1
|
AlDaif BA, Fleming SB. Innate Immune Sensing of Parapoxvirus Orf Virus and Viral Immune Evasion. Viruses 2025; 17:587. [PMID: 40285029 PMCID: PMC12031380 DOI: 10.3390/v17040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Orf virus (ORFV) is the type species of Parapoxvirus of the Poxviridae family that induces cutaneous pustular skin lesions in sheep and goats, and causes zoonotic infections in humans. Pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), leading to the triggering of the innate immune response through multiple signalling pathways involving type I interferons (IFNs). The major PAMPs generated during viral infection are nucleic acids, which are the most important molecules that are recognized by the host. The induction of type l IFNs leads to activation of the Janus kinase (JAK)-signal transducer activator of transcription (STAT) pathway, which results in the induction of hundreds of interferon-stimulated genes (ISGs), many of which encode proteins that have antiviral roles in eliminating virus infection and create an antiviral state. Genetic and functional analyses have revealed that ORFV, as found for other poxviruses, has evolved multiple immunomodulatory genes and strategies that manipulate the innate immune sensing response.
Collapse
Affiliation(s)
| | - Stephen B. Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
2
|
Yang H, Gao J, Wang HY, Ma XM, Liu BY, Song QZ, Cheng H, Li S, Long ZY, Lu XM, Wang YT. The effects and possible mechanisms of whole-body vibration on cognitive function: A narrative review. Brain Res 2025; 1850:149392. [PMID: 39662790 DOI: 10.1016/j.brainres.2024.149392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Whole-body vibration (WBV) is a physical stimulation method that transmits mechanical oscillations to the entire body through a vibration platform or device. Biokinetic and epidemiologic studies have shown that prolonged exposure to high-intensity WBV increases health risks, primarily to the lumbar spine and the nervous system connected to it. There is currently insufficient evidence to demonstrate a quantitative relationship between vibration exposure and risk of health effects. The positive effects of WBV on increasing muscle strength and improving balance and flexibility are well known, but its effects on cognitive function are more complex, with mixed findings, largely related to vibration conditions, including frequency, amplitude, and duration. Studies have shown that short-term low-frequency WBV may have a positive impact on cognitive function, demonstrates potential rehabilitation benefits in enhancing learning and memory, possibly by promoting neuromuscular coordination and enhancing neural plasticity. However, long term exposure to vibration may lead to chronic stress in nerve tissue, affecting nerve conduction efficiency and potentially interfering with neuroprotective mechanisms, thereby having a negative impact on cognitive ability, even causes symptoms such as cognitive decline, mental fatigue, decreased attention, and drowsiness. This literature review aimed to explore the effects of WBV on cognitive function and further to analyze the possible mechanisms. Based on the analysis of literatures, we came to the conclusion that the impact of WBV on cognitive function depends mainly on the frequency and duration of vibration, short-term low-frequency WBV may have a positive impact on cognitive function, while long term exposure to WBV may lead to cognitive decline, and the mechanisms may be involved in neuroinflammation, oxidative stress, synaptic plasticity, and neurotransmitter changes. This review may provide some theoretical foundations and guidance for the prevention and treatment of WBV induced cognitive impairment.
Collapse
Affiliation(s)
- Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Bing-Yao Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qian-Zhong Song
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hui Cheng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
3
|
Nigam M, Devi K, Coutinho HDM, Mishra AP. Exploration of gut microbiome and inflammation: A review on key signalling pathways. Cell Signal 2024; 118:111140. [PMID: 38492625 DOI: 10.1016/j.cellsig.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The gut microbiome, a crucial component of the human system, is a diverse collection of microbes that belong to the gut of human beings as well as other animals. These microbial communities continue to coexist harmoniously with their host organisms and perform various functions that affect the host's general health. Each person's gut microbiota has a unique makeup. The gut microbiota is well acknowledged to have a part in the local as well as systemic inflammation that underlies a number of inflammatory disorders (e.g., atherosclerosis, diabetes mellitus, obesity, and inflammatory bowel disease).The gut microbiota's metabolic products, such as short-chain fatty acids (butyrate, propionate, and acetate) inhibit inflammation by preventing immune system cells like macrophages and neutrophils from producing pro-inflammatory factors, which are triggered by the structural elements of bacteria (like lipopolysaccharide). The review's primary goal is to provide comprehensive and compiled data regarding the contribution of gut microbiota to inflammation and the associated signalling pathways.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Kanchan Devi
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | | | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
4
|
Kaushik G, Vashishtha R, Verma C, Sharma S, Kumar V. Genetic Variation in Toll-Like Receptors (TLRs) 2, 4, and 9 Influences HIV Disease Progression Toward Active TB and AIDS. J Inflamm Res 2024; 17:3283-3291. [PMID: 38800599 PMCID: PMC11128240 DOI: 10.2147/jir.s451431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Toll-like receptors (TLRs) are identified as one of the key components of the innate immune system. The objective of this study was to explore the influence of genetic variability in these TLRs on human immunodeficiency virus (HIV) disease progression with and without tuberculosis (TB) co-infection. Materials and Methods This prospective, cross-sectional, and longitudinal study included 373 HIV-positive patients without TB infection. This study aimed to examine the genetic variation in TLRs (TLR2, TLR4, and TLR9) between patients with HIV-1 infection and those who progressed to active TB during the two years of follow-up. Results During the two year follow-up of 373 positive patients, 98 patients progressed to active TB/AIDS (acquired immunodeficiency syndrome). When comparing 98 HIV patients who developed active TB/AIDS to 275 HIV patients who did not, it was discovered that the frequency of the A allele in TLR9 was considerably higher (p <0.001) in HIV patients progressed to active TB/AIDS. Ninety eight HIV individuals who advanced to active TB/AIDS showed a significantly higher frequency of the AA genotype in TLR9 than did in HIV patients who had no TB/AIDS (p <0.001). Conclusion The increased association of the AA genotype of TLR9 in HIV patients who progressed to active TB during follow-up suggests that HIV-positive patients with the AA genotype of TLR9 have increased susceptibility towards TB during the disease progression.
Collapse
Affiliation(s)
- Gaurav Kaushik
- School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Richa Vashishtha
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Shipra Sharma
- Shri Guru Ram Rai Institute of Medical & Health Sciences, Dehradun, Uttarakhand, 248001, India
| | - Vinay Kumar
- Pennsylvania State University Hershey Medical Center, 500 University Dr, Hershey, PA, 17033, USA
| |
Collapse
|
5
|
Zhang TM, Yang K, Jiao MN, Zhao Y, Xu ZY, Zhang GM, Wang HL, Liang SX, Yan YB. Temporal gene expression profiling during early-stage traumatic temporomandibular joint bony ankylosis in a sheep model. BMC Oral Health 2024; 24:284. [PMID: 38418977 PMCID: PMC10903020 DOI: 10.1186/s12903-024-03971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Investigating the molecular biology underpinning the early-stage of traumatic temporomandibular joint (TMJ) ankylosis is crucial for discovering new ways to prevent the disease. This study aimed to explore the dynamic changes of transcriptome from the intra-articular hematoma or the newly generated ankylosed callus during the onset and early progression of TMJ ankylosis. METHODS Based on a well-established sheep model of TMJ bony ankylosis, the genome-wide microarray data were obtained from samples at postoperative Days 1, 4, 7, 9, 11, 14 and 28, with intra-articular hematoma at Day 1 serving as controls. Fold changes in gene expression values were measured, and genes were identified via clustering based on time series analysis and further categorised into three major temporal classes: increased, variable and decreased expression groups. The genes in these three temporal groups were further analysed to reveal pathways and establish their biological significance. RESULTS Osteoblastic and angiogenetic genes were found to be significantly expressed in the increased expression group. Genes linked to inflammation and osteoclasts were found in the decreased expression group. The various biological processes and pathways related to each temporal expression group were identified, and the increased expression group comprised genes exclusively involved in the following pathways: Hippo signaling pathway, Wnt signaling pathway and Rap 1 signaling pathway. The decreased expression group comprised genes exclusively involved in immune-related pathways and osteoclast differentiation. The variable expression group consisted of genes associated with DNA replication, DNA repair and DNA recombination. Significant biological pathways and transcription factors expressed at each time point postoperatively were also identified. CONCLUSIONS These data, for the first time, presented the temporal gene expression profiling and reveal the important process of molecular biology in the early-stage of traumatic TMJ bony ankylosis. The findings might contributed to identifying potential targets for the treatment of TMJ ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, PR China
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 443001, PR China
| | - Mai-Ning Jiao
- Department of Oral and Maxillofacial Surgery, Weifang people's Hospital, 151 GuangWen Street, KuiWen District, Weifang, ShanDong Province, 261000, PR China
| | - Yan Zhao
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, PR China
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
| | - Hua-Lun Wang
- Department of Oral and Maxillofacial Surgery, Jining Stomatological Hospital, 22 Communist Youth League Road, Rencheng District, Jining, ShanDong Province, 272000, PR China
| | - Su-Xia Liang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
| |
Collapse
|
6
|
Pu J, Chen D, Tian G, He J, Zheng P, Huang Z, Mao X, Yu J, Luo Y, Luo J, Yan H, Wu A, Yu B. All-trans retinoic acid alleviates transmissible gastroenteritis virus-induced intestinal inflammation and barrier dysfunction in weaned piglets. J Anim Sci Biotechnol 2024; 15:22. [PMID: 38331814 PMCID: PMC10854194 DOI: 10.1186/s40104-023-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/17/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1β, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.
Collapse
Affiliation(s)
- Junning Pu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Duan X, Luan Y, Wang Y, Wang X, Su P, Li Q, Pang Y, He J, Gou M. Tryptophan metabolism can modulate immunologic tolerance in primitive vertebrate lamprey via IDO-kynurenine-AHR pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108485. [PMID: 36521804 DOI: 10.1016/j.fsi.2022.108485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Tryptophan is mainly degraded through kynurenine pathway (KP) in vertebrates which is closely related to the nerve and depression, while the studies on immunity is still limited. This study aims to explore the functions of tryptophan in the innate immunity of primitive vertebrate lamprey. MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide) assay showed that tryptophan had no obvious effect on cell viability. Tryptophan was transported into leukocytes and degraded via the KP after tryptophan supplement. Tryptophan treatment (T1x and T2x) failed to alter the total antioxidant capacity regardless of stimulation and exposure time. Real-time quantitative PCR and western blotting results revealed that tryptophan was not only able to reduce the expression of pro-inflammatory factors Lj-TNF-α, Lj-IL1β and Lj-NF-κB, but also to upregulate the expression of anti-inflammatory factor Lj-TGF-β independent of stimulation and time. In addition, tryptophan can exert immune tolerance function by inhibiting TLR-MyD88 and promoting (Indoleamine 2, 3-Dioxygenase) IDO-kynurenine-AHR (aryl hydrocarbon receptor) pathways. This study provides a new understanding for tryptophan-kynurenine metabolism and mechanism of immune tolerance function in primitive vertebrate lamprey.
