1
|
Kim D, Cho HS, Kang M, Ahn B, Shin J, Park C. Abundant β-Defensin Copy Number Variations in Pigs. Genes (Basel) 2025; 16:430. [PMID: 40282390 PMCID: PMC12026633 DOI: 10.3390/genes16040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES β-defensins are a family of classical endogenous antimicrobial peptides involved in innate immune response. β-defensins are encoded by a large number of loci and known to show extensive copy number variations (CNVs) that may be useful as DNA markers for host resilience against pathogenic infections. METHODS We developed a quantitative PCR-based method to estimate the genomic copy numbers of 13 pig β-defensin (pBD) genes and analyzed the range and extent of CNVs across several commercial pig breeds. RESULTS We assessed 38 animals from four pure breeds and a crossbreed and observed CNVs ranging from two to five genomic copies from pBD114, pBD115, pBD119, pBD124, pBD128, and pBD129, indicating extensive individual variations of gene copy numbers of these genes within each breed. The mean copy numbers of these pBDs were lower in Landrace and higher in Berkshire than in other breeds. We also observed a strong correlation between the genomic copy number and their expression levels with the correlation coefficient (r) > 0.9 for pBD114, pBD119, and pBD129 in the kidney, with these genes being highly expressed. CONCLUSIONS Although we only analyzed 13 pBDs among 29 reported genes, our results showed the presence of extensive CNVs in β-defensins from pigs. The genomic copy number of β-defensins may contribute to improving animal resilience against pathogenic infections and other associated phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (D.K.); (H.-s.C.); (M.K.); (B.A.); (J.S.)
| |
Collapse
|
2
|
Ferez-Puche M, Serna-Duque JA, Cuesta A, Sánchez-Ferrer Á, Esteban MÁ. Identification of a Novel β-Defensin Gene in Gilthead Seabream (Sparus aurata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1219-1230. [PMID: 39259315 PMCID: PMC11541337 DOI: 10.1007/s10126-024-10367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The excessive use of antibiotics in aquaculture favors the natural selection of multidrug-resistant bacteria, and antimicrobial peptides (AMPs) could be a promising alternative to this problem. The most studied AMPs in teleost fish are piscidins, hepcidins, and β-defensins. In this work, we have found a new gene (defb2) encoding a type 2 β-defensin in the genome of gilthead seabream, a species chosen for its economic interest in aquaculture. Its open reading frame (192 bp) encodes a protein (71 amino acids) that undergoes proteolytic cleavage to obtain the functional mature peptide (42 amino acids). The genetic structure in three exons and two introns and the six characteristic cysteines are conserved as the main signature of this protein family. In the evolutionary analysis, synteny shows a preservation of chromosomal localization and the phylogenetic tree constructed exposes the differences between both types of β-defensin as well as the similarities between seabream and European seabass. In relation to its basal expression, β-defensin 2 is mostly expressed in the intestine, thymus, skin, and gonads of the gilthead seabream (Sparus aurata). In head kidney leucoytes (HKLs), the expression was very low and did not change significantly when stimulated with various immunocompetent agents. However, the expression was significantly down-regulated in the liver, head-kidney, and blood 4 h post-injection with the fish pathogen Vibrio harveyi. When infected with nodavirus, the expression was downregulated in brain at 7 days post-infection. These results denote a possible complementarity between the expression patterns of β-defensins and hepcidins. Further studies are needed to analyze gene duplications and expression patterns of β-defensins and describe their mechanism of action in seabream and other teleost fish.
Collapse
Affiliation(s)
- M Ferez-Puche
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Liu H, Wang S, Zhang Z, Yan H, He T, Wei X, Shi Y, Chen Y, Wang W, Li X. Nanopore-based full-length transcriptome sequencing of the skin in Pseudopleuronectes yokohamae identifies novel antimicrobial peptide genes. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109957. [PMID: 39393612 DOI: 10.1016/j.fsi.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The marbled flounder (Pseudopleuronectes yokohamae) is highly esteemed for its exceptional nutritional value and delicious taste. However, this species has extremely limited transcriptome data, which can offer priceless information for disease protection. In the study, the skin transcriptomic sequencing of P. yokohamae revealed 7.72 GB of clean data using the Nanopore sequencing platform. The results revealed 30,498 transcripts of functional annotations in the P. yokohamae transcriptome. All transcripts were searched in eight functional databases. A total of 10,337 ORFs were obtained, of which 6081 complete ORFs accounted for 58.83% of all predicted CDS. Moreover, 10,195 SSRs were detected. Meanwhile, the non-pecific immunity pathways were investigated for better understanding of the immunological reaction in P. yokohamae, and seven innate immune pathways were identified. The innate-immune related genes were highly expressed in the NOD-like receptor signaling pathway, followed by the C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. In this study, four families of antimicrobial peptides (AMPs) in P. yokohamae were analysed for the first time, including piscidins, hepcidins, liver-expressed antimicrobial peptide and defensins. Seven AMPs, including Pypleurocidin-like WF3, Pypleurocidin-like WFX, Pyhepcidin 1, Pyhepcidin-like 1, PyLEAP-2, Pybeta-defensin and Pybeta-defensin-like 1, were further identified. The seven AMPs showed a highly identity in their cDNA and genomic structures and an inducible expression pattern preferable to skin in response to pathogens. The transcriptomic data and investigation of AMPs from P. yokohamae promote a deeper awareness of fish mucosal immunity and provide information in the prevention of fish diseases.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zheng Zhang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, China
| | - Huixiang Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiaoyan Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yanyan Shi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
4
|
P AP, V AM, V AV, K A, S N, S MM, Singh ISB, Philip R. A Novel Beta-Defensin Isoform from Malabar Trevally, Carangoides malabaricus (Bloch & Schneider, 1801), an Arsenal Against Fish Bacterial Pathogens: Molecular Characterization, Recombinant Production, and Mechanism of Action. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:696-715. [PMID: 38922559 DOI: 10.1007/s10126-024-10338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Antimicrobial peptides (AMPs), including beta-defensin from fish, are a crucial class of peptide medicines. The focus of the current study is the molecular and functional attributes of CmDef, a 63-amino acid beta-defensin AMP from Malabar trevally, Carangoides malabaricus. This peptide demonstrated typical characteristics of AMPs, including hydrophobicity, amphipathic nature, and +2.8 net charge. The CmDef was recombinantly expressed and the recombinant peptide, rCmDef displayed a strong antimicrobial activity against bacterial fish pathogens with an MIC of 8 µM for V. proteolyticus and 32 µM for A. hydrophila. The E. tarda and V. harveyi showed an inhibition of 94% and 54%, respectively, at 32 µM concentration. No activity was observed against V. fluvialis and V. alginolyticus. The rCmDef has a multimode of action that exerts an antibacterial effect by membrane depolarization followed by membrane permeabilization and ROS production. rCmDef also exhibited anti-cancer activities in silico without causing hemolysis. The peptide demonstrated stability under various conditions, including different pH levels, temperatures, salts, and metal ions (KCl and CaCl2), and remained stable in the presence of proteases such as trypsin and proteinase K at concentrations up to 0.2 µg/100 µl. The strong antibacterial efficacy and non-cytotoxic nature suggest that rCmDef is a single-edged sword that can contribute significantly to aquaculture disease management.
Collapse
Affiliation(s)
- Athira P P
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Anju M V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Anooja V V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Archana K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Neelima S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Muhammed Musthafa S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
5
|
Athira PP, Anooja VV, Anju MV, Archana K, Neelima S, Muhammed Musthafa S, Bright Singh IS, Philip R. Antibacterial Efficacy and Mechanisms of Action of a Novel Beta-Defensin from Snakehead Murrel, Channa striata. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10307-2. [PMID: 38963507 DOI: 10.1007/s12602-024-10307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Beta-defensins, identified from fishes, constitute a crucial category of antimicrobial peptides important in combating bacterial fish pathogens. The present investigation centers on the molecular and functional characterization of CsDef, a 63-amino acid beta-defensin antimicrobial peptide derived from snakehead murrel (Channa striata). The physicochemical attributes of CsDef align with the distinctive characteristics observed in AMPs. CsDef was recombinantly produced, and the recombinant peptide, rCsDef, exhibited notable antibacterial efficacy against bacterial fish pathogens with an MIC of 16 μM for V. proteolyticus. A. hydrophila exhibited 91% inhibition, E. tarda 92%, and V. harveyi 53% at 32 μM of rCsDef. The rCsDef exhibited a multifaceted mechanism of action against bacteria, i.e., through membrane depolarization, membrane permeabilization, and generation of ROS. The rCsDef was non-hemolytic to hRBCs and non-cytotoxic to normal mammalian cell line CHO-K1. However, it exhibited anticancer properties in MCF-7. rCsDef demonstrated notable stability with respect to pH, temperature, salt, metal ions, and proteases. These findings suggest it is a potential candidate molecule for prospective applications in aquaculture.
