1
|
James NR, O'Neill JS. Circadian Control of Protein Synthesis. Bioessays 2025; 47:e202300158. [PMID: 39668398 PMCID: PMC11848126 DOI: 10.1002/bies.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization-and of circadian rhythmicity in general-is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.
Collapse
Affiliation(s)
- Nathan R. James
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| | - John S. O'Neill
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
2
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
3
|
Tsakiroglou M, Evans A, Doce-Carracedo A, Little M, Hornby R, Roberts P, Zhang E, Miyajima F, Pirmohamed M. Gene Expression Dysregulation in Whole Blood of Patients with Clostridioides difficile Infection. Int J Mol Sci 2024; 25:12653. [PMID: 39684365 DOI: 10.3390/ijms252312653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a global threat and has significant implications for individuals and health care systems. Little is known about host molecular mechanisms and transcriptional changes in peripheral immune cells. This is the first gene expression study in whole blood from patients with C. difficile infection. We took blood and stool samples from patients with toxigenic C. difficile infection (CDI), non-toxigenic C. difficile infection (GDH), inflammatory bowel disease (IBD), diarrhea from other causes (DC), and healthy controls (HC). We performed transcriptome-wide RNA profiling on peripheral blood to identify diarrhea common and CDI unique gene sets. Diarrhea groups upregulated innate immune responses with neutrophils at the epicenter. The common signature associated with diarrhea was non-specific and shared by various other inflammatory conditions. CDI had a unique 45 gene set reflecting the downregulation of humoral and T cell memory functions. Dysregulation of immunometabolic genes was also abundant and linked to immune cell fate during differentiation. Whole transcriptome analysis of white cells in blood from patients with toxigenic C. difficile infection showed that there is an impairment of adaptive immunity and immunometabolism.
Collapse
Affiliation(s)
- Maria Tsakiroglou
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony Evans
- Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alejandra Doce-Carracedo
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Clinical Directorate, GCP Laboratories, University of Liverpool, Liverpool L7 8TX, UK
| | - Margaret Little
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Rachel Hornby
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Paul Roberts
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Faculty of Science and Engineering, School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LZ, UK
| | - Eunice Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Fabio Miyajima
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio 61773-270, Brazil
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
4
|
Rosenlehner T, Pennavaria S, Akçabozan B, Jahani S, O'Neill TJ, Krappmann D, Straub T, Kranich J, Obst R. Reciprocal regulation of mTORC1 signaling and ribosomal biosynthesis determines cell cycle progression in activated T cells. Sci Signal 2024; 17:eadi8753. [PMID: 39436996 DOI: 10.1126/scisignal.adi8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Ribosomal biosynthesis in nucleoli is an energy-demanding process driven by all RNA polymerases and hundreds of auxiliary proteins. We investigated how this process is regulated in activated T lymphocytes by T cell receptor (TCR) signals and the multiprotein complexes mTORC1 and mTORC2, both of which contain the kinase mTOR. Deficiency in mTORC1 slowed the proliferation of T cells, with further delays in each consecutive division, an effect not seen with deficiency in mTORC2. mTORC1 signaling was stimulated by components of conventional TCR signaling, and, reciprocally, TCR sensitivity was decreased by mTORC1 inhibition. The substantial increase in the amount of RNA per cell induced by TCR activation was reduced by 50% by deficiency in mTORC1, but not in mTORC2 or in S6 kinases 1 and 2, which are activated downstream of mTORC1. RNA-seq data showed that mTORC1 deficiency reduced the abundance of all RNA biotypes, although rRNA processing was largely intact in activated T cells. Imaging cytometry with FISH probes for nascent pre-rRNA revealed that deletion of mTORC1, but not that of mTORC2, reduced the number and expansion of nucleolar sites of active transcription. Protein translation was consequently decreased by 50% in the absence of mTORC1. Inhibiting RNA polymerase I blocked not only proliferation but also mTORC1 signaling. Our data show that TCR signaling, mTORC1 activity, and ribosomal biosynthesis in the nucleolus regulate each other during biomass production in clonally expanding T cells.
