1
|
Raja R, Biswas B, Abraham R, Wang Y, Chang CY, Hendriks IA, Buch-Larsen SC, Liu H, Yang X, Wang C, Vu H, Hamacher-Brady A, Cai D, Leung AKL. Interferon-induced PARP14-mediated ADP-ribosylation in p62 bodies requires the ubiquitin-proteasome system. EMBO J 2025; 44:2741-2773. [PMID: 40195501 DOI: 10.1038/s44318-025-00421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Biomolecular condensates are cellular compartments without enveloping membranes, enabling them to dynamically adjust their composition in response to environmental changes through post-translational modifications. Recent work has revealed that interferon-induced ADP-ribosylation (ADPr), which can be reversed by a SARS-CoV-2-encoded hydrolase, is enriched within a condensate. However, the identity of the condensate and the responsible host ADP-ribosyltransferase remain elusive. Here, we demonstrate that interferon induces ADPr through transcriptional activation of PARP14, requiring both the physical presence and catalytic activity of PARP14 for condensate formation. Interferon-induced ADPr colocalizes with PARP14 and its associated E3 ligase, DTX3L. These PARP14/ADPr condensates contain key components of p62 bodies-including the selective autophagy receptor p62, its binding partner NBR1 and the associated protein TAX1BP1, along with K48-linked and K63-linked polyubiquitin chains-but lack the autophagosome marker LC3B. Knockdown of p62 disrupts the formation of these ADPr condensates. Importantly, these structures are unaffected by autophagy inhibition, but depend on ubiquitination and proteasome activity. Taken together, these findings demonstrate that interferon triggers PARP14-mediated ADP-ribosylation in p62 bodies, which requires an active ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Rameez Raja
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Banhi Biswas
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Rachy Abraham
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yiran Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Che-Yuan Chang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ivo A Hendriks
- NNF Center for Protein Research, Copenhagen N, DK-2200, Denmark
| | | | - Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- XDBio Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xingyi Yang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chenyao Wang
- BeiGene Institute, Shanghai R&D Center, Shanghai, 200131, China
| | - Hien Vu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anne Hamacher-Brady
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21205, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Uribe IR, Zahn E, Searfoss R, Kim HB, Dasovich M, Voorneveld J, Hunt SR, Onuoha UC, Valadez C, Filippov DV, Na CH, Garcia BA, Orsburn BC, Leung AKL. dELTA-MS: A Mass Spectrometry-Based Proteomics Approach for Identifying ADP-Ribosylation Sites and Forms. J Proteome Res 2025; 24:1791-1803. [PMID: 40079415 DOI: 10.1021/acs.jproteome.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
ADP-ribosylation, characterized by the addition of adenosine diphosphate ribose, can occur in both monomeric (MARylation) and polymeric (PARylation) forms. Little is known about the specific contributions of MARylation and PARylation to cellular processes due to a lack of tools for jointly investigating these individual forms. We present a novel mass spectrometry (MS)-based proteomics approach that preserves information about the native ADP-ribosylation form associated with the modification site within a single proteomics experiment. Our workflow enables the simplified, binary identification of ADP-ribosylation forms, avoiding some challenges typically presented by PARylated peptides during MS analysis. Our method uses the coronaviral enzyme NS2 to reverse our previous labeling approach, ELTA, which enzymatically labels the terminal ADP-ribose. NS2 deconjugates ELTA-labeled free or peptide-conjugated ADP-ribose monomers and polymers (thereby termed dELTA), leaving behind a signature phosphate. Our dELTA-MS workflow involves ELTA labeling, dELTA deconjugation, and further processing using Deinococcus radiodurans poly(ADP-ribose) glycohydrolase (DrPARG), resulting in two distinct mass shifts for MARylation and PARylation sites. We demonstrate the feasibility of this workflow for proteomics analyses using proof-of-principle peptide standards. dELTA-MS thus creates possibilities to reveal the fundamental biology of ADP-ribosylation and explore its dysregulation, in terms of both sites and forms, associated with disease progression.
Collapse
Affiliation(s)
- Isabel R Uribe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Richard Searfoss
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Han-Byeol Kim
- Department of Neurology, Institute for Cell Engineering Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jim Voorneveld
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sabrina R Hunt
- EpiCypher Inc., Durham, North Carolina 27709, United States
| | | | - Catherine Valadez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dmitri V Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Benjamin C Orsburn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Liu H, Pillai M, Leung AKL. PARPs and ADP-ribosylation-mediated biomolecular condensates: determinants, dynamics, and disease implications. Trends Biochem Sci 2025; 50:224-241. [PMID: 39922741 DOI: 10.1016/j.tibs.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
Biomolecular condensates are cellular compartments that selectively enrich proteins and other macromolecules despite lacking enveloping membranes. These compartments often form through phase separation triggered by multivalent nucleic acids. Emerging data have revealed that poly(ADP-ribose) (PAR), a nucleic acid-based protein modification catalyzed by ADP-ribosyltransferases (commonly known as PARPs), plays a crucial role in this process. This review focuses on the role of PARPs and ADP-ribosylation, and explores the principles and mechanisms by which PAR regulates condensate formation, dissolution, and dynamics. Future studies with advanced tools to examine PAR binding sites, substrate interactions, PAR length and structure, and transitions from condensates to aggregates will be key to unraveling the complexity of ADP-ribosylation in health and disease, including cancer, viral infection, and neurodegeneration.