Collapse
Affiliation(s)
- Xuyuan Duan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yimu Luan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingyi He
- Hunchun Fishery Management Station, Yanbian, 133300, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
8
|
Sui H, Chen Q, Yang J, Srirattanapirom S, Imamichi T. Manganese enhances DNA- or RNA-mediated innate immune response by inducing phosphorylation of TANK-binding kinase 1. iScience 2022; 25:105352. [PMID: 36325059 PMCID: PMC9619380 DOI: 10.1016/j.isci.2022.105352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
Trace metals are essential for various physiological processes, but their roles in innate immunity have not been fully explored. Here, we found that manganese (Mn) significantly enhanced DNA-mediated IFN-α, IFN-β, and IFN-λ1 production. Microarray analysis demonstrated Mn highly upregulated 351 genes, which were involved in multiple biological functions related to innate immune response. Moreover, we found that Mn2+ alone activates phosphorylation of TANK-binding kinase 1 (TBK1). Inhibiting ataxia telangiectasia mutated (ATM) kinase using ATM inhibitor or siRNA suppressed Mn-enhanced DNA-mediated immune response with decreasing phosphorylation of TBK-1, suggesting that ATM involves in Mn-dependent phosphorylation of TBK1. Given that TBK1 is an essential mediator in DNA- or RNA-mediated signaling pathways, we further demonstrated that Mn2+ suppressed infection of HSV-1 (DNA virus) or Sendai virus (RNA virus) into human macrophages by enhancing antiviral immunity. Our finding highlights a beneficial role of Mn in nucleic-acid-based preventive or therapeutic reagents against infectious diseases.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Selena Srirattanapirom
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Evaluation of viral load and transcriptome changes in tracheal tissue of two hybrids of commercial broiler chickens infected with avian infectious bronchitis virus: a comparative study. Arch Virol 2022; 167:377-391. [PMID: 34981169 PMCID: PMC8723822 DOI: 10.1007/s00705-021-05322-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
Infectious bronchitis virus (IBV) is one of the major threats to the poultry industry, with significant economic consequences. Despite strict measures, the disease is difficult to control worldwide. Experimental evidence demonstrates that the severity of IBV is affected by the genetic background of the chicken, and the selection of appropriate breeds can increase production efficiency. Therefore, the aim of the present study was to assess the strength of the immune response to IBV in tracheal tissues of Ross 308 and Cobb 500 broiler chickens by evaluating transcriptome changes, focusing on immune responses and the viral load in tracheal tissues two days after IBV infection. We identified 899 and 1350 differentially expressed genes (DEGs) in the Cobb 500 and Ross 308 experimental groups compared to their respective control groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated the involvement of signaling pathways (Toll-like receptor [TLR], NOD-like receptor [NLR], and RIG-I-like receptor [RLR] signaling pathways). Interestingly, the RLR signaling pathway appears to be affected only in the Cobb hybrid. Furthermore, the viral loads in tracheal samples obtained from the Ross challenged group were significantly higher than those of the Cobb challenged group. The results of this study indicated that the host transcriptional response to IBV infection as well as the viral load can differ by hybrid. Furthermore, genes such as TLR-3, ChIFN-α, MDA5, LGP2, IRF-7, NF-κB, and TRIM25 may interfere with IBV proliferation.
Collapse
|
10
|
Sui H, Hao M, Chang W, Imamichi T. The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond. Front Cell Infect Microbiol 2021; 11:761983. [PMID: 34746031 PMCID: PMC8566972 DOI: 10.3389/fcimb.2021.761983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Human Ku70 is a well-known endogenous nuclear protein involved in the non-homologous end joining pathway to repair double-stranded breaks in DNA. However, Ku70 has been studied in multiple contexts and grown into a multifunctional protein. In addition to the extensive functional study of Ku70 in DNA repair process, many studies have emphasized the role of Ku70 in various other cellular processes, including apoptosis, aging, and HIV replication. In this review, we focus on discussing the role of Ku70 in inducing interferons and proinflammatory cytokines as a cytosolic DNA sensor. We explored the unique structure of Ku70 binding with DNA; illustrated, with evidence, how Ku70, as a nuclear protein, responds to extracellular DNA stimulation; and summarized the mechanisms of the Ku70-involved innate immune response pathway. Finally, we discussed several new strategies to modulate Ku70-mediated innate immune response and highlighted some potential physiological insights based on the role of Ku70 in innate immunity.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | | | | | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
11
|
Khan MA, Khan A. Role of NKT Cells during Viral Infection and the Development of NKT Cell-Based Nanovaccines. Vaccines (Basel) 2021; 9:vaccines9090949. [PMID: 34579186 PMCID: PMC8473043 DOI: 10.3390/vaccines9090949] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Natural killer T (NKT) cells, a small population of T cells, are capable of influencing a wide range of the immune cells, including T cells, B cells, dendritic cells and macrophages. In the present review, the antiviral role of the NKT cells and the strategies of viruses to evade the functioning of NKT cell have been illustrated. The nanoparticle-based formulations have superior immunoadjuvant potential by facilitating the efficient antigen processing and presentation that favorably elicits the antigen-specific immune response. Finally, the immunoadjuvant potential of the NKT cell ligand was explored in the development of antiviral vaccines. The use of an NKT cell-activating nanoparticle-based vaccine delivery system was supported in order to avoid the NKT cell anergy. The results from the animal and preclinical studies demonstrated that nanoparticle-incorporated NKT cell ligands may have potential implications as an immunoadjuvant in the formulation of an effective antiviral vaccine that is capable of eliciting the antigen-specific activation of the cell-mediated and humoral immune responses.
Collapse
|
12
|
Lodhi N, Singh R, Rajput SP, Saquib Q. SARS-CoV-2: Understanding the Transcriptional Regulation of ACE2 and TMPRSS2 and the Role of Single Nucleotide Polymorphism (SNP) at Codon 72 of p53 in the Innate Immune Response against Virus Infection. Int J Mol Sci 2021; 22:8660. [PMID: 34445373 PMCID: PMC8395432 DOI: 10.3390/ijms22168660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Human ACE2 and the serine protease TMPRSS2 of novel SARS-CoV-2 are primary entry receptors in host cells. Expression of these genes at the transcriptional level has not been much discussed in detail. The ISRE elements of the ACE2 promoter are a binding site for the ISGF3 complex of the JAK/STAT signaling pathway. TMPRSS2, including IFNβ, STAT1, and STAT2, has the PARP1 binding site near to TSS either up or downstream promoter region. It is well documented that PARP1 regulates gene expression at the transcription level. Therefore, to curb virus infection, both promoting type I IFN signaling to boost innate immunity and prevention of virus entry by inhibiting PARP1, ACE2 or TMPRSS2 are safe options. Most importantly, our aim is to attract the attention of the global scientific community towards the codon 72 Single Nucleotide Polymorphism (SNP) of p53 and its underneath role in the innate immune response against SARS-CoV-2. Here, we discuss codon 72 SNP of human p53's role in the different innate immune response to restrict virus-mediated mortality rate only in specific parts of the world. In addition, we discuss potential targets and emerging therapies using bioengineered bacteriophage, anti-sense, or CRISPR strategies.
Collapse
Affiliation(s)
- Niraj Lodhi
- Clinical Research (Research and Development Division) miRNA Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rubi Singh
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA;
| | | | - Quaiser Saquib
- Department of Zoology, College of Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
13
|
Stępień E, Strycharz-Dudziak M, Malm M, Drop B, Polz-Dacewicz M. Serum and Tissue Level of TLR9 in EBV-Associated Oropharyngeal Cancer. Cancers (Basel) 2021; 13:cancers13163981. [PMID: 34439137 PMCID: PMC8394560 DOI: 10.3390/cancers13163981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Epstein–Barr virus (EBV) is associated with the development and progression of various epithelial malignancies including cancer in the head and neck region. Toll-like receptors (TLRs) are molecules distinguishing self and non-self antigens. They are required for congenital immune response to infections with viruses such as EBV because, during viral infection, the congenital immunity is the first line of human defense preventing the replication of the virus. Moreover, TLR response may influence the transformation to malignancy. The aim of our study was to assess TLR9 level in patients with diagnosed oropharyngeal cancer with or without EBV infection. We wanted to know whether infection with EBV influences TLR9 level and maybe changes the immune response which may lead to malignant transformation. The results obtained in our research may improve understanding of the role viral infections play in head and neck cancers and influence future diagnosis, prevention and treatment strategies in these malignancies. Abstract The Epstein–Barr virus (EBV) is associated with the development of various epithelial malignancies including cancer in the head and neck region. Several studies have shown that Toll-like receptors (TLRs) are required for an innate immune response to infection with human DNA viruses, e.g., EBV. During viral infections, TLR response may influence the transformation to malignancy. The aim of the study was to assess TLR9 serum and tissue level in EBV(+) and EBV(−) oropharyngeal cancer patients. The study involved 78 patients: 42 EBV(+) and 36 EBV(−). EBV DNA was detected in fresh frozen tumor tissue. TLR9 level was measured in homogenate of tumor tissue and in serum. Moreover, in serum samples IL-10, VEGF, TGFβ, TNFα and antibodies against EBV were detected using ELISA test. TLR9 level was significantly lower in EBV(+) patients, both in tissue and serum, while EBVCA, EBNA and VEGF level was statistically higher in EBV(+) patients. An increase in EBVCA and EBNA antibodies titer was correlated with a TLR9 level decrease. TLR9 level was higher in poorly-differentiated tumors (G3), in tumor of larger dimensions (T3-T4) and with lymph nodes involvement (N3-N4) but without statistical significance. High levels of anti-EA antibodies in the majority of EBV(+) patients may point to the reactivation of EBV infection.
Collapse
Affiliation(s)
- Ewa Stępień
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-059 Lublin, Poland; (E.S.); (M.P.-D.)
| | - Małgorzata Strycharz-Dudziak
- Chair and Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-059 Lublin, Poland
- Correspondence:
| | - Maria Malm
- Department of Information Technology and Medical Statistics, Medical University of Lublin, 20-059 Lublin, Poland; (M.M.); (B.D.)
| | - Bartłomiej Drop
- Department of Information Technology and Medical Statistics, Medical University of Lublin, 20-059 Lublin, Poland; (M.M.); (B.D.)
