1
|
Dumitrescu M, Trusca VG, Savu L, Stancu IG, Ratiu AC, Simionescu M, Gafencu AV. Adenovirus-Mediated FasL Minigene Transfer Endows Transduced Cells with Killer Potential. Int J Mol Sci 2020; 21:ijms21176011. [PMID: 32825521 PMCID: PMC7504687 DOI: 10.3390/ijms21176011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Fas ligand (First apoptosis signal ligand, FasL, also known as CD95L) is the common executioner of apoptosis within the tumor necrosis factor (TNF) superfamily. We aimed to induce functional FasL expression in transduced cells using an adenovirus vector, which has the advantage of strong and transient induction of the gene included in the adenoviral genome. Here, we report that the adenovirus carrying a truncated FasL gene, named FasL minigene, encoding the full-length FasL protein (Ad-gFasL) is more efficient than the adenovirus carrying FasL cDNA (Ad-cFasL) in the induction of FasL expression in transduced cells. FasL minigene (2887 bp) lacking the second intron and a part of the 3'-UTR was created to reduce the gene length due to the size limitation of the adenoviral genome. The results show that, in transduced hepatocytes, strong expression of mRNA FasL appeared after 10 h for Ad-gFasL, while for Ad-cFasL, a faint expression appeared after 16 h. For Ad-gFasL, the protein expression was noticed starting with 0.5 transfection units (TU)/cell, while for Ad-cFasL, it could not be revealed. FasL-expressing endothelial cells induced apoptosis of A20 cells in co-culture experiments. FasL-expressing cells may be exploitable in various autoimmune diseases such as graft-versus-host disease, chronic colitis, and type I diabetes.
Collapse
Affiliation(s)
- Madalina Dumitrescu
- Gene Regulation and Molecular Therapies Laboratory, Institute of Cellular Biology and Pathology “N. Simionescu”, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (M.D.); (V.G.T.); (M.S.)
| | - Violeta Georgeta Trusca
- Gene Regulation and Molecular Therapies Laboratory, Institute of Cellular Biology and Pathology “N. Simionescu”, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (M.D.); (V.G.T.); (M.S.)
| | - Lorand Savu
- Molecular Biology Department, Genetic Lab, 9 Căpitan Nicolae Drossu Street, 012071 Bucharest, Romania; (L.S.); (I.G.S.); (A.C.R.)
| | - Ioana Georgeta Stancu
- Molecular Biology Department, Genetic Lab, 9 Căpitan Nicolae Drossu Street, 012071 Bucharest, Romania; (L.S.); (I.G.S.); (A.C.R.)
| | - Attila Cristian Ratiu
- Molecular Biology Department, Genetic Lab, 9 Căpitan Nicolae Drossu Street, 012071 Bucharest, Romania; (L.S.); (I.G.S.); (A.C.R.)
| | - Maya Simionescu
- Gene Regulation and Molecular Therapies Laboratory, Institute of Cellular Biology and Pathology “N. Simionescu”, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (M.D.); (V.G.T.); (M.S.)
| | - Anca Violeta Gafencu
- Gene Regulation and Molecular Therapies Laboratory, Institute of Cellular Biology and Pathology “N. Simionescu”, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (M.D.); (V.G.T.); (M.S.)
