXRα, LXRβ) are ligand-dependent nuclear receptors that direct gene expression important for cholesterol metabolism and inflammation, but little is known about the individual roles of LXRα and LXRβ in antimicrobial responses. Here, the results demonstrate that induction of LXRα transcription by prolonged exposure to lipopolysaccharide (LPS) supports inflammatory gene expression in macrophages. LXRα transcription is induced by NF-κB and type-I interferon downstream of TLR4 activation. Moreover, LPS triggers a reprogramming of the LXRα cistrome that promotes cytokine and chemokine gene expression through direct LXRα binding to DNA consensus sequences within cis-regulatory regions including enhancers. LXRα-deficient macrophages present fewer binding of p65 NF-κB and reduced histone H3K27 acetylation at enhancers of secondary inflammatory response genes. Mice lacking LXRα in the hematopoietic compartment show impaired responses to bacterial endotoxin in peritonitis models, exhibiting reduced neutrophil infiltration and decreased expansion and inflammatory activation of recruited F4/80lo-MHC-IIhi peritoneal macrophages. Together, these results uncover a previously unrecognized function for LXRα-dependent transcriptional cis-activation of secondary inflammatory gene expression in macrophages and the host response to microbial ligands.
Collapse
Affiliation(s)
- Juan Vladimir de la Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Carlos Tabraue
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
- Departamento de MorfologíaUniversidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Zhiqiang Huang
- Department of Biosciences and NutritionKarolinska Institutet, NEOHuddinge14183Sweden
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular MedicineMedical SchoolNanjing UniversityNanjing210093P. R. China
| | - Marta C. Orizaola
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Patricia Martin‐Rodríguez
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstituteHuddinge14186Sweden
| | - Juan Manuel Zapata
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Lisardo Boscá
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Cardiovasculares (CIBERCV)Madrid28029Spain
| | - Peter Tontonoz
- Department of Pathology and Laboratory MedicineUniversity of California Los AngelesUCLACalifornia90095USA
| | - Susana Alemany
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Eckardt Treuter
- Department of Biosciences and NutritionKarolinska Institutet, NEOHuddinge14183Sweden
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| |
Collapse
|
7
|
Sommerauer C, Gallardo-Dodd CJ, Savva C, Hases L, Birgersson M, Indukuri R, Shen JX, Carravilla P, Geng K, Nørskov Søndergaard J, Ferrer-Aumatell C, Mercier G, Sezgin E, Korach-André M, Petersson C, Hagström H, Lauschke VM, Archer A, Williams C, Kutter C. Estrogen receptor activation remodels TEAD1 gene expression to alleviate hepatic steatosis. Mol Syst Biol 2024; 20:374-402. [PMID: 38459198 PMCID: PMC10987545 DOI: 10.1038/s44320-024-00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Sex-based differences in obesity-related hepatic malignancies suggest the protective roles of estrogen. Using a preclinical model, we dissected estrogen receptor (ER) isoform-driven molecular responses in high-fat diet (HFD)-induced liver diseases of male and female mice treated with or without an estrogen agonist by integrating liver multi-omics data. We found that selective ER activation recovers HFD-induced molecular and physiological liver phenotypes. HFD and systemic ER activation altered core liver pathways, beyond lipid metabolism, that are consistent between mice and primates. By including patient cohort data, we uncovered that ER-regulated enhancers govern central regulatory and metabolic genes with clinical significance in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, including the transcription factor TEAD1. TEAD1 expression increased in MASLD patients, and its downregulation by short interfering RNA reduced intracellular lipid content. Subsequent TEAD small molecule inhibition improved steatosis in primary human hepatocyte spheroids by suppressing lipogenic pathways. Thus, TEAD1 emerged as a new therapeutic candidate whose inhibition ameliorates hepatic steatosis.