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-059 Lublin, Poland; (E.S.); (M.P.-D.)
| |
Collapse
|
14
|
Zhang Y, Yuan T, Li Y, Wu N, Dai X. Network Pharmacology Analysis of the Mechanisms of Compound Herba Sarcandrae (Fufang Zhongjiefeng) Aerosol in Chronic Pharyngitis Treatment. Drug Des Devel Ther 2021; 15:2783-2803. [PMID: 34234411 PMCID: PMC8254411 DOI: 10.2147/dddt.s304708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose This study aimed to investigate the molecular mechanisms of compound herba Sarcandrae aerosol, also known as the Fufang Zhongjiefeng (FFZJF) aerosol, in treating chronic pharyngitis (CP) using network pharmacology and in vivo experimental approaches. Methods Active compounds and putative targets of five herbs in FFZJF were identified from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Chemistry Database, and Swiss Target Prediction databases. The therapeutic targets of CP were obtained from OMIM, Durgbank, DisGeNT, and GAD databases. The active compounds-target networks were constructed using Cytoscape 3.6.1. The overlapping targets of FFZJF active compounds and CP targets were further analyzed using the String database to construct protein–protein interaction (PPI) network. KEGG pathway and Gene Ontology enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery. The predicted targets and pathways were validated in a group A β-hemolytic streptococcus-induced rat CP model. Results There were 45 active compounds identified from FFZJF and 11 potential protein targets identified for CP treatment. PPI network demonstrated that IL6, PTGS2, TLR-4, and TNF may serve as the key targets of FFZJF for the treatment of CP. The main functional pathways involving these key targets include cytokine secretion, inflammatory response, MyD88-dependent toll-like receptor signaling pathway, toll-like receptor signaling pathway, TNF signaling pathway, and NF-κB signaling pathway. In a rat CP model, the elevation of serum TNF-α, IL1β, and IL6 levels, as well as the upregulation of TLR-4, MyD88, NF-κB P65 in the pharyngeal mucosal tissues could be effectively reduced by FFZJF treatment in a dose-dependent manner. Conclusion Through a network pharmacology approach and animal study, we predicted and validated the active compounds of FFZJF and their potential targets for CP treatment. The results suggest that FFZJF can markedly alleviate GAS-induced chronic pharyngitis by modulating the TLR-4/MyD88/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yanping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Taohua Yuan
- Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yunsong Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Ning Wu
- Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Cao Y, Xu X, Kitanovski S, Song L, Wang J, Hao P, Hoffmann D. Comprehensive Comparison of RNA-Seq Data of SARS-CoV-2, SARS-CoV and MERS-CoV Infections: Alternative Entry Routes and Innate Immune Responses. Front Immunol 2021; 12:656433. [PMID: 34122413 PMCID: PMC8195239 DOI: 10.3389/fimmu.2021.656433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background The pathogenesis of COVID-19 emerges as complex, with multiple factors leading to injury of different organs. Some of the studies on aspects of SARS-CoV-2 cell entry and innate immunity have produced seemingly contradictory claims. In this situation, a comprehensive comparative analysis of a large number of related datasets from several studies could bring more clarity, which is imperative for therapy development. Methods We therefore performed a comprehensive comparative study, analyzing RNA-Seq data of infections with SARS-CoV-2, SARS-CoV and MERS-CoV, including data from different types of cells as well as COVID-19 patients. Using these data, we investigated viral entry routes and innate immune responses. Results and Conclusion First, our analyses support the existence of cell entry mechanisms for SARS and SARS-CoV-2 other than the ACE2 route with evidence of inefficient infection of cells without expression of ACE2; expression of TMPRSS2/TPMRSS4 is unnecessary for efficient SARS-CoV-2 infection with evidence of efficient infection of A549 cells transduced with a vector expressing human ACE2. Second, we find that innate immune responses in terms of interferons and interferon simulated genes are strong in relevant cells, for example Calu3 cells, but vary markedly with cell type, virus dose, and virus type.
Collapse
Affiliation(s)
- Yingying Cao
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Xintian Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Lina Song
- Department of Dermatology, University Hospital Essen, Essen, Germany
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, German Cancer Research Center, Heidelberg, Germany
| | - Jun Wang
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Yang Q, You J, Zhou Y, Wang Y, Pei R, Chen X, Yang M, Chen J. Tick-borne encephalitis virus NS4A ubiquitination antagonizes type I interferon-stimulated STAT1/2 signalling pathway. Emerg Microbes Infect 2020; 9:714-726. [PMID: 32196427 PMCID: PMC7170394 DOI: 10.1080/22221751.2020.1745094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) accounts for approximately 10,000 annual cases of severe encephalitis in Europe and Asia and causes encephalitis in humans. In this study, we demonstrate TBEV appears to activate the interferon (IFN)-β dependent on RIG-I/MDA5. Both the IFN-β accumulation and the IFN stimulated genes (ISGs) transcription greatly delay. Further studies reveal that TBEV NS4A could block the phosphorylation and dimerization of STAT1/STAT2 to affect type I and II IFN-mediated STAT signalling. Additional data indicate that the residue at K132 of TBEV NS4A could be modified by ubiquitination and this modification is necessary for the interaction of NS4A with STAT1. Dynamic ubiquitination of the NS4 protein during TBEV infection might account for delayed activation of the ISGs. These results define the TBEV NS4A as an antagonist of the IFN response, by demonstrating a correlation between the association and STAT interference. Our findings provide a foundation for further understanding how TBEV evade innate immunity and a potential viral target for intervention.
Collapse
Affiliation(s)
- Qi Yang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jia You
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People’s Republic of China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Min Yang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
17
|
The role of toll-like receptor 9 (TLR9) in Epstein-Barr virus-associated gastric cancer. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2020. [DOI: 10.2478/cipms-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is the most common malignancy caused by EBV infection. Toll-like receptors (TLRs) as major components of innate immune system are crucial in the development of inflammatory processes and carcinogenesis. The aim of our study was to evaluate tissue and serum level of TLR9 in EBV-positive and EBV-negative gastric cancer patients. The study involved 30 EBV(+) and 30 EBV(-) patients. EBV DNA was detected in fresh frozen tumor tissue. In serum samples TLR9 level, transforming growth factor β (TGFβ), interleukin 10 (IL-10) and antibodies against EBV were detected using ELISA tests. TLR9 level was also measured in homogenate of tumour tissue. TLR9 level was statistically lower in EBV(+) patients both in serum and tissue, with statistically higher level in tissue than in serum. Lower level of TLR9 was accompanied by higher level of Epstein-Barr virus capsid antigen (EBVCA), Epstein-Barr virus nuclear antigen (EBNA) and early antigen (EA). A lower level of TLR9 was detected in patients with poorly differentiated cancer (G3) and greater lymph nodes involvement (N3-N4). Lower level of TLR9 in patients with EA may point to TLR9 role in reactivation of EBV infection.
Collapse
|
18
|
Barjesteh N, O'Dowd K, Vahedi SM. Antiviral responses against chicken respiratory infections: Focus on avian influenza virus and infectious bronchitis virus. Cytokine 2020; 127:154961. [PMID: 31901597 PMCID: PMC7129915 DOI: 10.1016/j.cyto.2019.154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
Some of the respiratory viral infections in chickens pose a significant threat to the poultry industry and public health. In response to viral infections, host innate responses provide the first line of defense against viruses, which often act even before the establishment of the infection. Host cells sense the presence of viral components through germinal encoded pattern recognition receptors (PRRs). The engagement of PRRs with pathogen-associated molecular patterns leads to the induction of pro-inflammatory and interferon productions. Induced antiviral responses play a critical role in the outcome of the infections. In order to improve current strategies for control of viral infections or to advance new strategies aimed against viral infections, a deep understanding of host-virus interaction and induction of antiviral responses is required. In this review, we summarized recent progress in understanding innate antiviral responses in chickens with a focus on the avian influenza virus and infectious bronchitis virus.
Collapse
Affiliation(s)
- Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Kelsey O'Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Seyed Milad Vahedi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Qian S, Gao Z, Cao R, Yang K, Cui Y, Li S, Meng X, He Q, Li Z. Transmissible Gastroenteritis Virus Infection Up-Regulates FcRn Expression via Nucleocapsid Protein and Secretion of TGF-β in Porcine Intestinal Epithelial Cells. Front Microbiol 2020; 10:3085. [PMID: 32038538 PMCID: PMC6990134 DOI: 10.3389/fmicb.2019.03085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine intestinal coronavirus that causes fatal severe watery diarrhea in piglets. The neonatal Fc receptor (FcRn) is the only IgG transport receptor, its expression on mucosal surfaces is triggered upon viral stimulation, which significantly enhances mucosal immunity. We utilized TGEV as a model pathogen to explore the role of FcRn in resisting viral invasion in overall intestinal mucosal immunity. TGEV induced FcRn expression by activating NF-κB signaling in porcine small intestinal epithelial (IPEC-J2) cells, however, the underlying mechanisms are unclear. First, using small interfering RNAs, we found that TGEV up-regulated FcRn expression via TLR3, TLR9 and RIG-I. Moreover, TGEV induced IL-1β, IL-6, IL-8, TGF-β, and TNF-α production. TGF-β-stimulated IPEC-J2 cells highly up-regulated FcRn expression, while treatment with a JNK-specific inhibitor down-regulated the expression. TGEV nucleocapsid (N) protein also enhanced FcRn promoter activity via the NF-κB signaling pathway and its central region (aa 128–252) was essential for FcRn activation. Additionally, N protein-mediated FcRn up-regulation promotes IgG transcytosis. Thus, TGEV N protein and TGF-β up-regulated FcRn expression, further clarifying the molecular mechanism of up-regulation of FcRn expression by TGEV.
Collapse
Affiliation(s)
- Shaoju Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zitong Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yijie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xianrong Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
20
|
Association of TLR2 Gene Polymorphisms with Presumed Viral-Induced Anterior Uveitis in male Han Chinese. Exp Eye Res 2019; 187:107777. [DOI: 10.1016/j.exer.2019.107777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/22/2019] [Accepted: 08/23/2019] [Indexed: 01/27/2023]
|
21
|
Pang F, Zhang M, Li G, Zhang Z, Huang H, Li B, Wang C, Yang X, Zheng Y, An Q, Zhang L, Du L, Wang F. Integrated mRNA and miRNA profiling in NIH/3T3 cells in response to bovine papillomavirus E6 gene expression. PeerJ 2019; 7:e7442. [PMID: 31396463 PMCID: PMC6681795 DOI: 10.7717/peerj.7442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Delta bovine papillomaviruses (δBPVs) mainly infect cattle and cause fibropapillomas. δBPVs encode three oncogenes, E5, E6 and E7. The effect of E6 on microRNA (miRNA) and mRNA expression profiles is not well characterized. In this study, RNA sequencing and small RNA sequencing were used to explore alterations in mRNAs and miRNAs in E6 over-expressing NIH/3T3 cells (NH-E6) compared with control cells (NH-GFP). We found that 350 genes (181 upregulated and 169 downregulated) and 54 miRNAs (26 upregulated and 28 downregulated) were differentially expressed (DE) following E6 expression. The top 20 significantly enriched GO terms in “biological process” included inflammatory response, innate immune response, immune response, immune system process, positive regulation of apoptotic process, cell adhesion, and angiogenesis. We constructed a potential miRNA-gene regulatory network from the differentially expressed genes (DEGs) and DE miRNAs. Finally, we selected 19 immune-response related DEGs and 11 DE miRNAs for qPCR validation. Of these, upregulation of 12 genes, Ccl2, Ccl7, Cxcl1, Cxcl5, Tlr2, Nfkbia, Fas, Il1rl1, Ltbp1, Rab32, and Zc3h12a, Dclk1 and downregulation of four genes, Agtr2, Ptx3, Sfrp1, and Thbs1 were confirmed. Ccl2, Ccl7, Cxcl1 and Cxcl5 were upregulated more than ten-fold in NH-E6 compared with NH-GFP. Also, upregulation of three miRNAs, mmu-miR-129-2-3p, mmu-miR-149-5p-R-2 and mmu-miR-222-3p, and downregulation of five miRNAs, mmu-miR-582-3p-R+1, mmu-miR-582-5p, mmu-miR-708-3p, mmu-miR-708-5p and mmu-miR-1197-3p, were confirmed. Our study describes changes in both mRNA and miRNA profiles in response to BPV E6 expression, providing new insights into BPV E6 oncogene functions.