- Correspondence: ; Tel.: +40-21-319-2327 (ext. 222)
| |
Collapse
|
2
|
Muraki M. Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
3
|
Localized immune tolerance from FasL-functionalized PLG scaffolds. Biomaterials 2018; 192:271-281. [PMID: 30458362 DOI: 10.1016/j.biomaterials.2018.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022]
Abstract
Intraportal allogeneic islet transplantation has been demonstrated as a potential therapy for type 1 diabetes (T1D). The placement of islets into the liver and chronic immunosuppression to control rejection are two major limitations of islet transplantation. We hypothesize that localized immunomodulation with a novel form of FasL chimeric with streptavidin, SA-FasL, can provide protection and long-term function of islets at an extrahepatic site in the absence of chronic immunosuppression. Allogeneic islets modified with biotin and engineered to transiently display SA-FasL on their surface showed sustained survival following transplantation on microporous scaffolds into the peritoneal fat in combination with a short course (15 days) of rapamycin treatment. The challenges with modifying islets for clinical translation motivated the modification of scaffolds with SA-FasL as an off-the-shelf product. Poly (lactide-co-glycolide) (PLG) was conjugated with biotin and fabricated into particles and subsequently formed into microporous scaffolds to allow for rapid and efficient conjugation with SA-FasL. Biotinylated particles and scaffolds efficiently bound SA-FasL and induced apoptosis in cells expressing Fas receptor (FasR). Scaffolds functionalized with SA-FasL were subsequently seeded with allogeneic islets and transplanted into the peritoneal fat under the short-course of rapamycin treatment. Scaffolds modified with SA-FasL had robust engraftment of the transplanted islets that restored normoglycemia for 200 days. Transplantation without rapamycin or without SA-FasL did not support long-term survival and function. This work demonstrates that scaffolds functionalized with SA-FasL support allogeneic islet engraftment and long-term survival and function in an extrahepatic site in the absence of chronic immunosuppression with significant potential for clinical translation.
Collapse
|
4
|
Muraki M. Development of expression systems for the production of recombinant human Fas ligand extracellular domain derivatives using <em>Pichia pastoris</em> and preparation of the conjugates by site-specific chemical modifications: A review. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.1.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Kaminitz A, Mizrahi K, Ash S, Ben-Nun A, Askenasy N. Stable activity of diabetogenic cells with age in NOD mice: dynamics of reconstitution and adoptive diabetes transfer in immunocompromised mice. Immunology 2014; 142:465-73. [PMID: 24601987 DOI: 10.1111/imm.12277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/23/2022] Open
Abstract
The non-obese diabetic (NOD) mouse is a prevalent disease model of type 1 diabetes. Immune aberrations that cause and propagate autoimmune insulitis in these mice are being continually debated, with evidence supporting both dominance of effector cells and insufficiency of suppressor mechanisms. In this study we assessed the behaviour of NOD lymphocytes under extreme expansion conditions using adoptive transfer into immunocompromised NOD.SCID (severe combined immunodeficiency) mice. CD4(+) CD25(+) T cells do not cause islet inflammation, whereas splenocytes and CD4(+) CD25(-) T cells induce pancreatic inflammation and hyperglycaemia in 80-100% of the NOD.SCID recipients. Adoptively transferred effector T cells migrate to the lymphoid organs and pancreas, proliferate, are activated in the target organ in situ and initiate inflammatory insulitis. Reconstitution of all components of the CD4(+) subset emphasizes the plastic capacity of different cell types to adopt effector and suppressor phenotypes. Furthermore, similar immune profiles of diabetic and euglycaemic NOD.SCID recipients demonstrate dissociation between fractional expression of CD25 and FoxP3 and the severity of insulitis. There were no evident and consistent differences in diabetogenic activity and immune reconstituting activity of T cells from pre-diabetic (11 weeks) and new onset diabetic NOD females. Similarities in immune phenotypes and variable distribution of effector and suppressor subsets in various stages of inflammation commend caution in interpretation of quantitative and qualitative aberrations as markers of disease severity in adoptive transfer experiments.