Collapse
Affiliation(s)
- Christian Sommerauer
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Christina Savva
- Department of Medicine, Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Linnea Hases
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Madeleine Birgersson
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Rajitha Indukuri
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Pablo Carravilla
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Keyi Geng
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Clàudia Ferrer-Aumatell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Grégoire Mercier
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Erdinc Sezgin
- Department of Women's and Children's Health, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Marion Korach-André
- Department of Medicine, Integrated Cardio Metabolic Center, Karolinska Institute, Huddinge, Sweden
| | - Carl Petersson
- Department of Drug Metabolism and Pharmacokinetics, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Hannes Hagström
- Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Amena Archer
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
8
|
Loell KJ, Friedman RZ, Myers CA, Corbo JC, Cohen BA, White MA. Transcription factor interactions explain the context-dependent activity of CRX binding sites. PLoS Comput Biol 2024; 20:e1011802. [PMID: 38227575 PMCID: PMC10817189 DOI: 10.1371/journal.pcbi.1011802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
The effects of transcription factor binding sites (TFBSs) on the activity of a cis-regulatory element (CRE) depend on the local sequence context. In rod photoreceptors, binding sites for the transcription factor (TF) Cone-rod homeobox (CRX) occur in both enhancers and silencers, but the sequence context that determines whether CRX binding sites contribute to activation or repression of transcription is not understood. To investigate the context-dependent activity of CRX sites, we fit neural network-based models to the activities of synthetic CREs composed of photoreceptor TFBSs. The models revealed that CRX binding sites consistently make positive, independent contributions to CRE activity, while negative homotypic interactions between sites cause CREs composed of multiple CRX sites to function as silencers. The effects of negative homotypic interactions can be overcome by the presence of other TFBSs that either interact cooperatively with CRX sites or make independent positive contributions to activity. The context-dependent activity of CRX sites is thus determined by the balance between positive heterotypic interactions, independent contributions of TFBSs, and negative homotypic interactions. Our findings explain observed patterns of activity among genomic CRX-bound enhancers and silencers, and suggest that enhancers may require diverse TFBSs to overcome negative homotypic interactions between TFBSs.
Collapse
Affiliation(s)
- Kaiser J. Loell
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Ryan Z. Friedman
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Connie A. Myers
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Barak A. Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Michael A. White
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
9
|
Edrei Y, Levy R, Kaye D, Marom A, Radlwimmer B, Hellman A. Methylation-directed regulatory networks determine enhancing and silencing of mutation disease driver genes and explain inter-patient expression variation. Genome Biol 2023; 24:264. [PMID: 38012713 PMCID: PMC10683314 DOI: 10.1186/s13059-023-03094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Common diseases manifest differentially between patients, but the genetic origin of this variation remains unclear. To explore possible involvement of gene transcriptional-variation, we produce a DNA methylation-oriented, driver-gene-wide dataset of regulatory elements in human glioblastomas and study their effect on inter-patient gene expression variation. RESULTS In 175 of 177 analyzed gene regulatory domains, transcriptional enhancers and silencers are intermixed. Under experimental conditions, DNA methylation induces enhancers to alter their enhancing effects or convert into silencers, while silencers are affected inversely. High-resolution mapping of the association between DNA methylation and gene expression in intact genomes reveals methylation-related regulatory units (average size = 915.1 base-pairs). Upon increased methylation of these units, their target-genes either increased or decreased in expression. Gene-enhancing and silencing units constitute cis-regulatory networks of genes. Mathematical modeling of the networks highlights indicative methylation sites, which signified the effect of key regulatory units, and add up to make the overall transcriptional effect of the network. Methylation variation in these sites effectively describe inter-patient expression variation and, compared with DNA sequence-alterations, appears as a major contributor of gene-expression variation among glioblastoma patients. CONCLUSIONS We describe complex cis-regulatory networks, which determine gene expression by summing the effects of positive and negative transcriptional inputs. In these networks, DNA methylation induces both enhancing and silencing effects, depending on the context. The revealed mechanism sheds light on the regulatory role of DNA methylation, explains inter-individual gene-expression variation, and opens the way for monitoring the driving forces behind deferential courses of cancer and other diseases.
Collapse
Affiliation(s)
- Yifat Edrei
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Revital Levy
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Daniel Kaye
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Anat Marom
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Asaf Hellman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel.
| |
Collapse
|
10
|
Limouse C, Smith OK, Jukam D, Fryer KA, Greenleaf WJ, Straight AF. Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions. Nat Commun 2023; 14:6073. [PMID: 37770513 PMCID: PMC10539311 DOI: 10.1038/s41467-023-41848-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed throughout the genome and provide regulatory inputs to gene expression through their interaction with chromatin. Yet, the genomic targets and functions of most ncRNAs are unknown. Here we use chromatin-associated RNA sequencing (ChAR-seq) to map the global network of ncRNA interactions with chromatin in human embryonic stem cells and the dynamic changes in interactions during differentiation into definitive endoderm. We uncover general principles governing the organization of the RNA-chromatin interactome, demonstrating that nearly all ncRNAs exclusively interact with genes in close three-dimensional proximity to their locus and provide a model predicting the interactome. We uncover RNAs that interact with many loci across the genome and unveil thousands of unannotated RNAs that dynamically interact with chromatin. By relating the dynamics of the interactome to changes in gene expression, we demonstrate that activation or repression of individual genes is unlikely to be controlled by a single ncRNA.