Collapse
Affiliation(s)
- Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Cross-Disciplinary Graduate Program in Biomedical Sciences (XDBio), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Meenakshi Pillai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Lu Y, Schuller M, Bullen N, Mikolcevic P, Zonjic I, Raggiaschi R, Mikoc A, Whitney J, Ahel I. Discovery of reversing enzymes for RNA ADP-ribosylation reveals a possible defence module against toxic attack. Nucleic Acids Res 2025; 53:gkaf069. [PMID: 39964479 PMCID: PMC11833690 DOI: 10.1093/nar/gkaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Nucleic acid ADP-ribosylation and its associated enzymes involved in catalysis and hydrolysis are widespread among all kingdoms of life. Yet, its roles in mammalian and bacterial physiology including inter-/intraspecies conflicts are currently underexplored. Recently, several examples of enzymatic systems for RNA ADP-ribosylation have been identified, showing that all major types of RNA species, including messenger RNA, ribosomal RNA, and transfer RNA, can be targeted by ADP-ribosyltransferases (ARTs) which attach ADP-ribose modifications either to nucleobases, the backbone ribose, or phosphate ends. Yet little is known about the reversibility of RNA ADP-ribosylation by ADP-ribosylhydrolases belonging to the macrodomain, ARH, or NADAR superfamilies. Here, we characterize the hydrolytic activity of ADP-ribosylhydrolases on RNA species ADP-ribosylated by mammalian and bacterial ARTs. We demonstrate that NADAR ADP-ribosylhydrolases are the only hydrolase family able to reverse guanosine RNA base ADP-ribosylation while they are inactive on phosphate-end RNA ADP-ribosylation. Furthermore, we reveal that macrodomain-containing PARG enzymes are the only hydrolase type with the ability for specific and efficient reversal of 2'-hydroxyl group RNA ADP-ribosylation catalysed by Pseudomonas aeruginosa effector toxin RhsP2. Moreover, using the RhsP2/bacterial PARG system as an example, we demonstrate that PARG enzymes can act as protective immunity enzymes against antibacterial RNA-targeting ART toxins.
Collapse
Affiliation(s)
- Yang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Nathan P Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Petra Mikolcevic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Iva Zonjic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Roberto Raggiaschi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Andreja Mikoc
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| |
Collapse
|
5
|
Cheng SJ, Gafaar T, Kuttiyatveetil JRA, Sverzhinsky A, Chen C, Xu M, Lilley A, Pascal JM, Leung AKL. Regulation of stress granule maturation and dynamics by poly(ADP-ribose) interaction with PARP13. Nat Commun 2025; 16:621. [PMID: 39805863 PMCID: PMC11731017 DOI: 10.1038/s41467-024-55666-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers. Single amino acid mutations in PARP13, which reduce its PAR-binding activity, lead to the formation of smaller yet more numerous stress granules than observed in the wild-type. This fragmented stress granule phenotype is also apparent in PARP13 variants with cancer-associated single-nucleotide polymorphisms (SNPs) that disrupt PAR binding. Notably, this fragmented phenotype is conserved across a variety of stresses that trigger stress granule formation via diverse pathways. Furthermore, this PAR-binding mutant diminishes condensate dynamics and impedes fusion. Overall, our study uncovers the important role of PAR-protein interactions in stress granule dynamics and maturation, mediated through PARP13.
Collapse
Affiliation(s)
- Shang-Jung Cheng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Temitope Gafaar
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Carla Chen
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Minghui Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Allison Lilley
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Samarskaya VO, Koblova S, Suprunova T, Rogozhin EA, Spechenkova N, Yakunina S, Love AJ, Kalinina NO, Taliansky M. Poly ADP-Ribosylation in a Plant Pathogenic Oomycete Phytophthora infestans: A Key Controller of Growth and Host Plant Colonisation. J Fungi (Basel) 2025; 11:29. [PMID: 39852448 PMCID: PMC11766942 DOI: 10.3390/jof11010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
ADP-ribosylation is a reversible modification of proteins and nucleic acids, which controls major cellular processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress, and immunity in plants and animals. The involvement of ADP-ribosylation in the life cycle of Dictyostelium and some filamentous fungi has also been demonstrated. However, the role of this process in pathogenic oomycetes has never been addressed. Here, we show that the Phytophthora infestans genome contains two PARP-like protein genes (PiPARP1 and PiPARP2), and provide evidence of PARylation activity for one of them (PiPARP2). Using dsRNA-mediated RNA silencing of the PiPARP2 gene and chemical (pharmacological) inhibition of PARP activity by 3-aminobenzamide (3AB) PARP inhibitor, we demonstrate the critical functional role of ADP-ribosylation in Phytophthora mycelium growth. Virulence test on detached leaves also suggests an important role of ADP-ribosylation in Phytophthora host plant colonisation and pathogenesis. On a practical level, our data suggest that targeting the PARylation system may constitute a novel powerful approach for the management of Phytophthora diseases.
Collapse
Affiliation(s)
- Viktoriya O. Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Sofya Koblova
- Doka-Gene Technologies Ltd., Moscow Region, 141880 Rogachevo, Russia; (S.K.); (T.S.)
| | - Tatiana Suprunova
- Doka-Gene Technologies Ltd., Moscow Region, 141880 Rogachevo, Russia; (S.K.); (T.S.)
| | - Eugene A. Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Sofiya Yakunina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
| | - Andrew J. Love
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (E.A.R.)
