1
|
Chen Q, An S, Wang C, Zhou Y, Liu X, Ren W. Phase separation in mitochondrial fate and mitochondrial diseases. Proc Natl Acad Sci U S A 2025; 122:e2422255122. [PMID: 40344006 DOI: 10.1073/pnas.2422255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Mitochondria are central metabolic organelles that control cell fate and the development of mitochondrial diseases. Traditionally, phase separation directly regulates cell functions by driving RNA, proteins, or other molecules to concentrate into lipid droplets. Recent studies show that phase separation regulates cell functions and diseases through the regulation of subcellular organelles, particularly mitochondria. In fact, phase separation is involved in various mitochondrial activities including nucleoid assembly, autophagy, and mitochondria-related inflammation. Here, we outline the key mechanisms through which phase separation influences mitochondrial activities and the development of mitochondrial diseases. Insights into how phase separation regulates mitochondrial activities and diseases will help us develop interventions for related diseases.
Collapse
Affiliation(s)
- Qingyi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sanqi An
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanshuang Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Institute of Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou 511436, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Institute of Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou 511436, China
| | - Wenkai Ren
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Fu G, Zhao Y, Mao C, Liu Y. Enhancing nano-immunotherapy of cancer through cGAS-STING pathway modulation. Biomater Sci 2025; 13:2235-2260. [PMID: 40111213 DOI: 10.1039/d4bm01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cancer immunotherapy due to the secretion of multiple pro-inflammatory cytokines and chemokines. Numerous cGAS-STING agonists have been developed for preclinical and clinical trials in tumor immunity. However, several obstacles, such as agonist molecules requiring multiple doses, rapid degradation and poor targeting, weaken STING activation at the tumor site. The advancement of nanotechnology provides an optimized platform for the clinical application of STING agonists. In this review, we summarize events of cGAS-STING pathway activation, the dilemma of delivering STING agonists, and recent advances in the nano-delivery of cGAS-STING agonist formulations for enhancing tumor immunity. Furthermore, we address the future challenges associated with STING-based therapies and offer insights to guide subsequent clinical applications.
Collapse
Affiliation(s)
- Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Yanan Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, P. R. China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
3
|
Yao Y, Zhou R, Yan C, Yan S, Han G, Liu Y, Fan D, Chen Z, Fan X, Chen Y, Li J, Yang Y, Tang Z. LncRNA RMG controls liquid-liquid phase separation of MEIS2 to regulate myogenesis. Int J Biol Macromol 2025; 310:143309. [PMID: 40252346 DOI: 10.1016/j.ijbiomac.2025.143309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Long non-coding RNAs (lncRNAs) regulate liquid-liquid phase separation (LLPS), driving the formation of biomolecular condensates essential for cellular function. However, this regulatory mechanism is yet to be reported in skeletal muscles. In this study, we comprehensively analyzed lncRNAs in skeletal muscle across multiple pig breeds, developmental stages, and tissues. Our analysis identified over 10,000 novel lncRNAs. We found that the lnc-regulator of muscle growth (lnc-RMG) regulates myogenesis by modulating the LLPS of Meis homeobox 2 (MEIS2). Lnc-RMG was specifically expressed in the skeletal muscle, with significantly higher expression in the fetal stage than in the embryonic stage. Notably, lnc-RMG was highly conserved between pigs and humans and exhibits similar biological functions in myogenesis. Furthermore, lnc-RMG knockdown promoted skeletal muscle regeneration. Mechanistically, lnc-RMG produces mature microRNA (miR)-133a-3p, which targets and inhibits MEIS2 expression, thereby inhibiting MEIS2 LLPS. This inhibition promoted the transcription of transforming growth factor-β receptor II (TGFβR2), ultimately regulating myogenesis. Overall, our findings revealed a novel lnc-RMG/miR-133a-3p/MEIS2/TGFβR2 axis that regulated myogenesis through LLPS and provided new insights into the molecular mechanisms that drive muscle development and regeneration. These findings highlight potential therapeutic targets for muscle-related diseases and novel strategies for livestock improvement.
Collapse
Affiliation(s)
- Yilong Yao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Rong Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Shanying Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guohao Han
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yanwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Danyang Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilong Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Chen
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Jiaying Li
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
4
|
Tang Y, Wang W, Chen C. Rational design of chemical- and light-inducible cGAS activation based on mechanistic insights. Commun Biol 2025; 8:541. [PMID: 40175538 PMCID: PMC11965557 DOI: 10.1038/s42003-025-07892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) plays a pivotal role in the cGAS-STING pathway as a DNA sensor that binds to double-stranded DNA (dsDNA) and subsequently induces type I interferon expression, thereby contributing significantly to the innate immune response. Several human and viral proteins have been identified to enhance or inhibit cGAS activity. The underlying molecular basis that underpins these regulatory effects remain elusive. In this study, we employ the highly sensitive dcFCCS method to systematically examine phase separation and binding affinities among cGAS, dsDNA, and several accessory proteins. We reveal that the binding strength between cGAS and accessory proteins is the key factor to affect cGAS phase separation and enzymatic activity, which guide us to develop a chemical-inducible strategy and a light-inducible strategy to manipulate cGAS phase separation and immune signaling in test tubes and in living cells. Thus, our mechanistic insights offer guidance for manipulating multi-component phase separation systems.
Collapse
Affiliation(s)
- Yiting Tang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Bournique E, Sanchez A, Oh S, Ghazarian D, Mahieu AL, Manjunath L, Ednacot E, Ortega P, Masri S, Marazzi I, Buisson R. ATM and IRAK1 orchestrate two distinct mechanisms of NF-κB activation in response to DNA damage. Nat Struct Mol Biol 2025; 32:740-755. [PMID: 39753776 PMCID: PMC11997730 DOI: 10.1038/s41594-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/02/2024] [Indexed: 01/25/2025]
Abstract
DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases. ATM stimulates NF-κB in cells with DNA double-strand breaks. By contrast, IRAK1-induced NF-κB signaling occurs in neighboring cells through IL-1α secretion from transcriptionally stressed cells caused by DNA lesions blocking RNA polymerases. Subsequently, both pathways stimulate TRAF6 and the IKK complex to promote NF-κB-mediated inflammatory gene expression. These findings provide an alternative mechanism for damaged cells with impaired transcription to initiate an inflammatory response without relying on their own gene expression, a necessary step that injured cells depend on during canonical innate immune responses.
Collapse
Affiliation(s)
- Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Daniel Ghazarian
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Eirene Ednacot
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
6
|
Zhang B, Xu P, Ablasser A. Regulation of the cGAS-STING Pathway. Annu Rev Immunol 2025; 43:667-692. [PMID: 40085836 DOI: 10.1146/annurev-immunol-101721-032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.