Collapse
Affiliation(s)
- Charles Limouse
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Owen K Smith
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - David Jukam
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Kelsey A Fryer
- Department of Biochemistry, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | | | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, California, USA.
| |
Collapse
|
11
|
Abstract
Chronic liver diseases encompass a wide spectrum of hepatic maladies that often result in cholestasis or altered bile acid secretion and regulation. Incidence and cost of care for many chronic liver diseases are rising in the United States with few Food and Drug Administration-approved drugs available for patient treatment. Farnesoid X receptor (FXR) is the master regulator of bile acid homeostasis with an important role in lipid and glucose metabolism and inflammation. FXR has served as an attractive target for management of cholestasis and fibrosis; however, global FXR agonism results in adverse effects in liver disease patients, severely affecting quality of life. In this review, we highlight seminal studies and recent updates on the FXR proteome and identify gaps in knowledge that are essential for tissue-specific FXR modulation. In conclusion, one of the greatest unmet needs in the field is understanding the underlying mechanism of intestinal versus hepatic FXR function.
Collapse
Affiliation(s)
- Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey
| |
Collapse
|
12
|
Hussain S, Sadouni N, van Essen D, Dao LTM, Ferré Q, Charbonnier G, Torres M, Gallardo F, Lecellier CH, Sexton T, Saccani S, Spicuglia S. Short tandem repeats are important contributors to silencer elements in T cells. Nucleic Acids Res 2023; 51:4845-4866. [PMID: 36929452 PMCID: PMC10250210 DOI: 10.1093/nar/gkad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The action of cis-regulatory elements with either activation or repression functions underpins the precise regulation of gene expression during normal development and cell differentiation. Gene activation by the combined activities of promoters and distal enhancers has been extensively studied in normal and pathological contexts. In sharp contrast, gene repression by cis-acting silencers, defined as genetic elements that negatively regulate gene transcription in a position-independent fashion, is less well understood. Here, we repurpose the STARR-seq approach as a novel high-throughput reporter strategy to quantitatively assess silencer activity in mammals. We assessed silencer activity from DNase hypersensitive I sites in a mouse T cell line. Identified silencers were associated with either repressive or active chromatin marks and enriched for binding motifs of known transcriptional repressors. CRISPR-mediated genomic deletions validated the repressive function of distinct silencers involved in the repression of non-T cell genes and genes regulated during T cell differentiation. Finally, we unravel an association of silencer activity with short tandem repeats, highlighting the role of repetitive elements in silencer activity. Our results provide a general strategy for genome-wide identification and characterization of silencer elements.
Collapse
Affiliation(s)
- Saadat Hussain
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Nori Sadouni
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Dominic van Essen
- Institute for Research on Cancer and Ageing, IRCAN, 06107 Nice, France
| | - Lan T M Dao
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Quentin Ferré
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Magali Torres
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Frederic Gallardo
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| | - Tom Sexton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire – IGBMC (CNRS UMR 7104, INSERM U1258, Université de Strasbourg), 67404 Illkirch, France
| | - Simona Saccani
- Institute for Research on Cancer and Ageing, IRCAN, 06107 Nice, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| |
Collapse
|
13
|
Shen Y, Huang Z, Yang R, Chen Y, Wang Q, Gao L. Insights into Enhancer RNAs: Biogenesis and Emerging Role in Brain Diseases. Neuroscientist 2023; 29:166-176. [PMID: 34612730 DOI: 10.1177/10738584211046889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enhancers are cis-acting elements that control the transcription of target genes and are transcribed into a class of noncoding RNAs (ncRNAs) termed enhancer RNAs (eRNAs). eRNAs have shorter half-lives than mRNAs and long noncoding RNAs; however, the frequency of transcription of eRNAs is close to that of mRNAs. eRNA expression is associated with a high level of histone mark H3K27ac and a low level of H3K27me3. Although eRNAs only account for a small proportion of ncRNAs, their functions are important. eRNAs can not only increase enhancer activity by promoting the formation of enhancer-promoter loops but also regulate transcriptional activation. Increasing numbers of studies have found that eRNAs play an important role in the occurrence and development of brain diseases; however, further research into eRNAs is required. This review discusses the concept, characteristics, classification, function, and potential roles of eRNAs in brain diseases.