Collapse
Affiliation(s)
- P P Athira
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - V V Anooja
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - K Archana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - S Neelima
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - S Muhammed Musthafa
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
6
|
Jackson JA, Stewart A, Cable J. Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback. DISCOVERY IMMUNOLOGY 2024; 3:kyae007. [PMID: 38863794 PMCID: PMC11165434 DOI: 10.1093/discim/kyae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Immune responses are widely accepted to be under circadian regulation via a molecular clock, with many practical consequences, but much less is known of how other biological rhythms could affect the immune system. In this study, we search for lunar rhythms (circalunar, circasemilunar, and circatidal cycles) in the immune expression of the recently marine-derived freshwater fish, the low-plate morph of the three-spined stickleback. We employed time series of immune expression (mRNA) measurements for 14 immune-associated genes, representing a variety of immunological pathways. Times series measurements were taken on fish populations in the wild, in seminatural outdoor mesocosms, and in the laboratory, according to sampling regimens originally designed to study circannual variation but with the additional potential to provide information about lunar variation. Our evidence best supported the existence of a very small endogenous tidal rhythm. This is consistent with previous suggestions of the existence of a primordial tidal endogenous clock, some elements of which may be conserved in animals evolving outside the marine environment.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Alexander Stewart
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Zhang M, Yan X, Wang CB, Liu WQ, Wang Y, Jing H, Wang B, Yang K, Chen ZY, Luan YY, Wang GH. Molecular characterization, antibacterial and immunoregulatory activities of liver-expressed antimicrobial peptide 2 in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109467. [PMID: 38423489 DOI: 10.1016/j.fsi.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-β (IL-1β) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1β, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hao Jing
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Kai Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zi-Yue Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yu-Yu Luan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
8
|
Chang J, Chang X, Yue X, Cao S, Zhao W, Li J. Beta-defensin1 derived from Ctenopharyngodon idella exerts anti-Vibrio mimics effects in vitro and in vivo via a multi-target mechanism of action. AQUACULTURE INTERNATIONAL 2024; 32:2019-2038. [DOI: 10.1007/s10499-023-01256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2025]
|
9
|
Sun X, Tian S, Yan S, Sun W, Miao J, Yue Y, Han S, Huang S, Xu N, Diao J, Zhou Z, Zhu W. Bifidobacterium mediate gut microbiota-remedied intestinal barrier damage caused by cyproconazole in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169556. [PMID: 38135070 DOI: 10.1016/j.scitotenv.2023.169556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The widespread use of cyproconazole (CPZ) enhances food security but may pose potential risks to non-target organisms. Therefore, we applied Multi-omics techniques to reveal the response of the intestinal barrier to CPZ exposure and explore whether the Bifidobacterium intervention experiment can repair the damage. First, we found that exposure to CPZ at environmentally relevant concentrations led to intestinal injury phenotype, significantly down-regulated intestinal protein gene expression, and up-regulated pro-inflammatory gene expression, further causing intestinal dysbacteriosis and metabolic disorders. In particular, by combining analysis of gut microbiota and metabolites, we noticed acetate, a key metabolite, which decreased sharply after exposure to high concentration of CPZ. Expectedly, after supplementing with Bifidobacterium (a core bacterium that produces acetate), we noticed that the acetate content was quickly restored. Further, we also verified that the increase in acetate content after Bifidobacterium supplementation at least partially promoted IL-22 secretion, which in turn stimulated the secretion of β-defensins (zfbd-1, zfbd-2, zfbd-3), thereby repairing the intestinal damage. In conclusion, our work confirms the potential of Bifidobacterium to improve intestinal damage and metabolic dysbiosis caused by CPZ exposure. It provides directional recommendations for the application of probiotics to repair the toxicological risk of pesticide exposure.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shihang Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Chen M, Xiao Z, Yan C, Tang X, Fang M, Wang Z, Zhang D. Centrosomal protein of 192 kDa (Cep192) fragment possesses bactericidal and parasiticidal activities in Larimichthys crocea. Int J Biol Macromol 2024; 254:127744. [PMID: 38287570 DOI: 10.1016/j.ijbiomac.2023.127744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
A novel AMP Lc1773, derived from centrosomal protein of 192 kDa (Cep192), was isolated from Larimichthys crocea using a Bacillus subtilis system. After cDNA libraries construction, repeating selection of B. subtilis system, extraction of extracellular protein, and expression of recombinant protein, we found that B. subtilis 1773, extracellular protein, and rLc1773 had a strong potential to kill Vibrio. parahaemolyticus and V. vulnificus. Further analysis of the antibacterial mechanism revealed that rLc1773 not only disrupted the integrity of bacterial membrane (as confirmed by SEM, TEM, and confocal microscopy observation, and flow cytometry assays), resulting in bacterial cell membrane pore conformation, bacterial rupture, and leakage of cellular contents, but also targeted to block protein synthesis rather than damage nucleic acids (as confirmed by SDS-PAGE, enzyme expression, and gel retardation assays). In addition, rLc1773 had the ability to kill parasite Scuticociliatida in a high rate and low concentration. Critically, the antibacterial activity of rLc1773 had good thermal stability and UV radiation tolerance, but it was affected by pH 9-11 and diverse enzyme to some extent. Lc1773 had neither hemolysis on fish, shrimp, and rabbit erythrocytes,nor significant cytotoxicity. To our knowledge, Cep192 fragment was first demonstrated to possess bactericidal and parasiticidal activities.
Collapse
Affiliation(s)
- Meiling Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiqun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Chunmei Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xin Tang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ming Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
11
|
Velumani K, Arasu A, Issac PK, Kishore Kumar MS, Guru A, Arockiaraj J. Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation. Mol Biol Rep 2023; 50:10485-10507. [PMID: 37917415 DOI: 10.1007/s11033-023-08882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
12
|
Diwan A, Harke SN, Panche AN. Host-microbiome interaction in fish and shellfish: An overview. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100091. [PMID: 37091066 PMCID: PMC10113762 DOI: 10.1016/j.fsirep.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.
Collapse
Affiliation(s)
- A.D. Diwan
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
13
|
Mou CY, Zhang L, Zhao H, Huang ZP, Duan YL, Zhao ZM, Ke HY, Du J, Li Q, Zhou J. Single-nuclei RNA-seq reveals skin cell responses to Aeromonas hydrophila infection in Chinese longsnout catfish Leiocassis longirostris. Front Immunol 2023; 14:1271466. [PMID: 37908355 PMCID: PMC10613986 DOI: 10.3389/fimmu.2023.1271466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
As the primary natural barrier that protects against adverse environmental conditions, the skin plays a crucial role in the innate immune response of fish, particularly in relation to bacterial infections. However, due to the diverse functionality and intricate anatomical and cellular composition of the skin, deciphering the immune response of the host is a challenging task. In this study, single nuclei RNA-sequencing (snRNA-seq) was performed on skin biopsies obtained from Chinese longsnout catfish (Leiocassis longirostris), comparing Aeromonas hydrophila-infected subjects to healthy control subjects. A total of 19,581 single nuclei cells were sequenced using 10x Genomics (10,400 in the control group and 9,181 in the treated group). Based on expressed unique transcriptional profiles, 33 cell clusters were identified and classified into 12 cell types including keratinocyte (KC), fibroblast (FB), endothelial cells (EC), secretory cells (SC), immune cells, smooth muscle cells (SMC), and other cells such as pericyte (PC), brush cell (BC), red blood cell (RBC), neuroendocrine cell (NDC), neuron cells (NC), and melanocyte (MC). Among these, three clusters of KCs, namely, KC1, KC2, and KC5 exhibited significant expansion after A. hydrophila infection. Analysis of pathway enrichment revealed that KC1 was primarily involved in environmental signal transduction, KC2 was primarily involved in endocrine function, and KC5 was primarily involved in metabolism. Finally, our findings suggest that neutrophils may play a crucial role in combating A. hydrophila infections. In summary, this study not only provides the first detailed comprehensive map of all cell types present in the skin of teleost fish but also sheds light on the immune response mechanism of the skin following A. hydrophila infection in Chinese longsnout catfish.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiang Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Jian Zhou
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Islam S, Akhand MRN, Hasan M. Evolutionary trend of bovine β-defensin proteins toward functionality prediction: A domain-based bioinformatics study. Heliyon 2023; 9:e14158. [PMID: 36938430 PMCID: PMC10015202 DOI: 10.1016/j.heliyon.2023.e14158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Defensins are small cationic cysteine-rich and amphipathic peptides that form of three-dimensional β-strand structure connected by disulfide bonds. Defensins form key elements of the innate immune system of multicellular organisms. They not only possess broad-spectrum antimicrobial activity but also have diverse roles, including cell signaling, ion channel agitation, toxic functions, and enzyme inhibitor activities in various animals. Although the role of β-defensins in immune responses against infectious agents and reproduction could be significant, inadequate genomic information is available to explain the whole β-defensin repertoire in cattle. No domain or motif-based functional analyses have been previously reported. In addition, how do defensins possess this magnitude of functions in the immune system is still not clear. Our present study, therefore, investigated the sequence divergence and evolutionary relations of bovine defensin proteins with those of humans. Our domain-based evolutionary analysis revealed four major clusters with significant domain variation while reserving a main antimicrobial activity. Our study revealed the β-defensin domain as the ancestor domain, and it is preserved in the first group of defensin protein with no α-helix in its structure. Due to natural selection, some domains have evolved independently within clusters II and III, while some proteins have lost their domain characteristics. Cluster IV contains the most recently evolved domains. Some proteins of all but cluster I might have adopted the functional characteristics of α-defensins which is largely absent in cattle. The proteins show different patterns of disulfide bridges and multiple signature patterns which might render them specialized functions in different tissue to combat against various pathogens.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Physiology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Mst Rubaiat Nazneen Akhand
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet-3100, Bangladesh
- Corresponding author.