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Centre for Stem Cell Research, Schneider Children's Medical Centre of Israel, Petach Tikva, Israel; Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
6
|
Yolcu ES, Zhao H, Shirwan H. Immunomodulation with SA-FasL protein as an effective means of preventing islet allograft rejection in chemically diabetic NOD mice. Transplant Proc 2014; 45:1889-91. [PMID: 23769064 DOI: 10.1016/j.transproceed.2013.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/03/2013] [Indexed: 01/09/2023]
Abstract
Allogeneic islet grafts are subject to rejection by both auto- and alloimmune responses when transplanted into diabetic individuals. T cells play a critical role in the initiation and perpetuation of both autoimmunity and allograft rejection. T cells up-regulate Fas and become sensitive to FasL-mediated killing following antigenic stimulation. Therefore, we tested if immunomodulation with an apoptotic form of FasL chimeric with streptavidin (SA-FasL) is effective in preventing the rejection of allogeneic C57BL/6 islet grafts in chemically diabetic NOD mice. C57BL/6 splenocytes and pancreatic islets were biotinylated and engineered to display the SA-FasL protein on their surface. Female NOD mice (6-7 weeks old) were treated with streptozotocin to induce diabetes and transplanted 5 days later with C57BL/6 islets engineered with SA-FasL in conjunction with transient treatment with rapamycin (3.0 mg/kg daily for days 0-19). Graft recipients were also systemically immunomodulated by intraperitoneal injection of 5 × 10(6) donor SA-FasL-engineered splenocytes on days 1, 3, and 5 after islet transplantation. This regimen resulted in the survival of all allogeneic islet grafts for the 250-day observation period, compared with a mean survival time (MST) of 14.2 ± 3.9 days for the control group. The survival effect was SA-FasL specific, with all NOD mice transplanted with control streptavidin protein-engineered islet grafts and treated with SA-engineered splenocytes under transient cover of rapamycin rejecting their grafts with an MST of 39.8 ± 8.5 days (P < .01). Taken together, these data demonstrate that immunomodulation with SA-FasL-engineered allogeneic islet grafts and splenocytes is effective in overcoming rejection in female NOD mice with preexisting autoimmunity with important clinical implications.
Collapse
Affiliation(s)
- E S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.
| | | | | |
Collapse
|
7
|
Enhanced killing activity of regulatory T cells ameliorates inflammation and autoimmunity. Autoimmun Rev 2013; 12:972-5. [PMID: 23684702 DOI: 10.1016/j.autrev.2013.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 12/25/2022]
Abstract
Regulatory T cells (Treg) are pivotal suppressor elements in immune homeostasis with potential therapeutic applications in inflammatory and autoimmune disorders. Using Treg as vehicles for targeted immunomodulation, a short-lived Fas-ligand (FasL) chimeric protein (killer Treg) was found efficient in preventing the progression of autoimmune insulitis in NOD mice, and amelioration of chronic colitis and graft versus host disease. The main mechanisms of disease suppression by killer Treg are: a) in the acute phase induction of apoptosis in effector cells at the site of inflammation decreases the pathogenic burden, and b) persistent increase in FoxP3⁺ Treg with variable CD25 co-expression induced by FasL sustains disease suppression over extended periods of time. Reduced sensitivity of Treg to receptor-mediated apoptosis under inflammatory conditions makes them optimal vehicles for targeted immunotherapy using apoptotic agents.