Collapse
Affiliation(s)
- Feng Pang
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Mengmeng Zhang
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Guohua Li
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Zhenxing Zhang
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Haifeng Huang
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Baobao Li
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Chengqiang Wang
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Xiaohong Yang
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Yiying Zheng
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Qi An
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Luyin Zhang
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Li Du
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Fengyang Wang
- College of Animal Science and Technology, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| |
Collapse
|
22
|
Zandieh Z, Amjadi F, Vakilian H, Aflatoonian K, Amirchaghmaghi E, Fazeli A, Aflatoonian R. Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells. Clin Exp Reprod Med 2018; 45:154-162. [PMID: 30538945 PMCID: PMC6277672 DOI: 10.5653/cerm.2018.45.4.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Objective The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-β estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OE-E6/E7 cell line.
Collapse
Affiliation(s)
- Zahra Zandieh
- Shahid Akbar Abadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haghighat Vakilian
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Elham Amirchaghmaghi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, UK
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Du W, Xu H, Mei X, Cao X, Gong L, Wu Y, Li Y, Yu D, Liu S, Wang Y, Li W. Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Benef Microbes 2018; 9:743-754. [DOI: 10.3920/bm2017.0142] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacillus is widely used in the livestock industry. This study was designed to evaluate the effects of probiotic Bacillus amyloliquefaciens SC06 (Ba), originally isolated from soil, in piglets diet as an alternative to antibiotics (aureomycin), mainly on intestinal epithelial barrier and immune function. Ninety piglets were divided into three groups: G1 (containing 150 mg/kg aureomycin in the diet); G2 (containing 75 mg/kg aureomycin and 1×108 cfu/kg Ba in the diet); G3 (containing 2×108 cfu/kg Ba in the diet without any antibiotics). The results showed that, compared with the antibiotic group (G1), villus length, crypt depth and villus length/crypt depth ratio of intestine significantly increased in the G2 and G3 groups. In addition, intestinal villi morphology, goblet-cell number, mitochondria structure and tight junction proteins of intestinal epithelial cells in G2 and G3 were better than in G1. The relative gene expression of intestinal mucosal defensin-1, claudin3, claudin4, and human mucin-1 in G3 was significantly lower, while the expression of villin was significantly higher than in the antibiotic group. Probiotic Ba could significantly decrease serum interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, and IL-4 levels, whereas increase tumour necrosis factor (TNF)-α and IL-6 secretion. Ba could also significantly decrease cytokines TNF-α, IFN-γ, IL-1β, and IL-4 level in liver, whereas it significantly increased IFN-α. Furthermore, replacing antibiotics with Ba also significantly down-regulated gene expression of TNF and IL-1α in intestinal mucosa, but up-regulated IL-6 and IL-8 transcription. Dietary addition of Ba could significantly reduce the gene expression of nuclear factor kappa beta (NFκB)-p50 and Toll-like receptor (TLR)6, while there was no significant difference for that of myeloid differentiation primary response 88, TNF receptor-associated factor-6, nucleotide-binding oligomerisation domain-containing protein 1, TLR2, TLR4, and TLR9. Taken together, our findings demonstrated that probiotic Ba could increase the intestinal epithelial cell barrier and immune function by improving intestinal mucosa structure, tight junctions and by activating the TLRs signalling pathway.
Collapse
Affiliation(s)
- W. Du
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - H. Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - X. Mei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - X. Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - L. Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - Y. Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - Y. Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - D. Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - S. Liu
- National Animal Husbandry Service, Building 20, Maizidian St, Chaoyang District, 100125 Beijing, China P.R
| | - Y. Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - W. Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| |
Collapse
|
24
|
Newling M, Hoepel W, Vogelpoel LTC, Heineke MH, van Burgsteden JA, Taanman-Kueter EWM, Eggink D, Kuijpers TW, Beaumont T, van Egmond M, Kapsenberg ML, Baeten DLP, den Dunnen J, Jong ECD. Fc gamma receptor IIa suppresses type I and III interferon production by human myeloid immune cells. Eur J Immunol 2018; 48:1796-1809. [PMID: 30184252 PMCID: PMC6282563 DOI: 10.1002/eji.201847615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/17/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Type I and type III interferons (IFNs) are fundamental for antiviral immunity, but prolonged expression is also detrimental to the host. Therefore, upon viral infection high levels of type I and III IFNs are followed by a strong and rapid decline. However, the mechanisms responsible for this suppression are still largely unknown. Here, we show that IgG opsonization of model viruses influenza and respiratory syncytial virus (RSV) strongly and selectively suppressed type I and III IFN production by various human antigen-presenting cells. This suppression was induced by selective inhibition of TLR, RIG-I-like receptor, and STING-dependent type I and III IFN gene transcription. Surprisingly, type I and III IFN suppression was mediated by Syk and PI3K independent inhibitory signaling via FcγRIIa, thereby identifying a novel non-canonical FcγRIIa pathway in myeloid cells. Together, these results indicate that IgG opsonization of viruses functions as a novel negative feedback mechanism in humans, which may play a role in the selective suppression of type I and III IFN responses during the late-phase of viral infections. In addition, activation of this pathway may be used as a tool to limit type I IFN-associated pathology.
Collapse
Affiliation(s)
- Melissa Newling
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Lisa T C Vogelpoel
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Marieke H Heineke
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Johan A van Burgsteden
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Esther W M Taanman-Kueter
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Dirk Eggink
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Beaumont
- AIMM Therapeutics, AMC, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Martien L Kapsenberg
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, location Academic Medical Center (AMC), Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Esther C de Jong
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Ahmed-Hassan H, Abdul-Cader MS, Sabry MA, Hamza E, Abdul-Careem MF. Toll-like receptor (TLR)4 signalling induces myeloid differentiation primary response gene (MYD) 88 independent pathway in avian species leading to type I interferon production and antiviral response. Virus Res 2018; 256:107-116. [PMID: 30098398 DOI: 10.1016/j.virusres.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Engagement of toll-like receptor (TLR)4 ligand, lipopolysaccharide (LPS) with TLR4 in mammals activates two downstream intracellular signaling routes; the myeloid differentiation primary response gene (MyD)88 dependent and independent pathways. However, existence of the later pathway leading to production of type I interferons (IFNs) in avian species has been debated due to conflicting observations. The objective of our study was to investigate whether LPS induces type I IFN production in chicken macrophages leading to antiviral response attributable to type I IFN. We found that LPS elicits type I IFN response dominated by IFN-β production. We also found that reduction in infectious laryngotracheitis virus (ILTV) replication by LPS-mediated antiviral response is attributable to type I IFNs in addition to nitric oxide (NO). Our findings imply that LPS elicits both MyD88 dependent and independent pathways in chicken macrophages consequently eliciting anti-ILTV response attributable to production of both type I IFNs and NO.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Sarjoon Abdul-Cader
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Maha Ahmed Sabry
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Hamza
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
26
|
Sauter MM, Kolb AW, Brandt CR. Toll-like receptors 4, 5, 6 and 7 are constitutively expressed in non-human primate retinal neurons. J Neuroimmunol 2018; 322:26-35. [PMID: 29954626 DOI: 10.1016/j.jneuroim.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to characterize cell-specific expression patterns of Toll-like receptors (TLR) in non-human primate (NHP) neural retina tissue. TLR 4, 5, 6, and 7 proteins were detected by immunblotting of macaque retina tissue lysates and quantitative PCR (qPCR) demonstrated TLRs 4-7 mRNA expression. Immunofluorescence (IF) microscopy detected TLRs 4-7 in multiple cell types in macaque neural retina including Muller, retinal ganglion cells (RGC), amacrine, and bipolar cells. These results demonstrate that TLRs 4-7 are constitutively expressed by neurons in the NHP retina raising the possibility that these cells could be involved in retinal innate inflammatory responses.
Collapse
Affiliation(s)
- Monica M Sauter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
27
|
Yang J, Yang C, Yang J, Ding J, Li X, Yu Q, Guo X, Fan Z, Wang H. RP105 alleviates myocardial ischemia reperfusion injury via inhibiting TLR4/TRIF signaling pathways. Int J Mol Med 2018; 41:3287-3295. [PMID: 29512709 PMCID: PMC5881694 DOI: 10.3892/ijmm.2018.3538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
The Toll-like receptor 4 (TLR4) signal pathway- induced inflammation is considered to be a crucial link to myocardial ischemia reperfusion injury (MIRI). Our previous study proved that radioprotective 105 kDa protein (RP105), a negative regulator of TLR4, performed a protective role in MIRI by anti-apoptosis approach. However, the mechanism of RP105 cardioprotection of anti-inflammation is still unclear. This study aimed to explore the underlying mechanism of RP105 anti-inflammation effect in MIRI. We established a rat model of MIRI induced by ligation of the left anterior descending coronary artery for 30 min followed by 2 h reperfusion. Animals were pre-infected with Ad-EGFP-RP105, Ad-EGFP or saline at the apex of the heart. All rats were sacrificed to collect blood samples and myocardial tissue and assessed by immunofluorescence, blood biochemical analysis, Evans blue/triphenyltetrazolium chloride (TTC), hematoxylin and eosin (H&E) staining, enzyme-linked immuno sorbent assay (ELISA), western blot analysis, quantitative PCR and electrophoretic mobility shift assay (EMSA). RP105 overexpression with adenovirus vectors reduced serum myocardial enzyme (CK-MB and LDH) activities, decreased myocardial infarct size, mitigated inflammatory factors interferon-β and tumor necrosis factor-α during MIRI. We also found that Ad-RP105 group exerted distinct repression of TLR4/TRIF signal pathway related proteins and mRNAs (TRIF, TBK-1, IRF3 and p-IRF3) with a low transcriptional activity of IRF3. These findings first expounded that RP105 could alleviate the ischemia reperfusion induced inflammatory status in heart via inhibiting TLR4/TRIF signaling pathway and provided a theoretical foundation of RP105 gene in MIRI.