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| |
Collapse
|
7
|
Wang J, Yan Y, Song F. Protein PARylation: a novel regulator of fungal virulence. Trends Microbiol 2025; 33:1-3. [PMID: 39721911 DOI: 10.1016/j.tim.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Protein PARylation is a reversible post-translational modification; however, its role in fungal virulence has remained elusive. Recently, Gao et al. demonstrated that PARylation of two 14-3-3 regulatory proteins by poly(ADP-ribose) polymerase is essential for the virulence of rice blast fungus, highlighting the critical regulatory function of PARylation in fungal pathogenicity.
Collapse
Affiliation(s)
- Jiajing Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuqing Yan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Chan EC, Ablooglu AJ, Ghosh CC, Desai A, Schaible N, Chen X, Zhao M, Olano MR, Ganesan S, Lack JB, Krishnan R, Parikh SM, Druey KM. PARP15 Is a Susceptibility Locus for Clarkson Disease (Monoclonal Gammopathy-Associated Systemic Capillary Leak Syndrome). Arterioscler Thromb Vasc Biol 2024; 44:2628-2646. [PMID: 39479769 PMCID: PMC11602389 DOI: 10.1161/atvbaha.124.321522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Vascular leakage is a deadly complication of severe infections, ranging from bacterial sepsis to malaria. Worldwide, septicemia is among the top 10 causes of lethality because of the shock and multiorgan dysfunction that arise from the host vascular response. In the monoclonal gammopathy-associated capillary leak syndrome (MG-CLS), even otherwise mundane infections induce recurrent septic-like episodes of profound microvascular hyperpermeability and shock. There are no defined genetic risk factors for MG-CLS or effective treatments for acute crises. METHODS We characterized predicted loss-of-function mutations in PARP15 (poly[ADP-ribose] polymerase 15), a protein of unknown function that is absent in mice, in patients with MG-CLS. We analyzed barrier function in PARP15-deficient vascular endothelial cells and vascular leakage in mice engineered to express wild-type or loss-of-function variant human PARP15. RESULTS We discovered several loss-of-function PARP15 variants associated with MG-CLS. These mutations severely reduced PARP15 enzymatic function. The presence of the most frequently detected variant (G628R) correlated with clinical markers of severe vascular leakage. In human microvascular endothelial cells, PARP15 suppressed cytokine-induced barrier disruption by ADP-ribosylating the scaffold protein JIP3 (c-Jun N-terminal kinase-interacting protein 3) and inhibiting p38 MAP (mitogen-activated protein) kinase activation. Mice expressing enzymatically inactive human PARP15(G628R) were significantly more prone to inflammation-associated vascular leakage than mice expressing wild-type PARP15 in a p38-dependent fashion. CONCLUSIONS PARP15 represents a previously unrecognized genetic susceptibility factor for MG-CLS. PARP15-mediated ADP ribosylation is an essential and genetically determined mechanism of the human vascular response to inflammation.
Collapse
Affiliation(s)
- Eunice C. Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Ararat J. Ablooglu
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Chandra C. Ghosh
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, MA 02215, USA
| | - Abhishek Desai
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, MA 02215, USA
| | - Xiuying Chen
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, MA 02215, USA
| | - Ming Zhao
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - M. Renee Olano
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Justin B. Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, MA 02215, USA
| | - Samir M. Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center; Dallas, TX, 75225, USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Li X, Wen X, Tang W, Wang C, Chen Y, Yang Y, Zhang Z, Zhao Y. Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors. CELL REPORTS METHODS 2024; 4:100904. [PMID: 39536758 PMCID: PMC11705769 DOI: 10.1016/j.crmeth.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glucose metabolism has been well understood for many years, but some intriguing questions remain regarding the subcellular distribution, transport, and functions of glycolytic metabolites. To address these issues, a living cell metabolic monitoring technology with high spatiotemporal resolution is needed. Genetically encoded fluorescent sensors can achieve specific, sensitive, and spatiotemporally resolved metabolic monitoring in living cells and in vivo, and dozens of glucose metabolite sensors have been developed recently. Here, we highlight the importance of tracking specific intermediate metabolites of glycolysis and glycolytic flux measurements, monitoring the spatiotemporal dynamics, and quantifying metabolite abundance. We then describe the working principles of fluorescent protein sensors and summarize the existing biosensors and their application in understanding glucose metabolism. Finally, we analyze the remaining challenges in developing high-quality biosensors and the huge potential of biosensor-based metabolic monitoring at multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xueyi Wen
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weitao Tang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Chengnuo Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yaqiong Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
10
|
Qi C, Zhao D, Wang X, Hu L, Wang Y, Wu H, Li F, Zhou J, Zhang T, Qi A, Huo Y, Tu Q, Zhong S, Yuan H, Lv D, Yan S, Ouyang H, Pang D, Xie Z. Identification of porcine PARP11 as a restricted factor for pseudorabies virus. Front Cell Infect Microbiol 2024; 14:1414827. [PMID: 39445214 PMCID: PMC11496260 DOI: 10.3389/fcimb.2024.1414827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction PRV infection in swine can cause devastating disease and pose a potential threat to humans. Advancing the interplay between PRV and host is essential to elucidate the pathogenic mechanism of PRV and identify novel anti-PRV targets. Methods PARP11-KO PK-15 cells were firstly constructed by CRISPR/Cas9 technology. Next, the effect of PARP11-KO on PRV infection was determined by RT-qPCR, TCID50 assay, RNA-seq, and western blot. Results and discussion In this study, we identified PARP11 as a host factor that can significantly affect PRV infection. Inhibition of PARP11 and knockout of PARP11 can significantly promoted PRV infection. Subsequently, we further found that PARP11 knockout upregulated the transcription of NXF1 and CRM1, resulting in enhanced transcription of viral genes. Furthermore, we also found that PARP11 knockout could activate the autophagy pathway and suppress the mTOR pathway during PRV infection. These findings could provide insight into the mechanism in which PARP11 participated during PRV infection and offer a potential target to develop anti-PRV therapies.