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
15
|
Feng J, Jia Z, Yuan G, Zhu X, Liu Q, Wu K, Wang J, Zou J. Expression and functional characterization of three β-defensins in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104616. [PMID: 36565823 DOI: 10.1016/j.dci.2022.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
β-defensins (BDs) are a group of cysteine-rich cationic antimicrobial peptides and play important roles in the first line of defense against infection. In this study, the expression and antibacterial activities of three grass carp (Ctenopharyngodon idella) (Ci) β-defensin (BD) peptides were comparatively investigated. Expression analysis reveals that CiBD1-3 were constitutively expressed in tissues, with the highest expression detected in the skin. The CiBD-1 transcripts were more abundant than CiBD-2 and CiBD-3. In the primary head kidney leukocytes, CiBDs were induced by PHA, LPS, poly(I:C) and cytokines such as IL-1β and IFN-γ. In vivo challenge of fish with Aeromonas hydrophila resulted in the up-regulation of CiBDs in the head kidney and hindgut. To determine the biological activities, recombinant CiBD proteins were produced in the HEK293-F cells and purified for the minimum inhibitory concentration assay. It was found that all three recombinant CiBD proteins were effective to inhibit the growth of Gram-negative fish bacterial pathogens including Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare and Klebsiella pneumoniae and Gram-positive Staphylococcus aureus. CiBD-2 and CiBD-3 were more effective than CiBD-1. Our results demonstrate that all the three CiBDs have broad antibacterial activity against fish bacterial pathogens.
Collapse
Affiliation(s)
- Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
16
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
17
|
Liao X, Lan Y, Wang W, Zhang J, Shao R, Yin Z, Gudmundsson GH, Bergman P, Mai K, Ai Q, Wan M. Vitamin D influences gut microbiota and acetate production in zebrafish ( Danio rerio) to promote intestinal immunity against invading pathogens. Gut Microbes 2023; 15:2187575. [PMID: 36879441 PMCID: PMC10012952 DOI: 10.1080/19490976.2023.2187575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Although evidence has shown that vitamin D (VD) influences gut homeostasis, limited knowledge is available how VD regulates intestinal immunity against bacterial infection. In the present study, cyp2r1 mutant zebrafish, lacking the capacity to metabolize VD, and zebrafish fed a diet devoid of VD, were utilized as VD-deficient animal models. Our results confirmed that the expression of antimicrobial peptides (AMPs) and IL-22 was restrained and the susceptibility to bacterial infection was increased in VD-deficient zebrafish. Furthermore, VD induced AMP expression in zebrafish intestine by activating IL-22 signaling, which was dependent on the microbiota. Further analysis uncovered that the abundance of the acetate-producer Cetobacterium in VD-deficient zebrafish was reduced compared to WT fish. Unexpectedly, VD promoted the growth and acetate production of Cetobacterium somerae under culture in vitro. Importantly, acetate treatment rescued the suppressed expression of β-defensins in VD-deficient zebrafish. Finally, neutrophils contributed to VD-induced AMP expression in zebrafish. In conclusion, our study elucidated that VD modulated gut microbiota composition and production of short-chain fatty acids (SCFAs) in zebrafish intestine, leading to enhanced immunity.
Collapse
Affiliation(s)
- Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Wentao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gudmundur H. Gudmundsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Gopalan SS, Perry BW, Schield DR, Smith CF, Mackessy SP, Castoe TA. Origins, genomic structure and copy number variation of snake venom myotoxins. Toxicon 2022; 216:92-106. [PMID: 35820472 DOI: 10.1016/j.toxicon.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Crotamine, myotoxin a and homologs are short peptides that often comprise major fractions of rattlesnake venoms and have been extensively studied for their bioactive properties. These toxins are thought to be important for rapidly immobilizing mammalian prey and are implicated in serious, and sometimes fatal, responses to envenomation in humans. While high quality reference genomes for multiple venomous snakes are available, the loci that encode myotoxins have not been successfully assembled in any existing genome assembly. Here, we integrate new and existing genomic and transcriptomic data from the Prairie Rattlesnake (Crotalus viridis viridis) to reconstruct, characterize, and infer the chromosomal locations of myotoxin-encoding loci. We integrate long-read transcriptomics (Pacific Bioscience's Iso-Seq) and short-read RNA-seq to infer gene sequence diversity and characterize patterns of myotoxin and paralogous β-defensin expression across multiple tissues. We also identify two long non-coding RNA sequences which both encode functional myotoxins, demonstrating a newly discovered source of venom coding sequence diversity. We also integrate long-range mate-pair chromatin contact data and linked-read sequencing to infer the structure and chromosomal locations of the three myotoxin-like loci. Further, we conclude that the venom-associated myotoxin is located on chromosome 1 and is adjacent to non-venom paralogs. Consistent with this locus contributing to venom composition, we find evidence that the promoter of this gene is selectively open in venom gland tissue and contains transcription factor binding sites implicated in broad trans-regulatory pathways that regulate snake venoms. This study provides the best genomic reconstruction of myotoxin loci to date and raises questions about the physiological roles and interplay between myotoxin and related genes, as well as the genomic origins of snake venom variation.
Collapse
Affiliation(s)
- Siddharth S Gopalan
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA
| | - Blair W Perry
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA; School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Cara F Smith
- School of Biological Sciences, 501 20th Street, University of Northern Colorado, Greeley, CO, 80639, USA; Department of Biochemistry and Molecular Biology, 12801 East 17th Avenue, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Stephen P Mackessy
- School of Biological Sciences, 501 20th Street, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Todd A Castoe
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
19
|
Lopes BS, Hanafiah A, Nachimuthu R, Muthupandian S, Md Nesran ZN, Patil S. The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial Resistance. Molecules 2022; 27:molecules27092995. [PMID: 35566343 PMCID: PMC9105241 DOI: 10.3390/molecules27092995] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/11/2023] Open
Abstract
Just over a million people died globally in 2019 due to antibiotic resistance caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The World Health Organization (WHO) also lists antibiotic-resistant Campylobacter and Helicobacter as bacteria that pose the greatest threat to human health. As it is becoming increasingly difficult to discover new antibiotics, new alternatives are needed to solve the crisis of antimicrobial resistance (AMR). Bacteria commonly found in complex communities enclosed within self-produced matrices called biofilms are difficult to eradicate and develop increased stress and antimicrobial tolerance. This review summarises the role of antimicrobial peptides (AMPs) in combating the silent pandemic of AMR and their application in clinical medicine, focusing on both the advantages and disadvantages of AMPs as antibiofilm agents. It is known that many AMPs display broad-spectrum antimicrobial activities, but in a variety of organisms AMPs are not stable (short half-life) or have some toxic side effects. Hence, it is also important to develop new AMP analogues for their potential use as drug candidates. The use of one health approach along with developing novel therapies using phages and breakthroughs in novel antimicrobial peptide synthesis can help us in tackling the problem of AMR.
Collapse
Affiliation(s)
- Bruno S. Lopes
- Department of Medical Microbiology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence: (B.S.L.); (A.H.)