Collapse
Affiliation(s)
- Yuxin Shen
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhengyi Huang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ruiqing Yang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yunlong Chen
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Huang Z, Efthymiadou A, Liang N, Fan R, Treuter E. Antagonistic action of GPS2 and KDM1A at enhancers governs alternative macrophage activation by interleukin 4. Nucleic Acids Res 2023; 51:1067-1086. [PMID: 36610795 PMCID: PMC9943668 DOI: 10.1093/nar/gkac1230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
The Th2 cytokine interleukin 4 (IL4) promotes macrophage differentiation into alternative subtypes and plays important roles in physiology, in metabolic and inflammatory diseases, in cancer and in tissue regeneration. While the regulatory transcription factor networks governing IL4 signaling are already well-characterized, it is currently less understood which transcriptional coregulators are involved and how they operate mechanistically. In this study, we discover that G protein pathway suppressor 2 (GPS2), a core subunit of the HDAC3 corepressor complex assembled by SMRT and NCOR, represses IL4-dependent enhancer activation in mouse macrophages. Our genome-wide and gene-specific characterization revealed that, instead of directly repressing STAT6, chromatin-bound GPS2 cooperates with SMRT and NCOR to antagonize enhancer activation by lysine demethylase 1A (KDM1A, LSD1). Mechanistically, corepressor depletion increased KDM1A recruitment to enhancers linked to IL4-induced genes, accompanied by demethylation of the repressive histone marks H3K9me2/3 without affecting H3K4me1/2, the classic KDM1A substrates for demethylation in other cellular contexts. This in turn caused enhancer and gene activation already in the absence of IL4/STAT6 and sensitized the STAT6-dependent IL4 responsiveness of macrophages. Thus, our work identified with the antagonistic action of a GPS2-containing corepressor complex and the lysine demethylase KDM1A a hitherto unknown epigenetic corepressor-coactivator switching mechanism that governs alternative macrophage activation.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Astradeni Efthymiadou
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Correspondence may also be addressed to Rongrong Fan. Tel: +46 8 524 81161;
| | - Eckardt Treuter
- To whom correspondence should be addressed. Tel: +46 8 524 81060;
| |
Collapse
|
15
|
Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and their regulation of gene expression. Nat Rev Mol Cell Biol 2022; 24:383-395. [DOI: 10.1038/s41580-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
|
16
|
Xu Z, Xu C, Wang Q, Ma S, Li Y, Liu S, Peng S, Tan J, Zhao X, Han D, Zhang K, Yang L. An enhancer RNA-based risk model for prediction of bladder cancer prognosis. Front Med (Lausanne) 2022; 9:979542. [PMID: 36186809 PMCID: PMC9515318 DOI: 10.3389/fmed.2022.979542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundBladder cancer patients have a high recurrence and poor survival rates worldwide. Early diagnosis and intervention are the cornerstones for favorable prognosis. However, commonly used predictive tools cannot meet clinical needs because of their insufficient accuracy.MethodsWe have developed an enhancer RNA (eRNA)-based signature to improve the prediction for bladder cancer prognosis. First, we analyzed differentially expressed eRNAs in gene expression profiles and clinical data for bladder cancer from The Cancer Genome Atlas database. Then, we constructed a risk model for prognosis of bladder cancer patients, and analyzed the correlation between this model and tumor microenvironment (TME). Finally, regulatory network of downstream genes of eRNA in the model was constructed by WGCNA and enrichment analysis, then Real-time quantitative PCR verified the differentiation of related genes between tumor and adjacent tissue.ResultsWe first constructed a risk model composed of eight eRNAs, and found the risk model could be an independent risk factor to predict the prognosis of bladder cancer. Then, the log-rank test and time-dependent ROC curve analysis shown the model has a favorable ability to predict prognosis. The eight risk eRNAs may participate in disease progression by regulating cell adhesion and invasion, and up-regulating immune checkpoints to suppress the immunity in TME. mRNA level change in related genes further validated regulatory roles of eRNAs in bladder cancer. In summary, we constructed an eRNA-based risk model and confirmed that the model could predict the prognosis of bladder cancer patients.