Collapse
Affiliation(s)
- Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Chaojun Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Xinxin Li
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Qinqin Yu
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Xin Guo
- Department of Cardiology, The First College of Clinical Medical Sciences
| | - Zhixing Fan
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Huibo Wang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
28
|
Wark PAB, Ramsahai JM, Pathinayake P, Malik B, Bartlett NW. Respiratory Viruses and Asthma. Semin Respir Crit Care Med 2018; 39:45-55. [PMID: 29427985 PMCID: PMC7117086 DOI: 10.1055/s-0037-1617412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asthma remains the most prevalent chronic respiratory disorder, affecting people of all ages. The relationship between respiratory virus infection and asthma has long been recognized, though remains incompletely understood. In this article, we will address key issues around this relationship. These will include the crucial role virus infection plays in early life, as a potential risk factor for the development of asthma and lung disease. We will assess the impact that virus infection has on those with established asthma as a trigger for acute disease and how this may influence asthma throughout life. Finally, we will explore the complex interaction that occurs between the airway and the immune responses that make those with asthma so susceptible to the effects of virus infection.
Collapse
Affiliation(s)
- Peter A B Wark
- Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - James Michael Ramsahai
- Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - Prabuddha Pathinayake
- Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - Bilal Malik
- Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Nathan W Bartlett
- Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,School of Biomedical Sciences, The University of Newcastle, New South Wales, Australia
| |
Collapse
|
29
|
Cao Y, Cao R, Huang Y, Zhou H, Liu Y, Li X, Zhong W, Hao P. A comprehensive study on cellular RNA editing activity in response to infections with different subtypes of influenza a viruses. BMC Genomics 2018; 19:925. [PMID: 29363430 PMCID: PMC5780764 DOI: 10.1186/s12864-017-4330-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background RNA editing is an important mechanism that expands the diversity and complexity of genetic codes. The conversions of adenosine (A) to inosine (I) and cytosine (C) to uridine (U) are two prominent types of RNA editing in animals. The roles of RNA editing events have been implicated in important biological pathways. Cellular RNA editing activity in response to influenza A virus infection has not been fully characterized in human and avian hosts. This study was designed as a big data analysis to investigate the role and response of RNA editing in epithelial cells during the course of infection with various subtypes of influenza A viruses. Results Using a bioinformatics pipeline modified from our previous study, we characterized the profiles of A-to-I and C-to-U RNA editing events in human epithelial cells during the course of influenza A virus infection. Our results revealed a striking diversity of A-to-I RNA editing activities in human epithelial cells in responses to different subtypes of influenza A viruses. The infection of H1N1 and H3N2 significantly up-regulated normalized A-to-I RNA editing levels in human epithelial cells, whereas that of H5N1 did not change it and H7N9 infection significantly down-regulated normalized A-to-I editing level in A549 cells. Next, the expression levels of ADAR and APOBEC enzymes responsible for A-to-I and C-to-U RNA editing during the course of virus infection were examined. The increase of A-to-I RNA editing activities in infections with some influenza A viruses (H1N1 and H3N2) is linked to the up-regulation of ADAR1 but not ADAR2. Further, the pattern recognition receptors of human epithelial cells infected with H1N1, H3N2, H5N1 and H7N9 were examined. Variable responsive changes in gene expression were observed with RIG-I like receptors and Toll like receptors. Finally, the effect of influenza A virus infection on cellular RNA editing activity was also analyzed in avian hosts. Conclusion This work represents the first comprehensive study of cellular RNA editing activity in response to different influenza A virus infections in human and avian hosts, highlighting the critical role of RNA editing in innate immune response and the pathogenicity of different subtypes of influenza A viruses. Electronic supplementary material The online version of this article (10.1186/s12864-017-4330-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingying Cao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 20031, China
| | - Ruiyuan Cao
- National Engineering Research Center For the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yaowei Huang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 20031, China
| | - Hongxia Zhou
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Yuanhua Liu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 20031, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Wu Zhong
- National Engineering Research Center For the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 20031, China.
| |
Collapse
|
30
|
Cao Y, Huang Y, Xu K, Liu Y, Li X, Xu Y, Zhong W, Hao P. Differential responses of innate immunity triggered by different subtypes of influenza a viruses in human and avian hosts. BMC Med Genomics 2017; 10:70. [PMID: 29322931 PMCID: PMC5763291 DOI: 10.1186/s12920-017-0304-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Innate immunity provides first line of defense against viral infections. The interactions between hosts and influenza A virus and the response of host innate immunity to viral infection are critical determinants for the pathogenicity or virulence of influenza A viruses. This study was designed to investigate global changes of gene expression and detailed responses of innate immune systems in human and avian hosts during the course of infection with various subtypes of influenza A viruses, using collected and self-generated transcriptome sequencing data from human bronchial epithelial (HBE), human tracheobronchial epithelial (HTBE), and A549 cells infected with influenza A virus subtypes, namely H1N1, H3N2, H5N1 HALo mutant, and H7N9, and from ileum and lung of chicken and quail infected with H5N1, or H5N2. RESULTS We examined the induction of various cytokines and chemokines in human hosts infected with different subtypes of influenza A viruses. Type I and III interferons were found to be differentially induced with each subtype. H3N2 caused abrupt and the strongest response of IFN-β and IFN-λ, followed by H1N1 (though much weaker), whereas H5N1 HALo mutant and H7N9 induced very minor change in expression of type I and III interferons. Similarly, differential responses of other innate immunity-related genes were observed, including TMEM173, MX1, OASL, IFI6, IFITs, IFITMs, and various chemokine genes like CCL5, CX3CL1, and chemokine (C-X-C motif) ligands, SOCS (suppressors of cytokine signaling) genes. Third, the replication kinetics of H1N1, H3N2, H5N1 HALo mutant and H7N9 subtypes were analyzed, H5N1 HALo mutant was found to have the highest viral replication rate, followed by H3N2, and H1N1, while H7N9 had a rate similar to that of H1N1 or H3N2 though in different host cell type. CONCLUSION Our study illustrated the differential responses of innate immunity to infections of different subtypes of influenza A viruses. We found the influenza viruses which induced stronger innate immune responses replicate slower than those induces weaker innate immune responses. Our study provides important insight into links between the differential innate immune responses from hosts and the pathogenicity/ virulence of different subtypes of influenza A viruses.
Collapse
Affiliation(s)
- Yingying Cao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaowei Huang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Ke Xu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanhua Liu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Wu Zhong
- National Engineering Research Center For the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
31
|
BEHL JYOTSNADHINGRA, SHARMA ANURODH, KATARIA RS, VERMA NK, KIMOTHI SHIVPRASAD, BHATIA AVNISHKUMAR, BEHL RAHUL. Characterization of genetic polymorphisms in Toll-like receptor 9 gene of Bos indicus Sahiwal cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i11.75888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Toll-like receptor 9 protein, located in the endosomal compartment, is a nucleotide-sensing Toll-like receptor(TLR). It is activated by unmethylated cytidine-phosphate-guanosine dinucleotides (CpG ODN) in both viruses and bacteria, and is encoded by Toll-like receptor 9 gene, which was sequenced and characterized in the Bos indicus Sahiwal cattle breed. Eleven single nucleotide polymorphisms (SNPs) were detected within the 4.8 Kb region of the TLR9 gene. Eight of the SNPs were present in the coding region of the gene and the other 3 were present in the non-coding part of the gene. The SNP 2930(G>A) was non-synonymous leading to an amino acid change of G437E in the TLR9 protein. The other SNPs were synonymous. These SNPs led to generation of 11 most probable TLR9 gene haplotypes. The gene exhibited a nonsignificant value of Tajima's D which indicated it to be following the neutral mutation hypothesis.
Collapse
|
32
|
Bank vole immunoheterogeneity may limit Nephropatia Epidemica emergence in a French non-endemic region. Parasitology 2017; 145:393-407. [PMID: 28931451 DOI: 10.1017/s0031182017001548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ecoevolutionary processes affecting hosts, vectors and pathogens are important drivers of zoonotic disease emergence. In this study, we focused on nephropathia epidemica (NE), which is caused by Puumala hantavirus (PUUV) whose natural reservoir is the bank vole, Myodes glareolus. We questioned the possibility of NE emergence in a French region that is considered to be NE-free but that is adjacent to a NE-endemic region. We first confirmed the epidemiology of these two regions and we demonstrated the absence of spatial barriers that could have limited dispersal, and consequently, the spread of PUUV into the NE-free region. We next tested whether regional immunoheterogeneity could impact PUUV chances to circulate and persist in the NE-free region. We showed that bank voles from the NE-free region were sensitive to experimental PUUV infection. We observed high levels of immunoheterogeneity between individuals and also between regions. Antiviral gene expression (Tnf and Mx2) reached higher levels in bank voles from the NE-free region. During experimental infections, anti-PUUV antibody production was higher in bank voles from the NE-endemic region. These results indicated a lower susceptibility to PUUV for bank voles from this NE-free region, which might limit PUUV persistence and therefore, the risk of NE.