Collapse
Affiliation(s)
- Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dehua Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yao Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuran Huo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Qiuse Tu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyu Zhong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Dongmei Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Shouqing Yan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
- Laboratory of Biotechnology and Biomedical Research, Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
11
|
Kuribayashi H, Iwagawa T, Murakami A, Kawamura T, Suzuki Y, Watanabe S. NMNAT1 Is Essential for Human iPS Cell Differentiation to the Retinal Lineage. Invest Ophthalmol Vis Sci 2024; 65:37. [PMID: 39446354 PMCID: PMC11512567 DOI: 10.1167/iovs.65.12.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/27/2024] [Indexed: 10/27/2024] Open
Abstract
Purpose The gene encoding nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), a nicotinamide adenine dinucleotide synthetase localized in the cell nucleus, is a causative factor in Leber's congenital amaurosis, which is the earliest onset type of inherited retinal degeneration. We sought to investigate the roles of NMNAT1 in early retinal development. Methods We used human induced pluripotent stem cells (hiPSCs) and established NMNAT1-knockout (KO) hiPSCs using CRISPR/cas9 technology to reveal the roles of NMNAT1 in human retinal development. Results NMNAT1 was not essential for the survival and proliferation of immature hiPSCs; therefore, we subjected NMNAT1-KO hiPSCs to retinal organoid (RO) differentiation culture. The expression levels of immature hiPSC-specific genes decreased in a similar manner after organoid culture initiation up to 2 weeks in the control and NMNAT1-KO. Neuroectoderm-specific genes were induced in the control and NMNAT1-KO organoids within a few days after starting the organoid culture; PAX6 and TUBB3 were higher in NMNAT1-KO organoids up to 7 days than in the control organoids. However, the induction of genes involving retinal early development, such as RAX, which was induced at around day 10 in this culture, was considerably reduced in NMNAT1-KO organoids. Morphological examination also showed failure of retinal primordial structure formation, which became visible at around 2 weeks of the control culture, in the NMNAT1-KO organoids. Decreased intracellular NAD levels and poly(ADP-ribosyl)ation were observed in NMNAT1-KO organoids at 7 to 10 days of the culture. Mass spectrometry analysis of inhibited proteins in the poly(ADP-ribosyl)ation pathway identified poly(ADP-ribosyl)ation of poly(ADP-ribose) polymerase 1 (PARP1) as a major protein. Conclusions These results indicate that NMNAT1 was dispensable for neural lineage differentiation but essential for the commitment of retinal fate differentiation in hiPSCs. The NMNAT1-NAD-PARP1 axis may play a critical role in the appropriate development of human retinal lineage differentiation.
Collapse
Affiliation(s)
- Hiroshi Kuribayashi
- Department of Retinal Development and Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshiro Iwagawa
- Department of Retinal Development and Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Bunkyo-ku, Chiba, Japan
| | - Sumiko Watanabe
- Department of Retinal Development and Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Zhang Z, Uribe I, Davis KA, McPherson RL, Larson GP, Badiee M, Tran V, Ledwith MP, Feltman E, Yú S, Caì Y, Chang CY, Yang X, Ma Z, Chang P, Kuhn JH, Leung AKL, Mehle A. Global remodeling of ADP-ribosylation by PARP1 suppresses influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613696. [PMID: 39345583 PMCID: PMC11430048 DOI: 10.1101/2024.09.19.613696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
ADP-ribosylation is a highly dynamic and fully reversible post-translational modification performed by poly(ADP-ribose) polymerases (PARPs) that modulates protein function, abundance, localization and turnover. Here we show that influenza A virus infection causes a rapid and dramatic upregulation of global ADP-ribosylation that inhibits viral replication. Mass spectrometry defined for the first time the global ADP-ribosylome during infection, creating an infection-specific profile with almost 4,300 modification sites on ~1,080 host proteins, as well as over 100 modification sites on viral proteins. Our data indicate that the global increase likely reflects a change in the form of ADP-ribosylation rather than modification of new targets. Functional assays demonstrated that modification of the viral replication machinery antagonizes its activity and further revealed that the anti-viral activity of PARPs and ADP-ribosylation is counteracted by the influenza A virus protein NS1, assigning a new activity to the primary viral antagonist of innate immunity. We identified PARP1 as the enzyme producing the majority of poly(ADP-ribose) present during infection. Influenza A virus replicated faster in cells lacking PARP1, linking PARP1 and ADP-ribosylation to the anti-viral phenotype. Together, these data establish ADP-ribosylation as an anti-viral innate immune-like response to viral infection antagonized by a previously unknown activity of NS1.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Isabel Uribe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kaitlin A. Davis
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gloria P Larson
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mitchell P. Ledwith
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Elizabeth Feltman
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Shuǐqìng Yú
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Che-Yuan Chang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xingyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhuo Ma
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
- Lead Contact
| |
Collapse
|
13
|
Wang T, Coshic K, Badiee M, McDonald MR, Aksimentiev A, Pollack L, Leung AKL. Cation-induced intramolecular coil-to-globule transition in poly(ADP-ribose). Nat Commun 2024; 15:7901. [PMID: 39256374 PMCID: PMC11387394 DOI: 10.1038/s41467-024-51972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Poly(ADP-ribose) (PAR), a non-canonical nucleic acid, is essential for DNA/RNA metabolism and protein condensation, and its dysregulation is linked to cancer and neurodegeneration. However, key structural insights into PAR's functions remain largely uncharacterized, hindered by the challenges in synthesizing and characterizing PAR, which are attributed to its length heterogeneity. A central issue is how PAR, comprised solely of ADP-ribose units, attains specificity in its binding and condensing proteins based on chain length. Here, we integrate molecular dynamics simulations with small-angle X-ray scattering to analyze PAR structures. We identify diverse structural ensembles of PAR that fall into distinct subclasses and reveal distinct compaction of two different lengths of PAR upon the addition of small amounts of Mg2+ ions. Unlike PAR15, PAR22 forms ADP-ribose bundles via local intramolecular coil-to-globule transitions. Understanding these length-dependent structural changes could be central to deciphering the specific biological functions of PAR.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kush Coshic
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maranda R McDonald
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
- Department of Physics, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA.