Collapse
Affiliation(s)
- Zhicheng Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qionghan Wang
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Shanjin Ma
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shiyuan Peng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jidong Tan
- 96607 Army Hospital of People’s Liberation Army, Baoji, China
| | - Xiaolong Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Donghui Han,
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Keying Zhang,
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Lijun Yang,
| |
Collapse
|
17
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
The retroelement Lx9 puts a brake on the immune response to virus infection. Nature 2022; 608:757-765. [PMID: 35948641 DOI: 10.1038/s41586-022-05054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
The notion that mobile units of nucleic acid known as transposable elements can operate as genomic controlling elements was put forward over six decades ago1,2. However, it was not until the advancement of genomic sequencing technologies that the abundance and repertoire of transposable elements were revealed, and they are now known to constitute up to two-thirds of mammalian genomes3,4. The presence of DNA regulatory regions including promoters, enhancers and transcription-factor-binding sites within transposable elements5-8 has led to the hypothesis that transposable elements have been co-opted to regulate mammalian gene expression and cell phenotype8-14. Mammalian transposable elements include recent acquisitions and ancient transposable elements that have been maintained in the genome over evolutionary time. The presence of ancient conserved transposable elements correlates positively with the likelihood of a regulatory function, but functional validation remains an essential step to identify transposable element insertions that have a positive effect on fitness. Here we show that CRISPR-Cas9-mediated deletion of a transposable element-namely the LINE-1 retrotransposon Lx9c11-in mice results in an exaggerated and lethal immune response to virus infection. Lx9c11 is critical for the neogenesis of a non-coding RNA (Lx9c11-RegoS) that regulates genes of the Schlafen family, reduces the hyperinflammatory phenotype and rescues lethality in virus-infected Lx9c11-/- mice. These findings provide evidence that a transposable element can control the immune system to favour host survival during virus infection.
Collapse
|
19
|
Huang Z, Wang C, Treuter E, Fan R. An optimized 4C-seq protocol based on cistrome and epigenome data in the mouse RAW264.7 macrophage cell line. STAR Protoc 2022; 3:101338. [PMID: 35496794 PMCID: PMC9043770 DOI: 10.1016/j.xpro.2022.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromosome conformation capture combined with high-throughput sequencing (4C-seq) is a powerful tool to map genomic DNA regions that communicate with a specific locus of interest such as functional single-nucleotide polymorphism (SNPs)-containing regions. This protocol describes detailed steps to perform 4C-seq in mouse macrophage RAW264.7 cells, starting from the primer design based on cistrome and epigenome data, sample processing, and to the bioinformatics analysis. For complete details on the use and execution of this protocol, please refer to Huang et al. (2021). 4C-seq in mouse RAW264.7 macrophage cells Applicable to any region with a proven or suspected regulatory role in transcription Integrated cistrome and epigenome data to refine the primer design of 4C-seq protocol
Collapse
|
20
|
Wan L, Li W, Meng Y, Hou Y, Chen M, Xu B. Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects. Front Immunol 2022; 13:849451. [PMID: 35514959 PMCID: PMC9063412 DOI: 10.3389/fimmu.2022.849451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid development of multiple high-throughput sequencing technologies has made it possible to explore the critical roles and mechanisms of functional enhancers and enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental pathological process in infectious diseases, cancers and immune disorders, coordinates the balance between the internal and external environment of the organism. It has been shown that both active enhancers and intranuclear eRNAs are preferentially expressed over inflammation-related genes in response to inflammatory stimuli, suggesting that enhancer transcription events and their products influence the expression and function of inflammatory genes. Therefore, in this review, we summarize and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in inflammatory immune cells, non-inflammatory immune cells, inflammatory immune diseases and tumors, and explore the potential therapeutic effects of enhancer inhibitors affecting eRNA production for diseases with inflammatory immune responses.