Collapse
Affiliation(s)
- Bing Zhang
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Wu XH, Huang XY, You Q, Zhu JM, Qiu QRS, Lin YZ, Xu N, Wei Y, Xue XY, Chen YH, Chen SH, Zheng QS. Liquid-liquid phase separation-related genes associated with prognosis, tumor microenvironment characteristics, and tumor cell features in bladder cancer. Clin Transl Oncol 2025; 27:1798-1815. [PMID: 39269596 DOI: 10.1007/s12094-024-03719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE This study aimed to explore the Liquid-liquid phase separation (LLPS)-related genes associated with the prognosis of bladder cancer (BCa) and assess the potential application of LLPS-related prognostic signature for predicting prognosis in BCa patients. METHODS Clinical information and transcriptome data of BCa patients were extracted from the Cancer Genome Atlas-BLCA (TCGA-BLCA) database and the GSE13507 database. Furthermore, 108 BCa patients who received treatment at our institution were subjected to a retrospective analysis. The least absolute shrinkage and selection operator (LASSO) analysis was performed to develop an LLPS-related prognostic signature for BCa. The CCK8, wound healing and Transwell assays were performed. RESULTS Based on 62 differentially expressed LLPS-related genes (DELRGs), three DELRGs were screened by LASSO analysis including kallikrein-related peptidase 5 (KLK5), monoacylglycerol O-acyltransferase 2 (MOGAT2) and S100 calcium-binding protein A7 (S100A7). Based on three DELRGs, a novel LLPS-related prognostic signature was constructed for individualized prognosis assessment. Kaplan-Meier curve analyses showed that LLPS-related prognostic signature was significantly correlated with overall survival (OS) of BCa. ROC analyses demonstrated the LLPS-related prognostic signature performed well in predicting the prognosis of BCa patients in the training group (the area under the curve (AUC) = 0.733), which was externally verified in the validation cohort 1 (AUC = 0.794) and validation cohort 2 (AUC = 0.766). Further experiments demonstrated that inhibiting KLK5 could affect the proliferation, migration, and invasion of BCa cells. CONCLUSIONS In this study, a novel LLPS-related prognostic signature was successfully developed and validated, demonstrating strong performance in predicting the prognosis of BCa patients.
Collapse
Affiliation(s)
- Xiao-Hui Wu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Xu-Yun Huang
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Qi You
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Qian-Ren-Shun Qiu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yun-Zhi Lin
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ye-Hui Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Region Medical Centre, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
8
|
Cao M, Zhang X, Wang X, Zhao D, Shi M, Zou J, Li L, Jiang H. An Overview of Liquid-Liquid Phase Separation and Its Mechanisms in Sepsis. J Inflamm Res 2025; 18:3969-3980. [PMID: 40125078 PMCID: PMC11927582 DOI: 10.2147/jir.s513098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Sepsis is a systemic inflammatory response syndrome triggered by the invasion of bacteria or pathogenic microorganisms into the human body, which may lead to a variety of serious complications and pose a serious threat to the patient's life and health. Liquid-liquid phase separation (LLPS) is a biomolecular process in which different biomolecules, such as proteins and nucleic acids, form liquid condensates through interactions, and these condensates play key roles in cellular physiological processes. LLPS may affect the development of sepsis through several pathways, such as modulation of inflammatory factors, immune responses, and cell death, by altering the function or activity of biomolecules, which, in turn, affect the cellular response to infection and inflammation. In this paper, we first discuss the mechanism of phase separation, then summarize the studies of LLPS in sepsis, and finally propose the potential application of LLPS in sepsis treatment strategies, while pointing out the limitations of the existing studies and the directions for future research.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Xinyi Zhang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Xiaohan Wang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| |
Collapse
|
9
|
Shi M, Jiang T, Zhang M, Li Q, Liu K, Lin N, Wang X, Jiang A, Gao Y, Wang Y, Liu S, Zhang L, Li D, Gao P. Nucleic-acid-induced ZCCHC3 condensation promotes broad innate immune responses. Mol Cell 2025; 85:962-975.e7. [PMID: 39983719 DOI: 10.1016/j.molcel.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 11/17/2024] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and cyclic GMP-AMP synthase (cGAS) recognize aberrant nucleic acids and initiate antiviral responses. Host factor zinc finger CCHC domain-containing protein 3 (ZCCHC3) positively regulates both RLRs- and cGAS-mediated signaling through unknown mechanisms. Here, we show that ZCCHC3 employs a broad and unified strategy to promote these pathways in human cell lines. Rather than developing strong protein-protein interactions, ZCCHC3 harbors multiple nucleic-acid-binding modules and undergoes robust liquid phase condensation with nucleic acids. RNA-induced ZCCHC3 condensates enrich and activate RLRs, which then facilitate the interaction of RLRs with the downstream adaptor mitochondrial antiviral-signaling (MAVS). Direct and high-resolution structure determination of liquid condensates confirms the assembly of active-form MAVS filaments. Furthermore, ZCCHC3 efficiently promotes the condensation and enrichment of DNA, cGAS, ATP, and GTP, thereby enhancing cGAS signaling. ZCCHC3 mutants defective in RNA/DNA-induced condensation lost their regulatory efficiency in both pathways. These results highlight unexpectedly broad connections between biomolecular condensation and innate immunity.
Collapse
Affiliation(s)
- Miao Shi
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengfan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanjin Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ni Lin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yina Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songqing Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liguo Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pu Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Lu M, Wu J, Gao Q, Jin R, An C, Ma T. To cleave or not and how? The DNA exonucleases and endonucleases in immunity. Genes Dis 2025; 12:101219. [PMID: 39759116 PMCID: PMC11697192 DOI: 10.1016/j.gendis.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2025] Open
Abstract
DNA exonucleases and endonucleases are key executors of the genome during many physiological processes. They generate double-stranded DNA by cleaving damaged endogenous or exogenous DNA, triggering the activation of the innate immune pathways such as cGAS-STING-IFN, and enabling the body to produce anti-viral or anti-tumor immune responses. This is of great significance for maintaining the stability of the genome and improving the therapeutic efficacy of tumors. In addition, genomic instability caused by exonuclease mutations contributes to the development of various autoimmune diseases. This review summarizes the DNA exonucleases and endonucleases which have critical functions in immunity and associated diseases.
Collapse
Affiliation(s)
- Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Renjing Jin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
11
|
Yu X, Zhang H. Biomolecular Condensates in Telomere Maintenance of ALT Cancer Cells. J Mol Biol 2025; 437:168951. [PMID: 39826712 DOI: 10.1016/j.jmb.2025.168951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent mechanism that utilizes homology-directed repair (HDR) to sustain telomere length in specific cancers. Biomolecular condensates, such as ALT-associated promyelocytic leukemia nuclear bodies (APBs), have emerged as critical players in the ALT pathway, supporting telomere maintenance in ALT-positive cells. These condensates bring together DNA repair proteins, telomeric repeats, and other regulatory elements. By regulating replication stress and promoting DNA synthesis, ALT condensates create an environment conducive to HDR-based telomere extension. This review explores recent advancements in ALT, focusing on understanding the role of biomolecular condensates in ALT and how they impact telomere dynamics and stability.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Huaiying Zhang
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Deng C, Chen D, Yang L, Zhang Y, Jin C, Li Y, Lin Q, Luo M, Zheng R, Huang B, Liu S. The role of cGAS-STING pathway ubiquitination in innate immunity and multiple diseases. Front Immunol 2025; 16:1522200. [PMID: 40028324 PMCID: PMC11868049 DOI: 10.3389/fimmu.2025.1522200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
The cGAS-STING pathway is essential in innate immunity, especially in antiviral responses and cellular stress management. cGAS acts as a cytoplasmic DNA sensor by initiating the synthesis of the second messenger cyclic GMP-AMP synthase (cGAMP), which subsequently activates the STING pathway, leading to the production of type I interferons and other cytokines, as well as the activation of inflammatory mediators. Recent studies have demonstrated that ubiquitination changes closely regulate the function of the cGAS-STING pathway. Ubiquitination modifications influence the stability and activity of cGAS and STING, while also influencing the accuracy of the immune response by adjusting their degradation and signal intensity. E3 ubiquitin ligase specifically facilitates the degradation or modulates the signaling of cGAS-STING-associated proteins via ubiquitination alterations. Furthermore, the ubiquitination of the cGAS-STING pathway serves distinct functions in various cell types and engages with NF-κB, IRF3/7, autophagy, and endoplasmic reticulum stress. This ubiquitin-mediated regulation is crucial for sustaining the balance of innate immunity, while excessive or inadequate ubiquitination can result in autoimmune disorders, cancers, and viral infections. An extensive examination of the ubiquitination process within the cGAS-STING pathway elucidates its specific regulatory mechanisms in innate immunity and identifies novel targets for the intervention of associated diseases.