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Chiu SP, Camacho CV, Kraus WL. Development and characterization of recombinant ADP-ribose binding reagents that allow simultaneous detection of mono and poly ADP-ribose. J Biol Chem 2024; 300:107609. [PMID: 39074634 PMCID: PMC11388009 DOI: 10.1016/j.jbc.2024.107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024] Open
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification (PTM) of proteins mediated by the activity of a variety of ADP-ribosyltransferase (ART) enzymes, such as the Poly (ADP-ribose) Polymerase (PARP) family of proteins. This PTM is diverse in both form and biological functions, which makes it a highly interesting modification, but difficult to study due to limitations in reagents available to detect the diversity of ADPRylation. Recently we developed a set of recombinant antibody-like ADP-ribose (ADPR) binding proteins using naturally occurring ADPR binding domains (ARBDs), including macrodomains and WWE domains, functionalized by fusion to the constant "Fc" region of rabbit immunoglobulin. Herein, we present an expansion of this biological toolkit, where we have replaced the rabbit Fc sequence with the sequence from two other species, mouse and goat. These new reagents are based on a previously characterized set of naturally occurring ARBDs with known specificity. Characterization of the new reagents demonstrates that they can be detected in a species-dependent manner by secondary immunological tools, recognize specific ADPR moieties, and can be used for simultaneous detection of mono ADPR and poly ADPR at single-cell resolution in various antibody-based assays. The expansion of this toolkit will allow for more multiplexed assessments of the complexity of ADPRylation biology in many biological systems.
Collapse
Affiliation(s)
- Shu-Ping Chiu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cristel V Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
15
|
Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O’Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, Fraser JS. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606661. [PMID: 39149230 PMCID: PMC11326214 DOI: 10.1101/2024.08.08.606661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
SARS-CoV-2 continues to pose a threat to public health. Current therapeutics remain limited to direct acting antivirals that lack distinct mechanisms of action and are already showing signs of viral resistance. The virus encodes an ADP-ribosylhydrolase macrodomain (Mac1) that plays an important role in the coronaviral lifecycle by suppressing host innate immune responses. Genetic inactivation of Mac1 abrogates viral replication in vivo by potentiating host innate immune responses. However, it is unknown whether this can be achieved by pharmacologic inhibition and can therefore be exploited therapeutically. Here we report a potent and selective lead small molecule, AVI-4206, that is effective in an in vivo model of SARS-CoV-2 infection. Cellular models indicate that AVI-4206 has high target engagement and can weakly inhibit viral replication in a gamma interferon- and Mac1 catalytic activity-dependent manner; a stronger antiviral effect for AVI-4206 is observed in human airway organoids. In an animal model of severe SARS-CoV-2 infection, AVI-4206 reduces viral replication, potentiates innate immune responses, and leads to a survival benefit. Our results provide pharmacological proof of concept that Mac1 is a valid therapeutic target via a novel immune-restoring mechanism that could potentially synergize with existing therapies targeting distinct, essential aspects of the coronaviral life cycle. This approach could be more widely used to target other viral macrodomains to develop antiviral therapeutics beyond COVID-19.
