1
|
Zhang D, Peatman E, Beck BH, Zhao H, Mazzola J, Su B, Elaswad A, Ye Z. Liver and intestine transcriptome analysis reveals molecular mechanisms of phytase-driven nutrient utilization and metabolic regulation in hybrid catfish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 56:101539. [PMID: 40413919 DOI: 10.1016/j.cbd.2025.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/18/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
The use of phytase in aquafeeds has gained increasing attention as a strategy to enhance nutritional value and mitigate the adverse effects of phytic acid, especially for diets containing plant-based ingredients. Notwithstanding examples of phytase-induced phenotypic changes, the molecular mechanisms underlying phytase supplementation are not well understood. The present study evaluated the effects of phytase on the transcriptomic profiles in the liver and intestine, as well as on growth, feed conversion ratio (FCR), and hematological parameters of Jubilee × D&B hybrid catfish. Over a 140-day feeding trial, phytase supplementation (2500 phytase units/kg diet) significantly improved growth, FCR, red blood cell count, hematocrit, and total cell count in the blood compared with fish fed the basal diet. By comparing the transcriptomic profiles of phytase-supplemented and control fish, we identified a distinct gene expression profile relative to controls. This profile was characterized by differentially expressed genes (DEGs) associated with mineral metabolism (including iron), energy homeostasis, protein synthesis, carbohydrate and lipid metabolism, and immune response. The putative roles of key DEGs, including their interactions in different metabolic pathways, are discussed. The current study explains the benefits of phytase supplementation on hybrid catfish performance on the molecular level, uncovers the transcriptomic mechanisms controlling these benefits, and provides valuable information for customized functional feeds in aquaculture.
Collapse
Affiliation(s)
- Dongdong Zhang
- Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228/Sanya 572025, China; School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL 36832, USA
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - James Mazzola
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ahmed Elaswad
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat 123, Oman.
| | - Zhi Ye
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao 266100/Sanya 572025, China.
| |
Collapse
|
2
|
Zhang W, Li Y, Wu X, Sun Q, Fu Y, Weng S, He J, Dong C. Dissection of the global responses of mandarin fish pyloric cecum to an acute ranavirus (MRV) infection reveals the formation of serositis and then ascites. J Virol 2025:e0230824. [PMID: 40366173 DOI: 10.1128/jvi.02308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Mandarin fish ranavirus (MRV), a new member of the species Ranavirus micropterus1, sharing over 98% whole-genome nucleotide identity with the well-known largemouth bass virus (LMBV), is a distinct member of the genus Ranavirus within the family Iridoviridae. Our recent work showed that acute MRV infection predominantly affects the pyloric cecum, a critical visceral organ in mandarin fish, and was hypothesized to drive the characteristic external clinical sign of severe ascites. In this study, we reveal that acute MRV infection initially targets the serosal layer of the pyloric cecum of mandarin fish, leading to rapid progression into fibrinous serositis characterized by serosal hypertrophy, fibrosis, hyperemia, edema, and tissue adhesions. Using single-cell RNA sequencing, we dissect the cellular composition of epithelial, immune, and stromal populations, identifying significant enrichment of macrophages and granulocytes, alongside T and natural killer cells, as key mediators of acute cytokine and inflammatory responses. Then, robust experimental evidence demonstrates that MRV infects specific immune cell subsets of T and B cells and stromal cells of fibroblasts, myofibroblasts, endothelial cells, and pericytes, resulting in upregulation of genes and pathways associated with extracellular matrix (ECM) formation, collagen biosynthesis, and vascular remodeling in the hyperplastic serosal zone. Additionally, both host-derived type V collagens and MRV-encoded collagens are implicated in ECM formation in the hypertrophic serosa. Collectively, this study provides a comprehensive single-cell resolution analysis of the pyloric cecum's response to acute MRV infection and highlights virus-driven serositis as the underlying cause of severe ascites in mandarin fish.IMPORTANCEThe pyloric cecum is a vital digestive and immune organ in many bony fish species, including the mandarin fish, a carnivorous species with an exceptionally developed pyloric cecum comprising 207-326 ceca per individual. While MRV/LMBV infects various fish species, severe ascites is uniquely observed in infected mandarin fish. This study demonstrates that acute MRV infection induces fibrinous serositis in the pyloric cecum, characterized by hyperemia, edema, and hyperplasia, ultimately resulting in ascites and mortality. Leveraging single-cell RNA sequencing, we provide a detailed landscape of the cell types affected or involved in the inflammatory response, revealing their roles in the pathogenesis of serositis. These findings advance our understanding of MRV-induced pathology and its species-specific manifestations.
Collapse
Affiliation(s)
- Wenfeng Zhang
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Xiaosi Wu
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Qianqian Sun
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Yuting Fu
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Cao JF, Yang GJ, Zhang YA, Chen J. Contribution of interleukins in the regulation of teleost fish immunity: A review from the perspective of regulating macrophages. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110173. [PMID: 39909123 DOI: 10.1016/j.fsi.2025.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Interleukins (ILs) are potent secreted regulators of a wide range of cell types and cellular activities, particularly in the immune system. They are able to participate in intercellular communication in homeostasis and disease, thereby exerting immune functions. Macrophages serve as the innate immune cells of vertebrates and play a pivotal role in defending against and eliminating external pathogens. In mammals, the immune response mounted by macrophages is intricately linked to ILs. Given the fact that teleost fish have evolved an innate immune system that closely resembles those of mammals, particularly in terms of the functionality of macrophages, raises the intriguing possibility that the regulatory function of ILs in macrophage-mediated immunity might be evolutionarily conserved across both mammal and teleost fish lineages. Consequently, from the perspective of interleukin regulation of macrophages, this review outlines the relationship between ILs and macrophages in teleost fish, and elucidates the regulatory role of ILs of immune cell function in teleost fish, thereby contributing to our understanding of the key role of these cytokines in the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Jia-Feng Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
4
|
Dong Y, Wang N, Zhou H, Wang X, Zhang A, Yang K. Fish arginase constrains excessive production of nitric oxide and limits mitochondrial damage during Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109571. [PMID: 38636736 DOI: 10.1016/j.fsi.2024.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 μM of l-arginine and reached the highest yield at 300 and 3000 μM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 μM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Yingfu Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Nan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Dai T, Zhao Z, Zhu T, Fei C, Nie L, Chen J. The anti-inflammatory role of zDHHC23 through the promotion of macrophage M2 polarization and macrophage necroptosis in large yellow croaker ( Larimichthys crocea). Front Immunol 2024; 15:1401626. [PMID: 38868779 PMCID: PMC11167447 DOI: 10.3389/fimmu.2024.1401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
Zinc finger Asp-His-His-Cys motif-containing (zDHHC) proteins, known for their palmitoyltransferase (PAT) activity, play crucial roles in diverse cellular processes, including immune regulation. However, their non-palmitoyltransferase immunomodulatory functions and involvement in teleost immune responses remain underexplored. In this study, we systematically characterized the zDHHC family in the large yellow croaker (Larimichthys crocea), identifying 22 members. Phylogenetic analysis unveiled that each of the 22 LczDHHCs formed distinct clusters with their orthologues from other teleost species. Furthermore, all LczDHHCs exhibited a highly conserved DHHC domain, as confirmed by tertiary structure prediction. Notably, LczDHHC23 exhibited the most pronounced upregulation following Pseudomonas plecoglossicida (P. plecoglossicida) infection of macrophage/monocyte cells (MO/MΦ). Silencing LczDHHC23 led to heightened pro-inflammatory cytokine expression and diminished anti-inflammatory cytokine levels in MO/MΦ during infection, indicating its anti-inflammatory role. Functionally, LczDHHC23 facilitated M2-type macrophage polarization, as evidenced by a significant skewing of MO/MΦ towards the pro-inflammatory M1 phenotype upon LczDHHC23 knockdown, along with the inhibition of MO/MΦ necroptosis induced by P. plecoglossicida infection. These findings highlight the non-PAT immunomodulatory function of LczDHHC23 in teleost immune regulation, broadening our understanding of zDHHC proteins in host-pathogen interactions, suggesting LczDHHC23 as a potential therapeutic target for immune modulation in aquatic species.