Collapse
Affiliation(s)
- Teresa Rosenlehner
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shiva Jahani
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas J O'Neill
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Schapfl MA, LoMastro GM, Braun VZ, Hirai M, Levine MS, Kiermaier E, Labi V, Holland AJ, Villunger A. Centrioles are frequently amplified in early B cell development but dispensable for humoral immunity. Nat Commun 2024; 15:8890. [PMID: 39406735 PMCID: PMC11480410 DOI: 10.1038/s41467-024-53222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Centrioles define centrosome structure and function. Deregulation of centriole numbers can cause developmental defects and cancer. The p53 tumor suppressor limits the growth of cells lacking or harboring additional centrosomes and can be engaged by the "mitotic surveillance" or the "PIDDosome pathway", respectively. Here, we show that early B cell progenitors frequently present extra centrioles, ensuing their high proliferative activity and related DNA damage. Extra centrioles are efficiently cleared during B cell maturation. In contrast, centriole loss upon Polo-like kinase 4 (Plk4) deletion causes apoptosis and arrests B cell development. This defect can be rescued by co-deletion of Usp28, a critical component of the mitotic surveillance pathway, that restores cell survival and maturation. Centriole-deficient mature B cells are proliferation competent and mount a humoral immune response. Our findings imply that progenitor B cells are intolerant to centriole loss but permissive to centriole amplification, a feature potentially facilitating their malignant transformation.
Collapse
Affiliation(s)
- Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent Z Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maretoshi Hirai
- Department of Pharmacology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Verena Labi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
6
|
Lee CS, Chen S, Berry CT, Kelly AR, Herman PJ, Oh S, O'Connor RS, Payne AS, Ellebrecht CT. Fate induction in CD8 CAR T cells through asymmetric cell division. Nature 2024; 633:670-677. [PMID: 39198645 PMCID: PMC11410665 DOI: 10.1038/s41586-024-07862-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Early expansion and long-term persistence predict efficacy of chimeric antigen receptor T cells (CARTs)1-7, but mechanisms governing effector versus memory CART differentiation and whether asymmetric cell division induces differential fates in human CARTs remain unclear. Here we show that target-induced proximity labelling enables isolation of first-division proximal-daughter and distal-daughter CD8 CARTs that asymmetrically distribute their surface proteome and transcriptome, resulting in divergent fates. Target-engaged CARs remain on proximal daughters, which inherit a surface proteome resembling activated-undivided CARTs, whereas the endogenous T cell receptor and CD8 enrich on distal daughters, whose surface proteome resembles resting CARTs, correlating with glycolytic and oxidative metabolism, respectively. Despite memory-precursor phenotype and in vivo longevity, distal daughters demonstrate transient potent cytolytic activity similar to proximal daughters, uncovering an effector-like state in distal daughters destined to become memory CARTs. Both partitioning of pre-existing transcripts and changes in RNA velocity contribute to asymmetry of fate-determining factors, resulting in diametrically opposed transcriptional trajectories. Independent of naive, memory or effector surface immunophenotype, proximal-daughter CARTs use core sets of transcription factors known to support proliferation and effector function. Conversely, transcription factors enriched in distal daughters restrain differentiation and promote longevity, evidenced by diminished long-term in vivo persistence and function of distal-daughter CARTs after IKZF1 disruption. These studies establish asymmetric cell division as a framework for understanding mechanisms of CART differentiation and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Casey S Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangwook Oh
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Wang X, Cornish AE, Do MH, Brunner JS, Hsu TW, Xu Z, Malik I, Edwards C, Capistrano KJ, Zhang X, Ginsberg MH, Finley LWS, Lim MS, Horwitz SM, Li MO. Onco-Circuit Addiction and Onco-Nutrient mTORC1 Signaling Vulnerability in a Model of Aggressive T Cell Malignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587917. [PMID: 38617314 PMCID: PMC11014592 DOI: 10.1101/2024.04.03.587917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
How genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive MYC transcription and Tsc1 loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with Tsc1 deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit. A low leucine diet was therapeutic even in late-stage disease but did not hinder T cell immunity to infectious challenge, nor impede T cell transformation driven by constitutive nutrient mTORC1 signaling via Depdc5 loss. Thus, mTORC1 signaling hypersensitivity to leucine as an onco-nutrient enables an onco-circuit, decoupling pathologic from physiologic utilization of nutrient acquisition pathways.