Collapse
Affiliation(s)
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Moira M. Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Patrick C. O’Leary
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | | | | | - Yagmur U. Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Maisie G. V. Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Morgan E. Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Alicia L. Richards
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Julia Rosecrans
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Michael Matthay
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Saumya Gopalkrishnan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | - R. Jeffrey Neitz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA
| | - Nevan J. Krogan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub- San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| |
Collapse
|
16
|
Djerir B, Marois I, Dubois JC, Findlay S, Morin T, Senoussi I, Cappadocia L, Orthwein A, Maréchal A. An E3 ubiquitin ligase localization screen uncovers DTX2 as a novel ADP-ribosylation-dependent regulator of DNA double-strand break repair. J Biol Chem 2024; 300:107545. [PMID: 38992439 PMCID: PMC11345397 DOI: 10.1016/j.jbc.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
DNA double-strand breaks (DSBs) elicit an elaborate response to signal damage and trigger repair via two major pathways: nonhomologous end-joining (NHEJ), which functions throughout the interphase, and homologous recombination (HR), restricted to S/G2 phases. The DNA damage response relies, on post-translational modifications of nuclear factors to coordinate the mending of breaks. Ubiquitylation of histones and chromatin-associated factors regulates DSB repair and numerous E3 ubiquitin ligases are involved in this process. Despite significant progress, our understanding of ubiquitin-mediated DNA damage response regulation remains incomplete. Here, we have performed a localization screen to identify RING/U-box E3 ligases involved in genome maintenance. Our approach uncovered 7 novel E3 ligases that are recruited to microirradiation stripes, suggesting potential roles in DNA damage signaling and repair. Among these factors, the DELTEX family E3 ligase DTX2 is rapidly mobilized to lesions in a poly ADP-ribosylation-dependent manner. DTX2 is recruited and retained at DSBs via its WWE and DELTEX conserved C-terminal domains. In cells, both domains are required for optimal binding to mono and poly ADP-ribosylated proteins with WWEs playing a prominent role in this process. Supporting its involvement in DSB repair, DTX2 depletion decreases HR efficiency and moderately enhances NHEJ. Furthermore, DTX2 depletion impeded BRCA1 foci formation and increased 53BP1 accumulation at DSBs, suggesting a fine-tuning role for this E3 ligase in repair pathway choice. Finally, DTX2 depletion sensitized cancer cells to X-rays and PARP inhibition and these susceptibilities could be rescued by DTX2 reexpression. Altogether, our work identifies DTX2 as a novel ADP-ribosylation-dependent regulator of HR-mediated DSB repair.
Collapse
Affiliation(s)
- Billel Djerir
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Isabelle Marois
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Christophe Dubois
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montréal, Quebec, Canada
| | - Théo Morin
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Issam Senoussi
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Laurent Cappadocia
- Faculty of Sciences, Department of Chemistry, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montréal, Quebec, Canada; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Cancer Research Institute of the Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
17
|
Feijs-Žaja KLH, Ikenga NJ, Žaja R. Pathological and physiological roles of ADP-ribosylation: established functions and new insights. Biol Chem 2024:hsz-2024-0057. [PMID: 39066732 DOI: 10.1515/hsz-2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.
Collapse
Affiliation(s)
- Karla L H Feijs-Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nonso J Ikenga
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Roko Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
18
|
Li L, Zhou X, Liu W, Chen Z, Xiao X, Deng G. Supplementation with NAD+ and its precursors: A rescue of female reproductive diseases. Biochem Biophys Rep 2024; 38:101715. [PMID: 38698835 PMCID: PMC11063225 DOI: 10.1016/j.bbrep.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme involved in many pathophysiological processes. Supplementation with NAD+ and its precursors has been demonstrated as an emerging therapeutic strategy for the diseases. NAD+ also plays an important role in the reproductive system. Here, we summarize the function of NAD+ in various reproductive diseases and review the application of NAD+ and its precursors in the preservation of reproductive capacity and the prevention of embryonic malformations. It is shown that NAD+ shows good promise as a therapeutic approach for saving reproductive capacity.
Collapse
Affiliation(s)
- Lan Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xin Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wene Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhen Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaoqin Xiao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guiming Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
19
|
Longarini EJ, Matić I. Preserving ester-linked modifications reveals glutamate and aspartate mono-ADP-ribosylation by PARP1 and its reversal by PARG. Nat Commun 2024; 15:4239. [PMID: 38762517 PMCID: PMC11102441 DOI: 10.1038/s41467-024-48314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
Ester-linked post-translational modifications, including serine and threonine ubiquitination, have gained recognition as important cellular signals. However, their detection remains a significant challenge due to the chemical lability of the ester bond. This is the case even for long-known modifications, such as ADP-ribosylation on aspartate and glutamate, whose role in PARP1 signaling has recently been questioned. Here, we present easily implementable methods for preserving ester-linked modifications. When combined with a specific and sensitive modular antibody and mass spectrometry, these approaches reveal DNA damage-induced aspartate/glutamate mono-ADP-ribosylation. This previously elusive signal represents an initial wave of PARP1 signaling, contrasting with the more enduring nature of serine mono-ADP-ribosylation. Unexpectedly, we show that the poly-ADP-ribose hydrolase PARG is capable of reversing ester-linked mono-ADP-ribosylation in cells. Our methodology enables broad investigations of various ADP-ribosylation writers and, as illustrated here for noncanonical ubiquitination, it paves the way for exploring other emerging ester-linked modifications.
Collapse
Affiliation(s)
- Edoardo José Longarini
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne, 50931, Germany.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Ivan Matić
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne, 50931, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
20
|
Chiu SP, Camacho CV, Kraus WL. Development and Characterization of Recombinant ADP-Ribose Binding Reagents that Allow Simultaneous Detection of Mono and Poly ADP-Ribose. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594588. [PMID: 38798442 PMCID: PMC11118544 DOI: 10.1101/2024.05.16.594588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification (PTM) of proteins mediated by the activity of a variety of ADP-ribosyltransferase (ART) enzymes, such as the Poly (ADP-ribose) Polymerase (PARP) family of proteins. This PTM is diverse in both form and biological functions, which makes it a highly interesting modification, but difficult to study due to limitations in reagents available to detect the diversity of ADP-ribosylation. Recently we developed a set of recombinant antibody-like ADP-ribose binding proteins, using naturally occurring ADPR binding domains (ARBDs) that include macrodomains and WWE domains, that have been functionalized by fusion to the constant "Fc" region of rabbit immunoglobulin. Herein, we present an expansion of this biological toolkit, where we have replaced the rabbit Fc sequence with two other species, the Fc for mouse and goat immunogloblulin. Characterization of the new reagents indicates that they can be detected in a species-dependent manner, recognize specific ADP-ribose moieties, and excitingly, can be used in various antibody-based assays by co-staining. The expansion of this tool will allow for more multiplexed assessments of the complexity of ADPRylation biology in many biological systems.