Collapse
Affiliation(s)
- Chunyan Deng
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Dongyan Chen
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Liang Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Jin
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Yue Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qihong Lin
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Mingjing Luo
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Ruihao Zheng
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Baozhen Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| |
Collapse
|
13
|
Jiang Z, Shi F, Li J, Liu R, Zhou J, Zhong Z, Shi C, Ma M, Xiang S, Gao D. Crucial role of the cGAS N terminus in mediating flowable and functional cGAS-DNA condensate formation via DNA interactions. Proc Natl Acad Sci U S A 2025; 122:e2411659122. [PMID: 39819217 PMCID: PMC11761673 DOI: 10.1073/pnas.2411659122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/26/2024] [Indexed: 01/19/2025] Open
Abstract
The DNA-sensing protein cGAS plays a pivotal role in the innate immune response and pathogenesis of various diseases. DNA triggers liquid-liquid phase separation (LLPS) and enhances the enzymatic activity of cGAS. However, the regulatory mechanisms of the disordered N terminus remain unclear. Here, we showed that cGASNterm, the N-terminal intrinsic disordered region (IDR) of cGAS, modulates the material properties, specifically the flowability, of the condensed phase of cGAS and is required for full enzymatic activity. Full-length cGAS and cGASNterm form liquid droplets in the presence of DNA, while the cGAS catalytic domain forms gel-like solid aggregates with compromised enzymatic activity. Multiple key amino acids responsible for the cGASNterm-DNA interaction were identified by NMR spectroscopy as well as other biophysical methods and proven to be critical for the functional LLPS of cGAS both in vitro and in vivo. Interestingly, cGASNterm acts in trans to transform the solid aggregates of the cGAS catalytic domain into liquid droplets, subsequently restoring its enzymatic activity. Together, our findings highlight the importance of the IDR of cGAS in LLPS upon DNA stimulation and, more importantly, in modulating the fluidity and permeability of the droplets formed by full-length cGAS, which is crucial for its intact enzymatic activity.
Collapse
Affiliation(s)
- Zhelin Jiang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science Interdisciplinary Science & Biomedicine of Institute of Health and Medicine, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui230027, China
| | - Fan Shi
- Ministry of Education Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Juan Li
- Ministry of Education Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Rui Liu
- Department of Medical Engineering and Instrumentation, School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui230032, China
- Three dimensional-Printing and Tissue Engineering Center, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, China
| | - Jinhua Zhou
- Department of Medical Engineering and Instrumentation, School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui230032, China
- Three dimensional-Printing and Tissue Engineering Center, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, China
| | - Zhensheng Zhong
- Department of Medical Engineering and Instrumentation, School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui230032, China
- Three dimensional-Printing and Tissue Engineering Center, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, China
| | - Chaowei Shi
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Mingming Ma
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei230026, Anhui, China
| | - ShengQi Xiang
- Ministry of Education Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Daxing Gao
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science Interdisciplinary Science & Biomedicine of Institute of Health and Medicine, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui230027, China
| |
Collapse
|
14
|
Liang C, Ding X, Li X, Jiang X, Yang H, Yang H, Liu K, Hou L. In situ self-reassembling nanosystem enhances PD-L1 blockade for cancer immunotherapy. J Control Release 2025; 377:767-780. [PMID: 39631699 DOI: 10.1016/j.jconrel.2024.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have made great progress in cancer treatment, their off-tumor distribution, low affinity of traditional ICIs and insufficient T cells infiltration at tumor site limit immunotherapeutic efficacy. Herein, we engineer a highly specific and effective PD-L1 inhibitor (PEC) that modulates the level of binding sites with PD-L1. Specifically, PEC is a hybrid system composed of E. coli membrane expressing PD-L1 binding protein and cancer cell membrane. Notably, PEC can target the tumor site, produce oxygen in response to H2O2, rupture into membrane fragments, and reassemble to form vesicles retaining the PD-L1 binding protein. Through in situ fracture and reassembly, PEC transforms from a hybrid membrane to a single E. coli membrane, leading to the increased density of PD-L1 binding protein. Consequently, the reassembled vesicles can bind to more PD-L1 on tumor cells and induce its degradation in lysosomes. Furthermore, the cGAS-STING signaling activators HZD is encapsulated into PEC to promote T cells infiltration. We demonstrate that PEC@HZD achieves sequential T cells recruitment and functional enhancement, thus stimulating a powerful antitumor immune response. This work provides a new perspective on tailoring ICIs to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Chenglin Liang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyi Ding
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Xinni Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaojuan Jiang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Heng Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Hanxiao Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Kaikai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China.
| | - Lin Hou
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
16
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
17
|
Chen X, Agustinus AS, Li J, DiBona M, Bakhoum SF. Chromosomal instability as a driver of cancer progression. Nat Rev Genet 2025; 26:31-46. [PMID: 39075192 DOI: 10.1038/s41576-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Chromosomal instability (CIN) refers to an increased propensity of cells to acquire structural and numerical chromosomal abnormalities during cell division, which contributes to tumour genetic heterogeneity. CIN has long been recognized as a hallmark of cancer, and evidence over the past decade has strongly linked CIN to tumour evolution, metastasis, immune evasion and treatment resistance. Until recently, the mechanisms by which CIN propels cancer progression have remained elusive. Beyond the generation of genomic copy number heterogeneity, recent work has unveiled additional tumour-promoting consequences of abnormal chromosome segregation. These mechanisms include complex chromosomal rearrangements, epigenetic reprogramming and the induction of cancer cell-intrinsic inflammation, emphasizing the multifaceted role of CIN in cancer.
Collapse
Affiliation(s)
- Xuelan Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert S Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Chen K, Cao X. Biomolecular condensates: phasing in regulated host-pathogen interactions. Trends Immunol 2025; 46:29-45. [PMID: 39672748 DOI: 10.1016/j.it.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Biomolecular condensates are membraneless organelles formed through liquid-liquid phase separation. Innate immunity is essential to host defense against infections, but pathogens also harbor sophisticated mechanisms to evade host defense. The formation of biomolecular condensates emerges as a key biophysical mechanism in host-pathogen interactions, playing pivotal roles in regulating immune responses and pathogen life cycles within the host. In this review we summarize recent advances in our understanding of how biomolecular condensates remodel membrane-bound organelles, influence infection-induced cell death, and are hijacked by pathogens for survival, as well as how they modulate mammalian innate immunity. We discuss the implications of dysregulated formation of biomolecular condensates during host-pathogen interactions and infectious diseases and propose future directions for developing potential treatments against such infections.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China; Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China.