Collapse
Affiliation(s)
- Ting Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Ziyue Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Tingfang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Akram N, El-Matbouli M, Saleh M. The Immune Response to the Myxozoan Parasite Myxobolus cerebralis in Salmonids: A Review on Whirling Disease. Int J Mol Sci 2023; 24:17392. [PMID: 38139218 PMCID: PMC10743445 DOI: 10.3390/ijms242417392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonids are affected by the economically significant whirling disease (WD) caused by the myxozoan parasite Myxobolus cerebralis. In the past, it was endemic to Eurasia, but it has now spread to different regions of North America, Europe, New Zealand, and South Africa. Among salmonids, rainbow trout is considered the most highly susceptible host. Upon entering to the host's body, the parasite invades the spine and cranium, resulting in whirling behaviour, a blackened tail, and destruction of cartilage. The disease is characterized by the infiltration of numerous inflammatory cells, primarily lymphocytes and macrophages, with the onset of fibrous tissue infiltration. Several efforts have been undertaken to investigate the role of various immune modulatory molecules and immune regulatory genes using advanced molecular methods including flow cytometry and transcriptional techniques. Investigation of the molecular and cellular responses, the role of STAT3 in Th17 cell differentiation, and the inhibitory actions of suppressors of cytokine signaling (SOCS) on interferons and interleukins, as well as the role of natural resistance-associated macrophage proteins (Nramp) in WD have significantly contributed to our understanding of the immune regulation mechanism in salmonids against M. cerebralis. This review thoroughly highlights previous research and discusses potential future directions for understanding the molecular immune response of salmonids and the possible development of prophylactic approaches against WD.
Collapse
Affiliation(s)
| | | | - Mona Saleh
- Division of Fish Health, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (N.A.)
| |
Collapse
|
7
|
Wu L, Li L, Gao A, Ye J, Li J. Antimicrobial roles of phagocytosis in teleost fish: Phagocytic B cells vs professional phagocytes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021; 157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.
Collapse
Affiliation(s)
- Jamie M Hooft
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada.
| | - Dominique P Bureau
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
9
|
Smith NC, Umasuthan N, Kumar S, Woldemariam NT, Andreassen R, Christian SL, Rise ML. Transcriptome Profiling of Atlantic Salmon Adherent Head Kidney Leukocytes Reveals That Macrophages Are Selectively Enriched During Culture. Front Immunol 2021; 12:709910. [PMID: 34484211 PMCID: PMC8415484 DOI: 10.3389/fimmu.2021.709910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
The Atlantic salmon (Salmo salar) is an economically important fish, both in aquaculture and in the wild. In vertebrates, macrophages are some of the first cell types to respond to pathogen infection and disease. While macrophage biology has been characterized in mammals, less is known in fish. Our previous work identified changes in the morphology, phagocytic ability, and miRNA profile of Atlantic salmon adherent head kidney leukocytes (HKLs) from predominantly “monocyte-like” at Day 1 of in vitro culture to predominantly “macrophage-like” at Day 5 of culture. Therefore, to further characterize these two cell populations, we examined the mRNA transcriptome profile in Day 1 and Day 5 HKLs using a 44K oligonucleotide microarray. Large changes in the transcriptome were revealed, including changes in the expression of macrophage and immune-related transcripts (e.g. csf1r, arg1, tnfa, mx2), lipid-related transcripts (e.g. fasn, dhcr7, fabp6), and transcription factors involved in macrophage differentiation and function (e.g. klf2, klf9, irf7, irf8, stat1). The in silico target prediction analysis of differentially expressed genes (DEGs) using miRNAs known to change expression in Day 5 HKLs, followed by gene pathway enrichment analysis, supported that these miRNAs may be involved in macrophage maturation by targeting specific DEGs. Elucidating how immune cells, such as macrophages, develop and function is a key step in understanding the Atlantic salmon immune system. Overall, the results indicate that, without the addition of exogenous factors, the adherent HKL cell population differentiates in vitro to become macrophage-like.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nardos T Woldemariam
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
10
|
Wang Q, Xu Z, Ai Q. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. ACTA ACUST UNITED AC 2021; 7:716-727. [PMID: 34466676 PMCID: PMC8379419 DOI: 10.1016/j.aninu.2021.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Fish have limited ability in endogenous biosynthesis of arginine. Arginine is an indispensable amino acid for fish, and the arginine requirement varies with fish species and fish size. Recent studies on fish have demonstrated that arginine influences nutrient metabolism, stimulates insulin release, is involved in nonspecific immune responses and antioxidant responses, and elevates disease resistance. Specifically, arginine can regulate energy homeostasis via modulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway, and also regulate protein synthesis via activating the target of rapamycin (TOR) signaling pathway. The present article reviews pertinent knowledge of arginine in fish, including dietary quantitative requirements, endogenous anabolism and catabolism, regulation of the endocrine and metabolic systems, and immune-regulatory functions under pathogenic challenge. Our findings showed that further data about the distribution of arginine after intake into specific cells, its sub-cellular sensor to initiate downstream signaling pathways, and its effects on fish mucosal immunity, especially the adaptive immune response against pathogenic infection in different species, are urgently needed.
Collapse
Affiliation(s)
- Qingchao Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Campos-Sánchez JC, Esteban MÁ. Review of inflammation in fish and value of the zebrafish model. JOURNAL OF FISH DISEASES 2021; 44:123-139. [PMID: 33236349 DOI: 10.1111/jfd.13310] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/28/2023]
Abstract
Inflammation is a crucial step in the development of chronic diseases in humans. Understanding the inflammation environment and its intrinsic mechanisms when it is produced by harmful stimuli may be a key element in the development of human disease diagnosis. In recent decades, zebrafish (Danio rerio) have been widely used in research, due to their exceptional characteristics, as a model of various human diseases. Interestingly, the mediators released during the inflammatory response of both the immune system and nervous system, after its integration in the hypothalamus, could also facilitate the detection of injury through the register of behavioural changes in the fish. Although there are many studies that give well-defined information separately on such elements as the recruitment of cells, the release of pro- and anti-inflammatory mediators or the type of neurotransmitters released against different triggers, to the best of our knowledge there are no reviews that put all this knowledge together. In the present review, the main available information on inflammation in zebrafish is presented in order to facilitate knowledge about this important process of innate immunity, as well as the stress responses and behavioural changes derived from it.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| |
Collapse
|
12
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
13
|
Cortisol Metabolism in Carp Macrophages: A Role for Macrophage-Derived Cortisol in M1/M2 Polarization. Int J Mol Sci 2020; 21:ijms21238954. [PMID: 33255713 PMCID: PMC7728068 DOI: 10.3390/ijms21238954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are crucial not only for initiation of inflammation and pathogen eradication (classically polarized M1 macrophages), but also for inflammation inhibition and tissue regeneration (alternatively polarized M2 macrophages). Their polarization toward the M1 population occurs under the influence of interferon-γ + lipopolysaccharide (IFN-γ + LPS), while alternatively polarized M2 macrophages evolve upon, e.g., interlukin 4 (IL-4) or cortisol stimulation. This in vitro study focused on a possible role for macrophage-derived cortisol in M1/M2 polarization in common carp. We studied the expression of molecules involved in cortisol synthesis/conversion from and to cortisone like 11β-hydroxysteroid dehydrogenase type 2 and 3. (11β-HSD2 and 3) and 11β-hydroxylase (CYP11b), as well as the expression of glucocorticoid receptors (GRs) and proliferator-activated receptor gamma (PPARγ) in M1 and M2 macrophages. Lastly, we analyzed how inhibition of these molecules affect macrophage polarization. In M1 cells, upregulation of gene expression of GRs and 11β-HSD3 was found, while, in M2 macrophages, expression of 11β-hsd2 was upregulated. Moreover, blocking of cortisol synthesis/conversion and GRs or PPARγ induced changes in expression of anti-inflammatory interleukin 10 (IL-10). Consequently, our data show that carp monocytes/macrophages can convert cortisol. The results strongly suggest that cortisol, via intracrine interaction with GRs, is important for IL-10-dependent control of the activity of macrophages and for the regulation of M1/M2 polarization to finally determine the outcome of an infection.