Collapse
|
33
|
Sui H, Zhou M, Imamichi H, Jiao X, Sherman BT, Lane HC, Imamichi T. STING is an essential mediator of the Ku70-mediated production of IFN-λ1 in response to exogenous DNA. Sci Signal 2017; 10:eaah5054. [PMID: 28720717 DOI: 10.1126/scisignal.aah5054] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously identified Ku70, a subunit of a DNA repair protein complex, as a cytosolic DNA sensor that induces the production of interferon-λ1 (IFN-λ1) by human primary cells and cell lines. IFN-λ1 is a type III IFN and has similar antiviral activity to that of the type I IFNs (IFN-α and IFN-β). We observed that human embryonic kidney (HEK) 293T cells, which are deficient in the innate immune adaptor protein STING (stimulator of IFN genes), did not produce IFN-λ1 in response to DNA unless they were reconstituted with STING. Conversely, parental HEK 293 cells produced IFN-λ1 after they were exposed to exogenous DNA; however, when STING was knocked out in the HEK 293 cells through the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing system, they lost this response. Through confocal microscopy, we demonstrated that endogenous Ku70 was located in the nucleus and then translocated to the cytoplasm upon DNA exposure to form a complex with STING. Additionally, the DNA binding domain of Ku70 was essential for formation of the Ku70-STING complex. Knocking down STING in primary human macrophages inhibited their ability to produce IFN-λ1 in response to transfection with DNA or infection with the DNA virus HSV-2 (herpes simplex virus-2). Together, these data suggest that STING mediates the Ku70-mediated IFN-λ1 innate immune response to exogenous DNA or DNA virus infection.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoli Jiao
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - H Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
34
|
He LX, Tong X, Zeng J, Tu Y, Wu S, Li M, Deng H, Zhu M, Li X, Nie H, Yang L, Huang F. Paeonol Suppresses Neuroinflammatory Responses in LPS-Activated Microglia Cells. Inflammation 2017; 39:1904-1917. [PMID: 27624059 DOI: 10.1007/s10753-016-0426-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, we assessed the anti-inflammatory effects of paeonol (PAE) in LPS-activated N9 microglia cells, as well as its underlying molecular mechanisms. PAE had no adverse effect on the viability of murine microglia N9 cell line within a broad range (0.12∼75 μM). When N9 cell line was activated by LPS, PAE (0.6, 3, 15 μM) significantly suppressed the release of proinflammatory products, such as nitric oxide (NO), interleukin-1β (IL-1β), and prostaglandin E2 (PGE2), demonstrated by the ELISA assay. Moreover, the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were significantly reduced in PAE-treated N9 microglia cells. We also examined some proteins involved in immune signaling pathways and found that PAE treatment significantly decreased the expression of TLR4, MyD88, IRAK4, TNFR-associated factor 6 (TRAF6), p-IkB-α, and NF-kB p65, as well as the mitogen-activated protein kinase (MAPK) pathway molecules p-P38, p-JNK, and p-ERK, indicating that PAE might act on these signaling pathways to inhibit inflammatory responses. Overall, we found that PAE had anti-inflammatory effect on LPS-activated N9 microglia cells, possibly via inhibiting the TLR4 signaling pathway, and it could be a potential drug therapy for inflammation-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Xia He
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Xiaoyun Tong
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Jing Zeng
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Yuanqing Tu
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Saicun Wu
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Manping Li
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Huaming Deng
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Miaomiao Zhu
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Xiucun Li
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Hong Nie
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Li Yang
- Department of Traditional Chinese Medicine, College of Pharmacy, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China.
| | - Feng Huang
- Department of Molecular Pharmacology, School of Traditional Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua St., Kunming, 650500, China.
| |
Collapse
|
35
|
Dubois A, Galan M, Cosson JF, Gauffre B, Henttonen H, Niemimaa J, Razzauti M, Voutilainen L, Vitalis R, Guivier E, Charbonnel N. Microevolution of bank voles (Myodes glareolus) at neutral and immune-related genes during multiannual dynamic cycles: Consequences for Puumala hantavirus epidemiology. INFECTION GENETICS AND EVOLUTION 2016; 49:318-329. [PMID: 27956196 DOI: 10.1016/j.meegid.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/02/2023]
Abstract
Understanding how host dynamics, including variations of population size and dispersal, may affect the epidemiology of infectious diseases through ecological and evolutionary processes is an active research area. Here we focus on a bank vole (Myodes glareolus) metapopulation surveyed in Finland between 2005 and 2009. Bank vole is the reservoir of Puumala hantavirus (PUUV), the agent of nephropathia epidemica (NE, a mild form of hemorrhagic fever with renal symptom) in humans. M. glareolus populations experience multiannual density fluctuations that may influence the level of genetic diversity maintained in bank voles, PUUV prevalence and NE occurrence. We examine bank vole metapopulation genetics at presumably neutral markers and immune-related genes involved in susceptibility to PUUV (Tnf-promoter, Tlr4, Tlr7 and Mx2 gene) to investigate the links between population dynamics, microevolutionary processes and PUUV epidemiology. We show that genetic drift slightly and transiently affects neutral and adaptive genetic variability within the metapopulation. Gene flow seems to counterbalance its effects during the multiannual density fluctuations. The low abundance phase may therefore be too short to impact genetic variation in the host, and consequently viral genetic diversity. Environmental heterogeneity does not seem to affect vole gene flow, which might explain the absence of spatial structure previously detected in PUUV in this area. Besides, our results suggest the role of vole dispersal on PUUV circulation through sex-specific and density-dependent movements. We find little evidence of selection acting on immune-related genes within this metapopulation. Footprint of positive selection is detected at Tlr-4 gene in 2008 only. We observe marginally significant associations between Mx2 genotype and PUUV genogroups. These results show that neutral processes seem to be the main factors affecting the evolution of these immune-related genes at a contemporary scale, although the relative effects of neutral and adaptive forces could vary temporally with density fluctuations. Immune related gene polymorphism may in turn partly influence PUUV epidemiology in this metapopulation.
Collapse
Affiliation(s)
- Adelaïde Dubois
- INRA, UMR CBGP, F-34988 Montferrier-sur-Lez, France; Anses, Unité de Virologie, 31 avenue Tony Garnier, 69364 Lyon, France.
| | - Maxime Galan
- INRA, UMR CBGP, F-34988 Montferrier-sur-Lez, France
| | - Jean-François Cosson
- INRA, UMR CBGP, F-34988 Montferrier-sur-Lez, France; INRA-ANSES-ENVA, UMR 0956 BIPAR, Maisons-Alfort, France
| | | | | | - Jukka Niemimaa
- Natural Resources Institute Finland, FI-013012 Vantaa, Finland
| | | | - Liina Voutilainen
- Natural Resources Institute Finland, FI-013012 Vantaa, Finland; Department of Virology, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Emmanuel Guivier
- Biogeosciences, CNRS UMR 6282, Université de Bourgogne, Franche-Comté, 21000, Dijon, France
| | | |
Collapse
|
36
|
Wei X, Qian W, Sizhu S, Shi L, Jin M, Zhou H. Molecular cloning and functional analysis of the duck TIR domain-containing adaptor inducing IFN-β (TRIF) gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:369-376. [PMID: 27539203 DOI: 10.1016/j.dci.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) trigger the innate immune response by responding to specific components of microorganisms. The TIR domain-containing adaptor inducing IFN-β (TRIF) plays an essential role in mammalian TLR-mediated signaling. The role of TRIF in ducks (duTRIF) remains poorly understood. In this study, we cloned and characterized the full-length coding sequence of duTRIF from duck embryo fibroblasts (DEFs). In healthy ducks, duTRIF transcripts were broadly expressed in different tissues, with higher expression levels in the spleen and liver. Using quantitative real-time PCR (qRT-PCR), we demonstrated the upregulation of duTRIF in DEFs infected with AIV or DTMUV, and DEFs treated with Poly I:C or LPS. Overexpression of duTRIF was able to induce the NF-κB and IFN-β expression. Furthermore, the IFN induction function of duTRIF was impaired when Ala517 was mutated to Pro or His. Taken together, these results suggested that duTRIF regulated duck innate immune responses.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Wei Qian
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Suolang Sizhu
- College of Agricultural and Animal Husbandry, Tibet University, Linzhi, 860000, PR China
| | - Lijuan Shi
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Meilin Jin
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongbo Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
37
|
Dalton DL, Vermaak E, Roelofse M, Kotze A. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus). PLoS One 2016; 11:e0163331. [PMID: 27760133 PMCID: PMC5070850 DOI: 10.1371/journal.pone.0163331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022] Open
Abstract
The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.
Collapse
Affiliation(s)
- Desiré Lee Dalton
- Centre for Conservation Science, National Zoological Gardens of South Africa, Pretoria, Gauteng, South Africa.,Genetics Department, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elaine Vermaak
- Centre for Conservation Science, National Zoological Gardens of South Africa, Pretoria, Gauteng, South Africa
| | - Marli Roelofse
- Centre for Conservation Science, National Zoological Gardens of South Africa, Pretoria, Gauteng, South Africa
| | - Antoinette Kotze
- Centre for Conservation Science, National Zoological Gardens of South Africa, Pretoria, Gauteng, South Africa.,Genetics Department, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
38
|
Karyala P, Metri R, Bathula C, Yelamanchi SK, Sahoo L, Arjunan S, Sastri NP, Chandra N. DenHunt - A Comprehensive Database of the Intricate Network of Dengue-Human Interactions. PLoS Negl Trop Dis 2016; 10:e0004965. [PMID: 27618709 PMCID: PMC5019383 DOI: 10.1371/journal.pntd.0004965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023] Open
Abstract
Dengue virus (DENV) is a human pathogen and its etiology has been widely established. There are many interactions between DENV and human proteins that have been reported in literature. However, no publicly accessible resource for efficiently retrieving the information is yet available. In this study, we mined all publicly available dengue-human interactions that have been reported in the literature into a database called DenHunt. We retrieved 682 direct interactions of human proteins with dengue viral components, 382 indirect interactions and 4120 differentially expressed human genes in dengue infected cell lines and patients. We have illustrated the importance of DenHunt by mapping the dengue-human interactions on to the host interactome and observed that the virus targets multiple host functional complexes of important cellular processes such as metabolism, immune system and signaling pathways suggesting a potential role of these interactions in viral pathogenesis. We also observed that 7 percent of the dengue virus interacting human proteins are also associated with other infectious and non-infectious diseases. Finally, the understanding that comes from such analyses could be used to design better strategies to counteract the diseases caused by dengue virus. The whole dataset has been catalogued in a searchable database, called DenHunt (http://proline.biochem.iisc.ernet.in/DenHunt/).
Collapse
Affiliation(s)
- Prashanthi Karyala
- Department of Biochemistry, Center of Research and Post Graduate Studies, Indian Academy Degree College, Bengaluru, Karnataka, India
- * E-mail:
| | - Rahul Metri
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Christopher Bathula
- Department of Biochemistry, Center of Research and Post Graduate Studies, Indian Academy Degree College, Bengaluru, Karnataka, India
| | - Syam K. Yelamanchi
- Department of Biochemistry, Center of Research and Post Graduate Studies, Indian Academy Degree College, Bengaluru, Karnataka, India
| | - Lipika Sahoo
- LifeIntelect Consultancy Pvt Ltd, Marathahalli, Bengaluru, Karnataka, India
| | - Selvam Arjunan
- Department of Biotechnology, Center of Research and Post Graduate Studies, Indian Academy Degree College, Bengaluru, Karnataka, India
| | - Narayan P. Sastri
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
39
|
Sauter MM, Brandt CR. Primate neural retina upregulates IL-6 and IL-10 in response to a herpes simplex vector suggesting the presence of a pro-/anti-inflammatory axis. Exp Eye Res 2016; 148:12-23. [PMID: 27170050 DOI: 10.1016/j.exer.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types. RNA in situ hybridization confirmed that IL-6 was expressed in photoreceptor and Muller cells. The IL-10 positive cells in the inner nuclear layer were identified as amacrine cells by immunofluorescence staining with calretinin antibody. hrR3 challenge resulted in activation of NFκB (p65) in Muller glial cells, but not in cone photoreceptors, suggesting a novel regulatory mechanism for IL-6 expression in cone cells. hrR3 replication was not required for IL-6 induction or NFκB (p65) activation. These data suggest a pro-inflammatory (IL-6)/anti-inflammatory (IL-10) axis exists in neural retina and the severity of acute posterior uveitis may be determined by this interaction. Further studies are needed to identify the trigger for IL-6 and IL-10 induction and the mechanism of IL-6 induction in cone cells.