Collapse
|
8
|
Kaminitz A, Yolcu ES, Mizrahi K, Shirwan H, Askenasy N. Killer Treg cells ameliorate inflammatory insulitis in non-obese diabetic mice through local and systemic immunomodulation. Int Immunol 2013; 25:485-94. [DOI: 10.1093/intimm/dxt016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Askenasy N, Mizrahi K, Ash S, Askenasy EM, Yaniv I, Stein J. Depletion of Naïve Lymphocytes with Fas Ligand Ex Vivo Prevents Graft-versus-Host Disease without Impairing T Cell Support of Engraftment or Graft-versus-Tumor Activity. Biol Blood Marrow Transplant 2013; 19:185-95. [DOI: 10.1016/j.bbmt.2012.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 10/08/2012] [Indexed: 01/15/2023]
|
10
|
Yolcu ES, Zhao H, Bandura-Morgan L, Lacelle C, Woodward KB, Askenasy N, Shirwan H. Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5901-9. [PMID: 22068235 PMCID: PMC3232043 DOI: 10.4049/jimmunol.1003266] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allogeneic islet transplantation is an important therapeutic approach for the treatment of type 1 diabetes. Clinical application of this approach, however, is severely curtailed by allograft rejection primarily initiated by pathogenic effector T cells regardless of chronic use of immunosuppression. Given the role of Fas-mediated signaling in regulating effector T cell responses, we tested if pancreatic islets can be engineered ex vivo to display on their surface an apoptotic form of Fas ligand protein chimeric with streptavidin (SA-FasL) and whether such engineered islets induce tolerance in allogeneic hosts. Islets were modified with biotin following efficient engineering with SA-FasL protein that persisted on the surface of islets for >1 wk in vitro. SA-FasL-engineered islet grafts established euglycemia in chemically diabetic syngeneic mice indefinitely, demonstrating functionality and lack of acute toxicity. Most importantly, the transplantation of SA-FasL-engineered BALB/c islet grafts in conjunction with a short course of rapamycin treatment resulted in robust localized tolerance in 100% of C57BL/6 recipients. Tolerance was initiated and maintained by CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells, as their depletion early during tolerance induction or late after established tolerance resulted in prompt graft rejection. Furthermore, Treg cells sorted from graft-draining lymph nodes, but not spleen, of long-term graft recipients prevented the rejection of unmodified allogeneic islets in an adoptive transfer model, further confirming the Treg role in established tolerance. Engineering islets ex vivo in a rapid and efficient manner to display on their surface immunomodulatory proteins represents a novel, safe, and clinically applicable approach with important implications for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Hong Zhao
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Laura Bandura-Morgan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Chantale Lacelle
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Kyle B Woodward
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| | - Nadir Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation, Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Israel
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, KY 40202
| |
Collapse
|
11
|
Kaminitz A, Yolcu ES, Stein J, Yaniv I, Shirwan H, Askenasy N. Killer Treg restore immune homeostasis and suppress autoimmune diabetes in prediabetic NOD mice. J Autoimmun 2011; 37:39-47. [DOI: 10.1016/j.jaut.2011.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 01/13/2023]
|
12
|
Kaminitz A, Yolcu ES, Askenasy EM, Stein J, Yaniv I, Shirwan H, Askenasy N. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice. PLoS One 2011; 6:e21630. [PMID: 21738739 PMCID: PMC3124542 DOI: 10.1371/journal.pone.0021630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/03/2011] [Indexed: 12/23/2022] Open
Abstract
Background Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. Principal Findings Both effector (CD25−, FoxP3−) and suppressor (CD25+, FoxP3+) CD4+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP tranegenes. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4+CD25− T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. Conclusion These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
13
|
Yarkoni S, Kaminitz A, Sagiv Y, Askenasy N. Targeting of IL-2 receptor with a caspase fusion protein disrupts autoimmunity in prediabetic and diabetic NOD mice. Diabetologia 2010; 53:356-68. [PMID: 19946662 DOI: 10.1007/s00125-009-1604-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Interruption of IL-2 signalling is an attractive therapeutic target in autoimmune disorders. In this study we evaluated the effect of a fusion protein composed of IL-2 and caspase-3 (IL2-cas) on NOD mice, as compared with disease induction by cyclophosphamide. METHODS IL2-cas was assessed in NOD mice at various ages and in conjunction with cyclophosphamide administration. The effect of IL2-cas on diabetogenic cells was evaluated in adoptive transfer experiments and in cell suspension in vitro. RESULTS IL2-cas induced apoptosis in T cells expressing the alpha chain of the IL-2 receptor (cluster of differentiation [CD]25) in vitro, with superior survival of T cells expressing CD4 and forkhead box P3 (FOXP3). The fusion protein decreased mixed lymphocyte reactivity, and pretreatment with IL2-cas decreased the efficacy of adoptive transfer of diabetes into NOD severe combined immunodeficiency mice. Administration of one dose of IL2-cas decreased the incidence of diabetes in NOD mice, showing a superior beneficial effect when administered at young age, and effectively blocked induction of hyperglycaemia by cyclophosphamide, reducing the severity of islet inflammation. Administration of IL2-cas caused an acute increase in CD25(-)FOXP3(+) T cells in the lymph nodes, pancreas and thymus in NOD mice, with similar effects in wild-type mice. Administration of IL2-cas after onset of hyperglycaemia resulted in superior survival. CONCLUSIONS/INTERPRETATION Targeted elimination of cells expressing the IL-2 receptor by this fusion protein disrupts the autoimmune pathogenesis in prediabetic and diabetic NOD mice, despite depletion of CD25(+) regulatory T cells. Furthermore, this particular fusion protein is permissive to the development of FOXP3(+) T cells that might contribute to protracted protection from the progression of insulitis and overt hyperglycaemia.