Collapse
|
14
|
Azeredo R, Machado M, Fontinha F, Fernández-Boo S, Conceição LEC, Dias J, Costas B. Dietary arginine and citrulline supplementation modulates the immune condition and inflammatory response of European seabass. FISH & SHELLFISH IMMUNOLOGY 2020; 106:451-463. [PMID: 32800985 DOI: 10.1016/j.fsi.2020.07.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The present study was designed to determine the modulatory effects of arginine and citrulline dietary supplementation on the immune condition and inflammatory response of European seabass, Dicentrarchus labrax. Four diets were manufactured: a control diet (CTRL) was formulated to meet the indispensable amino acids profile established for seabass. Based on this formulation, three other diets were supplemented with l-arginine at two different levels (0.5% and 1%, ARG1 and ARG2, respectively) and l-citrulline at 0.5% (CIT). Fish were fed these diets for 2 or 4 weeks under controlled conditions. At the end of 4 weeks, fish from all dietary treatments were intraperitoneally-injected with Photobacterium damselae piscicida and sampled after 4, 24 our 48 h. Immune status was characterized by a lymphocyte time-dependent decrease regardless of dietary treatment, whereas peroxidase values dropped in time in fish fed ARG1 and ARG2 and was lower at 4 weeks in fish fed ARG1 than in fish fed CTRL. Up-regulation of several genes was more evident in ARG1-and CIT-fed fish, though pro-inflammatory cytokines were down-regulated by CIT dietary treatment. Following immune stimulation, seabass fed ARG1 showed a decrease in neutrophils and monocytes circulating numbers. On the other hand, expression of 17 selected immune and inflammatory responses genes was barely affected by dietary treatments. Based on the analyzed parameters, results suggest an active role of dietary arginine/citrulline supplementation in modulating immune defences that seem to translate into a suppressed immune repertoire, mostly at the cell response level. The observed changes due to citrulline dietary supplementation were in part similar to those caused by arginine, suggesting that citrulline might have been used by macrophages as an arginine precursor and then engaged in similar immune-impairment leading mechanisms.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal.
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Filipa Fontinha
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sergio Fernández-Boo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal
| | | | | | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
15
|
Maciuszek M, Pijanowski L, Pekala-Safinska A, Kemenade BMLVV, Chadzinska M. 17β-Estradiol affects the innate immune response in common carp. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1775-1794. [PMID: 32519008 PMCID: PMC7427712 DOI: 10.1007/s10695-020-00827-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/21/2020] [Indexed: 05/05/2023]
Abstract
Inflammation is the evolutionary conserved immune response to harmful stimuli such as pathogens or damaged cells. This multistep process acts by removing injurious stimuli and initiating the healing process. Therefore, it must be tightly regulated by cytokines, chemokines, and enzymes, as well as neuroendocrine mediators. In the present work, we studied the immunoregulatory properties of 17β-estradiol (E2) in common carp. We determined the in vitro effects of E2 on the activity/polarization of macrophages and the in vivo effects during Aeromonas salmonicida-induced inflammation. In vitro, E2 reduced the lipopolysaccharide (LPS)-stimulated expression of pro- and anti-inflammatory mediator genes but did not change the gene expression of the estrogen receptors and of aromatase CYP19. In contrast, in vivo in the head kidney of A. salmonicida-infected fish, E2-treated feeding induced an upregulation of gene expression of pro-inflammatory (il-12p35 and cxcb2) and anti-inflammatory (arginase 1, arginase 2, il-10, and mmp9) mediators. Moreover, in infected fish fed with E2-treated food, a higher gene expression of the estrogen receptors and of the aromatase CYP19 was found. Our results demonstrate that estrogens can modulate the carp innate immune response, though the in vitro and in vivo effects of this hormone are contrasting. This implies that estradiol not only induces a direct effect on macrophages but rather exerts immunomodulatory actions through indirect mechanisms involving other cellular targets.
Collapse
Affiliation(s)
- Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Agnieszka Pekala-Safinska
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow Avenue 57, PL24-100, Pulawy, Poland
| | | | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
16
|
Jia Z, Zhao C, Wang M, Zhao X, Zhang W, Han T, Xia Q, Han Z, Lin R, Li X. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Biomed Pharmacother 2020; 121:109558. [DOI: 10.1016/j.biopha.2019.109558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|
17
|
Cai SY, Nie L, Chen J. C-reactive protein/serum amyloid P promotes pro-inflammatory function and induces M1-type polarization of monocytes/macrophages in mudskipper, Boleophthalmus pectinirostris. FISH & SHELLFISH IMMUNOLOGY 2019; 94:318-326. [PMID: 31513914 DOI: 10.1016/j.fsi.2019.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
C-reactive protein (CRP) and serum amyloid P (SAP) play essential roles in the phagocytic cell-mediated innate immune response of mammals. In-depth studies into CRP and SAP have been completed in mammals; however, such studies, particularly those relating to the functions of CRP and SAP, are rare in fish species. In this study, a homolog of CRP/SAP (BpCRP/SAP) was identified in mudskipper (Boleophthalmus pectinirostris), which had the typical characteristics of a fish short pentraxin protein. Phylogenetic tree analysis revealed that BpCRP/SAP was most closely related to mudskipper CRP/SAP-l3. BpCRP/SAP transcripts were detected in all tested tissues, with the highest level observed in the liver; transcripts in the immune tissues and protein expression in the serum were induced in response to Edwardsiella tarda infection. The active recombinant BpCRP/SAP (rBpCRP/SAP) was able to augment the mRNA expression of pro-inflammatory cytokines and attenuate the mRNA expression of anti-inflammatory cytokines in monocytes/macrophages (MO/MΦ). In addition, phagocytosis and bacterial killing of E. tarda by mudskipper MO/MΦ were boosted by rBpCRP/SAP stimulation. rBpCRP/SAP also promoted M1-type MO/MΦ polarization, but inhibited M2-type polarization. In conclusion, the present research describes the pro-inflammatory function of BpCRP/SAP in mudskipper against E. tarda infection.
Collapse
Affiliation(s)
- Shi-Yu Cai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
18
|
Maciuszek M, Rydz L, Świtakowska I, Verburg-van Kemenade BML, Chadzińska M. Effects of stress and cortisol on the polarization of carp macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 94:27-37. [PMID: 31465876 DOI: 10.1016/j.fsi.2019.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 05/02/2023]
Abstract
In teleost fish, myelopoiesis is maintained both in the head (HK) and trunk kidney (TK), but only the HK holds the endocrine cells that produce the stress hormone cortisol. We now compared the effects of prolonged restraint stress (in vivo) and cortisol (in vitro) on the polarization of HK and TK-derived carp macrophages. Monocytes/macrophages from both sources were treated in vitro with cortisol, lipopolysaccharide or with both factors combined. In vivo, fish were challenged by a prolonged restraint stress. Gene expression of several markers typical for classical M1 and alternative M2 macrophage polarization, as well as glucocorticoid receptors, were measured. Cells from both sources did not differ in the constitutive gene expression of glucocorticoid receptors, whereas they significantly differed in their response to cortisol and stress. In the LPS-stimulated HK monocytes/macrophages, cortisol in vitro counteracted the action of LPS while the effects of cortisol on the activity of TK monocytes/macrophages were less explicit. In vivo, restraint stress up-regulated gene expression of M2 markers in freshly isolated HK monocytes/macrophages, while at the same time it did not affect TK monocytes/macrophages. Moreover, LPS-stimulated HK monocytes/macrophages from stressed animals showed only minor differences in the gene expression of M1 and M2 markers, compared to LPS-treated monocytes/macrophages from control fish. In contrast, stress-induced changes in TK-derived LPS-treated cells were more pronounced. However, these changes did not clearly indicate whether in TK monocytes/macrophages stress will stimulate classical or alternative polarization. Altogether, our results imply that cortisol in vitro and stress in vivo direct HK, but not TK, monocytes/macrophages to the path of alternative polarization. These findings reveal that like in mammals, also in fish the glucocorticoids form important stimulators of alternative macrophage polarization.