| |
Collapse
|
19
|
Liu YT, Cao LY, Sun ZJ. The emerging roles of liquid-liquid phase separation in tumor immunity. Int Immunopharmacol 2024; 143:113212. [PMID: 39353387 DOI: 10.1016/j.intimp.2024.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in tumor immunotherapy, particularly PD-1 targeted therapy, have shown significant promise, marking major progress in tumor treatment approaches. Despite this, the development of resistance to therapy and mechanisms of immune evasion by tumors pose considerable obstacles to the broad application of immunotherapy. This necessitates a deeper exploration of complex immune signaling pathways integral to tumor immunity. This review aims to critically analyze the role of liquid-liquid phase separation (LLPS) within tumor immunity, specifically its impact on immune signaling pathways and its potential to foster the development of novel cancer therapies. LLPS, a biophysical process newly recognized for its ability to spontaneously segregate and organize biomacromolecules into liquid-like condensates through weak multivalent interactions, offers a novel perspective on the formation of signaling clusters and the functionality of immune molecules. The review delves into the micromolecular mechanisms behind the creation of signaling condensates via LLPS and reviews recent progress in adjusting signaling pathways pertinent to tumor immunity, including the T cell receptor (TCR), B cell receptor (BCR), immune checkpoints, and innate immune pathways such as the cGAS-STING pathway, stress granules, and the ADP-heptose-ALPK1 signaling axis. Furthermore, it considers the prospects of utilizing LLPS to generate groundbreaking cancer therapies capable of navigating past current treatment barriers. Through an extensive examination of LLPS's impact on tumor immunity, the review seeks to highlight novel therapeutic strategies and address the challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lin-Yu Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Hu J, Tian M. The cGAS-STING pathway in ischemia-reperfusion injury in acute cerebral infarction: a new therapeutic opportunities? Front Neurol 2024; 15:1471287. [PMID: 39741707 PMCID: PMC11685085 DOI: 10.3389/fneur.2024.1471287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
The innate immune response is the body's first line of defense against external pathogens and endogenous damage signals. The cGAS-STING pathway is a crucial component of the innate immune response, playing a key role in initiating antiviral and anti-infective immune responses by recognizing cytosolic DNA. Acute cerebral infarction is one of the leading causes of death and disability worldwide, with the primary treatment approach being the restoration of blood flow to ischemic brain tissue. However, reperfusion injury remains a significant challenge during treatment. The overactivation of the cGAS-STING pathway and its association with ischemia-reperfusion injury have been confirmed in numerous studies. This article will systematically elucidate the mechanisms of the cGAS-STING pathway, its role in ischemia-reperfusion injury in acute cerebral infarction, the current research status of cGAS-STING inhibitors, and the application of nanomaterials in this context, evaluating the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Jun Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Li Z, Luo L, Ju X, Huang S, Lei L, Yu Y, Liu J, Zhang P, Chi T, Ma P, Huang C, Huang X, Ding Q, Zhang Y. Viral N protein hijacks deaminase-containing RNA granules to enhance SARS-CoV-2 mutagenesis. EMBO J 2024; 43:6444-6468. [PMID: 39567830 PMCID: PMC11649915 DOI: 10.1038/s44318-024-00314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Host cell-encoded deaminases act as antiviral restriction factors to impair viral replication and production through introducing mutations in the viral genome. We sought to understand whether deaminases are involved in SARS-CoV-2 mutation and replication, and how the viral factors interact with deaminases to trigger these processes. Here, we show that APOBEC and ADAR deaminases act as the driving forces for SARS-CoV-2 mutagenesis, thereby blocking viral infection and production. Mechanistically, SARS-CoV-2 nucleocapsid (N) protein, which is responsible for packaging viral genomic RNA, interacts with host deaminases and co-localizes with them at stress granules to facilitate viral RNA mutagenesis. N proteins from several coronaviruses interact with host deaminases at RNA granules in a manner dependent on its F17 residue, suggesting a conserved role in modulation of viral mutagenesis in other coronaviruses. Furthermore, mutant N protein bearing a F17A substitution cannot localize to deaminase-containing RNA granules and leads to reduced mutagenesis of viral RNA, providing support for its function in enhancing deaminase-dependent viral RNA editing. Our study thus provides further insight into virus-host cell interactions mediating SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Zhean Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liqun Lei
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanying Yu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xingxu Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| |
Collapse
|
22
|
李 静, 周 陈. [Latest Findings on the Role of Liquid-Liquid Phase Separation in the Regulation of Immune Cell Activation and Key Signaling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1527-1532. [PMID: 39990825 PMCID: PMC11839372 DOI: 10.12182/20241160302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 02/25/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a process in which certain proteins or protein-RNA complexes form phase-separated droplets with different components and properties through multivalent interactions within a cell. In recent years, the role of LLPS in immunomodulation has received extensive attention. Compared with phase separation-related studies in other fields, limited research has been done on LLPS and the immune system. In this review, we first introduced the basic characteristics of LLPS associated with the immune system, and then explored the functions of LLPS in innate immune-related signaling pathways and adaptive immune cells. LLPS plays a crucial role in immune signal transduction, immune cell activation, and antigen presentation. It is involved in facilitating the aggregation of signaling molecules, regulating the intensity and duration of signal transduction, and influencing the functional state of immune cells. The discovery of LLPS provides a new theoretical basis for elucidating the activation mechanism of the immune system and is expected to bring new perspectives for understanding the cellular defense mechanisms. In-depth investigation of the role of LLPS in the immune system not only helps us gain a more comprehensive understanding of the immune response process, but also provides potential targets and strategies for the development of new immunotherapies and the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- 静怡 李
- 口腔疾病防治全国重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 陈晨 周
- 口腔疾病防治全国重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
24
|
Zhang X, Yang Z, Fu C, Yao R, Li H, Peng F, Li N. Emerging roles of liquid-liquid phase separation in liver innate immunity. Cell Commun Signal 2024; 22:430. [PMID: 39227829 PMCID: PMC11373118 DOI: 10.1186/s12964-024-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan Province, China
| | - Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
25
|
Shim A, Luan X, Zhou W, Crow YJ, Maciejowski J. Mutations in the non-catalytic polyproline motif destabilize TREX1 and amplify cGAS-STING signaling. Hum Mol Genet 2024; 33:1555-1566. [PMID: 38796715 PMCID: PMC11373327 DOI: 10.1093/hmg/ddae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Indexed: 05/28/2024] Open
Abstract
The cGAS-STING pathway detects cytosolic DNA and activates a signaling cascade that results in a type I interferon (IFN) response. The endoplasmic reticulum (ER)-associated exonuclease TREX1 suppresses cGAS-STING by eliminating DNA from the cytosol. Mutations that compromise TREX1 function are linked to autoinflammatory disorders, including systemic lupus erythematosus (SLE) and Aicardi-Goutières syndrome (AGS). Despite key roles in regulating cGAS-STING and suppressing excessive inflammation, the impact of many disease-associated TREX1 mutations-particularly those outside of the core catalytic domains-remains poorly understood. Here, we characterize a recessive AGS-linked TREX1 P61Q mutation occurring within the poorly characterized polyproline helix (PPII) motif. In keeping with its position outside of the catalytic core or ER targeting motifs, neither the P61Q mutation, nor aggregate proline-to-alanine PPII mutation, disrupts TREX1 exonuclease activity, subcellular localization, or cGAS-STING regulation in overexpression systems. Introducing targeted mutations into the endogenous TREX1 locus revealed that PPII mutations destabilize the protein, resulting in impaired exonuclease activity and unrestrained cGAS-STING activation. Overall, these results demonstrate that TREX1 PPII mutations, including P61Q, impair proper immune regulation and lead to autoimmune disease through TREX1 destabilization.