Collapse
|
8
|
Turner L, Van Le TN, Cross E, Queriault C, Knight M, Trihemasava K, Davis J, Schaefer P, Nguyen J, Xu J, Goldspiel B, Hall E, Rome K, Scaglione M, Eggert J, Au-Yeung B, Wallace DC, Mesaros C, Baur JA, Bailis W. Single-cell NAD(H) levels predict clonal lymphocyte expansion dynamics. Sci Immunol 2024; 9:eadj7238. [PMID: 38489349 PMCID: PMC11064129 DOI: 10.1126/sciimmunol.adj7238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Adaptive immunity requires the expansion of high-affinity lymphocytes from a heterogeneous pool. Whereas current models explain this through signal transduction, we hypothesized that antigen affinity tunes discrete metabolic pathways to license clonal lymphocyte dynamics. Here, we identify nicotinamide adenine dinucleotide (NAD) biosynthesis as a biochemical hub for the T cell receptor affinity-dependent metabolome. Through this central anabolic role, we found that NAD biosynthesis governs a quiescence exit checkpoint, thereby pacing proliferation. Normalizing cellular NAD(H) likewise normalizes proliferation across affinities, and enhancing NAD biosynthesis permits the expansion of lower affinity clones. Furthermore, single-cell differences in NAD(H) could predict division potential for both T and B cells, before the first division, unmixing proliferative heterogeneity. We believe that this supports a broader paradigm in which complex signaling networks converge on metabolic pathways to control single-cell behavior.
Collapse
Affiliation(s)
- Lucien Turner
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Tran Ngoc Van Le
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Eric Cross
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Clemence Queriault
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Montana Knight
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Krittin Trihemasava
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - James Davis
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104
| | - Patrick Schaefer
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Janet Nguyen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Jimmy Xu
- Center of Excellence in Environmental Toxicology & Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania; Philadelphia, PA 19104
| | - Brian Goldspiel
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Elise Hall
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Kelly Rome
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Michael Scaglione
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
| | - Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, GA 30322
| | - Byron Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, GA 30322
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology & Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania; Philadelphia, PA 19104
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104
| | - Will Bailis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104
| |
Collapse
|
9
|
Zhang H, Yang Z, Yuan W, Liu J, Luo X, Zhang Q, Li Y, Chen J, Zhou Y, Lv J, Zhou N, Ma J, Tang K, Huang B. Sustained AhR activity programs memory fate of early effector CD8 + T cells. Proc Natl Acad Sci U S A 2024; 121:e2317658121. [PMID: 38437537 PMCID: PMC10945852 DOI: 10.1073/pnas.2317658121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Identification of mechanisms that program early effector T cells to either terminal effector T (Teff) or memory T (Tm) cells has important implications for protective immunity against infections and cancers. Here, we show that the cytosolic transcription factor aryl hydrocarbon receptor (AhR) is used by early Teff cells to program memory fate. Upon antigen engagement, AhR is rapidly up-regulated via reactive oxygen species signaling in early CD8+ Teff cells, which does not affect the effector response, but is required for memory formation. Mechanistically, activated CD8+ T cells up-regulate HIF-1α to compete with AhR for HIF-1β, leading to the loss of AhR activity in HIF-1αhigh short-lived effector cells, but sustained in HIF-1αlow memory precursor effector cells (MPECs) with the help of autocrine IL-2. AhR then licenses CD8+ MPECs in a quiescent state for memory formation. These findings partially resolve the long-standing issue of how Teff cells are regulated to differentiate into memory cells.