Collapse
Affiliation(s)
- Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Leszek Rydz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Iga Świtakowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
19
|
Yang K, Feng S, Zhang S, Yin L, Zhou H, Zhang A, Wang X. Characterization of a new il-4/13 homologue in grass carp (Ctenopharyngodon idella) and its cooperation with M-CSF to promote macrophage proliferation. FISH & SHELLFISH IMMUNOLOGY 2019; 93:508-516. [PMID: 31352118 DOI: 10.1016/j.fsi.2019.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, a new il-4/13 cDNA was isolated from grass carp (Ctenopharyngodon idella) using homologous cloning. The phylogenetic tree and sequence alignment of the deduced amino acid (aa) sequence showed that it was closer to grass carp il-4/13b (gcil-4/13b) than other homologues and therefore named gcil-4/13b-like (gcil-4/13bl). It has 399-nt coding sequence (CDS) which is less than gcil-4/13b (408 nt). In addition, the cloned gcil-4/13bl gene is approximately 1600 bp in length and has a conserved genetic structure consisting of four exons and three introns. Compared to gcil-4/13b gene, it has a variety of nucleotides variation across the CDS and contains a longer intron 3, suggesting that it is a new gcil-4/13 gene. The gcil-4/13bl transcripts were ubiquitously expressed in almost all selected tissues, and there was almost only gcil-4/13bl detected in brain and head kidney (HK). Recombinant grass carp (rgc) Il-4/13bl was prepared by using Escherichia coli (E. coli) Rosetta-gami 2 (DE3). The functional study demonstrated that rgcIl-4/13bl significantly upregulated arginase-2 gene expression and arginase activity, whilst downregulated nitric oxide (NO) production as well as the transcript levels of inducible nitric oxide synthesase (inos) and ifn-γ in freshly isolated grass carp HK monocytes/macrophages (M0/Mϕ). These data suggested that the newly cloned il-4/13bl had the conserved functions to activate M2-type but antagonize M1-type macrophages. Furthermore, rgcIl-4/13bl was able to drive the proliferation of M0/Mϕ which were pre-treated by rgcM-csf, indicating the involvement of gcIl-4/13bl in the proliferation of macrophages. Here we not only identified a new il-4/13-encoding gene in grass carp, but also for the first time revealed a novel function of fish Il-4/13 combined with M-csf engaging in M0/Mϕ proliferation.
Collapse
Affiliation(s)
- Kun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Shiyu Feng
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shengnan Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Licheng Yin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
20
|
Nie L, Cai SY, Sun J, Chen J. MicroRNA-155 promotes pro-inflammatory functions and augments apoptosis of monocytes/macrophages during Vibrio anguillarum infection in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:70-81. [PMID: 30447432 DOI: 10.1016/j.fsi.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Upon recognition of pathogen-associated molecular patterns by pattern-recognition receptors, immune cells are recruited, and multiple antibacterial/viral signaling pathways are activated, leading to the production of immune-related cytokines, chemokines, and interferons along with further activation of the adaptive immune response. MicroRNAs (miRs) play essential roles in regulating such immune signaling pathways, as well as the biological activities of immune cells; however, knowledge regarding the roles of miRs in the immune-related function of monocytes/macrophages (MO/MΦ) remains limited in teleosts. In the present study, we addressed the effects of miR-155 on Vibrio anguillarum-infected MO/MΦ. Our results showed that miR-155 augmented MO/MΦ expression of proinflammatory cytokines and attenuated the expression of anti-inflammatory cytokines. Additionally, the phagocytosis and bacteria-killing abilities of these cells were boosted by miR-155 administration, which also promoted M1-type polarization but inhibited M2-type polarization. Furthermore, the V. anguillarum-infection-induced apoptosis was also enhanced by miR-155 mimic transfection, which might have been due to excessive inflammation or the accumulation of reactive oxygen species. These results represent the first report providing a detailed account of the regulatory roles of miR-155 on MO/MΦ functions in teleosts and offer insight into the evolutionary history of miR-155-mediated regulation of host immune responses.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiao Sun
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
21
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Pietsch C. Zearalenone (ZEN) and Its Influence on Regulation of Gene Expression in Carp (Cyprinus carpio L.) Liver Tissue. Toxins (Basel) 2017; 9:toxins9090283. [PMID: 28914814 PMCID: PMC5618216 DOI: 10.3390/toxins9090283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
Zearalenone (ZEN) is a frequently-occurring mycotoxin in both animal and fish feeds. In order to characterize its effects on carp, three groups of fish were fed for 28 days with feeds contaminated with three different levels of ZEN (low: 332 µg kg−1, medium: 621 µg kg−1, and high: 797 µg kg−1 feed). The reversibility of the effects of ZEN was assessed by feeding all of the groups with uncontaminated feed for a further 14 days. Gene expression of immune genes in the liver tissue of the fish was analysed, revealing reduced expressions of immune, antioxidative, and estrogen-related genes after the fish had been exposed to ZEN. However, the expression of vacuole-type H+ ATPase increased substantially with ZEN exposure, thus supporting the previously-reported sensitivity of lysosomal functions to ZEN. Feeding the fish with a ZEN-free diet for a further two weeks changed the effects of ZEN on the expression of some genes, including the expressions of the cytokines IL-1β, IL-8, IL-10, and arginase 2, which were not influenced after four weeks of treatment, but showed lower values after the recovery phase in fish previously treated with ZEN compared with the control group. In summary, this study confirmed the broad effects of ZEN on different essential functions in carp and suggests that the current maximum allowable levels in compound feed are too high to prevent damage to fish.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, CH-8820 Waedenswil, Switzerland.
| |
Collapse
|
23
|
Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress. Gene 2017; 622:13-22. [DOI: 10.1016/j.gene.2017.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/31/2017] [Accepted: 04/14/2017] [Indexed: 11/21/2022]
|
24
|
Gutowska-Owsiak D, Ogg GS. Therapeutic vaccines for allergic disease. NPJ Vaccines 2017; 2:12. [PMID: 29263869 PMCID: PMC5604746 DOI: 10.1038/s41541-017-0014-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are highly prevalent worldwide and affect all age groups, contributing to a high personal and socioeconomic burden. Treatment with an “allergy vaccine” or allergen immunotherapy aims to provide long-lasting benefits by inducing unresponsiveness to the relevant antigen. The consequences of the therapy are considered disease modifying and range from dampening of the immediate immune responses to the reduction of secondary tissue remodeling. Furthermore, allergen immunotherapy interventions have a potential to slow or cease the development of additional allergic manifestations with a long-term overall effect on morbidity and quality of life. Here, we review proposed mechanisms underlying the therapeutic effects of immunotherapy for allergic diseases. Further, we discuss both standard and novel approaches and possible future directions in the development of allergen immunotherapy.
Collapse
Affiliation(s)
- Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Benedicenti O, Wang T, Wangkahart E, Milne DJ, Holland JW, Collins C, Secombes CJ. Characterisation of arginase paralogues in salmonids and their modulation by immune stimulation/ infection. FISH & SHELLFISH IMMUNOLOGY 2017; 61:138-151. [PMID: 28025160 DOI: 10.1016/j.fsi.2016.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
In this study we show that four arginase isoforms (arg1a, arg1b, arg2a, arg2b) exist in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). We have characterised these molecules in terms of a) sequence analysis, b) constitutive expression in different tissues, and modulated expression following c) stimulation of head kidney macrophages in vitro, or d) vaccination/infection with Yersinia ruckeri and e) parasite infection (AGD caused by Paramoeba perurans and PKD caused by Tetracapsuloides bryosalmonae). Synteny analysis suggested that these arginase genes are paralogues likely from the Ss4R duplication event, and amino acid identity/similarity analyses showed that the proteins are relatively well conserved across species. In rainbow trout constitutive expression of one or both paralogues was seen in most tissues but different constitutive expression patterns were observed for the different isoforms. Stimulation of rainbow trout head kidney macrophages with PAMPs and cytokines also revealed isoform specific responses and kinetics, with arg1a being particularly highly modulated by the PAMPs and pro-inflammatory cytokines. In contrast the type II arginase paralogues were induced by rIl-4/13, albeit to a lesser degree. Vaccination and infection with Y. ruckeri also revealed isoform specific responses, with variation in tissue expression level and kinetics. Lastly, the impact of parasite infection was studied, where down regulation of arg1a and arg1b was seen in two different models (AGD in salmon and PKD in trout) and of arg2a in AGD. The differential responses seen are discussed in the context of markers of type II responses in fish and paralogue subfunctionalization.