Collapse
Affiliation(s)
- Abraham Shim
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| | - Xiaohan Luan
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065, USA
| |
Collapse
|
26
|
Li Y, Zhao D, Chen D, Sun Q. Targeting protein condensation in cGAS-STING signaling pathway. Bioessays 2024; 46:e2400091. [PMID: 38962845 DOI: 10.1002/bies.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
The cGAS-STING signaling pathway plays a pivotal role in sensing cytosolic DNA and initiating innate immune responses against various threats, with disruptions in this pathway being associated with numerous immune-related disorders. Therefore, precise regulation of the cGAS-STING signaling is crucial to ensure appropriate immune responses. Recent research, including ours, underscores the importance of protein condensation in driving the activation and maintenance of innate immune signaling within the cGAS-STING pathway. Consequently, targeting condensation processes in this pathway presents a promising approach for modulating the cGAS-STING signaling and potentially managing associated disorders. In this review, we provide an overview of recent studies elucidating the role and regulatory mechanism of protein condensation in the cGAS-STING signaling pathway while emphasizing its pathological implications. Additionally, we explore the potential of understanding and manipulating condensation dynamics to develop novel strategies for mitigating cGAS-STING-related disorders in the future.
Collapse
Affiliation(s)
- Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Flowers S, Petronella BA, McQueney MS, Fanelli B, Eisenberg W, Uveges A, Roden AL, Salowe S, Bommireddy V, Letourneau JJ, Huang CY, Beasley JR. A novel TREX1 inhibitor, VB-85680, upregulates cellular interferon responses. PLoS One 2024; 19:e0305962. [PMID: 39178223 PMCID: PMC11343403 DOI: 10.1371/journal.pone.0305962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 08/25/2024] Open
Abstract
Activation of the cGAS-STING pathway plays a key role in the innate immune response to cancer through Type-1 Interferon (IFN) production and T cell priming. Accumulation of cytosolic double-stranded DNA (dsDNA) within tumor cells and dying cells is recognized by the DNA sensor cyclic GMP-AMP synthase (cGAS) to create the secondary messenger cGAMP, which in turn activates STING (STimulator of INterferon Genes), resulting in the subsequent expression of IFN-related genes. This process is regulated by Three-prime Repair EXonuclease 1 (TREX1), a 3' → 5' exonuclease that degrades cytosolic dsDNA, thereby dampening activation of the cGAS-STING pathway, which in turn diminishes immunostimulatory IFN secretion. Here, we characterize the activity of VB-85680, a potent small-molecule inhibitor of TREX1. We first demonstrate that VB-85680 inhibits TREX1 exonuclease activity in vitro in lysates from both human and mouse cell lines. We then show that treatment of intact cells with VB-85680 results in activation of downstream STING signaling, and activation of IFN-stimulated genes (ISGs). THP1-Dual™ cells cultured under low-serum conditions exhibited an enhanced ISG response when treated with VB-85680 in combination with exogenous DNA. Collectively, these findings suggest the potential of a TREX1 exonuclease inhibitor to work in combination with agents that generate cytosolic DNA to enhance the acquisition of the anti-tumor immunity widely associated with STING pathway activation.
Collapse
Affiliation(s)
- Stephen Flowers
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Brenda A. Petronella
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Michael S. McQueney
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Barbara Fanelli
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Warren Eisenberg
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Albert Uveges
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Allison L. Roden
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Scott Salowe
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Venu Bommireddy
- Oncoveda, A Division of Genesis Research & Development Institute, LLC, Hamilton, New Jersey, United States of America
| | - Jeffrey J. Letourneau
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - Chia-Yu Huang
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| | - James R. Beasley
- Venenum Biodesign, LLC, and Genesis Drug Discovery & Development, LLC, Hamilton, New Jersey, United States of America
| |
Collapse
|
29
|
Xu X, Hong Y, Fan H, Guo Z. Nucleic Acid Materials-Mediated Innate Immune Activation for Cancer Immunotherapy. ChemMedChem 2024; 19:e202400111. [PMID: 38622787 DOI: 10.1002/cmdc.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Abnormally localized nucleic acids (NAs) are considered as pathogen associated molecular patterns (PAMPs) in innate immunity. They are recognized by NAs-specific pattern recognition receptors (PRRs), leading to the activation of associated signaling pathways and subsequent production of type I interferons (IFNs) and pro-inflammatory cytokines, which further trigger the adaptive immunity. Notably, NAs-mediated innate immune activation is highly dependent on the conformation changes, especially the aggregation of PRRs. Evidence indicates that the characteristics of NAs including their length, concentration and even spatial structure play essential roles in inducing the aggregation of PRRs. Therefore, nucleic acid materials (NAMs) with high valency of NAs and high-order structures hold great potential for activating innate and adaptive immunity, making them promising candidates for cancer immunotherapy. In recent years, a variety of NAMs have been developed and have demonstrated significant efficacy in achieving satisfactory anti-tumor immunity in multiple mouse models, exhibiting huge potential for clinical application in cancer treatment. This review aims to discuss the mechanisms of NAMs-mediated innate immune response, and summarize their applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yuxuan Hong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Wang L, Zhou W. Phase separation as a new form of regulation in innate immunity. Mol Cell 2024; 84:2410-2422. [PMID: 38936362 DOI: 10.1016/j.molcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Innate immunity is essential for the host against pathogens, cancer, and autoimmunity. The innate immune system encodes many sensor, adaptor, and effector proteins and relies on the assembly of higher-order signaling complexes to activate immune defense. Recent evidence demonstrates that many of the core complexes involved in innate immunity are organized as liquid-like condensates through a mechanism known as phase separation. Here, we discuss phase-separated condensates and their diverse functions. We compare the biochemical, structural, and mechanistic details of solid and liquid-like assemblies to explore the role of phase separation in innate immunity. We summarize the emerging evidence for the hypothesis that phase separation is a conserved mechanism that controls immune responses across the tree of life. The discovery of phase separation in innate immunity provides a new foundation to explain the rules that govern immune system activation and will enable the development of therapeutics to treat immune-related diseases properly.
Collapse
Affiliation(s)
- Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
31
|
Chuang HY, He RY, Huang YA, Hsu WT, Cheng YJ, Guo ZR, Wali N, Hwang IS, Shie JJ, Huang JJT. Engineered droplet-forming peptide as photocontrollable phase modulator for fused in sarcoma protein. Nat Commun 2024; 15:5686. [PMID: 38971830 PMCID: PMC11227587 DOI: 10.1038/s41467-024-50025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
The assembly and disassembly of biomolecular condensates are crucial for the subcellular compartmentalization of biomolecules in the control of cellular reactions. Recently, a correlation has been discovered between the phase transition of condensates and their maturation (aggregation) process in diseases. Therefore, modulating the phase of condensates to unravel the roles of condensation has become a matter of interest. Here, we create a peptide-based phase modulator, JSF1, which forms droplets in the dark and transforms into amyloid-like fibrils upon photoinitiation, as evidenced by their distinctive nanomechanical and dynamic properties. JSF1 is found to effectively enhance the condensation of purified fused in sarcoma (FUS) protein and, upon light exposure, induce its fibrilization. We also use JSF1 to modulate the biophysical states of FUS condensates in live cells and elucidate the relationship between FUS phase transition and FUS proteinopathy, thereby shedding light on the effect of protein phase transition on cellular function and malfunction.