Collapse
Affiliation(s)
- Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Zhuoshun Yang
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei442000, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Wu Yuan
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jincheng Liu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xiao Luo
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Qian Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan430079, China
| | - Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100005, China
| |
Collapse
|
10
|
Raynor JL, Chi H. Nutrients: Signal 4 in T cell immunity. J Exp Med 2024; 221:e20221839. [PMID: 38411744 PMCID: PMC10899091 DOI: 10.1084/jem.20221839] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
T cells are integral in mediating adaptive immunity to infection, autoimmunity, and cancer. Upon immune challenge, T cells exit from a quiescent state, followed by clonal expansion and effector differentiation. These processes are shaped by three established immune signals, namely antigen stimulation (Signal 1), costimulation (Signal 2), and cytokines (Signal 3). Emerging findings reveal that nutrients, including glucose, amino acids, and lipids, are crucial regulators of T cell responses and interplay with Signals 1-3, highlighting nutrients as Signal 4 to license T cell immunity. Here, we first summarize the functional importance of Signal 4 and the underlying mechanisms of nutrient transport, sensing, and signaling in orchestrating T cell activation and quiescence exit. We also discuss the roles of nutrients in programming T cell differentiation and functional fitness and how nutrients can be targeted to improve disease therapy. Understanding how T cells respond to Signal 4 nutrients in microenvironments will provide insights into context-dependent functions of adaptive immunity and therapeutic interventions.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
11
|
Kaminskiy Y, Ganeeva I, Chasov V, Kudriaeva A, Bulatov E. Asymmetric T-cell division: insights from cutting-edge experimental techniques and implications for immunotherapy. Front Immunol 2024; 15:1301378. [PMID: 38495874 PMCID: PMC10940324 DOI: 10.3389/fimmu.2024.1301378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Asymmetric cell division is a fundamental process conserved throughout evolution, employed by both prokaryotic and eukaryotic organisms. Its significance lies in its ability to govern cell fate and facilitate the generation of diverse cell types. Therefore, attaining a detailed mechanistic understanding of asymmetric cell division becomes essential for unraveling the complexities of cell fate determination in both healthy and pathological conditions. However, the role of asymmetric division in T-cell biology has only recently been unveiled. Here, we provide an overview of the T-cell asymmetric division field with the particular emphasis on experimental methods and models with the aim to guide the researchers in the selection of appropriate in vitro/in vivo models to study asymmetric division in T cells. We present a comprehensive investigation into the mechanisms governing the asymmetric division in various T-cell subsets underscoring the importance of the asymmetry in fate-determining factor segregation and transcriptional and epigenetic regulation. Furthermore, the intricate interplay of T-cell receptor signaling and the asymmetric division geometry are explored, shedding light on the spatial organization and the impact on cellular fate.
Collapse
Affiliation(s)
- Yaroslav Kaminskiy
- Department of Oncology and Pathology, Karolinska Institutet, SciLifeLab, Solna, Sweden
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Gräbnitz F, Oxenius A. CD8 T-cell diversification: Asymmetric cell division and its functional implications. Eur J Immunol 2023; 53:e2250225. [PMID: 36788705 DOI: 10.1002/eji.202250225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Establishment of cellular diversity is a basic requirement for the development of multicellular organisms. Cellular diversification can be induced by asymmetric cell division (ACD), during which the emerging two daughter cells unequally inherit lineage specific cargo (including transcription factors, receptors for specific signaling inputs, metabolic platforms, and possibly different epigenetic landscapes), resulting in two daughter cells endowed with different fates. While ACD is strongly involved in lineage choices in mammalian stem cells, its role in fate diversification in lineage committed cell subsets that still exhibit plastic potential, such as T-cells, is currently investigated. In this review, we focus predominantly on the role of ACD in fate diversification of CD8 T-cells. Further, we discuss the impact of differential T-cell receptor stimulation strengths and differentiation history on ACD-mediated fate diversification and highlight a particular importance of ACD in the development of memory CD8 T-cells upon high-affinity stimulation conditions.