Collapse
Affiliation(s)
- Ottavia Benedicenti
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK; Marine Scotland Science Marine Laboratory, 375 Victoria Rd, Aberdeen AB11 9DB, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Douglas J Milne
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Catherine Collins
- Marine Scotland Science Marine Laboratory, 375 Victoria Rd, Aberdeen AB11 9DB, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
26
|
Hodgkinson JW, Fibke C, Belosevic M. Recombinant IL-4/13A and IL-4/13B induce arginase activity and down-regulate nitric oxide response of primary goldfish (Carassius auratus L.) macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:377-384. [PMID: 27581741 DOI: 10.1016/j.dci.2016.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 05/02/2023]
Abstract
We report on the expression analysis and functional characterization of IL-4/13A and IL-4/13B in goldfish. Quantitative analysis indicated the highest expression in the heart, spleen, brain, and kidney, with comparable expression patterns for both IL-4/13A and IL-4/13B. The mRNA levels of IL-4/13A and IL-4/13B in the immune cells examined were highest in macrophage and monocytes. Assessment of spleen mRNA following infection with Trypanosoma carassii, a prominent protozoan pathogen of fish, revealed decrease in IL-4/13B and arginase expression 14 days post infection, followed by an increase in IL-4/13B and arginase-2 at 28 days post infection. Recombinant forms of IL-4/13A and IL-4/13B induced an increase in arginase activity in macrophages in a dose-dependent manner. Recombinant IL-4/13A and IL-4/13B also induced significant increase in mRNA levels of arginase -2 in macrophages at 6, 12, 18 and 24 h after treatment. Furthermore, treatment with both IL-4/13 recombinants interfered with the IFNγ-induced nitric oxide response of macrophages. Our results suggest a conserved role of IL-4/IL-13 in induction of alternative activation phenotype in teleost macrophages.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chad Fibke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
27
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
28
|
Abstract
Macrophages constitute a heterogeneous population of myeloid cells that are essential for maintaining homeostasis and as a first line of innate responders controlling and organizing host defenses against pathogens. Monocyte-macrophage lineage cells are among the most functionally diverse and plastic cells of the immune system. They undergo specific activation into functionally distinct phenotypes in response to immune signals and microbial products. In mammals, macrophage functional heterogeneity is defined by two activation states, M1 and M2, which represent two polar ends of a continuum exhibiting pro-inflammatory and tissue repair activities, respectively. While the ancient evolutionary origin of macrophages as phagocytic defenders is well established, the evolutionary roots of the specialized division of macrophages into subsets with polarized activation phenotypes is less well defined. Accordingly, this chapter focuses on recent advances in the understanding of the evolution of macrophage polarization and functional heterogeneity with a focus on ectothermic vertebrates.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kun Hyoe Rhoo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
29
|
Montero J, Gómez-Abellán V, Arizcun M, Mulero V, Sepulcre MP. Prostaglandin E2 promotes M2 polarization of macrophages via a cAMP/CREB signaling pathway and deactivates granulocytes in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2016; 55:632-41. [PMID: 27368534 DOI: 10.1016/j.fsi.2016.06.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/02/2023]
Abstract
The profile of prostaglandin (PG) production is determined by the differential expression of the enzymes involved in their production and degradation. Although the production of PGE2 by fish leukocytes has been relatively well studied in several fish species, knowledge of how its production is regulated, its biological activities and the signaling pathways activated by this PG is scant or even contradictory. In this work we show that in the teleost fish gilthead seabream (Sparus aurata L.) macrophages regulate PGE2 release mainly by inducing the expression of the genes encoding the enzymes responsible for its synthesis, while acidophilic granulocytes (AGs) not only induce these genes quickly after activation but also inhibit the expression of the genes encoding the enzymes responsible for PGE2 degradation at later time points. In addition, treatment of macrophages with PGE2 promoted their M2 polarization, which is characterized by high expression levels of interleukin-10, mannose-receptor c-type 1 and arginase 2 genes. In sharp contrast, PGE2 promoted the deactivation of AGs, since it decreased the production of reactive oxygen species and the expression of genes encoding pro-inflammatory cytokines. These differences are the result of the alternative signaling pathways used by PGE2 in macrophages and AGs, a cAMP/CREB signaling pathway operating in macrophages, but not in AGs, downstream of PGE2. Our data identify for the first time a role for professional phagocyte-derived-PGE2 in the resolution of inflammation in fish and highlight key differences in the PGE2 signaling pathway in macrophages and granulocytes.
Collapse
Affiliation(s)
- Jana Montero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Victoria Gómez-Abellán
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Marta Arizcun
- Oceanographic Centre of Murcia, Spanish Oceanographic Institute (IEO), Puerto de Mazarrón, Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| | - María P Sepulcre
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
30
|
Grayfer L, Robert J. Amphibian macrophage development and antiviral defenses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:60-7. [PMID: 26705159 PMCID: PMC4775336 DOI: 10.1016/j.dci.2015.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 05/29/2023]
Abstract
Macrophage lineage cells represent the cornerstone of vertebrate physiology and immune defenses. In turn, comparative studies using non-mammalian animal models have revealed that evolutionarily distinct species have adopted diverse molecular and physiological strategies for controlling macrophage development and functions. Notably, amphibian species present a rich array of physiological and environmental adaptations, not to mention the peculiarity of metamorphosis from larval to adult stages of development, involving drastic transformation and differentiation of multiple new tissues. Thus it is not surprising that different amphibian species and their respective tadpole and adult stages have adopted unique hematopoietic strategies. Accordingly and in order to establish a more comprehensive view of these processes, here we review the hematopoietic and monopoietic strategies observed across amphibians, describe the present understanding of the molecular mechanisms driving amphibian, an in particular Xenopus laevis macrophage development and functional polarization, and discuss the roles of macrophage-lineage cells during ranavirus infections.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
31
|
The first description of complete invertebrate arginine metabolism pathways implies dose-dependent pathogen regulation in Apostichopus japonicus. Sci Rep 2016; 6:23783. [PMID: 27032691 PMCID: PMC4817134 DOI: 10.1038/srep23783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
In this study, three typical members representative of different arginine metabolic pathways were firstly identified from Apostichopus japonicus, including nitric oxide synthase (NOS), arginase, and agmatinase. Spatial expression analysis revealed that the AjNOS transcript presented negative expression patterns relative to those of Ajarginase or Ajagmatinase in most detected tissues. Furthermore, Vibrio splendidus-challenged coelomocytes and intestine, and LPS-exposed primary coelomocytes could significantly induce AjNOS expression, followed by obviously inhibited Arginase and AjAgmatinase transcripts at the most detected time points. Silencing the three members with two specific siRNAs in vivo and in vitro collectively indicated that AjNOS not only compete with Ajarginase but also with Ajagmatinase in arginine metabolism. Interestingly, Ajarginase and Ajagmatinase displayed cooperative expression profiles in arginine utilization. More importantly, live pathogens of V. splendidus and Vibrio parahaemolyticus co-incubated with primary cells also induced NO production and suppressed arginase activity in a time-dependent at an appropriate multiplicity of infection (MOI) of 10, without non-pathogen Escherichia coli. When increasing the pathogen dose (MOI = 100), arginase activity was significantly elevated, and NO production was depressed, with a larger magnitude in V. splendidus co-incubation. The present study expands our understanding of the connection between arginine's metabolic and immune responses in non-model invertebrates.