Collapse
Affiliation(s)
- Hao-Yu Chuang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Ruei-Yu He
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yung-An Huang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wan-Ting Hsu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Ya-Jen Cheng
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Zheng-Rong Guo
- Institute of Physics, Academia Sinica, Taipei, 115, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | | | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 115, Taiwan.
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
- Department of Applied Chemistry, National Chiayi University, Chiayi City, 600, Taiwan.
| |
Collapse
|
32
|
Liu D, Yang J, Cristea IM. Liquid-liquid phase separation in innate immunity. Trends Immunol 2024; 45:454-469. [PMID: 38762334 PMCID: PMC11247960 DOI: 10.1016/j.it.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Intrinsic and innate immune responses are essential lines of defense in the body's constant surveillance of pathogens. The discovery of liquid-liquid phase separation (LLPS) as a key regulator of this primal response to infection brings an updated perspective to our understanding of cellular defense mechanisms. Here, we review the emerging multifaceted role of LLPS in diverse aspects of mammalian innate immunity, including DNA and RNA sensing and inflammasome activity. We discuss the intricate regulation of LLPS by post-translational modifications (PTMs), and the subversive tactics used by viruses to antagonize LLPS. This Review, therefore, underscores the significance of LLPS as a regulatory node that offers rapid and plastic control over host immune signaling, representing a promising target for future therapeutic strategies.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Jinhang Yang
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA.
| |
Collapse
|
33
|
Dai Z, Yang X. The regulation of liquid-liquid phase separated condensates containing nucleic acids. FEBS J 2024; 291:2320-2331. [PMID: 37735903 DOI: 10.1111/febs.16959] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Liquid-liquid phase separation (LLPS) has been recognized as a universal biological phenomenon. It plays an important role in life activities. LLPS is induced by weak interactions between intrinsically disordered regions or low complex domains. Nucleic acids are widely present in cells, and shown to be closely related to LLPS. Their structure and electronegativity provide the excellent platforms for the formation of phase-separated condensates. In this review, we summarize the interconnected regulation between nucleic acids and LLPS demonstrated in in vivo and in vitro studies. Beside homogeneous and single-phase condensates, complicated and multicompartment LLPS induced by nucleic acids is discussed as well. Recent advances about nucleic-acid-induced LLPS as a new pathogenic mechanism and drug design direction are highlighted, especially virus-mediated disease treatment and prevention.
Collapse
Affiliation(s)
- Zhuojun Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaorong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
34
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
35
|
Wu S, Gabelli SB, Sohn J. The structural basis for 2'-5'/3'-5'-cGAMP synthesis by cGAS. Nat Commun 2024; 15:4012. [PMID: 38740774 PMCID: PMC11091121 DOI: 10.1038/s41467-024-48365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
cGAS activates innate immune responses against cytosolic double-stranded DNA. Here, by determining crystal structures of cGAS at various reaction stages, we report a unifying catalytic mechanism. apo-cGAS assumes an array of inactive conformations and binds NTPs nonproductively. Dimerization-coupled double-stranded DNA-binding then affixes the active site into a rigid lock for productive metal•substrate binding. A web-like network of protein•NTP, intra-NTP, and inter-NTP interactions ensures the stepwise synthesis of 2'-5'/3'-5'-linked cGAMP while discriminating against noncognate NTPs and off-pathway intermediates. One divalent metal is sufficient for productive substrate binding, and capturing the second divalent metal is tightly coupled to nucleotide and linkage specificities, a process which manganese is preferred over magnesium by 100-fold. Additionally, we elucidate how mouse cGAS achieves more stringent NTP and linkage specificities than human cGAS. Together, our results reveal that an adaptable, yet precise lock-and-key-like mechanism underpins cGAS catalysis.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Discovery Chemistry, Merck Laboratories, West Point, PA, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Liang Q, Yang S, Mai M, Chen X, Zhu X. Mining phase separation-related diagnostic biomarkers for endometriosis through WGCNA and multiple machine learning techniques: a retrospective and nomogram study. J Assist Reprod Genet 2024; 41:1433-1447. [PMID: 38456992 PMCID: PMC11143086 DOI: 10.1007/s10815-024-03079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the role of phase separation-related genes in the development of endometriosis (EMs) and to identify potential characteristic genes associated with the condition. METHODS We used GEO database data, including 74 non-endometriosis and 74 varying-degree EMs patients. Our approach involved identifying significant gene modules, exploring gene intersections, identifying core genes, and screening for potential EMs biomarkers using weighted gene co-expression network analysis (WGCNA) and various machine learning approaches. We also performed gene set enrichment analysis (GSEA) to understand relevant pathways. This comprehensive approach helps investigate EMs genetics and potential biomarkers. RESULTS Nine genes were identified at the intersection, suggesting their involvement in EMs. GSEA linked DEGs to pathways like complement and coagulation cascades, DNA replication, chemokines, apical plasma membrane processes, and diseases such as Hepatitis B, Human T-cell leukemia virus 1 infection, and COVID-19. Five feature genes (FOS, CFD, CCNA1, CA4, CST1) were selected by machine learning for an effective EMs diagnostic nomogram. GSEA indicated their roles in mismatch repair, cell cycle regulation, complement and coagulation cascades, and IL-17 inflammation. Notable differences in immune cell proportions (CD4 T cells, CD8 T cells, DCs, macrophages) were observed between normal and disease groups, suggesting immune involvement. CONCLUSIONS This study suggests the potential involvement of phase separation-related genes in the pathogenesis of endometriosis (EMs) and identifies promising biomarkers for diagnosis. These findings have implications for further research and the development of new therapeutic strategies for EMs.
Collapse
Affiliation(s)
- Qiuyi Liang
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Shengmei Yang
- Obstetrical Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiyi Mai
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiurong Chen
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
37
|
Sun X, Zhou Y, Wang Z, Peng M, Wei X, Xie Y, Wen C, Liu J, Ye M. Biomolecular Condensates Decipher Molecular Codes of Cell Fate: From Biophysical Fundamentals to Therapeutic Practices. Int J Mol Sci 2024; 25:4127. [PMID: 38612940 PMCID: PMC11012904 DOI: 10.3390/ijms25074127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Cell fate is precisely modulated by complex but well-tuned molecular signaling networks, whose spatial and temporal dysregulation commonly leads to hazardous diseases. Biomolecular condensates (BCs), as a newly emerging type of biophysical assemblies, decipher the molecular codes bridging molecular behaviors, signaling axes, and clinical prognosis. Particularly, physical traits of BCs play an important role; however, a panoramic view from this perspective toward clinical practices remains lacking. In this review, we describe the most typical five physical traits of BCs, and comprehensively summarize their roles in molecular signaling axes and corresponding major determinants. Moreover, establishing the recent observed contribution of condensate physics on clinical therapeutics, we illustrate next-generation medical strategies by targeting condensate physics. Finally, the challenges and opportunities for future medical development along with the rapid scientific and technological advances are highlighted.
Collapse
Affiliation(s)
- Xing Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Yangyang Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Zhiyan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Xianhua Wei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| | - Yifang Xie
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Chengcai Wen
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China; (Y.X.); (C.W.)