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Correspondence: (B.S.L.); (A.H.)
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, Department of Biomedical Sciences, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, India;
| | - Saravanan Muthupandian
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai 600077, India;
| | - Zarith Nameyrra Md Nesran
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, China;
| |
Collapse
|
20
|
Das S, Pradhan C, Pillai D. β-Defensin: An adroit saviour in teleosts. FISH & SHELLFISH IMMUNOLOGY 2022; 123:417-430. [PMID: 35331882 DOI: 10.1016/j.fsi.2022.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
β-Defensin (BD) is an important first line innate defense molecule with potent antimicrobial and immunomodulatory activities in fish. The signatures of β-defensins are the presence of a net cationic charge and three intramolecular disulfide bonds mediated by six conserved cysteines. It consists of three exons and two introns. The signal peptide is usually conserved and sequence divergence is mostly seen in mature peptide region. The diverse amino acid sequences of matured peptide contribute to a strong positive selection and broad-spectrum antimicrobial activity. It is constitutively expressed in both mucosal as well as systemic sites. Increased expression of β-defensin was mostly reported in bacterial and viral infections in fish. Its role during parasitic and fungal infections is yet to be investigated. β-Defensin isoforms such as BD-1, BD-2, BD-3, BD-4 and BD-5 can be witnessed even in early developmental days to different pathogenic exposure in fish. β-Defensins possess adjuvant properties to enhance antigen-specific immunity promoting both cellular and humoral immune response. It significantly reduces/increases bacterial colonization or viral copy numbers when overexpressed/knockdown. Based on its chemotactic and activating potentials, it can contribute to both innate and adaptive immune responses. With mediated expression, it can also control inflammation. It is potent governing resistance in early developmental days as well. Its expression in pituitary and testis suggests its participation in reproduction and endocrine regulation in fish. Overall, β-defensins is an important member of antimicrobial peptides (AMPs) with multifunctional role in general homeostasis and to pathogen exposure possessing tremendous therapeutic approaches.
Collapse
Affiliation(s)
- Sweta Das
- Department of Aquatic Animal Health & Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.
| | - Chiranjiv Pradhan
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health & Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
21
|
Zhang Y, Deng P, Dai C, Wu M, Liu X, Li L, Pan X, Yuan J. Investigation of putative antimicrobial peptides in Carassius gibel, revealing a practical approach to screening antimicrobials. FISH & SHELLFISH IMMUNOLOGY 2022; 121:254-264. [PMID: 34990806 DOI: 10.1016/j.fsi.2021.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides (AMPs) and their mimics are rapidly gaining attention as a new class of antimicrobials due to their clinical potential. AMPs are widely distributed throughout nature and participate in the innate host defense. In this study, 18 AMPs, including 3 β-defensins, 3 hepcidins, 4 liver-expressed antimicrobial peptide 2 (LEAP-2) compounds, 4 g-type lysozymes, 2 c-type lysozymes, and 2 NK-lysins, were identified from the genome of Carassius auratus by a homologous search and were further classified based on their fundamental structural features and molecular phylogeny. C. auratus AMPs were found to be ubiquitously distributed in all tested tissues and showed similar expression profiles, with the exception of β-defensins, when RT-qPCR was used to investigate the tissue distribution of AMPs in healthy Carassius gibel. In addition, the expression levels of NK-lysin genes in the tested tissues tended to be upregulated upon bacterial and viral infection when representative NK-lysins were chosen to examine their relative expression levels in various tissues. Importantly, the synthetic peptide caNKL2102-119, which targets the functional domain of saposin B in caNK-lysins, could effectively counter Aeromonas hydrophila, Staphylococcus aureus, and Escherichia coli with minimum inhibitory concentration (MIC) values of 3-6 μg/mL, as well as inhibit the proliferation of spring viraemia of carp virus (SVCV). These results provide potential targets for antibiotic-free breeding in the aquaculture industry.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Caijiao Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mengke Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Xiaoyi Pan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, People's Republic of China.
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
22
|
Fei C, Nie L, Zhang J, Chen J. Potential Applications of Fluorescence-Activated Cell Sorting (FACS) and Droplet-Based Microfluidics in Promoting the Discovery of Specific Antibodies for Characterizations of Fish Immune Cells. Front Immunol 2021; 12:771231. [PMID: 34868030 PMCID: PMC8635192 DOI: 10.3389/fimmu.2021.771231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Akin to their mammalian counterparts, teleost fish possess a complex assortment of highly specialized immune cells that are capable of unleashing potent innate immune responses to eradicate or mitigate incoming pathogens, and also differentiate into memory lymphocytes to provide long-term protection. Investigations into specific roles and functions of fish immune cells depend on the precise separation of each cell type. Commonly used techniques, for example, density gradient centrifugation, rely on immune cells to have differing sizes or densities and thus fail to separate between similar cell types (e.g. T and B lymphocytes). Furthermore, a continuously growing database of teleost genomic information has revealed an inventory of cellular markers, indicating the possible presence of immune cell subsets in teleost fish. This further complicates the interpretation of results if subsets of immune cells are not properly separated. Consequently, monoclonal antibodies (mAbs) against specific cellular markers are required to precisely identify and separate novel subsets of immune cells in fish. In the field of fish immunology, mAbs are largely generated using the hybridoma technology, resulting in the development of mAbs against specific cellular markers in different fish species. Nevertheless, this technology suffers from being labour-intensive, time-consuming and most importantly, the inevitable loss of diversities of antibodies during the fusion of antibody-expressing B lymphocytes and myeloma cells. In light of this, the focus of this review is to discuss the potential applications of fluorescence-activated cell sorting and droplet-based microfluidics, two emerging technologies capable of screening and identifying antigen-specific B lymphocytes in a high-throughput manner, in promoting the development of valuable reagents for fish immunology studies. Our main goal is to encourage the incorporation of alternative technologies into the field of fish immunology to promote the production of specific antibodies in a high-throughput and cost-effective way, which could better allow for the precise separation of fish immune cells and also facilitate the identification of novel immune cell subsets in teleost fish.
Collapse
Affiliation(s)
- Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jianhua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021; 179:114008. [PMID: 34673132 DOI: 10.1016/j.addr.2021.114008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Defensins are a family of cationic antimicrobial peptides active against a broad range of infectious microbes including bacteria, viruses and fungi, playing important roles as innate effectors and immune modulators in immunological control of microbial infection. Their antibacterial properties and unique mechanisms of action have garnered considerable interest in developing defensins into a novel class of natural antibiotic peptides to fend off pathogenic infection by bacteria, particularly those resistant to conventional antibiotics. However, serious pharmacological and technical obstacles, some of which are unique to defensins and others are common to peptide drugs in general, have hindered the development and clinical translation of defensins as anti-infective therapeutics. To overcome them, several technologies have been developed, aiming for improved functionality, prolonged circulation time, enhanced proteolytic stability and bioavailability, and efficient and controlled delivery and release of defensins to the site of infection. Additional challenges include the alleviation of potential toxicity of defensins and their cost-effective manufacturing. In this review, we briefly introduce defensin biology, focus on various transforming strategies and practical techniques developed for defensins and their derivatives as antibacterial therapeutics, and conclude with a summation of future challenges and possible solutions.
Collapse
|
24
|
The Functions of β-Defensin in Flounder ( Paralichthys olivaceus): Antibiosis, Chemotaxis and Modulation of Phagocytosis. BIOLOGY 2021; 10:biology10121247. [PMID: 34943162 PMCID: PMC8698591 DOI: 10.3390/biology10121247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary The study identified a new spliced isoform of anionic β-defensin from flounder (Paralichthys olivaceus, fBD) and examined its antibiosis, chemotaxis and modulation of phagocytosis. It also analyzed the contributions of fBD to the antimicrobial activity of extracellular traps (ETs). The analyses found that an anionic β-defensin in fish possesses strong bacteriostatic ability in line with that of cationic defensins and also plays an important role in immune response. This study provides new insights into the biological function of anionic defensins, which can serve as one of the important effectors in extracellular traps and contribute to the immune response. Abstract Most defensins are cationic antimicrobial peptides with broad-spectrum killing activity against bacteria, fungi and enveloped viruses. However, it should be recognized that there are some non-cationic β-defensins in organisms, which need to be further studied. In this study, a new spliced isoform of anionic β-defensin from flounder (Paralichthys olivaceus, fBD) was identified, and its antibiosis, chemotaxis and modulation of phagocytosis were examined. In addition, the contributions of fBD to the antimicrobial activity of extracellular traps (ETs) were also analyzed. The recombinant fBD (rfBD) could effectively inhibit the growth of Gram-positive bacteria (S. aureus, Micrococcus luteus) and Gram-negative bacteria (E. coli, V. alginolyticus, V. anguillarum). An indirect immunofluorescence assay showed that the fBD was co-localized in the extracellular traps released by the leukocytes. When the ETs were blocked with antibodies against rfBD, the proliferation of S. aureus and E. coli incubated with ETs tended to increase compared with that in the control group. In addition, the results obtained by flow cytometry showed that the rfBD could significantly chemoattract leukocytes and increase phagocytic activity in vitro. In conclusion, this study provides new insights into the biological function of anionic defensins, which can serve as one of the important effectors in extracellular traps and as a bridge between innate and adaptive immunity in teleosts.