Collapse
Affiliation(s)
- S Yarkoni
- GASR Biotechnology, Kfar-Saba 44395, Israel
| | | | | | | |
Collapse
|
14
|
ProtEx technology for the generation of novel therapeutic cancer vaccines. Exp Mol Pathol 2009; 86:198-207. [PMID: 19454266 DOI: 10.1016/j.yexmp.2009.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Indexed: 01/15/2023]
Abstract
Therapeutic vaccines present an attractive alternative to conventional treatments for cancer. However, tumors have evolved various immune evasion mechanisms to modulate innate, adaptive, and regulatory immunity for survival. Therefore, successful vaccine formulations may require a non-toxic immunomodulator or adjuvant that not only induces/stimulates innate and adaptive tumor-specific immune responses, but also overcomes immune evasion mechanisms. Given the paramount role costimulation plays in modulating innate, adaptive, and regulatory immune responses, costimulatory ligands may serve as effective immunomodulating components of therapeutic cancer vaccines. Our laboratory has developed a novel technology designated as ProtEx that allows for the generation of recombinant costimulatory ligands with potent immunomodulatory activities and the display of these molecules on the cell surface in a rapid and efficient manner as a practical and safe alternative to gene therapy for immunomodulation. Importantly, the costimulatory ligands not only function when displayed on tumor cells, but also as soluble proteins that can be used as immunomodulatory components of conventional vaccine formulations containing tumor-associated antigens (TAAs). We herein discuss the application of the ProtEx technology to the development of effective cell-based as well as cell-free conventional therapeutic cancer vaccines.
Collapse
|
15
|
McGargill MA, Choy C, Wen BG, Hedrick SM. Drak2 regulates the survival of activated T cells and is required for organ-specific autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2008; 181:7593-605. [PMID: 19017948 DOI: 10.4049/jimmunol.181.11.7593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drak2 is a serine/threonine kinase expressed in T and B cells. The absence of Drak2 renders T cells hypersensitive to suboptimal stimulation, yet Drak2(-/-) mice are enigmatically resistant to experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. We show in this study that Drak2(-/-) mice were also completely resistant to type 1 diabetes when bred to the NOD strain of mice that spontaneously develop autoimmune diabetes. However, there was not a generalized suppression of the immune system, because Drak2(-/-) mice remained susceptible to other models of autoimmunity. Adoptive transfer experiments revealed that resistance to disease was intrinsic to the T cells and was due to a loss of T cell survival under conditions of chronic autoimmune stimulation. Importantly, the absence of Drak2 did not alter the survival of naive T cells, memory T cells, or T cells responding to an acute viral infection. These experiments reveal a distinction between the immune response to persistent self-encoded molecules and transiently present infectious agents. We present a model whereby T cell survival depends on a balance of TCR and costimulatory signals to explain how the absence of Drak2 affects autoimmune disease without generalized suppression of the immune system.