Collapse
|
32
|
Polarization of immune responses in fish: The ‘macrophages first’ point of view. Mol Immunol 2016; 69:146-56. [DOI: 10.1016/j.molimm.2015.09.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/01/2023]
|
33
|
Hodgkinson JW, Grayfer L, Belosevic M. Biology of Bony Fish Macrophages. BIOLOGY 2015; 4:881-906. [PMID: 26633534 PMCID: PMC4690021 DOI: 10.3390/biology4040881] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
34
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
35
|
Unique hepatic cytosolic arginase evolved independently in ureogenic freshwater air-breathing teleost, Heteropneustes fossilis. PLoS One 2013; 8:e66057. [PMID: 23840400 PMCID: PMC3688715 DOI: 10.1371/journal.pone.0066057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Hepatic cytosolic arginase (ARG I), an enzyme of the urea cycle operating in the liver of ureotelic animals, is reported to be present in an ammoniotelic freshwater air-breathing teleost, Heteropneustes fossilis which has ureogenic potential. Antibodies available against mammalian ARG I showed no cross reactivity with the H. fossilis ARG I. We purified unique ARG I from H. fossilis liver. Purified ARG I is a homotrimer with molecular mass 75 kDa and subunit molecular mass of 24 kDa. The pI value of the enzyme was 8.5. It showed maximum activity at pH 10.5 and 55°C. The Km of purified enzyme for L-arginine was 2.65±0.39 mM. L-ornithine and N(ω)-hydroxy-L-arginine showed inhibition of the ARG I activity, with Ki values 0.52±0.02mM and 0.08±0.006mM, respectively. Antibody raised against the purified fish liver ARG I showed exclusive specificity, and has no cross reactivity against fish liver ARG II and mammalian liver ARG I and ARG II. We found another isoform of arginase bound to the outer membrane of the mitochondria which was released by 150-200 mM KCl in the extraction medium. This isoform was immunologically different from the soluble cytosolic and mitochondrial arginase. The results of present study support that hepatic cytosolic arginase evolved in this ureogenic freshwater teleost, H. fossilis. Phylogenetic analysis confirms an independent evolution event that occurred much after the evolution of the cytosolic arginase of ureotelic vertebrates.
Collapse
|
36
|
Srivastava S, Ratha BK. Unusual hepatic mitochondrial arginase in an Indian air-breathing teleost, Heteropneustes fossilis: purification and characterization. Comp Biochem Physiol B Biochem Mol Biol 2012. [PMID: 23195132 DOI: 10.1016/j.cbpb.2012.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS-PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The K(m) of purified ARG II for l-arginine was 5.25±1.12 mM. L-Ornithine and N(ω)-hydroxy-L-arginine showed mixed inhibition with K(i) values 2.16±0.08 and 0.02±0.004 mM respectively. Mn(+2) and Co(+2) were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS-PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis.
Collapse
Affiliation(s)
- Shilpee Srivastava
- Biochemical Adaptation Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221005, India.
| | | |
Collapse
|
37
|
Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics 2012; 13:470. [PMID: 22967181 PMCID: PMC3444936 DOI: 10.1186/1471-2164-13-470] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022] Open
Abstract
Background Studies conducted with gilthead sea bream (Sparus aurata L.) have determined the maximum dietary replacement of fish meal and oil without compromising growth or product quality. The present study aimed to analyze the effect of the nutritional background on fish health and fish fed plant protein-based diets with fish oil (FO diet) or a blend of vegetable oils (66VO diet) were exposed for 102 days to the intestinal myxosporean parasite Enteromyxum leei, and the intestine transcriptome was analyzed with a customized oligo-microarray of 7,500 annotated genes. Results Infection prevalence was high and similar in the two diet groups, but the outcome of the disease was more pronounced in fish fed the 66VO diet. No differences were found in the transcriptome of both diet control groups, whereas the number of differentially expressed genes in infected groups was considerable. K-means clustering of these differentially expressed genes identified four expression patterns that reflected the progression of the disease with the magnitude of the fold-change being higher in infected 66VO fish. A positive correlation was found between the time of infection and the magnitude of the transcriptional change within the 66VO group, being higher in early infected animals. Within this diet group, a strong up-regulation of many components of the immune specific response was evidenced, whereas other genes related to complement response and xenobiotic metabolism were down-regulated. Conclusions The high replacement of fish oil by vegetable oils in practical fish feeds did not modify the intestine transcriptome of gilthead sea bream, but important changes were apparent when fish were exposed to the myxosporean E. leei. The detected changes were mostly a consequence rather than a cause of the different disease progression in the two diet groups. Hence, the developed microarray constitutes an excellent diagnostic tool to address changes associated with the action of intestinal pathogens, but lacks a prognostic value to predict in advance the different susceptibility of growing fish to the current pathogen.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, 12595, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Kibenge FS, Godoy MG, Fast M, Workenhe S, Kibenge MJ. Countermeasures against viral diseases of farmed fish. Antiviral Res 2012; 95:257-81. [DOI: 10.1016/j.antiviral.2012.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/01/2012] [Accepted: 06/09/2012] [Indexed: 12/24/2022]
|
39
|
Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012; 3:271-9. [PMID: 22546899 PMCID: PMC3442839 DOI: 10.4161/viru.20328] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO) is a short-lived, diatomic, lipophilic gas that plays an integral role in defending against pathogens. Among its many functions are involvement in immune cell signaling and in the biochemical reactions by which immune cells defend against bacteria, fungi, viruses and parasites. NO signaling directs a broad spectrum of processes, including the differentiation, proliferation, and apoptosis of immune cells. When secreted by activated immune cells, NO diffuses across cellular membranes and exacts nitrosative and oxidative damage on invading pathogens. These observations led to the development of NO delivery systems that can harness the antimicrobial properties of this evanescent gas. The innate microbicidal properties of NO, as well as the antimicrobial activity of the various NO delivery systems, are reviewed.
Collapse
|
40
|
Huang Q, Huang HQ. Alterations of protein profile in zebrafish liver cells exposed to methyl parathion: a membrane proteomics approach. CHEMOSPHERE 2012; 87:68-76. [PMID: 22182705 DOI: 10.1016/j.chemosphere.2011.11.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/13/2011] [Accepted: 11/19/2011] [Indexed: 05/31/2023]
Abstract
Methyl parathion (MP) is an extensively used organophosphorus pesticide, which has been associated with a wide spectrum of toxic effects on environmental organisms. The aim of this study is to investigate the alterations of membrane protein profiles in zebrafish liver (ZFL) cell line exposed to MP for 24 h using proteomic approaches. Two-dimensional gel electrophoresis revealed a total of 13 protein spots, whose expression levels were significantly altered by MP. These differential proteins were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, and nine proteins were identified to be membrane proteins, among which seven were up-regulated, while two were down-regulated. In addition, the mRNA levels corresponding to these differential membrane proteins were further analyzed by quantitative real-time PCR. And the differential expression of arginase-2 was specially validated via Western blotting. Regarding the physiological functions, these proteins are involved in molecular chaperon, cytoskeleton system, cell metabolism, signal transduction, transport and hormone receptor respectively, suggesting the complexity of MP-mediated toxicity to ZFL cell. These data could provide useful insights for better understanding the hepatotoxic mechanisms of MP and develop novel protein biomarkers for effectively monitoring MP contamination level in aquatic environment.
Collapse
Affiliation(s)
- Qingyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | |
Collapse
|
41
|
Schmieder A, Michel J, Schönhaar K, Goerdt S, Schledzewski K. Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 2012; 22:289-97. [PMID: 22349514 DOI: 10.1016/j.semcancer.2012.02.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 01/17/2023]
Abstract
Tumor microenvironment is composed of proliferating neoplastic cells, a vascular network of endothelial cells, extra cellular matrix produced by fibroblasts, cellular compartments of adaptive immunity like lymphocytes and dendritic cells as well as cells of innate immunity, e.g., natural killer cells and macrophages. Many pre-clinical and clinical studies demonstrate an inversed correlation between macrophage infiltrate and patients' prognosis indicating a macrophage supporting role for tumor progression as producers of growth and angiogenic factors and as regulators of tissue remodelling. Based on in vitro models, macrophages have been classified in pro-inflammatory, classically activated macrophages (M1; stimulated by IFN-γ or LPS) and anti-inflammatory, alternatively activated macrophages (M2; stimulated by either IL-4/IL-13, IL-1β/LPS in combination with immune complexes or by IL-10/TGFβ/glucocorticoids). Tumor escape has been linked with a switch from M1 activation in the early tumor initiation process towards M2-like phenotype during tumor progression, a process that highlights the heterogeneity and plasticity of macrophage activation and which offers a possible therapeutic target directed against reversing the TAM phenotype in the tumor. Here, we review different tumor-environmental stimuli and signalling cascades involved in this switch in differentiation and the so connected gene regulation in TAMs. In addition, therapeutic applications deducted from this differentiation and gene regulatory processes are presented. Data from pre-clinical as well as clinical studies clearly support the notion, that TAMs are excellent novel therapeutic targets for the fight against cancer.