Collapse
Affiliation(s)
- Lilin Wan
- Medical School, Southeast University, Nanjing, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan Meng
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Enhancer RNAs (eRNAs) in Cancer: The Jacks of All Trades. Cancers (Basel) 2022; 14:cancers14081978. [PMID: 35454885 PMCID: PMC9030334 DOI: 10.3390/cancers14081978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review focuses on eRNAs and the several mechanisms by which they can regulate gene expression. In particular we describe here the most recent examples of eRNAs dysregulated in cancer or involved in the immune escape of tumor cells. Abstract Enhancer RNAs (eRNAs) are non-coding RNAs (ncRNAs) transcribed in enhancer regions. They play an important role in transcriptional regulation, mainly during cellular differentiation. eRNAs are tightly tissue- and cell-type specific and are induced by specific stimuli, activating promoters of target genes in turn. eRNAs usually have a very short half-life but in some cases, once activated, they can be stably expressed and acquire additional functions. Due to their critical role, eRNAs are often dysregulated in cancer and growing number of interactions with chromatin modifiers, transcription factors, and splicing machinery have been described. Enhancer activation and eRNA transcription have particular relevance also in inflammatory response, placing the eRNAs at the interplay between cancer and immune cells. Here, we summarize all the possible molecular mechanisms recently reported in association with eRNAs activity.
Collapse
|
22
|
Greulich F, Bielefeld KA, Scheundel R, Mechtidou A, Strickland B, Uhlenhaut NH. Enhancer RNA Expression in Response to Glucocorticoid Treatment in Murine Macrophages. Cells 2021; 11:28. [PMID: 35011590 PMCID: PMC8744892 DOI: 10.3390/cells11010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are potent anti-inflammatory drugs; however, their molecular mode of action remains complex and elusive. They bind to the glucocorticoid receptor (GR), a nuclear receptor that controls gene expression in almost all tissues in a cell type-specific manner. While GR's transcriptional targets mediate beneficial reactions in immune cells, they also harbor the potential of adverse metabolic effects in other cell types such as hepatocytes. Here, we have profiled nascent transcription upon glucocorticoid stimulation in LPS-activated primary murine macrophages using 4sU-seq. We compared our results to publicly available nascent transcriptomics data from murine liver and bioinformatically identified non-coding RNAs transcribed from intergenic GR binding sites in a tissue-specific fashion. These tissue-specific enhancer RNAs (eRNAs) correlate with target gene expression, reflecting cell type-specific glucocorticoid responses. We further associate GR-mediated eRNA expression with changes in H3K27 acetylation and BRD4 recruitment in inflammatory macrophages upon glucocorticoid treatment. In summary, we propose a common mechanism by which GR-bound enhancers regulate target gene expression by changes in histone acetylation, BRD4 recruitment and eRNA expression. We argue that local eRNAs are potential therapeutic targets downstream of GR signaling which may modulate glucocorticoid response in a cell type-specific way.
Collapse
Affiliation(s)
- Franziska Greulich
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; (F.G.); (R.S.); (B.S.)
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; (K.A.B.); (A.M.)
| | - Kirsten Adele Bielefeld
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; (K.A.B.); (A.M.)
| | - Ronny Scheundel
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; (F.G.); (R.S.); (B.S.)
| | - Aikaterini Mechtidou
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; (K.A.B.); (A.M.)
| | - Benjamin Strickland
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; (F.G.); (R.S.); (B.S.)
| | - Nina Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; (F.G.); (R.S.); (B.S.)
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; (K.A.B.); (A.M.)