Collapse
|
25
|
Iida A, Nakai R, Yoshida J, Sano K, Hondo E. Expression and antimicrobial activity of liver-expressed antimicrobial peptides in the ovaries of the viviparous teleost Xenotoca eiseni. FISH & SHELLFISH IMMUNOLOGY 2021; 118:405-410. [PMID: 34582977 DOI: 10.1016/j.fsi.2021.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The mechanism via which the mothers of viviparous animals regulate the internal environment of pregnancy-associated organs for maintaining offspring growth is poorly understood. Environmental niches in organs contain fluid components for supporting embryonic growth; however, they may serve as nutrients for microbes. Therefore, microbial control is essential in viviparous animals to reduce the risk of infection in the ovarian lumen. Its importance may be higher than that in the case of oviparous animals. In this study, we investigated the antimicrobial factors in a viviparous teleost, Xenotoca eiseni. Four transcripts of the liver-expressed antimicrobial peptide (LEAP) were identified via RNA-Seq analysis. Some of the genes were expressed in the ovaries or intraovarian embryos of the fish. In particular, high expression of leap1a was detected in the ovaries of both pregnant and non-pregnant fish. Moreover, the ovary extracts from X. eiseni and transformed leap genes exhibited antimicrobial activity against Escherichia coli. Our results suggest that viviparous teleosts utilize antimicrobial peptides to reduce the risk of infection in the ovarian lumen.
Collapse
Affiliation(s)
- Atsuo Iida
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan.
| | - Risako Nakai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Junki Yoshida
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Saitama, Japan
| | - Eiichi Hondo
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| |
Collapse
|
26
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
27
|
Zhang M, Cao M, Xiu Y, Fu Q, Yang N, Su B, Li C. Identification of Antimicrobial Peptide Genes in Black Rockfish Sebastes schlegelii and Their Responsive Mechanisms to Edwardsiella tarda Infection. BIOLOGY 2021; 10:1015. [PMID: 34681113 PMCID: PMC8533284 DOI: 10.3390/biology10101015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
The black rockfish, Sebastes schlegelii, is a typical viviparous teleost, which belongs to the family Scorpaenidae. Due to its high economic and ecological values, S. schlegelii has been widely cultured in East Asian countries. With the enlargement of cultivation scale, bacterial and viral diseases have become the main threats to the farming industry of S. schlegelii, which have resulted in significant economic losses. In this study, Illumina shotgun sequencing, single-molecule real-time (SMRT) sequencing, 10× genomics and high-throughput chromosome conformation capture (Hi-C) technologies were collectively applied to assemble the genome of S. schlegelii. Then, we identified the antimicrobial peptide genes (AMPs) in the S. schlegelii genome. In total, 214 AMPs were identified in the S. schlegelii genome, which can be divided into 33 classes according to the annotation and cataloging of the Antimicrobial Peptides Database (APD3). Among these AMPs, thrombin-derived C-terminal peptide (TCP) was the dominant type, followed by RegIIIgamma and chemokine. The amino acid sequences of the TCP, cgUbiquitin, RegIIIalpha, RegIIIgamma, chemokine shared 32.55%, 42.63%, 29.87%, 28.09%, and 32.15% similarities among the same type in S. schlegelii. Meanwhile, the expression patterns of these AMPs in nine healthy tissues and at different infection time points in intestine were investigated. The results showed that the numbers and types of AMPs that responded to Edwardsiella tarda infection gradually increased as the infection progressed. In addition, we analyzed the phylogenetic relationships of hepcidins in teleost. The identification of AMPs based on the whole genome could provide a comprehensive database of potential AMPs, and benefit for the understanding of the molecular mechanisms of immune responses to E. tarda infection in S. schlegelii. This would further offer insights into an accurate and effective design and development of AMP for aquaculture therapy in the future.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA;
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| |
Collapse
|
28
|
Sumon TA, Hussain MA, Hasan M, Rashid A, Abualreesh MH, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Antiviral peptides from aquatic organisms: Functionality and potential inhibitory effect on SARS-CoV-2. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 541:736783. [PMID: 33883784 PMCID: PMC8049179 DOI: 10.1016/j.aquaculture.2021.736783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Several antiviral peptides (AVPs) from aquatic organisms have been effective in interfering with the actions of infectious viruses, such as Human Immunodeficiency Virus-1 and Herpes Simplex Virus-1 and 2. AVPs are able to block viral attachment or entry into host cells, inhibit internal fusion or replication events by suppressing viral gene transcription, and prevent viral infections by modulating host immunity. Therefore, as promising therapeutics, the potential of aquatic AVPs for use against the COVID-19 pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is considered. At present no therapeutic drugs are yet available. A total of 32 AVPs derived from fish and shellfish species are discussed in this review paper with notes on their properties and mechanisms of action in the inhibition of viral diseases both in humans and animals, emphasizing on SARS-CoV-2. The molecular structure of novel SARS-CoV-2 with its entry mechanisms, clinical signs and symptoms are also discussed. In spite of only a few study of these AVPs against SARS-CoV-2, aquatic AVPs properties and infection pathways (entry, replication and particle release) into coronaviruses are linked in this paper to postulate an analysis of their potential but unconfirmed actions to impair SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Aminur Rashid
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Muyassar Hamid Abualreesh
- Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher Lyon Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
29
|
Marine Transcriptomics Analysis for the Identification of New Antimicrobial Peptides. Mar Drugs 2021; 19:md19090490. [PMID: 34564152 PMCID: PMC8468504 DOI: 10.3390/md19090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) participate in the immune system to avoid infection, are present in all living organisms and can be used as drugs. Fish express numerous AMP families including defensins, cathelicidins, liver-expressed antimicrobial peptides (LEAPs), histone-derived peptides, and piscidins (a fish-specific AMP family). The present study demonstrates for the first time the occurrence of several AMPs in lionfish (Pterois volitans). Using the lionfish transcriptome, we identified four transcript sequences encoding cysteine-rich AMPs and two new transcripts encoding piscidin-like peptides. These AMPs are described for the first time in a species of the Scorpaenidae family. A functional approach on new pteroicidins was carried out to determine antimicrobial sequences and potential uses, with a view to using some of these AMPs for human health or in aquaculture.
Collapse
|
30
|
Barroso C, Carvalho P, Gonçalves JFM, Rodrigues PNS, Neves JV. Antimicrobial Peptides: Identification of two Beta-Defensins in a Teleost Fish, the European Sea Bass ( Dicentrarchus labrax). Pharmaceuticals (Basel) 2021; 14:ph14060566. [PMID: 34198571 PMCID: PMC8231796 DOI: 10.3390/ph14060566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Beta-defensins consist in a group of cysteine-rich antimicrobial peptides (AMPs), widely found throughout vertebrate species, including teleost fish, with antimicrobial and immunomodulatory activities. However, although the European sea bass (Dicentrarchus labrax) is one of the most commercially important farmed fish species in the Mediterranean area, the characterization of its beta-defensins and its potential applications are still missing. In this study, we characterized two members of the beta-defensin family in this species. Phylogenetic and synteny analysis places sea bass peptides in the beta-defensin subfamilies 1 and 2, sharing similar features with the other members, including the six cysteines and the tertiary structure, that consists in three antiparallel beta-sheets, with beta-defensin 1 presenting an extra alpha-helix at the N-terminal. Further studies are necessary to uncover the functions of sea bass beta-defensins, particularly their antimicrobial and immunomodulatory properties, in order to develop novel prophylactic or therapeutic compounds to be used in aquaculture production.