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (X.S.); (Y.Z.); (Z.W.); (M.P.); (X.W.)
| |
Collapse
|
38
|
Wenzl SJ, de Oliveira Mann CC. How enzyme-centered approaches are advancing research on cyclic oligo-nucleotides. FEBS Lett 2024; 598:839-863. [PMID: 38453162 DOI: 10.1002/1873-3468.14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Cyclic nucleotides are the most diversified category of second messengers and are found in all organisms modulating diverse pathways. While cAMP and cGMP have been studied over 50 years, cyclic di-nucleotide signaling in eukaryotes emerged only recently with the anti-viral molecule 2´3´cGAMP. Recent breakthrough discoveries have revealed not only the astonishing chemical diversity of cyclic nucleotides but also surprisingly deep-rooted evolutionary origins of cyclic oligo-nucleotide signaling pathways and structural conservation of the proteins involved in their synthesis and signaling. Here we discuss how enzyme-centered approaches have paved the way for the identification of several cyclic nucleotide signals, focusing on the advantages and challenges associated with deciphering the activation mechanisms of such enzymes.
Collapse
Affiliation(s)
- Simon J Wenzl
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Carina C de Oliveira Mann
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
39
|
Deng B, Wan G. Technologies for studying phase-separated biomolecular condensates. ADVANCED BIOTECHNOLOGY 2024; 2:10. [PMID: 39883284 PMCID: PMC11740866 DOI: 10.1007/s44307-024-00020-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 01/31/2025]
Abstract
Biomolecular condensates, also referred to as membrane-less organelles, function as fundamental organizational units within cells. These structures primarily form through liquid-liquid phase separation, a process in which proteins and nucleic acids segregate from the surrounding milieu to assemble into micron-scale structures. By concentrating functionally related proteins and nucleic acids, these biomolecular condensates regulate a myriad of essential cellular processes. To study these significant and intricate organelles, a range of technologies have been either adapted or developed. In this review, we provide an overview of the most utilized technologies in this rapidly evolving field. These include methods used to identify new condensates, explore their components, investigate their properties and spatiotemporal regulation, and understand the organizational principles governing these condensates. We also discuss potential challenges and review current advancements in applying the principles of biomolecular condensates to the development of new technologies, such as those in synthetic biology.
Collapse
Affiliation(s)
- Boyuan Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, GuangDong, China
| | - Gang Wan
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, GuangDong, China.
| |
Collapse
|
40
|
Wang H, Zhang Y, Tian Y, Yang W, Wang Y, Hou H, Pan H, Pei S, Zhu H, Gu Z, Zhang Y, Dai D, Chen W, Zheng M, Luo Q, Xiao Y, Huang J. DNA-PK-Mediated Cytoplasmic DNA Sensing Stimulates Glycolysis to Promote Lung Squamous Cell Carcinoma Malignancy and Chemoresistance. Cancer Res 2024; 84:688-702. [PMID: 38199791 DOI: 10.1158/0008-5472.can-23-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Detection of cytoplasmic DNA is an essential biological mechanism that elicits IFN-dependent and immune-related responses. A better understanding of the mechanisms regulating cytoplasmic DNA sensing in tumor cells could help identify immunotherapeutic strategies to improve cancer treatment. Here we identified abundant cytoplasmic DNA accumulated in lung squamous cell carcinoma (LUSC) cells. DNA-PK, but not cGAS, functioned as a specific cytoplasmic DNA sensor to activate downstream ZAK/AKT/mTOR signaling, thereby enhancing the viability, motility, and chemoresistance of LUSC cells. DNA-PK-mediated cytoplasmic DNA sensing boosted glycolysis in LUSC cells, and blocking glycolysis abolished the tumor-promoting activity of cytoplasmic DNA. Elevated DNA-PK-mediated cytoplasmic DNA sensing was positively correlated with poor prognosis of human patients with LUSC. Targeting signaling activated by cytoplasmic DNA sensing with the ZAK inhibitor iZAK2 alone or in combination with STING agonist or anti-PD-1 antibody suppressed the tumor growth and improved the survival of mouse lung cancer models and human LUSC patient-derived xenografts model. Overall, these findings established DNA-PK-mediated cytoplasmic DNA sensing as a mechanism that supports LUSC malignancy and highlight the potential of targeting this pathway for treating LUSC. SIGNIFICANCE DNA-PK is a cytoplasmic DNA sensor that activates ZAK/AKT/mTOR signaling and boosts glycolysis to enhance malignancy and chemoresistance of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanyang Zhang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wanlin Yang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hanbo Pan
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Siyu Pei
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hongda Zhu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zenan Gu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanyun Zhang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Dongfang Dai
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P.R. China
| | - Wei Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, P.R. China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
41
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Martin EW, Iserman C, Olety B, Mitrea DM, Klein IA. Biomolecular Condensates as Novel Antiviral Targets. J Mol Biol 2024; 436:168380. [PMID: 38061626 DOI: 10.1016/j.jmb.2023.168380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.
Collapse
|
43
|
Di Bona M, Bakhoum SF. Micronuclei and Cancer. Cancer Discov 2024; 14:214-226. [PMID: 38197599 PMCID: PMC11265298 DOI: 10.1158/2159-8290.cd-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Chromosome-containing micronuclei are a feature of human cancer. Micronuclei arise from chromosome mis-segregation and characterize tumors with elevated rates of chromosomal instability. Although their association with cancer has been long recognized, only recently have we broadened our understanding of the mechanisms that govern micronuclei formation and their role in tumor progression. In this review, we provide a brief historical account of micronuclei, depict the mechanisms underpinning their creation, and illuminate their capacity to propel tumor evolution through genetic, epigenetic, and transcriptional transformations. We also posit the prospect of leveraging micronuclei as biomarkers and therapeutic targets in chromosomally unstable cancers. SIGNIFICANCE Micronuclei in chromosomally unstable cancer cells serve as pivotal catalysts for cancer progression, instigating transformative genomic, epigenetic, and transcriptional alterations. This comprehensive review not only synthesizes our present comprehension but also outlines a framework for translating this knowledge into pioneering biomarkers and therapeutics, thereby illuminating novel paths for personalized cancer management.
Collapse
Affiliation(s)
- Melody Di Bona
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
44
|
Mathavarajah S, Dellaire G. LINE-1: an emerging initiator of cGAS-STING signalling and inflammation that is dysregulated in disease. Biochem Cell Biol 2024; 102:38-46. [PMID: 37643478 DOI: 10.1139/bcb-2023-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
The cGAS-STING (cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)) axis integrates DNA damage and cellular stress with type I interferon (IFN) signalling to facilitate transcriptional changes underlying inflammatory stress responses. The cGAS-STING pathway responds to cytosolic DNA in the form of double-stranded DNA, micronuclei, and long interspersed nuclear element 1 (L1) retroelements. L1 retroelements are a class of self-propagating non-long terminal repeat transposons that have remained highly active in mammalian genomes. L1 retroelements are emerging as important inducers of cGAS-STING and IFN signalling, which are often dysregulated in several diseases, including cancer. A key repressor of cGAS-STING and L1 activity is the exonuclease three prime repair exonuclease 1 (TREX1), and loss of TREX1 promotes the accumulation of L1. In addition, L1 dysregulation is a common theme among diseases with chronic induction of type I IFN signalling through cGAS-STING, such as Aicardi-Goutières syndrome, Fanconi anemia, and dermatomyositis. Although TREX1 is highly conserved in tetrapod species, other suppressor proteins exist that inhibit L1 retrotransposition. These suppressor genes when mutated are often associated with diseases characterized by unchecked inflammation that is associated with high cGAS-STING activity and elevated levels of L1 expression. In this review, we discuss these interconnected pathways of L1 suppression and their role in the regulation of cGAS-STING and inflammation in disease.