Collapse
Affiliation(s)
- Astrid Schmieder
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
42
|
Takagi W, Kajimura M, Bell JD, Toop T, Donald JA, Hyodo S. Hepatic and extrahepatic distribution of ornithine urea cycle enzymes in holocephalan elephant fish (Callorhinchus milii). Comp Biochem Physiol B Biochem Mol Biol 2011; 161:331-40. [PMID: 22227372 DOI: 10.1016/j.cbpb.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 11/15/2022]
Abstract
Cartilaginous fish comprise two subclasses, the Holocephali (chimaeras) and Elasmobranchii (sharks, skates and rays). Little is known about osmoregulatory mechanisms in holocephalan fishes except that they conduct urea-based osmoregulation, as in elasmobranchs. In the present study, we examined the ornithine urea cycle (OUC) enzymes that play a role in urea biosynthesis in the holocephalan elephant fish, Callorhinchus milii (cm). We obtained a single mRNA encoding carbamoyl phosphate synthetase III (cmCPSIII) and ornithine transcarbamylase (cmOTC), and two mRNAs encoding glutamine synthetases (cmGSs) and two arginases (cmARGs), respectively. The two cmGSs were structurally and functionally separated into two types: brain/liver/kidney-type cmGS1 and muscle-type cmGS2. Furthermore, two alternatively spliced transcripts with different sizes were found for cmgs1 gene. The longer transcript has a putative mitochondrial targeting signal (MTS) and was predominantly expressed in the liver and kidney. MTS was not found in the short form of cmGS1 and cmGS2. A high mRNA expression and enzyme activities were found in the liver and muscle. Furthermore, in various tissues examined, mRNA levels of all the enzymes except cmCPSIII were significantly increased after hatching. The data show that the liver is the important organ for urea biosynthesis in elephant fish, but, extrahepatic tissues such as the kidney and muscle may also contribute to the urea production. In addition to the role of the extrahepatic tissues and nitrogen metabolism, the molecular and functional characteristics of multiple isoforms of GSs and ARGs are discussed.
Collapse
Affiliation(s)
- Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Rieger AM, Barreda DR. Antimicrobial mechanisms of fish leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1238-45. [PMID: 21414350 DOI: 10.1016/j.dci.2011.03.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/06/2011] [Accepted: 03/06/2011] [Indexed: 05/22/2023]
Abstract
Early activation and coordination of innate defenses are critical for effective responses against infiltrating pathogens. Rapid engagement of immune cells provides a critical first line of defense soon after pathogen infiltration. Activation leads to a well-orchestrated set of events that sees the induction and regulation of intracellular and extracellular antimicrobial defenses. An array of regulatory mediators, highly toxic soluble molecules, degradative enzymes and antimicrobial peptides provides maximal protection against a wide range of pathogens while limiting endogenous damage to host tissues. In this review we highlight recent advances in our understanding of innate cellular antimicrobial responses of teleost fish and discuss their implications to cell survival, immunomodulation and death. The evolutionary conservation of these responses is a testament to their effectiveness against pathogen infiltration and their commitment to effective maintenance of host homeostasis. Importantly, recent developments in teleost fish systems have identified novel host defense strategies that may be unique to this lower vertebrate group or may point to previously unknown innate mechanisms that also play a significant role in higher vertebrate host immunity.
Collapse
Affiliation(s)
- Aja M Rieger
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | |
Collapse
|
44
|
Forlenza M, Fink IR, Raes G, Wiegertjes GF. Heterogeneity of macrophage activation in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1246-1255. [PMID: 21414343 DOI: 10.1016/j.dci.2011.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/08/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
In this review, we focus on four different activation states of fish macrophages. In vitro, stimulation with microbial ligands induces the development of innate activated macrophages whereas classically activated macrophages can be induced by stimulation with LPS in combination with (recombinant) IFNγ. Both types of macrophages show elevated phagocytic activity, expression of pro-inflammatory cytokine genes and radical production. Alternatively activated macrophages require the cytokines IL-4/IL-13 for induction of, among others, arginase activity. Until in vitro studies identify the effects of putative IL-4 and IL-13 homologues on fish macrophages, arginase enzyme activity remains the most reliable marker for the presence of alternatively activated macrophages in fish. The best evidence for the existence of regulatory macrophages, associated with the presence of IL-10, comes from in vivo studies, for example during parasitic infections of carp. Altogether, differentially activated macrophages in fish largely resemble the phenotypes of mammalian macrophages. However, the presence of fish-specific ligand recognition by TLRs and of duplicated genes coding for proteins with particular activities, poses additional challenges for the characterization of phenotype-specific gene signatures and cell surface markers.
Collapse
Affiliation(s)
- Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
45
|
Pietsch C, Neumann N, Preuer T, Kloas W. In vivo treatment with progestogens causes immunosuppression of carp Cyprinus carpio leucocytes by affecting nitric oxide production and arginase activity. JOURNAL OF FISH BIOLOGY 2011; 79:53-69. [PMID: 21722110 DOI: 10.1111/j.1095-8649.2011.02981.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, carp Cyprinus carpio were injected with various steroid compounds, including synthetic and natural progestogens and the glucocorticoid cortisol, to investigate effects on leucocytes isolated from their kidneys. Injection of cortisol led to an increased spleeno-somatic index (I(S)) on day 21 post-injection (pi) and immunosuppressive effects measured as decreased nitric oxide (NO) production and increased arginase activity in isolated leucocytes on days 14 and 21 pi, respectively. Moreover, reduced NO production was also observed after injection of the synthetic progestogens, levonorgestrel (LEV) and medroxyprogesterone acetate. In addition, LEV influenced arginase activity in head kidney cells on day 14 and day 21 pi. This study is the first demonstration in fishes that the application of these steroid compounds in vivo affects NO production and arginase activity of isolated leucocytes.
Collapse
Affiliation(s)
- C Pietsch
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | | | | | | |
Collapse
|
46
|
Verburg-van Kemenade BML, Ribeiro CMS, Chadzinska M. Neuroendocrine-immune interaction in fish: differential regulation of phagocyte activity by neuroendocrine factors. Gen Comp Endocrinol 2011; 172:31-8. [PMID: 21262228 DOI: 10.1016/j.ygcen.2011.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 12/31/2022]
Abstract
Coping with physical, chemical and biological disturbances depends on an extensive repertoire of physiological, endocrinological and immunological responses. Fish provide intriguing models to study bi-directional interaction between the neuroendocrine and the immune systems. Macrophages and granulocytes are the main actors in the first and rapid innate immune response. They are resident in different organs and are moreover rapidly recruited and activated upon infection. They act in response to recognition of pathogen-associated molecular patterns (PAMPs) via a repertoire of surface and intracellular receptors by inducing a plethora of defense reactions aiming to eradicate the pathogen. Subsequent production of inflammatory mediators stimulates other leukocytes required to develop an adaptive and specific antibody response. The type of phagocyte reaction will therefore depend on their differentiation state, specific receptor repertoire and their specific location. Apart from these pathogen induced responses, immune reactivity may be modulated by neuroendocrine factors. Over the last years we extensively studied changes in carp stress axis activity and the effect of its end-products on the immune system in an acute stress paradigm. We focus on specific neuroendocrine receptors on leukocytes and their effect on crucial phagocyte activities. We performed identification and functional analyses of different glucocorticoid, opioid and adrenergic receptors on carp phagocytes. Results show that their ligands of neuroendocrine origin may have substantial impact on specific phagocyte functions in a differential way. Inflammatory and microbicidal responses fight pathogens but may be detrimental to the host tissue. Neuroendocrine modulation may regulate inflammation to reach an optimum defense while preventing excessive host cell damage.