Collapse
Affiliation(s)
- Carolina Barroso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
- Correspondence:
| | - Pedro Carvalho
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| | - José F. M. Gonçalves
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Porto, Portugal
| | - Pedro N. S. Rodrigues
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| | - João V. Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| |
Collapse
|
31
|
Dhanya Lenin KL, Iyer RV, Raveendran A, Anju MV, Philip R, Antony SP. β-Defensins from common goby (Pomatoschistus microps) and silver trevally (Pseudocaranx georgianus): Molecular characterization and phylogenetic analysis. Mol Biol Rep 2021; 48:4943-4951. [PMID: 34061328 DOI: 10.1007/s11033-021-06435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/26/2021] [Indexed: 11/27/2022]
Abstract
Antimicrobial peptides (AMPs) are biologically active molecules involved in host defense present in a variety of organisms. They are an integral component of innate immunity, forming a front line of defense against potential pathogens, including antibiotic-resistant ones. Fishes are proven to be a prospective source of AMPs as they are constantly being challenged by a variety of pathogens and the AMPs are reported to play an inevitable role in fish immunity. Among them, β-defensins form one of the most studied multifunctional peptides with early evolutionary history and recently being considered as host defense peptides. The present study highlights the first-ever report on β-defensin AMP sequences from common goby (Pomatoschistus microps) and silver trevally (Pseudocaranx georgianus). A 192 bp cDNA fragment with an open reading frame encoding 63 amino acids (aa) comprising a 20 aa signal peptide region at the N-terminal was obtained from the mRNA of gill tissue of both P. microps and P. georgianus by RT-PCR. These peptide sequences when characterized in silico at the molecular level revealed a 43 aa cationic mature peptide with the signature intra-molecular disulphide bonded cysteine residue pattern ascertaining its β-defensin identity, further confirmed by phylogenetic analysis. The data collected will pave the way for further research on varied facets of the peptide-like, tissue level expressions, antimicrobial activities on commonly encountered pathogens, and its feasibility as a therapeutant in the aquaculture scenario.
Collapse
Affiliation(s)
- K L Dhanya Lenin
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rajeswary Vasu Iyer
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Athira Raveendran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
32
|
Raveendran A, L DLK, M V A, S N, V V A, P AP, K A, Philip R, Antony SP. β-Defensin from the Asian Sea Bass, Lates calcarifer: Molecular Prediction and Phylogenetic Analysis. Probiotics Antimicrob Proteins 2021; 13:1798-1807. [PMID: 34043156 DOI: 10.1007/s12602-021-09804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides (AMPs) are an important element of the innate immune system of all living organisms and serve as a barrier that safeguards the organisms against a wide range of pathogens. Fishes are proven to be a prospective source of AMPs, and β-defensins form an important family of AMPs with potent antimicrobial, chemotactic and immunomodulatory activities. The present study reports a β-defensin AMP sequence (Lc-BD) from the Asian sea bass, Lates calcarifer, a commercially important fish species in tropical and subtropical regions of Asia and the Pacific. A 202-bp cDNA fragment with an open reading frame encoding 63 amino acids (aa) was obtained from the mRNA of gill tissue by RT-PCR. The deduced aa sequence of Lc-BD possessed a signal and a mature peptide region with 20 and 43 aa residues, respectively. Lc-BD was characterized at the molecular level, and a molecular weight of 5.24 kDa and a net charge of +4.5 was predicted for the mature peptide. The molecular characterization of Lc-BD revealed the presence of three intramolecular disulphide bonds involving the six conserved cysteine residues in the sequence, and the phylogenetic analysis of Lc-BD showed a close relationship with β-defensins from fishes like Siniperca chuatsi, Argyrosomus regius, Trachinotus ovatus and Oplegnathus fasciatus.
Collapse
Affiliation(s)
- Athira Raveendran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Dhanya Lenin K L
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Anju M V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Neelima S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Anooja V V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Athira P P
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Archana K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
| |
Collapse
|
33
|
Langlois L, Akhtar N, Tam KC, Dixon B, Reid G. Fishing for the right probiotic: Host-microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiol Rev 2021; 45:6284803. [PMID: 34037775 DOI: 10.1093/femsre/fuab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate, and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Collapse
Affiliation(s)
- Luana Langlois
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada
| | - Nadeem Akhtar
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Kam C Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada.,Department of Surgery, The University of Western Ontario, St. Joseph's Health Care London, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada
| |
Collapse
|
34
|
Neelima S, Archana K, Athira PP, Anju MV, Anooja VV, Bright Singh IS, Philip R. Molecular characterization of a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger (Ruppel, 1836). J Genet Eng Biotechnol 2021; 19:71. [PMID: 33978838 PMCID: PMC8116387 DOI: 10.1186/s43141-021-00175-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022]
Abstract
Background The concern regarding a post-antibiotic era with increasing drug resistance by pathogens imposes the need to discover alternatives for existing antibiotics. Antimicrobial peptides (AMPs) with their versatile therapeutic properties are a group of promising molecules with curative potentials. These evolutionarily conserved molecules play important roles in the innate immune system of several organisms. The β-defensins are a group of cysteine rich cationic antimicrobial peptides that play an important role in the innate immune system by their antimicrobial activity against the invading pathogens. The present study deals with a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger. Total RNA was isolated from the gills, cDNA was synthesized and the β-defensin isoform obtained by polymerase chain reaction was cloned and subjected to structural and functional characterization in silico. Results A β-defensin isoform could be detected from the gill mRNA of red-toothed trigger fish, Odonus niger. The cDNA encoded a 63 amino acid peptide, β-defensin, with a 20 amino acid signal sequence followed by 43 amino acid cationic mature peptide (On-Def) having a molecular weight of 5.214 kDa and theoretical pI of 8.89. On-Def possessed six highly conserved cysteine residues forming disulfide bonds between C1–C5, C2–C4, and C3–C6, typical of β-defensins. An anionic pro-region was observed prior to the β-defensin domain within the mature peptide. Clustal alignment and phylogenetic analyses revealed On-Def as a group 2 β-defensin. Furthermore, it shared some structural similarities and functional motifs with β-defensins from other organisms. On-Def was predicted to be non-hemolytic with anti-bacterial, anti-viral, anti-fungal, anti-cancer, and immunomodulatory potential. Conclusion On-Def is the first report of a β-defensin from the red-toothed trigger fish, Odonus niger. The antimicrobial profile showed the potential for further studies as a suitable candidate for antimicrobial peptide therapeutics.
Collapse
Affiliation(s)
- S Neelima
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - K Archana
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - P P Athira
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - V V Anooja
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India.
| |
Collapse
|
35
|
Li K, Li W, Chen X, Luo T, Mu Y, Chen X. Molecular and functional identification of a β-defensin homolog in large yellow croaker (Larimichthys crocea). JOURNAL OF FISH DISEASES 2021; 44:391-400. [PMID: 33340371 DOI: 10.1111/jfd.13324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
β-defensin (BD) is a cysteine-rich cationic antibacterial peptide that is active against a wide range of bacteria. Here, a β-defensin homolog (LcBD2) was identified in large yellow croaker (Larimichthys crocea). The open reading frame of LcBD2 contains 195 nucleotides, encoding a protein of 64 amino acids that possesses a typical arrangement of six conserved cysteine residues (C31 , C37 , C41 , C53 , C59 and C60 ). LcBD2 transcripts were constitutively expressed in all examined tissues and significantly increased in head kidney, spleen and gills by Vibrio alginolyticus. The synthetic LcBD2 peptide imparted antimicrobial effects on both Gram-negative bacteria (V. campbellii, V. parahaemolyticus, V. alginolyticus, V. harveyi and Pseudomonas plecoglossicida) and Gram-positive bacteria (Bacillus subtilis). We also observed that after treatment with synthetic LcBD2 peptide, numerous blisters appeared on the membrane of P. plecoglossicida, which in turn may result in cell membrane breakage and bacterial death. Moreover, the synthetic LcBD2 peptide significantly upregulated the expression levels of TNF-α2, IL-1β and CXCL8_L1 in monocytes/macrophages, while downregulated expression level of IL-10. The LcBD2 peptide also remarkedly enhanced the phagocytosis of monocytes/macrophages. These results indicate that LcBD2 not only protects large yellow croaker against multiple bacterial pathogens but also plays a role in activation of monocytes/macrophages.