Collapse
Affiliation(s)
- Shu-Ping Chiu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Wang J, Gao Y, Xiong X, Yan Y, Lou J, Noman M, Li D, Song F. The Ser/Thr protein kinase FonKin4-poly(ADP-ribose) polymerase FonPARP1 phosphorylation cascade is required for the pathogenicity of watermelon fusarium wilt fungus Fusarium oxysporum f. sp. niveum. Front Microbiol 2024; 15:1397688. [PMID: 38690366 PMCID: PMC11058995 DOI: 10.3389/fmicb.2024.1397688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi, plants, and mammals. However, the function of PARPs in plant pathogenic fungi remains unknown. The present study investigated the roles and mechanisms of FonPARP1 in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon). Fon has a single PARP FonPARP1 and one PARG FonPARG1. FonPARP1 is an active PARP and contributes to Fon pathogenicity through regulating its invasive growth within watermelon plants, while FonPARG1 is not required for Fon pathogenicity. A serine/threonine protein kinase, FonKin4, was identified as a FonPARP1-interacting partner by LC-MS/MS. FonKin4 is required for vegetative growth, conidiation, macroconidia morphology, abiotic stress response and pathogenicity of Fon. The S_TKc domain is sufficient for both enzyme activity and pathogenicity function of FonKin4 in Fon. FonKin4 phosphorylates FonPARP1 in vitro to enhance its poly(ADP-ribose) polymerase activity; however, FonPARP1 does not PARylate FonKin4. These results establish the FonKin4-FonPARP1 phosphorylation cascade that positively contributes to Fon pathogenicity. The present study highlights the importance of PARP-catalyzed protein PARylation in regulating the pathogenicity of Fon and other plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiajing Wang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Xiong
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajun Lou
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Suskiewicz MJ. The logic of protein post-translational modifications (PTMs): Chemistry, mechanisms and evolution of protein regulation through covalent attachments. Bioessays 2024; 46:e2300178. [PMID: 38247183 DOI: 10.1002/bies.202300178] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in all cellular functions by regulating protein activity, interactions and half-life. Despite the enormous diversity of modifications, various PTM systems show parallels in their chemical and catalytic underpinnings. Here, focussing on modifications that involve the addition of new elements to amino-acid sidechains, I describe historical milestones and fundamental concepts that support the current understanding of PTMs. The historical survey covers selected key research programmes, including the study of protein phosphorylation as a regulatory switch, protein ubiquitylation as a degradation signal and histone modifications as a functional code. The contribution of crucial techniques for studying PTMs is also discussed. The central part of the essay explores shared chemical principles and catalytic strategies observed across diverse PTM systems, together with mechanisms of substrate selection, the reversibility of PTMs by erasers and the recognition of PTMs by reader domains. Similarities in the basic chemical mechanism are highlighted and their implications are discussed. The final part is dedicated to the evolutionary trajectories of PTM systems, beginning with their possible emergence in the context of rivalry in the prokaryotic world. Together, the essay provides a unified perspective on the diverse world of major protein modifications.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- Centre de Biophysique Moléculaire, CNRS - Orléans, UPR 4301, affiliated with Université d'Orléans, Orléans, France
| |
Collapse
|
23
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
24
|
Wang T, Coshic K, Badiee M, Aksimentiev A, Pollack L, Leung AKL. Length-dependent Intramolecular Coil-to-Globule Transition in Poly(ADP-ribose) Induced by Cations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564012. [PMID: 37961637 PMCID: PMC10634823 DOI: 10.1101/2023.10.25.564012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Poly(ADP-ribose) (PAR), as part of a post-translational modification, serves as a flexible scaffold for noncovalent protein binding. Such binding is influenced by PAR chain length through a mechanism yet to be elucidated. Structural insights have been elusive, partly due to the difficulties associated with synthesizing PAR chains of defined lengths. Here, we employ an integrated approach combining molecular dynamics (MD) simulations with small-angle X-ray scattering (SAXS) experiments, enabling us to identify highly heterogeneous ensembles of PAR conformers at two different, physiologically relevant lengths: PAR 15 and PAR 22 . Our findings reveal that numerous factors including backbone conformation, base stacking, and chain length contribute to determining the structural ensembles. We also observe length-dependent compaction of PAR upon the addition of small amounts of Mg 2+ ions, with the 22-mer exhibiting ADP-ribose bundles formed through local intramolecular coil-to-globule transitions. This study illuminates how such bundling could be instrumental in deciphering the length-dependent action of PAR. GRAPHICAL ABSTRACT
Collapse
|
25
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Kasai T, Kuraoka S, Higashi H, Delanghe B, Aikawa M, Singh SA. A Combined Gas-Phase Separation Strategy for ADP-ribosylated Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2136-2145. [PMID: 37589412 PMCID: PMC10557377 DOI: 10.1021/jasms.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 08/18/2023]
Abstract
ADP-ribosylation (ADPr) is a post-translational modification that is best studied using mass spectrometry. Method developments that are permissive with low inputs or baseline levels of protein ribosylation represent the next frontier in the field. High-field asymmetric waveform ion mobility spectrometry (FAIMS) reduces peptide complexity in the gas phase, providing a means to achieve maximal ADPr peptide sequencing depth. We therefore investigated the extent to which FAIMS with or without traditional gas-phase fractionation-separation (GPS) can increase the number of ADPr peptides. We examined ADPr peptides enriched from mouse spleens. We gleaned additional insight by also reporting findings from the corresponding non-ADPr peptide contaminants and the peptide inputs for ADPr peptide enrichment. At increasingly higher negative compensation voltages, ADPr peptides were more stable, whereas the non-ADPr peptides were filtered out. A combination of 3 GPS survey scans, each with 8 compensation voltages, resulted in 790 high-confidence ADPr peptides, compared to 90 with GPS alone. A simplified acquisition strategy requiring only two injections corresponding to two MS1 scan ranges coupled to optimized compensation voltage settings provided 402 ADPr peptides corresponding to 234 ADPr proteins. We conclude that our combined GPS strategy is a valuable addition to any ADP-ribosylome workflow. The data are available via ProteomeXchange with identifier PXD040898.