Collapse
Affiliation(s)
- B M L Verburg-van Kemenade
- Cell Biology & Immunology Group, Wageningen University, Marijkeweg 40, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
| | | | | |
Collapse
|
47
|
Liu J, Lei Y, Wang F, Yi Y, Liu Y, Wang G. Immunostimulatory activities of specific bacterial secondary metabolite of Anoxybacillus flavithermus strain SX-4 on carp, Cyprinus carpio. J Appl Microbiol 2011; 110:1056-64. [PMID: 21294820 DOI: 10.1111/j.1365-2672.2011.04963.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To determine the capacity of secondary metabolite of strain SX-4, to enhance the nonspecific immunity and survival of carp (Cyprinus carpio), and to identify the constituents that are responsible. METHODS AND RESULTS A thermophilic strain SX-4 that is able to produce immunostimulatory metabolite was isolated from sludge sample of hot spring and identified by comparison with 16S rRNA sequences (99% of homology) as Anoxybacillus flavithermus. Bioactivity-guided fractionation of methanol extract from its cell-free culture, one bacterial peptide with the capacity of improving the nonspecific immune responses and disease resistance (relative per cent survival = 66·67%) was obtained and the compound was characterized as cyclo-(L-Pro-Gly) by IR, ESI-MS, (1) H NMR and (13) C NMR spectroscopic analyses. After intraperitoneal administration of this peptide, selected innate immune parameters including phagocytic activity, superoxide anion production, serum lysozyme activity and serum SOD activity, along with immune-related genes expression (i.e. interleukin-1β and inducible nitric oxide synthase), in the blood were found to be significantly increased. CONCLUSIONS The bacterial peptide cyclo-(L-Pro-Gly) significantly enhances nonspecific immunity and survival of carp. SIGNIFICANCE AND IMPACT OF THE STUDY There is a possibility of using cyclo-(L-Pro-Gly) as a better natural immunostimulant, which could have a promising role in aquaculture to prevent diseases and disease outbreaks.
Collapse
Affiliation(s)
- J Liu
- College of Life Sciences, Northwest University, Xi'an, China College of Animal Sciences and Technology, Northwest A&F University, Yangling, China
| | | | | | | | | | | |
Collapse
|
48
|
Mutoloki S, Cooper GA, Marjara IS, Koop BF, Evensen Ø. High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines. BMC Genomics 2010; 11:336. [PMID: 20507624 PMCID: PMC2996971 DOI: 10.1186/1471-2164-11-336] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 05/27/2010] [Indexed: 12/02/2022] Open
Abstract
Background Two decades after the introduction of oil-based vaccines in the control of bacterial and viral diseases in farmed salmonids, the mechanisms of induced side effects manifested as intra-abdominal granulomas remain unresolved. Side effects have been associated with generation of auto-antibodies and autoimmunity but the underlying profile of inflammatory and immune response has not been characterized. This study was undertaken with the aim to elucidate the inflammatory and immune mechanisms of granuloma formation at gene expression level associated with high and low side effect (granuloma) indices. Groups of Atlantic salmon parr were injected intraperitoneally with oil-adjuvanted vaccines containing either high or low concentrations of Aeromonas salmonicida or Moritella viscosa antigens in order to induce polarized (severe and mild) granulomatous reactions. The established granulomatous reactions were confirmed by gross and histological methods at 3 months post vaccination when responses were known to have matured. The corresponding gene expression patterns in the head kidneys were profiled using salmonid cDNA microarrays followed by validation by real-time quantitative PCR (qPCR). qPCR was also used to examine the expression of additional genes known to be important in the adaptive immune response. Results Granulomatous lesions were observed in all vaccinated fish. The presence of severe granulomas was associated with a profile of up-regulation of innate immunity-related genes such as complement factors C1q and C6, mannose binding protein, lysozyme C, C-type lectin receptor, CD209, Cathepsin D, CD63, LECT-2, CC chemokine and metallothionein. In addition, TGF-β (p = 0.001), IL-17A (p = 0.007) and its receptor (IL-17AR) (p = 0.009) representing TH17 were significantly up-regulated in the group with severe granulomas as were arginase and IgM. None of the genes directly reflective of TH1 T cell lineage (IFN-γ, CD4) or TH2 (GATA-3) responses were differentially expressed. Conclusions Granulomatous reactions following vaccination with oil-based vaccines in Atlantic salmon have the profile of strong expression of genes related to innate immune responses. The expression of TGF-β, IL-17A and its receptor suggests an involvement of TH17 T cell lineage and is in conformity with strong infiltration of neutrophils and macrophages into inflamed areas. Arginase upregulation shows that macrophages in these reactions are alternatively activated, indicating also a TH2-profile. To what extent the expression of IL-17A and its receptor reflects an autoimmune vaccine-based reaction remains elusive but would be in conformity with previous observations of autoimmune reactions in salmon when vaccinated with oil-based vaccines.
Collapse
Affiliation(s)
- Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Sciences, Oslo, Norway
| | | | | | | | | |
Collapse
|
49
|
Fast MD, Tse B, Boyd JM, Johnson SC. Mutations in the Aeromonas salmonicida subsp. salmonicida type III secretion system affect Atlantic salmon leucocyte activation and downstream immune responses. FISH & SHELLFISH IMMUNOLOGY 2009; 27:721-728. [PMID: 19751835 DOI: 10.1016/j.fsi.2009.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/18/2009] [Accepted: 09/02/2009] [Indexed: 05/28/2023]
Abstract
Deletion mutants of Aeromonas salmonicida subsp. salmonicida were used to determine the effect of the type three secretion system (TTSS) on Atlantic salmon anterior head kidney leucocytes (AHKL). One strain had a deletion in the outer membrane pore gene, ascC; and the other in three effector genes: aopO, aopH and aexT (we call this strain Deltaaop3). Host cell invasion success and 24h survival were depressed in DeltaascC, as was 24h survival of Deltaaop3, when compared to the wild type strain. Challenge of AHKLs with A449 or TTSS mutants stimulated expression of the inflammatory mediators IL-8, IL-1 and TNFalpha at two bacterial concentrations (A(600) 0.1, 0.01). Expression of IL-12 was not stimulated in DeltaascC challenged cells, whereas A449 and Deltaaop3 challenge resulted in an up-regulation of IL-12 in AHKLs, 2- and 4-fold higher than PBS, respectively. Only the wild type strain elicited a significant increase in IL-10 expression (5.5x at A(600) 0.1). Inducible nitric oxide synthetase (iNOS) and arginase (I+II) genes were also significantly up-regulated upon exposure to all strains. However, iNOS:arginase ratio was elevated in the effector mutant challenge. These results suggest that A. salmonicida subsp. salmonicida may enhance survival within the host cell through polarization of macrophages/leucocytes to an alternative, rather than classical, activation state. Furthermore, the short-term survival and lack of T-cell signalling cytokine stimulation in DeltaascC, may help explain its inefficiency at providing protection to subsequent wild type challenge.
Collapse
Affiliation(s)
- Mark D Fast
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA.
| | | | | | | |
Collapse
|
50
|
Severin VIC, Soliman H, El-Matbouli M. Expression of immune-regulatory genes, arginase-2 and inducible nitric oxide synthase (iNOS), in two rainbow trout (Oncorhynchus mykiss) strains following exposure to Myxobolus cerebralis. Parasitol Res 2009; 106:325-34. [PMID: 19894064 DOI: 10.1007/s00436-009-1661-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/19/2009] [Indexed: 12/28/2022]
Abstract
The present endeavor was conducted to evaluate the role of activated macrophage in the susceptibility of two different rainbow trout (Oncorhynchus mykiss) strains, a susceptible American (T) and a more resistant German (H), to infection with Myxobolus cerebralis. Arginase-2 and inducible nitric oxide synthase (iNOS) genes were used as references to the alternative and classical pathway of macrophage activation. The expression level of both genes was measured using quantitative real-time polymerase chain reaction. The expression level of arginase-2 was significantly upregulated in strain T at 2 h and 8 days post exposure in the strain H. In case of iNOS, the expression level was significantly upregulated from 24 h to 8 days p.e. in strain T and only in 8 days p.e. in strain H. During this study also, the influence of nitric oxide (NO) on the viability of the triactinomyxon spores (TAMs) of M. cerebralis was evaluated using the NO-donor S-nitroso-N-acetyl-penicillamine (SNAP). Rising final concentrations of SNAP from 0.25 to 1 mM at 2, 4, and 24 h resulted in increasing numbers of propidium iodide-positive TAMs detected. The results of this study suggest an inability of strain T to react with an effective immune response against infection with M. cerebralis. Furthermore, the TAMs of M. cerebralis react with significant decrease of viable spores to rising concentration of SNAP and longer incubation, but there is also evidence for some resistance to NO activity.
Collapse
Affiliation(s)
- Vanessa I C Severin
- Clinic for Fish and Reptiles, Faculty of Veterinary Medicine, University of Munich, Kaulbachstrasse 37, 80539 Munich, Germany
| | | | | |
Collapse
|