Collapse
Affiliation(s)
- Fabienne Gräbnitz
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
| |
Collapse
|
13
|
Sturmlechner I, Jain A, Mu Y, Weyand CM, Goronzy JJ. T cell fate decisions during memory cell generation with aging. Semin Immunol 2023; 69:101800. [PMID: 37494738 PMCID: PMC10528238 DOI: 10.1016/j.smim.2023.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The defense against infectious diseases, either through natural immunity or after vaccinations, relies on the generation and maintenance of protective T cell memory. Naïve T cells are at the center of memory T cell generation during primary responses. Upon activation, they undergo a complex, highly regulated differentiation process towards different functional states. Naïve T cells maintained into older age have undergone epigenetic adaptations that influence their fate decisions during differentiation. We review age-sensitive, molecular pathways and gene regulatory networks that bias naïve T cell differentiation towards effector cell generation at the expense of memory and Tfh cells. As a result, T cell differentiation in older adults is associated with release of bioactive waste products into the microenvironment, higher stress sensitivity as well as skewing towards pro-inflammatory signatures and shorter life spans. These maladaptations not only contribute to poor vaccine responses in older adults but also fuel a more inflammatory state.
Collapse
Affiliation(s)
- Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
14
|
Nizharadze T, Becker NB, Höfer T. Quantitating CD8 + T cell memory development. Trends Immunol 2023; 44:519-529. [PMID: 37277233 DOI: 10.1016/j.it.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
In acute immune responses to infection, memory T cells develop that can spawn recall responses. This process has not been observable directly in vivo. Here we highlight the utility of mathematical inference to derive quantitatively testable models of mammalian CD8+ T cell memory development from complex experimental data. Previous inference studies suggested that precursors of memory T cells arise early during the immune response. Recent work has both validated a crucial prediction of this T cell diversification model and refined the model. While multiple developmental routes to distinct memory subsets might exist, a branch point occurs early in proliferating T cell blasts, from which separate differentiation pathways emerge for slowly dividing precursors of re-expandable memory cells and rapidly dividing effectors.
Collapse
Affiliation(s)
- Tamar Nizharadze
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nils B Becker
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Gräbnitz F, Stark D, Shlesinger D, Petkidis A, Borsa M, Yermanos A, Carr A, Barandun N, Wehling A, Balaz M, Schroeder T, Oxenius A. Asymmetric cell division safeguards memory CD8 T cell development. Cell Rep 2023; 42:112468. [PMID: 37178119 DOI: 10.1016/j.celrep.2023.112468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The strength of T cell receptor (TCR) stimulation and asymmetric distribution of fate determinants are both implied to affect T cell differentiation. Here, we uncover asymmetric cell division (ACD) as a safeguard mechanism for memory CD8 T cell generation specifically upon strong TCR stimulation. Using live imaging approaches, we find that strong TCR stimulation induces elevated ACD rates, and subsequent single-cell-derived colonies comprise both effector and memory precursor cells. The abundance of memory precursor cells emerging from a single activated T cell positively correlates with first mitosis ACD. Accordingly, preventing ACD by inhibition of protein kinase Cζ (PKCζ) during the first mitosis upon strong TCR stimulation markedly curtails the formation of memory precursor cells. Conversely, no effect of ACD on fate commitment is observed upon weak TCR stimulation. Our data provide relevant mechanistic insights into the role of ACD for CD8 T cell fate regulation upon different activation conditions.
Collapse
Affiliation(s)
- Fabienne Gräbnitz
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andreas Carr
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Niculò Barandun
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Arne Wehling
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Miroslav Balaz
- Department of Metabolic Disease Research, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
17
|
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, Heymach JV, Zhang J, Reuben A. T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clin Cancer Res 2023; 29:994-1008. [PMID: 36413126 PMCID: PMC10011887 DOI: 10.1158/1078-0432.ccr-22-2469] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Collapse
Affiliation(s)
- Meredith L. Frank
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Kaylene Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Can Erdogan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Rice University, Houston, Texas
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Hu
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|