Collapse
Affiliation(s)
- Monica M Sauter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
40
|
Pitanga TN, Oliveira RR, Zanette DL, Guarda CC, Santiago RP, Santana SS, Nascimento VML, Lima JB, Carvalho GQ, Maffili VV, Carvalho MOS, Alcântara LCJ, Borges VM, Goncalves MS. Sickle red cells as danger signals on proinflammatory gene expression, leukotriene B4 and interleukin-1 beta production in peripheral blood mononuclear cell. Cytokine 2016; 83:75-84. [PMID: 27045344 DOI: 10.1016/j.cyto.2016.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
This study tested the hypothesis that sickle red blood cell (SS-RBC) induce Toll-like receptors (TLR) and Nod-like receptor family, pyrin domain containing 3 (NLRP3)- inflammasome expression in peripheral blood mononuclear cells (PBMC). TLR and NLRP3 inflammasome could contribute to the maintenance of the inflammatory status in sickle cell anemia (SCA) patients, since SS-RBC act as danger signals activating these pathways. In this study, first, we evaluated TLR (2, 4, 5 and 9), NLRP3, Caspase-1, interleukin (IL)-1β and IL-18 expression in PBMC freshly isolated from SCA patients (SS-PBMC) in comparison with PBMC from healthy individuals (AA-PBMC). In the second moment, we investigated whether SS-RBC could interfere with the expression of these molecules in PBMC from healthy donor, in the absence or presence of hydroxyurea (HU) in vitro. TLRs and NLRP3 inflammasome expression were investigated by qPCR. IL-1β, Leukotriene-B4 (LTB4) and nitrite production were measured in PBMC (from healthy donor) culture supernatants. TLR2, TLR4, TLR5, NLRP3 and IL-1β were highly expressed in SS-PBMC when compared to AA-PBMC. Additionally, SS-RBC induced TLR9, NLRP3, Caspase-1, IL-1β and IL-18 expression and induced IL-1β, LTB4 and nitrite production in PBMC cultures. HU did not prevent TLR and NLRP3 inflammasome expression, but increased TLR2 and IL-18 expression and reduced nitrite production. In conclusion, our data suggest that TLR and inflammasome complexes may be key inducers of inflammation in SCA patients, probably through SS-RBC; also, HU does not prevent NLRP3 inflammasome- and TLR-dependent inflammation, indicating the need to develop new therapeutic strategies to SCA patients that act with different mechanisms of those observed for HU.
Collapse
Affiliation(s)
- Thassila N Pitanga
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil; Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), 40110902 Salvador, Bahia, Brazil
| | - Ricardo R Oliveira
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Dalila L Zanette
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Caroline C Guarda
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Rayra P Santiago
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Sanzio S Santana
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Valma M L Nascimento
- Fundação de Hematologia e Hemoterapia da Bahia (HEMOBA), 40286240 Salvador, Bahia, Brazil
| | - Jonilson B Lima
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Graziele Q Carvalho
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Vitor V Maffili
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Magda O S Carvalho
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil; Hospital Universitário Professor Edgard Santos (HUPES), UFBA, 40110060 Salvador, Bahia, Brazil
| | - Luiz C J Alcântara
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Valéria M Borges
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil
| | - Marilda S Goncalves
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz - FIOCRUZ/BA, 40296710 Salvador, Bahia, Brazil; Faculdade de Farmácia, UFBA, 40170115 Salvador, Bahia, Brazil.
| |
Collapse
|
41
|
Chhabra R, Kuchipudi SV, Chantrey J, Ganapathy K. Pathogenicity and tissue tropism of infectious bronchitis virus is associated with elevated apoptosis and innate immune responses. Virology 2015; 488:232-41. [PMID: 26655241 PMCID: PMC7111639 DOI: 10.1016/j.virol.2015.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 11/01/2022]
Abstract
To establish a characteristic host response to predict the pathogenicity and tissue tropism of infectious bronchitis viruses (IBV), we investigated innate immune responses (IIR) and apoptosis in chicken embryo kidney cells (CEKC) and tracheal organ cultures (TOC) infected with three IBV strains. Results showed nephropathogenic IBV strains 885 and QX induced greater apoptosis in CEKC than M41, which induced greater apoptosis in TOCs compared to 885 and QX. Elevated IIR is associated with tissue tropism of different IBV strains. Compared to M41, 885 and QX caused greater induction of toll like receptor 3 (TLR3), melanoma differentiation associated protein 5 (MDA5) and interferon beta (IFN-β) in CEKC. In contrast, M41 infection caused greater expression of these genes than 885 or QX in TOCs. In summary, greater levels of apoptosis and elevated levels of TLR3, MDA5 and IFN-β expression are associated with increased pathogenicity of IBV strains in renal and tracheal tissues.
Collapse
Affiliation(s)
- Rajesh Chhabra
- University of Liverpool, Leahurst Campus, Neston, South Wirral CH64 7TE, UK; College Central Laboratory, LLR University of Veterinary & Animal Sciences, Hisar 125004, India.
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Julian Chantrey
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Kannan Ganapathy
- University of Liverpool, Leahurst Campus, Neston, South Wirral CH64 7TE, UK.
| |
Collapse
|
42
|
Luangsay S, Ait-Goughoulte M, Michelet M, Floriot O, Bonnin M, Gruffaz M, Rivoire M, Fletcher S, Javanbakht H, Lucifora J, Zoulim F, Durantel D. Expression and functionality of Toll- and RIG-like receptors in HepaRG cells. J Hepatol 2015; 63:1077-85. [PMID: 26144659 DOI: 10.1016/j.jhep.2015.06.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS HepaRG cells are considered as the best surrogate model to primary human hepatocyte (PHH) culture to investigate host-pathogen interactions. Yet their innate immune functions remain unknown. In this study, we explored the expression and functionality of Toll-like (TLR) and retinoic acid-inducible gene-1 (RIG-I)-like receptors (RLR) in these cells. METHODS Gene and protein expression levels of TLR-1 to 9 and RLR in HepaRG were mainly compared to PHH, by RT-qPCR, FACS, and Western blotting. Their functionality was assessed, by measuring the induction of toll/rig-like themselves and several target innate gene expressions, as well as the secretion of IL-6, IP-10, and type I interferon (IFN), upon agonist stimulation. Their functionality was also shown by measuring the antiviral activity of some TLR/RLR agonists against hepatitis B virus (HBV) infection. RESULTS The basal gene and protein expression profile of TLR/RLR in HepaRG cells was similar to PHH. Most receptors, except for TLR-7 and 9, were expressed as proteins and functionally active as shown by the induction of some innate genes, as well as by the secretion of IL-6 and IP-10, upon agonist stimulation. The highest levels of IL-6 and IP-10 secretion were obtained by TLR-2 and TLR-3 agonist stimulation respectively. The highest preventive anti-HBV activity was obtained following TLR-2, TLR-4 or RIG-I/MDA-5 stimulations, which correlated with their high capacity to produce both cytokines. CONCLUSIONS Our results indicate that HepaRG cells express a similar pattern of functional TLR/RLR as compared to PHH, thus qualifying HepaRG cells as a surrogate model to study pathogen interactions within a hepatocyte innate system.
Collapse
Affiliation(s)
- Souphalone Luangsay
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Malika Ait-Goughoulte
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Maud Michelet
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Océane Floriot
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Marc Bonnin
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Marion Gruffaz
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Michel Rivoire
- Centre Léon Bérard (CLB), 69008 Lyon, France; INSERM U1032, 69003 Lyon, France
| | - Simon Fletcher
- Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Hassan Javanbakht
- Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Julie Lucifora
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; Hospices Civils de Lyon (HCL), 69002 Lyon, France; Institut Universitaire de France (IUF), 75005 Paris, France.
| | - David Durantel
- INSERM U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France.
| |
Collapse
|
43
|
Larruskain A, Esparza-Baquer A, Minguijón E, Juste RA, Jugo BM. SNPs in candidate genesMX dynamin-like GTPaseandchemokine (C-C motif) receptor-5are associated with ovine pulmonary adenocarcinoma progression in Latxa sheep. Anim Genet 2015; 46:666-75. [DOI: 10.1111/age.12351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2015] [Indexed: 11/30/2022]
Affiliation(s)
- A. Larruskain
- Genetics, Physical Anthropology and Animal Physiology Department; Faculty of Science and Technology; University of the Basque Country (UPV/EHU); 48080 Bilbao Bizkaia Spain
| | - A. Esparza-Baquer
- Genetics, Physical Anthropology and Animal Physiology Department; Faculty of Science and Technology; University of the Basque Country (UPV/EHU); 48080 Bilbao Bizkaia Spain
| | - E. Minguijón
- Animal Health Department; NEIKER-Tecnalia; 48160 Derio Bizkaia Spain
| | - R. A. Juste
- Animal Health Department; NEIKER-Tecnalia; 48160 Derio Bizkaia Spain
| | - B. M. Jugo
- Genetics, Physical Anthropology and Animal Physiology Department; Faculty of Science and Technology; University of the Basque Country (UPV/EHU); 48080 Bilbao Bizkaia Spain
| |
Collapse
|
44
|
Donninelli G, Gessani S, Del Cornò M. Interplay between HIV-1 and Toll-like receptors in human myeloid cells: friend or foe in HIV-1 pathogenesis? J Leukoc Biol 2015; 99:97-105. [PMID: 26307548 DOI: 10.1189/jlb.4vmr0415-160r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022] Open
Abstract
The Toll-like receptors are the first line of the host response to pathogens, representing an essential component of the innate and adaptive immune response. They recognize different pathogens and trigger responses directed at eliminating the invader and at developing immunologic long-term memory, ultimately affecting viral pathogenesis. In viral infections, sensing of nucleic acids and/or viral structural proteins generally induces a protective immune response. Thus, it is not surprising that many viruses have developed strategies to evade or counteract signaling through the Toll-like receptor pathways, to survive the host defense machinery and ensure propagation. Thus, Toll-like receptor engagement can also be part of viral pathogenic mechanisms. Evidence for a direct interaction of Toll-like receptors with human immunodeficiency virus type 1 (HIV-1) structures has started to be achieved, and alterations of their expression and function have been described in HIV-1-positive subjects. Furthermore, Toll-like receptor triggering by bacterial and viral ligands have been described to modulate HIV-1 replication and host response, leading to protective or detrimental effects. This review covers major advances in the field of HIV-1 interplay with Toll-like receptors, focusing on human myeloid cells (e.g., monocytes/macrophages and dendritic cells). The role of this interaction in the dysregulation of myeloid cell function and in dictating aspects of the multifaceted pathogenesis of acquired immunodeficiency syndrome will be discussed.