Collapse
Affiliation(s)
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
45
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
46
|
Zierhut C. Potential cGAS-STING pathway functions in DNA damage responses, DNA replication and DNA repair. DNA Repair (Amst) 2024; 133:103608. [PMID: 38056369 DOI: 10.1016/j.dnarep.2023.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The major innate immune responder to the DNA of pathogens is the cyclic GMP-AMP (cGAMP) synthase (cGAS) - stimulator of interferon genes (STING) pathway. Most prominently, the outcome of cGAS signalling is the activation of inflammatory transcription through interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-kB). In addition, the cGAS-STING pathway can lead to the direct modulation of cellular processes independently of transcription, such as activation of autophagy. Under unperturbed conditions, several mechanisms are in place to prevent the activation of cGAS by self-DNA, chiefly its sequestration on chromatin, which interferes with binding to stimulatory DNA. However, under conditions of genotoxic stress and chromosomal instability, this inhibition breaks down, resulting in the activation of cGAS, which drives sterile inflammation, as well as cell fate and immune responses in cancer. Recently, several studies have suggested that cGAS, STING, or downstream pathway components can also regulate the DNA damage response, DNA damage checkpoint signalling, DNA repair and DNA replication. Here, I review these proposed mechanisms, and discuss some unanswered questions relating to them.
Collapse
Affiliation(s)
- Christian Zierhut
- The Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
47
|
Yang J, He Y, Zhang M, Liang C, Li T, Ji T, Zu M, Ma X, Zhang Z, Liang C, Zhang Q, Chen Y, Hou L. Programmed initiation and enhancement of cGAS/STING pathway for tumour immunotherapy via tailor-designed ZnFe 2O 4-based nanosystem. EXPLORATION (BEIJING, CHINA) 2023; 3:20230061. [PMID: 38264691 PMCID: PMC10742191 DOI: 10.1002/exp.20230061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/25/2023] [Indexed: 01/25/2024]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signalling pathway has been a promising target for anticancer immunity, but rationally activating and enhancing this pathway in tumour cells is critical. Herein, a glutathione sensitive ZnFe2O4-based nanosystem is developed to programmatically initiate and enhance the STING signalling pathway in tumour cells. The prepared ZnFe2O4 nanoparticles were coated with cancer cell membrane (CCM), which enabled the nanosystem target tumour cells. In tumour cells, ZnFe2O4 nanoparticles could be disintegrated by responding to high level glutathione, and the released Fe3+ generated reactive oxygen species to induce the DNA leakage into the cytoplasm to stimulate cGAS. Then Zn2+ promoted cGAS-DNA phase separation to intensify the cGAS enzymatic activity. In addition, the low dose encapsulation of paclitaxel (PTX) acting as an antimitotic agent (ZnFe2O4-PTX@CCM) ensured the sustained activation of cGAS/STING pathway. The in vitro and in vivo results confirmed that ZnFe2O4-PTX@CCM elevated the cGAS/STING activity, promoted dendritic cell maturation, increased cytotoxic T lymphocyte and natural killer cells infiltration, eventually inhibiting the tumour progress and postoperative recurrence. This study provided feasible references on constructing STING activation nanosystem for tumour immunotherapy.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yuping He
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Meng Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chenglin Liang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tongtong Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Mali Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Xu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhenzhong Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chun Liang
- Department of Plastic and Reconstructive SurgeryChinese PLA General HospitalBeijingChina
| | - Qixu Zhang
- Department of Plastic SurgeryUniversity of Texas MD Anderson Cancer CenterTexasUSA
| | - Youbai Chen
- Department of Plastic and Reconstructive SurgeryChinese PLA General HospitalBeijingChina
| | - Lin Hou
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
48
|
Gao G, Sumrall ES, Pitchiaya S, Bitzer M, Alberti S, Walter NG. Biomolecular condensates in kidney physiology and disease. Nat Rev Nephrol 2023; 19:756-770. [PMID: 37752323 DOI: 10.1038/s41581-023-00767-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
The regulation and preservation of distinct intracellular and extracellular solute microenvironments is crucial for the maintenance of cellular homeostasis. In mammals, the kidneys control bodily salt and water homeostasis. Specifically, the urine-concentrating mechanism within the renal medulla causes fluctuations in extracellular osmolarity, which enables cells of the kidney to either conserve or eliminate water and electrolytes, depending on the balance between intake and loss. However, relatively little is known about the subcellular and molecular changes caused by such osmotic stresses. Advances have shown that many cells, including those of the kidney, rapidly (within seconds) and reversibly (within minutes) assemble membraneless, nano-to-microscale subcellular assemblies termed biomolecular condensates via the biophysical process of hyperosmotic phase separation (HOPS). Mechanistically, osmotic cell compression mediates changes in intracellular hydration, concentration and molecular crowding, rendering HOPS one of many related phase-separation phenomena. Osmotic stress causes numerous homo-multimeric proteins to condense, thereby affecting gene expression and cell survival. HOPS rapidly regulates specific cellular biochemical processes before appropriate protective or corrective action by broader stress response mechanisms can be initiated. Here, we broadly survey emerging evidence for, and the impact of, biomolecular condensates in nephrology, where initial concentration buffering by HOPS and its subsequent cellular escalation mechanisms are expected to have important implications for kidney physiology and disease.
Collapse
Affiliation(s)
- Guoming Gao
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily S Sumrall
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Markus Bitzer
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany
| | - Nils G Walter
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 2023; 55:2320-2331. [PMID: 37945923 PMCID: PMC10689850 DOI: 10.1038/s12276-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy. Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This study provides insights for the application of nucleic acid sensing in therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
- Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
50
|
Li J, Xiong M, Liu J, Zhang F, Li M, Zhao W, Xu Y. Discovery of novel cGAS inhibitors based on natural flavonoids. Bioorg Chem 2023; 140:106802. [PMID: 37666112 DOI: 10.1016/j.bioorg.2023.106802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) plays an important role in the inflammatory response. It has been reported that aberrant activation of cGAS is associated with a variety of immune-mediated inflammatory disorders. The development of small molecule inhibitors of cGAS has been considered as a promising therapeutic strategy for the diseases. Flavonoids, a typical class of natural products, are known for their anti-inflammatory activities. Although cGAS is closely associated with inflammation, the potential effects of natural flavonoid compounds on cGAS have been rarely studied. Therefore, we screened an in-house natural flavonoid library by pyrophosphatase (PPiase) coupling assay and identified novel cGAS inhibitors baicalein and baicalin. Subsequently, crystal structures of the two natural flavonoids in complex with human cGAS were determined, which provide mechanistic insight into the anti-inflammatory activities of baicalein and baicalin at the molecular level. After that, a virtual screening based on the crystal structures of baicalein and baicalin in complex with human cGAS was performed. As a result, compound C20 was identified to inhibit both human and mouse cGAS with IC50 values of 2.28 and 1.44 μM, respectively, and its detailed interactions with human cGAS were further revealed by the X-ray crystal structure determination. These results demonstrate the potential of natural products used as hits in drug discovery and provide valuable hints for further development of cGAS inhibitors.
Collapse
Affiliation(s)
- Jiameng Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fengping Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wenfeng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yechun Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|