Collapse
Affiliation(s)
- Kexin Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
36
|
Li W, Tao Y, Song CF, Feng YD, Xie J, Qian YF. Multiple Copies of the Fusion Gene cflyC-mzfDB3 Enhance the Expression of a Hybrid Antimicrobial Peptide in Pichia pastoris. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Caioni G, Viscido A, d’Angelo M, Panella G, Castelli V, Merola C, Frieri G, Latella G, Cimini A, Benedetti E. Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARγ. Int J Mol Sci 2021; 22:985. [PMID: 33498177 PMCID: PMC7863964 DOI: 10.3390/ijms22030985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological processes of inflammatory bowel diseases (IBDs), i.e., Crohn's disease (CD) and ulcerative colitis (UC), are still not completely understood. The exact etiology remains unknown, but it is well established that the pathogenesis of the inflammatory lesions is due to a dysregulation of the gut immune system resulting in over-production of pro-inflammatory cytokines. Increasing evidence underlines the involvement of both environmental and genetic factors. Regarding the environment, the microbiota seems to play a crucial role. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert pleiotropic effects on glucose homeostasis, lipid metabolism, inflammatory/immune processes, cell proliferation, and fibrosis. Furthermore, PPARs modulate interactions with several environmental factors, including microbiota. A significantly impaired PPARγ expression was observed in UC patients' colonic epithelial cells, suggesting that the disruption of PPARγ signaling may represent a critical step of the IBD pathogenesis. This paper will focus on the role of PPARγ in the interaction between environmental factors and IBD, and it will analyze the most suitable in vitro and in vivo models available to better study these relationships.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| |
Collapse
|
38
|
Anooja V, Anju M, Athira P, Neelima, Archana K, Radhakrishnan C, Philip R. Structural, functional and phylogenetic analysis of a beta defensin gene from the Whipfin silverbiddy, Gerres filamentosus (Cuvier, 1829). GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Lei Y, Qiu R, Shen Y, Zhou Y, Cao Z, Sun Y. Molecular characterization and antibacterial immunity functional analysis of liver-expressed antimicrobial peptide 2 (LEAP-2) gene in golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:833-843. [PMID: 32891790 DOI: 10.1016/j.fsi.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is a member of the antimicrobial peptides family. Research has demonstrated that LEAP-2 contains a number of cations and plays a key role in the innate immune system of organism. In this study, we cloned and identified TroLEAP-2, from the golden pompano (Trachinotus ovatus), and analyzed its functions in vivo and in vitro. Results showed that TroLEAP-2 contains a 321 bp open reading frame (ORF) that encodes 106 putative amino acids with a molecular weight of 11.65 kDa. The mature TroLEAP-2 peptide possesses four conserved cysteine residues, which can form a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 77 and Cys 88) and 2-4 (Cys 83 and Cys 93) positions. It has a high amino acid sequence similarity (38.68%-83.02%) with the liver-expressed antimicrobial peptide -2 of other teleosts. Phylogenetic analysis showed that TroLEAP-2 clustered with the LEAP-2 of Paralichthys olivaceus and Miichthy milluy. TroLEAP-2 was most abundantly expressed in the liver, spleen, and kidney, and was significantly upregulated during Edwardsiella tarda and Streptococcus agalactiae infection. Purified recombinant TroLEAP-2 (rTroLEAP-2) could significantly inhibit the in vitro growth of E. tarda and S. agalactiae. Overexpression of TroLEAP-2 in vivo was shown to significantly reduce E. tarda and S. agalactiae colonization of tissues, whereas its knockdown resulted in an increase of bacteria in fish tissues. We also saw that TroLEAP-2 overexpression significantly improved macrophage activation in vivo. Moreover, TroLEAP-2 can induce the expression of nonspecific immune-related genes. These results showed that it might play a significant role in the innate immune system of golden pompano. In conclusion, our results indicate that TroLEAP-2 plays an important role in antibacterial immunity and provides a new avenue for protection against pathogenic infections in golden pompano.
Collapse
Affiliation(s)
- Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Yang Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Zhenjie Cao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China.
| |
Collapse
|
40
|
Zheng L, Qiu J, Chen J, Zheng WQ, Pan Y. Histopathological changes and piscidin 5-like location in infected Larimichthys crocea with parasite Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2020; 99:52-58. [PMID: 31935553 DOI: 10.1016/j.fsi.2020.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Cryptocaryon irritans infection could cause huge economic losses to the marine fish industry. Larimichthys crocea, a special economic species in China, suffered from the threat of serious infection, and L. crocea could enhance the level of piscidin 5-like to defense against the infection. This study set out to observe the main histopathological changes of some key tissues caused by infection, and determineed how an ectoparasite affected the expression of piscidin-5 like in its hosts. Pathological changes and immune response were assessed using histological and in situ hybridization (ISH) technologies. The infection induced inflammation occurring, especially in the gill where epithelium cells swell, hyperplasia, necrosis shedding adjacent to the parasites attachment sites. Infected hepatic cells grown big vacuoles in the cytoplasm. The boundary between red pulp and white pulp turned indistinct, splenic corpuscle lost the normal structure, the number and size of melano-macrophage centers increased apparently in the infected spleen. The whole structure of head kidney became loose. Immunostaining with RNA probes against piscidin 5-like showed subpopulations of mast cells (MCs) were positive. Piscidin 5-like-positive MCs existed mainly in the head kidney where they distributed around melano-macrophage center, followed in the gill located at different positions they also distributed in the margin of spleen, and randomly and sparsely existed in the liver. After being infected by C. irritans, the gill arch arose positive MCs groups, and they also migrated to spleen, while the positive staining deepen in other detected tissues. Therefore, organism enhanced the expression level through improving expression ability of positive MCs, or increasing the number of positive MCs.
Collapse
Affiliation(s)
- Libing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China.
| | - Jiayin Qiu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co., Ltd, 352103, Fujian, China
| | - Wei-Qiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co., Ltd, 352103, Fujian, China
| | - Ying Pan
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co., Ltd, 352103, Fujian, China.
| |
Collapse
|
41
|
Stefi Raju V, Sarkar P, Pachaiappan R, Paray BA, Al-Sadoon MK, Arockiaraj J. Defense involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. FISH & SHELLFISH IMMUNOLOGY 2020; 99:368-378. [PMID: 32081807 DOI: 10.1016/j.fsi.2020.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In this study, we have evaluated bioinformatics characterization and antimicrobial role of two piscidin (Pi) peptide identified from the established transcriptome of striped murrel Channa striatus (Cs). The identified CsPi cDNA contains 256 nucleotides encode a protein with 70 amino acids in length which has two antimicrobial peptides and named CsRG12 and CsLC11. The gene expression analysis with various immune stimulants indicated an induced expression pattern of CsPi. Antibiogram showed that CsRG12 and CsLC11 was active against Staphylococcus aureus ATCC 33592, a major multi-drug resistant (MDR) bacterial pathogen and Bacillus cereus ATCC 2106. The minimum inhibitory concentration (MIC) and antibiofilm assays were conducted to observe the activity of pathogenic bacteria with these derived antimicrobial peptides. Flow cytometry analysis noticed that the CsRG12 and CsLC11 disrupt the membrane formation of S. aureus and B. cereus, which was further assured by scanning electron microscopic (SEM) images that bleb formation leads to disruption around the bacterial membrane. Overall, it is reported that CsPi is involved in innate immunity as the gene expression plays a remarkable role in up and down regulation during infection. In addition, the involvement of peptides in antibiofilm formation and bacterial membrane disruption support its immune character. This study leads to a possibility for the development of therapeutics in aquaculture biotechnology.