Collapse
Affiliation(s)
- Taku Kasai
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shiori Kuraoka
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hideyuki Higashi
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Masanori Aikawa
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Center
for Excellence in Vascular Biology, Division of Cardiovascular Medicine,
Brigham and Women’s Hospital, Harvard
Medical School, Boston, Massachusetts 02115, United States
- Channing
Division of Network Medicine, Department of Medicine, Brigham and
Women’s Hospital, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Sasha A. Singh
- Center
for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular
Medicine, Department of Medicine, Brigham
and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
27
|
Dauben H, Longarini EJ, Matic I. A chemical biology/modular antibody platform for ADP-ribosylation signaling. Trends Biochem Sci 2023; 48:910-911. [PMID: 37394344 PMCID: PMC10506589 DOI: 10.1016/j.tibs.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Helen Dauben
- Research Group of Proteomics and ADP-ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Edoardo José Longarini
- Research Group of Proteomics and ADP-ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ivan Matic
- Research Group of Proteomics and ADP-ribosylation Signaling, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
28
|
Kargbo RB. PARP7 Inhibition: A Promising Pathway to Advancements in Cancer Therapy. ACS Med Chem Lett 2023; 14:1141-1143. [PMID: 37736186 PMCID: PMC10510668 DOI: 10.1021/acsmedchemlett.3c00308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
Despite the advancements in cancer treatment, ovarian cancer's five-year survival rate remains below 50%. PARP inhibitors, targeting cancer cells with defects in DNA repair, present a promising treatment. However, concerns about drug resistance and side effects demand further research. One target gaining interest is PARP7 and inhibitors are shown to restore type I interferon signaling responses, leading to tumor regression. While no approved PARP7 inhibiting pharmaceuticals currently exist, this Patent Highlights showcase compounds and formulations with potential as potent PARP7 inhibitors, marking a new path for cancer therapy. PARP7 inhibitors could be instrumental in treating various cancers and immunological diseases, and with further understanding, may improve patient outcomes.
Collapse
|
29
|
Nizi MG, Sarnari C, Tabarrini O. Privileged Scaffolds for Potent and Specific Inhibitors of Mono-ADP-Ribosylating PARPs. Molecules 2023; 28:5849. [PMID: 37570820 PMCID: PMC10420676 DOI: 10.3390/molecules28155849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The identification of new targets to address unmet medical needs, better in a personalized way, is an urgent necessity. The introduction of PARP1 inhibitors into therapy, almost ten years ago, has represented a step forward this need being an innovate cancer treatment through a precision medicine approach. The PARP family consists of 17 members of which PARP1 that works by poly-ADP ribosylating the substrate is the sole enzyme so far exploited as therapeutic target. Most of the other members are mono-ADP-ribosylating (mono-ARTs) enzymes, and recent studies have deciphered their pathophysiological roles which appear to be very extensive with various potential therapeutic applications. In parallel, a handful of mono-ARTs inhibitors emerged that have been collected in a perspective on 2022. After that, additional very interesting compounds were identified highlighting the hot-topic nature of this research field and prompting an update. From the present review, where we have reported only mono-ARTs inhibitors endowed with the appropriate profile of pharmacological tools or drug candidate, four privileged scaffolds clearly stood out that constitute the basis for further drug discovery campaigns.
Collapse
Affiliation(s)
- Maria Giulia Nizi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | | | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
30
|
Dasovich M, Leung AK. Molecular tools unveil distinct waves of ADP-ribosylation during DNA repair. CELL REPORTS METHODS 2023; 3:100484. [PMID: 37323576 PMCID: PMC10261921 DOI: 10.1016/j.crmeth.2023.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
ADP-ribosylation is a complex post-translation modification involved in DNA repair. In a recent Molecular Cell publication, Longarini and colleagues measured ADP-ribosylation dynamics with unprecedented specificity, revealing how the monomeric and polymeric forms of ADP-ribosylation regulate the timing of DNA repair events following strand breaks.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K.L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|