Collapse
Affiliation(s)
- Maureen A McGargill
- Department of Cellular and Molecular Medicine, Division of Biological Sciences, Molecular Biology Section, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
16
|
Yolcu ES, Ash S, Kaminitz A, Sagiv Y, Askenasy N, Yarkoni S. Apoptosis as a mechanism of T‐regulatory cell homeostasis and suppression. Immunol Cell Biol 2008; 86:650-8. [DOI: 10.1038/icb.2008.62] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Esma S Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of LouisvilleLouisvilleKYUSA
| | - Shifra Ash
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Ayelet Kaminitz
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | | | - Nadir Askenasy
- Frankel Laboratory for Experimental Bone Marrow Transplantation, Center for Stem Cell Research, Schneider Children's Medical Center of IsraelPetach TikvaIsrael
| | | |
Collapse
|
17
|
Yolcu ES, Gu X, Lacelle C, Zhao H, Bandura-Morgan L, Askenasy N, Shirwan H. Induction of tolerance to cardiac allografts using donor splenocytes engineered to display on their surface an exogenous fas ligand protein. THE JOURNAL OF IMMUNOLOGY 2008; 181:931-9. [PMID: 18606644 DOI: 10.4049/jimmunol.181.2.931] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The critical role played by Fas ligand (FasL) in immune homeostasis renders this molecule an attractive target for immunomodulation to achieve tolerance to auto- and transplantation Ags. Immunomodulation with genetically modified cells expressing FasL was shown to induce tolerance to alloantigens. However, genetic modification of primary cells in a rapid, efficient, and clinically applicable manner proved challenging. Therefore, we tested the efficacy of donor splenocytes rapidly and efficiently engineered to display on their surface a chimeric form of FasL protein (SA-FasL) for tolerance induction to cardiac allografts. The i.p. injection of ACI rats with Wistar-Furth rat splenocytes displaying SA-FasL on their surface resulted in tolerance to donor, but not F344 third-party cardiac allografts. Tolerance was associated with apoptosis of donor reactive T effector cells and induction/expansion of CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells. Treg cells played a critical role in the observed tolerance as adoptive transfer of sorted Treg cells from long-term graft recipients into naive unmanipulated ACI rats resulted in indefinite survival of secondary Wistar-Furth grafts. Immunomodulation with allogeneic cells rapidly and efficiently engineered to display on their surface SA-FasL protein provides an effective and clinically applicable means of cell-based therapy with potential application to regenerative medicine, transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Esma S Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Tarrus M, van der Sloot AM, Temming K, Lacombe M, Opdam F, Quax WJ, Molema G, Poelstra K, Kok RJ. RGD-avidin-biotin pretargeting to alpha v beta 3 integrin enhances the proapoptotic activity of TNF alpha related apoptosis inducing ligand (TRAIL). Apoptosis 2008; 13:225-35. [PMID: 18071905 PMCID: PMC2217618 DOI: 10.1007/s10495-007-0166-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant TNF-related apoptosis-inducing ligand (TRAIL) is considered a powerful and selective inducer of tumor cell death. We hypothesize that TRAIL's potential as anticancer agent can be enhanced further by promoting its accumulation in tumor tissue. For this purpose, we developed TRAIL complexes that bind to angiogenic endothelial cells. We employed an avidin-biotin pretargeting approach, in which biotinylated TRAIL interacted with RGD-equipped avidin. The assembled complexes killed tumor cells (Jurkat T cells) via apoptosis induction. Furthermore, we demonstrated that the association of the RGD-avidin-TRAIL complex onto endothelial cells enhanced the tumor cell killing activity. Endothelial cells were not killed by TRAIL nor its derived complexes. Our approach can facilitate the enrichment of TRAIL onto angiogenic blood vessels, which may enhance intratumoral accumulation. Furthermore, it offers a versatile technology for the complexation of targeting ligands with therapeutic recombinant proteins and by this a novel way to enhance their specificity and activity.
Collapse
Affiliation(s)
- Marc Tarrus
- Department of Pharmacokinetics and Drug Delivery, Groningen University Institute for Drug Exploration, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|