Collapse
Affiliation(s)
- V Stefi Raju
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - R Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
42
|
Amparyup P, Charoensapsri W, Samaluka N, Chumtong P, Yocawibun P, Imjongjirak C. Transcriptome analysis identifies immune-related genes and antimicrobial peptides in Siamese fighting fish (Betta splendens). FISH & SHELLFISH IMMUNOLOGY 2020; 99:403-413. [PMID: 32081810 DOI: 10.1016/j.fsi.2020.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Siamese fighting fish (Betta splendens) is one of the most widely cultivated ornamental fish in global trade. However, transcriptomic data, which can reveal valuable genetic data for disease control and prevention, are extremely limited for this species. In this study, whole-body transcriptome sequencing of juvenile betta fish generated 4.457 GB of clean data and a total of 71,775 unigenes using the Illumina HiSeq4000 platform. These unigenes were functionally classified using 7 functional databases, yielding 45,316 NR (63.14%), 47,287 NT (65.88%), 39,105 Swiss-Prot (54.48%), 16,492 COG (22.98%), 37,694 KEGG (52.52%), 4,506 GO (6.28%), and 35,374 Interpro (49.28%) annotated unigenes. Furthermore, we also detected 13,834 SSRs distributed on 10,636 unigenes and 49,589 predicted CDSs. Based on KEGG analysis, five innate immune pathways (997 unigenes) were reported, including the NOD-like receptor signaling pathway, complement and coagulation cascades, toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and cytosolic DNA-sensing pathway. Moreover, four antimicrobial peptide (AMP) families (hepcidin, piscidin, LEAP-2, and defensins) from the betta fish transcriptome were also identified. Additionally, cDNA and genomic DNA of two β-defensins was successfully isolated from four betta fish species. RT-PCR analysis showed that BsBD1 transcripts were most abundant in the muscle and kidney and BsBD2 transcripts were most abundant in the gill. The genomic organization showed that the BD1 and BD2 genes consisted of three exons and two introns according to the GT-AG rule. Most importantly, this is the first report of the betta fish whole-body transcriptome obtained by high-throughput sequencing. Our transcriptomic data and the discovery of betta fish AMPs should promote a better understanding of molecular immunology for disease prevention for further ornamental fish aquaculture.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nusree Samaluka
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Parichat Chumtong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patchari Yocawibun
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
43
|
Harte A, Tian G, Xu Q, Secombes CJ, Wang T. Five subfamilies of β-defensin genes are present in salmonids: Evolutionary insights and expression analysis in Atlantic salmon Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103560. [PMID: 31758960 DOI: 10.1016/j.dci.2019.103560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
β-defensins (BD) are the largest family of vertebrate defensins with potent antimicrobial, chemotactic and immune-regulatory activities. Four BD genes (BD1-4) have been cloned previously in rainbow trout but none have been reported in other salmonids. In this study seven BD genes (BD1a-b, 2-4, 5a-b) are characterised in Atlantic salmon and additional BD genes (BD1b and BD5) in rainbow trout. Bioinformatic analysis revealed up to seven BD genes in the genomes of other salmonids that belong to five subfamilies (BD1-5) due to whole genome duplications. BD1-2 and BD4-5 are also present in basal teleosts but only BD1 and/or BD5 are present in advanced teleosts due to loss of one chromosomal locus. BD3 is salmonid specific. Fish BD have a unique three-coding exon structure. Fish BD are highly divergent between subfamilies but conserved within each subfamily. Atlantic salmon BD genes are differentially expressed in tissues, often with low level expression in systemic immune organs (head kidney and spleen) yet with at least one BD gene highly expressed in mucosal tissues, heart, blood and liver. This suggests an important role of these BD genes in innate immunity in mucosa, liver and blood in Atlantic salmon.
Collapse
Affiliation(s)
- Anna Harte
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Guangming Tian
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; School of Animal Science, Yangtze University, Jingzhou, 434020, PR China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, PR China
| | - Christopher John Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
44
|
Ma Y, Kim SS, Maeng CH, Kim DNJ, Lee CJ, Nam BH, Kim YO, An CM, Park JS. Key Role of Disulfide Bridges in the Antimicrobial Activity of Beta-Defensin from Olive Flounder. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
46
|
Zhou Y, Zhou QJ, Qiao Y, Chen J, Li MY. The host defense peptide β-defensin confers protection against Vibrio anguillarum in ayu, Plecoglossus altivelis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103511. [PMID: 31580833 DOI: 10.1016/j.dci.2019.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
β-defensin is a cationic host defense peptide actively participating in host innate immune response against pathogens. In teleost fish, β-defensin exhibits a diversity in genotypes and functions. Herein, a β-defensin homolog (PaBD) was identified from ayu, Plecoglossus altivelis, showing multiple tissues' upregulation against Vibrio anguillarum challenge. In vivo experiments revealed that intraperitoneal injection of chemically synthesized mature PaBD (mPaBD) increased the survival rate of V. anguillarum-infected ayu, accompanied by reduced bacterial load and decreased tissue mRNA levels of tumor necrosis factor α (PaTNF-α) and interleukin 1β (PaIL-1β). However, in vitro, mPaBD showed weak bactericidal activity against V. anguillarum. Interestingly, mPaBD enhanced phagocytosis, intracellular bacterial killing, and respiratory burst of ayu monocytes/macrophages (MO/MΦ). Moreover, it inhibited mRNA levels of PaIL-1β and PaTNF-α in MO/MФ upon V. anguillarum infection. In conclusion, PaBD protects ayu against V. anguillarum challenge not only through its direct antibacterial ability, but also through its immunomodulation in MO/MΦ.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Qian-Jin Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yan Qiao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315832, China.
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| |
Collapse
|
47
|
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020; 22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host-microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host-microbe interactions in the gut.
Collapse
Affiliation(s)
- Erika M Flores
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Anh T Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George T Eisenhoffer
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
48
|
Sher Khan R, Iqbal A, Malak R, Shehryar K, Attia S, Ahmed T, Ali Khan M, Arif M, Mii M. Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 2019; 9:192. [PMID: 31065492 PMCID: PMC6488698 DOI: 10.1007/s13205-019-1725-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/19/2019] [Indexed: 10/26/2022] Open
Abstract
Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.
Collapse
Affiliation(s)
- Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Radia Malak
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Kashmala Shehryar
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Syeda Attia
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Talaat Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Mubarak Ali Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Masahiro Mii
- Center for Environment, Health and Field Sciences, Chiba University Japan, Chiba, Japan
| |
Collapse
|
49
|
Guo X, Li J, Ran C, Wang A, Xie M, Xie Y, Ding Q, Zhang Z, Yang Y, Duan M, Zhou Z. Dietary nucleotides can directly stimulate the immunity of zebrafish independent of the intestinal microbiota. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1064-1071. [PMID: 30590163 DOI: 10.1016/j.fsi.2018.12.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
In this study, we firstly tested the effects of dietary nucleotides on the disease resistance and innate immunity of zebrafish. Further, we investigated the role of intestinal microbiota in the nucleotides-induced immunostimulatory effect by using a germ-free zebrafish model and microbiota transfer technique. Fish were fed control or nucleotides (NT)-supplemented diets (at 0.05%,0.1%, 0.15% or 0.2%, m/m) for 4 weeks, followed by immersion challenge with Aeromonas hydrophila NJ-1. The results showed that 0.1% NT group enhanced the resistance of zebrafish against A. hydrophila infection. We further observed that the relative expressions of mucin, claudin16, occlusin1, hepcidin, defensin beta-like, myeloperoxidase (Mpo), and serum amyloid A (Saa) increased in the 0.1% NT group compared with control (P < 0.05), indicating that dietary nucleotides enhanced the physical barrier and mucosal immunity in the intestine of zebrafish. Moreover, ROS level in the head kidney was significantly increased in NT fed zebrafish versus control (P < 0.05), indicating enhanced systematic immunity. Furthermore, dietary NT significantly elevated the relative expressions of mpo, saa and the ROS activity in germ-free zebrafish, while germ-free zebrafish colonized with NT-altered microbiota had no significant difference in the relative expressions of mpo, saa and the ROS activity compared with the control microbiota-colonized fish, suggesting that the immunostimulatory effect of dietary NT is mediated by direct action of NT and does not involve the microbiota. Consistently, dietary NT can protect germ-free zebrafish from pathogenic infection, whereas germ-free zebrafish colonized with NT microbiota showed no difference in disease resistance compared with control microbiota colonized counterparts. Together, these results indicated that the immunostimulatory and disease protection effect of dietary nucleotides in zebrafish was mediated by direct action of the nucleotides, and does not involve the intestinal microbiota.
Collapse
Affiliation(s)
- Xiaoze Guo
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China; Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jie Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Anran Wang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
50
|
Zhou Y, Lei Y, Cao Z, Chen X, Sun Y, Xu Y, Guo W, Wang S, Liu C. A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:105-115. [PMID: 30448509 DOI: 10.1016/j.dci.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 05/06/2023]
Abstract
Defensins are a group of small cationic and cysteine-rich peptides that are important components of the innate immune system. However, studies on defensins in teleosts are very limited, particularly studies on defensin functions through in vivo assays. In this study, we cloned and identified one β-defensin (TroBD) the golden pompano, Trachinotus ovatus, and analyzed the functions of TroBD in both in vivo and in vitro assays. TroBD is composed of 63 amino acids and shares high sequence identities (27.27-98.41%) with known β-defensins of other teleosts. The protein has a signature motif of six conserved cysteine residues within the mature peptide. The expression of TroBD was most abundant in the head kidney and spleen and was significantly upregulated following infection by Vibrio harveyi and viral nervous necrosis virus (VNNV). Purified recombinant TroBD (rTroBD) inhibited the growth of V. harveyi, and its antimicrobial activity was influenced by salt concentration. TroBD was found to have a chemotactic effect on macrophages in vitro. The results of an in vivo study demonstrated that TroBD overexpression/knockdown in T. ovatus significantly reduced/increased bacterial colonization or viral copy numbers in tissues. Taken together, these results indicate that TroBD plays a significant role in both antibacterial and antiviral immunity and provide new avenues for protection against pathogen infection in the aquaculture industry.
Collapse
Affiliation(s)
- Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Yue Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Weiliang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Shifeng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| |
Collapse
|