| |
Collapse
|
23
|
Identification of limb-specific Lmx1b auto-regulatory modules with Nail-patella syndrome pathogenicity. Nat Commun 2021; 12:5533. [PMID: 34545091 PMCID: PMC8452625 DOI: 10.1038/s41467-021-25844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
LMX1B haploinsufficiency causes Nail-patella syndrome (NPS; MIM 161200), characterized by nail dysplasia, absent/hypoplastic patellae, chronic kidney disease, and glaucoma. Accordingly in mice, Lmx1b has been shown to play crucial roles in the development of the limb, kidney and eye. Although one functional allele of Lmx1b appears adequate for development, Lmx1b null mice display ventral-ventral distal limbs with abnormal kidney, eye and cerebellar development, more disruptive, but fully concordant with NPS. In Lmx1b functional knockouts (KOs), Lmx1b transcription in the limb is decreased nearly 6-fold, indicating autoregulation. Herein, we report on two conserved Lmx1b-associated cis-regulatory modules (LARM1 and LARM2) that are bound by Lmx1b, amplify Lmx1b expression with unique spatial modularity in the limb, and are necessary for Lmx1b-mediated limb dorsalization. These enhancers, being conserved across vertebrates (including coelacanth, but not other fish species), and required for normal locomotion, provide a unique opportunity to study the role of dorsalization in the fin to limb transition. We also report on two NPS patient families with normal LMX1B coding sequence, but with loss-of-function variations in the LARM1/2 region, stressing the role of regulatory modules in disease pathogenesis. Nail-patella syndrome (NPS) is characterized by nail dysplasia, absent/hypoplastic patellae, chronic kidney disease, and glaucoma and can be caused by haploinsufficiency of LMX1B; however, not all patients harbor pathogenic LMX1B mutations. Here the authors show that loss-of-function variations in upstream enhancer sequences are responsible for a limb specific form of human NPS.
Collapse
|
24
|
Friedman RZ, Granas DM, Myers CA, Corbo JC, Cohen BA, White MA. Information content differentiates enhancers from silencers in mouse photoreceptors. eLife 2021; 10:67403. [PMID: 34486522 PMCID: PMC8492058 DOI: 10.7554/elife.67403] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Enhancers and silencers often depend on the same transcription factors (TFs) and are conflated in genomic assays of TF binding or chromatin state. To identify sequence features that distinguish enhancers and silencers, we assayed massively parallel reporter libraries of genomic sequences targeted by the photoreceptor TF cone-rod homeobox (CRX) in mouse retinas. Both enhancers and silencers contain more TF motifs than inactive sequences, but relative to silencers, enhancers contain motifs from a more diverse collection of TFs. We developed a measure of information content that describes the number and diversity of motifs in a sequence and found that, while both enhancers and silencers depend on CRX motifs, enhancers have higher information content. The ability of information content to distinguish enhancers and silencers targeted by the same TF illustrates how motif context determines the activity of cis-regulatory sequences. Different cell types are established by activating and repressing the activity of specific sets of genes, a process controlled by proteins called transcription factors. Transcription factors work by recognizing and binding short stretches of DNA in parts of the genome called cis-regulatory sequences. A cis-regulatory sequence that increases the activity of a gene when bound by transcription factors is called an enhancer, while a sequence that causes a decrease in gene activity is called a silencer. To establish a cell type, a particular transcription factor will act on both enhancers and silencers that control the activity of different genes. For example, the transcription factor cone-rod homeobox (CRX) is critical for specifying different types of cells in the retina, and it acts on both enhancers and silencers. In rod photoreceptors, CRX activates rod genes by binding their enhancers, while repressing cone photoreceptor genes by binding their silencers. However, CRX always recognizes and binds to the same DNA sequence, known as its binding site, making it unclear why some cis-regulatory sequences bound to CRX act as silencers, while others act as enhancers. Friedman et al. sought to understand how enhancers and silencers, both bound by CRX, can have different effects on the genes they control. Since both enhancers and silencers contain CRX binding sites, the difference between the two must lie in the sequence of the DNA surrounding these binding sites. Using retinas that have been explanted from mice and kept alive in the laboratory, Friedman et al. tested the activity of thousands of CRX-binding sequences from the mouse genome. This showed that both enhancers and silencers have more copies of CRX-binding sites than sequences of the genome that are inactive. Additionally, the results revealed that enhancers have a diverse collection of binding sites for other transcription factors, while silencers do not. Friedman et al. developed a new metric they called information content, which captures the diverse combinations of different transcription binding sites that cis-regulatory sequences can have. Using this metric, Friedman et al. showed that it is possible to distinguish enhancers from silencers based on their information content. It is critical to understand how the DNA sequences of cis-regulatory regions determine their activity, because mutations in these regions of the genome can cause disease. However, since every person has thousands of benign mutations in cis-regulatory sequences, it is a challenge to identify specific disease-causing mutations, which are relatively rare. One long-term goal of models of enhancers and silencers, such as Friedman et al.’s information content model, is to understand how mutations can affect cis-regulatory sequences, and, in some cases, lead to disease.