Collapse
Affiliation(s)
- Gloria Donninelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Del Cornò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
45
|
Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genomics 2015; 16:47-59. [PMID: 25937813 PMCID: PMC4412964 DOI: 10.2174/1389202916666141223220551] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccines represent the most successful and sustainable tactic to prevent and counteract infection. A vaccine generally improves immunity to a particular disease upon administration by inducing specific protective and efficient immune responses in all of the receiving population. The main known factors influencing the observed heterogeneity for immune re-sponses induced by vaccines are gender, age, co-morbidity, immune system, and genetic background. This review is mainly focused on the genetic status effect to vaccine immune responses and how this could contribute to the development of novel vaccine candidates that could be better directed and predicted relative to the genetic history of an individual and/or population. The text offers a brief history of vaccinology as a field, a description of the genetic status of the most relevant and studied genes and their functionality and correlation with exposure to specific vaccines; followed by an inside look into autoimmunity as a concern when designing vaccines as well as perspectives and conclusions looking towards an era of personalized and predictive vaccinology instead of a one size fits all approach.
Collapse
Affiliation(s)
- John Castiblanco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia ; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia
| |
Collapse
|
46
|
Shim DW, Shin HJ, Han JW, Shin WY, Sun X, Shim EJ, Kim TJ, Kang TB, Lee KH. Anti-inflammatory effect of Streptochlorin via TRIF-dependent signaling pathways in cellular and mouse models. Int J Mol Sci 2015; 16:6902-10. [PMID: 25822875 PMCID: PMC4424995 DOI: 10.3390/ijms16046902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 01/06/2023] Open
Abstract
Streptochlorin, a small compound derived from marine actinomycete, has been shown to have anti-angiogenic, anti-tumor, and anti-allergic activities. However, the anti-inflammatory effects and underlying mechanisms have not yet been reported. In the present study, we investigated the effect of streptochlorin on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Streptochlorin attenuated the production of proinflammatory mediators such as nitric oxide, cyclooxygenase-2, pro-interleukin (IL)-1β, and IL-6 in LPS-stimulated RAW264.7 cells through inhibition of the Toll/interleukin-1 receptor (TIR)-domain-containing adapter-inducing interferon-β (TRIF)-dependent signaling pathway. Furthermore, streptochlorin suppressed the infiltration of immune cells such as neutrophils into the lung and proinflammatory cytokine production such as IL-6 and TNF-α in broncho-alveolar lavage fluid (BALF) in the LPS-induced acute lung injury (ALI) mouse model. Streptochlorin has potent anti-inflammatory effects through regulating TRIF-dependent signaling pathways, suggesting that streptochlorin may provide a valuable therapeutic strategy in treating various inflammatory diseases.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science & Technology, 787 Haeanro, Ansan 426-744, Korea.
| | - Ji-Won Han
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Woo-Young Shin
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Xiao Sun
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Eun-Jeong Shim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 222-710, Korea.
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Kwang-Ho Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| |
Collapse
|
47
|
Cao K, Chen M, Jie X, Wang Y, Li Q, Xu J. H5N1 Virus Hemagglutinin Inhibition of cAMP-Dependent CFTR via TLR4-Mediated Janus Tyrosine Kinase 3 Activation Exacerbates Lung Inflammation. Mol Med 2015; 21:134-42. [PMID: 25587856 PMCID: PMC4461576 DOI: 10.2119/molmed.2014.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/12/2015] [Indexed: 01/19/2023] Open
Abstract
The host tolerance mechanisms to avian influenza virus (H5N1) infection that limit tissue injury remain unknown. Emerging evidence indicates that cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent Cl− channel, modulates airway inflammation. Janus tyrosine kinase (JAK) 3, a JAK family member that plays a central role in inflammatory responses, prominently contributes to the dysregulated innate immune response upon H5N1 attachment; therefore, this study aims to elucidate whether JAK3 activation induced by H5N1 hemagglutinin (HA) inhibits cAMP-dependent CFTR channels. We performed short-circuit current, immunohistochemistry and molecular analyses of the airway epithelium in Jak3+/+ and Jak3+/− mice. We demonstrate that H5N1 HA attachment inhibits cAMP-dependent CFTR Cl− channels via JAK3-mediated adenylyl cyclase (AC) suppression, which reduces cAMP production. This inhibition leads to increased nuclear factor-kappa B (NF-κB) signaling and inflammatory responses. H5N1 HA is detected by TLR4 expressed on respiratory epithelial cells, facilitating JAK3 activation. This activation induces the interaction between TLR4 and Gαi protein, which blocks ACs. Our findings provide novel insight into the pathogenesis of acute lung injury via the inhibition of cAMP-dependent CFTR channels, indicating that the administration of cAMP-elevating agents and targeting JAK3 may activate host tolerance to infection for the management of influenza virus–induced fatal pneumonia.
Collapse
Affiliation(s)
- Ke Cao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Minhui Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiang Jie
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yansheng Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qiasheng Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
48
|
Matin N, Tabatabaie O, Falsaperla R, Lubrano R, Pavone P, Mahmood F, Gullotta M, Serra A, Mauro PD, Cocuzza S, Vitaliti G. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum Vaccin Immunother 2015; 11:2021-2029. [PMID: 26260962 PMCID: PMC4635700 DOI: 10.1080/21645515.2015.1034921] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Recent experimental studies and pathological analyses of patient brain tissue samples with refractory epilepsy suggest that inflammatory processes and neuroinflammation plays a key-role in the etiopathology of epilepsy and convulsive disorders. These inflammatory processes lead to the secretion of pro-inflammatory cytokines responsible for blood-brain-barrier disruption and involvement of resident immune cells in the inflammation pathway, occurring within the Central Nervous System (CNS). These elements are produced through activation of Toll-Like Receptors (TLRs) by exogenous and endogenous ligands thereby increasing expression of cytokines and co-stimulatory molecules through the activation of TLRs 2, 3, 4, and 9 as reported in murine studies.It has been demonstrated that IL-1β intracellular signaling and cascade is able to alter the neuronal excitability without cell loss. The activation of the IL-1β/ IL-1β R axis is strictly linked to the secretion of the intracellular protein MyD88, which interacts with other cell surface receptors, such as TLR4 during pathogenic recognition. Furthermore, TLR-signaling pathways are able to recognize molecules released from damaged tissues, such as damage-associated molecular patterns/proteins (DAMPs). Among these molecules, High-mobility group box-1 (HMGB1) is a component of chromatin that is passively released from necrotic cells and actively released by cells that are subject to profound stress. Moreover, recent studies have described models of epilepsy induced by the administration of bicuculline and kainic acid that highlight the nature of HMGB1-TLR4 interactions, their intracellular signaling pathway as well as their role in ictiogenesis and epileptic recurrence.The aim of our review is to focus on different branches of innate immunity and their role in epilepsy, emphasizing the role of immune related molecules in epileptogenesis and highlighting the research implications for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nassim Matin
- Tehran University of Medical Sciences; Tehran, Iran
| | | | - Raffaele Falsaperla
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Riccardo Lubrano
- Paediatric Department; Paediatric Nephrology Operative Unit of the Sapienza University of Rome; Rome, Italy
| | - Piero Pavone
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Fahad Mahmood
- University Hospital of North Staffordshire; Stoke-on-Trent, UK
| | - Melissa Gullotta
- University of Medical Science; University of Catania; Catania, Italy
| | - Agostino Serra
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Paola Di Mauro
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Salvatore Cocuzza
- ENT Department G.F. Ingrassia; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Giovanna Vitaliti
- Pediatrics Operative Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| |
Collapse
|
49
|
Elevated dengue virus nonstructural protein 1 serum levels and altered toll-like receptor 4 expression, nitric oxide, and tumor necrosis factor alpha production in dengue hemorrhagic Fever patients. J Trop Med 2014; 2014:901276. [PMID: 25580138 PMCID: PMC4279176 DOI: 10.1155/2014/901276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background. During dengue virus (DV) infection, monocytes produce tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1) on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1) serum levels and innate immune response (TLR4 expression and TNF-α/NO production) of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA), TNF-α production by peripheral blood mononuclear cells (PBMCs), and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF) was detected compared to patients with dengue hemorrhagic fever (DHF). Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production) when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes.
Collapse
|
50
|
Leung YHC, Nicholls JM, Ho CK, Sia SF, Mok CKP, Valkenburg SA, Cheung P, Hui KPY, Chan RWY, Guan Y, Akira S, Peiris JSM. Highly pathogenic avian influenza A H5N1 and pandemic H1N1 virus infections have different phenotypes in Toll-like receptor 3 knockout mice. J Gen Virol 2014; 95:1870-1879. [PMID: 24878639 DOI: 10.1099/vir.0.066258-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in innate immunity to virus infections. We investigated the role of TLR3 in the pathogenesis of H5N1 and pandemic H1N1 (pH1N1) influenza virus infections in mice. Wild-type mice and those defective in TLR3 were infected with influenza A/HK/486/97 (H5N1) or A/HK/415742/09 (pH1N1) virus. For comparison, mice defective in the gene for myeloid differential factor 88 (MyD88) were also infected with the viruses, because MyD88 signals through a TLR pathway different from TLR3. Survival and body weight loss were monitored for 14 days, and lung pathology, the lung immune-cell profile, viral load and cytokine responses were studied. H5N1-infected TLR3(-/-) mice had better survival than H5N1-infected WT mice, evident by significantly faster regain of body weight, lower viral titre in the lung and fewer pathological changes in the lung. However, this improved survival was not seen upon pH1N1 infection of TLR3(-/-) mice. In contrast, MyD88(-/-) mice had an increased viral titre and decreased leukocyte infiltration in the lungs after infection with H5N1 virus and poorer survival after pH1N1 infection. In conclusion, TLR3 worsens the pathogenesis of H5N1 infection but not of pH1N1 infection, highlighting the differences in the pathogenesis of these two viruses and the different roles of TLR3 in their pathogenesis.
Collapse
Affiliation(s)
- Y H Connie Leung
- Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - John M Nicholls
- Department of Pathology, University of Hong Kong, Hong Kong, PR China
| | - Chuk Kwan Ho
- Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Sin Fun Sia
- Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Chris K P Mok
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong, PR China.,Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Sophie A Valkenburg
- Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Peter Cheung
- Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Kenrie P Y Hui
- Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Renee W Y Chan
- Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Y Guan
- State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - S Akira
- Department of Host Defense, Immunology Frontier Research Center, Osaka University, Japan
| | - J S Malik Peiris
- State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong, PR China.,Centre of Influenza Research, School of Public Health, University of Hong Kong, Hong Kong, PR China
| |
Collapse
|