Collapse
Affiliation(s)
- Ryan Z Friedman
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - David M Granas
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Barak A Cohen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Michael A White
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
25
|
Bene K, Halasz L, Nagy L. Transcriptional repression shapes the identity and function of tissue macrophages. FEBS Open Bio 2021; 11:3218-3229. [PMID: 34358410 PMCID: PMC8634859 DOI: 10.1002/2211-5463.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
The changing extra‐ and intracellular microenvironment calls for rapid cell fate decisions that are precisely and primarily regulated at the transcriptional level. The cellular components of the immune system are excellent examples of how cells respond and adapt to different environmental stimuli. Innate immune cells such as macrophages are able to modulate their transcriptional programs and epigenetic regulatory networks through activation and repression of particular genes, allowing them to quickly respond to a rapidly changing environment. Tissue macrophages are essential components of different immune‐ and nonimmune cell‐mediated physiological mechanisms in mammals and are widely used models for investigating transcriptional regulatory mechanisms. Therefore, it is critical to unravel the distinct sets of transcription activators, repressors, and coregulators that play roles in determining tissue macrophage identity and functions during homeostasis, as well as in diseases affecting large human populations, such as metabolic syndromes, immune‐deficiencies, and tumor development. In this review, we will focus on transcriptional repressors that play roles in tissue macrophage development and function under physiological conditions.
Collapse
Affiliation(s)
- Krisztian Bene
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| |
Collapse
|
26
|
Abstract
The world of long non-coding RNAs (lncRNAs) has opened up massive new prospects in understanding the regulation of gene expression. Not only are there seemingly almost infinite numbers of lncRNAs in the mammalian cell, but they have highly diverse mechanisms of action. In the nucleus, some are chromatin-associated, transcribed from transcriptional enhancers (eRNAs) and/or direct changes in the epigenetic landscape with profound effects on gene expression. The pituitary gonadotrope is responsible for activation of reproduction through production and secretion of appropriate levels of the gonadotropic hormones. As such, it exemplifies a cell whose function is defined through changes in developmental and temporal patterns of gene expression, including those that are hormonally induced. Roles for diverse distal regulatory elements and eRNAs in gonadotrope biology have only just begun to emerge. Here, we will present an overview of the different kinds of lncRNAs that alter gene expression, and what is known about their roles in regulating some of the key gonadotrope genes. We will also review various screens that have detected differentially expressed pituitary lncRNAs associated with changes in reproductive state and those whose expression is found to play a role in gonadotrope-derived nonfunctioning pituitary adenomas. We hope to shed light on this exciting new field, emphasize the open questions, and encourage research to illuminate the roles of lncRNAs in various endocrine systems.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: Philippa Melamed, PhD, Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
27
|
Jung BC, Kang S. Epigenetic regulation of inflammatory factors in adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159019. [PMID: 34332076 DOI: 10.1016/j.bbalip.2021.159019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Obesity is a strong risk factor for insulin resistance. Chronic low-grade tissue inflammation and systemic inflammation have been proposed as major mechanisms that promote insulin resistance in obesity. Adipose tissue has been recognized as a nexus between inflammation and metabolism, but how exactly inflammatory gene expression is orchestrated during the development of obesity is not well understood. Epigenetic modifications are defined as heritable changes in gene expression and cellular function without changes to the original DNA sequence. The major epigenetic mechanisms include DNA methylation, histone modification, noncoding RNAs, nucleopositioning/remodeling and chromatin reorganization. Epigenetic mechanisms provide a critical layer of gene regulation in response to environmental changes. Accumulating evidence supports that epigenetics plays a large role in the regulation of inflammatory genes in adipocytes and adipose-resident immune cell types. This review focuses on the association between adipose tissue inflammation in obesity and major epigenetic modifications.
Collapse
Affiliation(s)
- Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, United States of America
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, United States of America.
| |
Collapse
|
28
|
Enhancers navigate the three-dimensional genome to direct cell fate decisions. Curr Opin Struct Biol 2021; 71:101-109. [PMID: 34280668 DOI: 10.1016/j.sbi.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023]
Abstract
The activity and selectivity of transcriptional enhancers determine gene expression patterns that enable a zygote to become a complex organism. How enhancers convey regulatory information is a central conundrum in biology. Here, we discuss recent progress provided by rapidly evolving technologies in understanding enhancer-promoter interactions in the context of overall nuclear genome organization.
Collapse
|