1
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Wang H, Zhang Y, Wan X, Li Z, Bai O. In the era of targeted therapy and immunotherapy: advances in the treatment of large B-cell lymphoma of immune-privileged sites. Front Immunol 2025; 16:1547377. [PMID: 40292282 PMCID: PMC12023281 DOI: 10.3389/fimmu.2025.1547377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Primary large B-cell lymphomas of immune-privileged sites (IP-LBCLs) include primary central nervous system large B-cell lymphoma (PCNSL), primary vitreoretinal large B-cell lymphoma (PVRL), and primary testicular large B-cell lymphoma (PTL). These tumors not only have a unique anatomical distribution but also exhibit specific biological and clinical characteristics. Given the high biological overlap between intravascular large B-cell lymphoma (IVLBCL) and IP-LBCLs, and the fact that IVLBCL is confined to the intravascular microenvironment, IVLBCL is currently included in the category of IP-LBCLs. IP-LBCLs are associated with suboptimal prognosis. However, advancements in biomarker detection technologies have facilitated novel therapeutic approaches for this disease entity. This review aims to summarize and analyze the latest research progress in IP-LBCLs, with a focus on new treatment strategies in the era of targeted therapy and immunotherapy. It is intended to further understand the biological characteristics, treatment, and latest advancements of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, ChangChun, Jilin, China
| |
Collapse
|
3
|
Jayasinghe M, Rashidi F, Gadelmawla AF, Pitton Rissardo J, Rashidi M, Elendu CC, Fornari Caprara AL, Khalil I, Hmedat KI, Atef M, Moharam H, Prathiraja O. Neurological Manifestations of Systemic Lupus Erythematosus: A Comprehensive Review. Cureus 2025; 17:e79569. [PMID: 40151747 PMCID: PMC11947500 DOI: 10.7759/cureus.79569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological involvement in systemic lupus erythematosus (SLE) poses significant challenges, impacting patient morbidity, mortality, and quality of life. This narrative review provides an update on the pathogenesis, clinical presentation, diagnosis, and management of neurological SLE. The multifaceted pathophysiology involves immune-mediated and vascular mechanisms such as autoantibodies, neuroinflammation, complement dysregulation, and genetic factors. Neuropsychiatric SLE (NPSLE) manifests in a variety of ways, including cognitive dysfunction, mood disorders, psychosis, cerebrovascular disease, demyelinating syndromes, and neuropathies. Diagnosing neurological SLE is complicated by nonspecific and fluctuating symptoms, requiring comprehensive neurological examination, neuroimaging, autoantibody profiling, and cerebrospinal fluid analysis. Current management strategies include corticosteroids, immunosuppressive agents, and emerging biologics targeting specific immune pathways. Managing neuropsychiatric symptoms, seizures, and neuropathic pain remains a complex aspect of treatment. This review highlights the importance of early recognition and tailored management approaches to improve patient outcomes in neurological SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ibrahim Khalil
- Neurological Surgery, Faculty of Medicine, Alexandria University, Alexandria, EGY
| | - Khalil I Hmedat
- Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, EGY
| | | | | | | |
Collapse
|
4
|
Alexandrova-Watanabe A, Abadjieva E, Gartcheva L, Langari A, Ivanova M, Guenova M, Tiankov T, Strijkova V, Krumova S, Todinova S. The Impact of Targeted Therapies on Red Blood Cell Aggregation in Patients with Chronic Lymphocytic Leukemia Evaluated Using Software Image Flow Analysis. MICROMACHINES 2025; 16:95. [PMID: 39858750 PMCID: PMC11767778 DOI: 10.3390/mi16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Chronic lymphocytic leukemia (CLL), the most common type of leukemia, remains incurable with conventional therapy. Despite advances in therapies targeting Bruton's tyrosine kinase and anti-apoptotic protein BCL-2, little is known about their effect on red blood cell (RBC) aggregation in blood flow. In this study, we applied a microfluidic device and a newly developed Software Image Flow Analysis to assess the extent of RBC aggregation in CLL patients and to elucidate the hemorheological effects of the commonly applied therapeutics Obinutuzumab/Venetoclax and Ibrutinib. The results revealed that, in RBC samples from untreated CLL patients, complex 3D clusters of large RBC aggregates are formed, and their number is significantly increased compared to healthy control samples. The application of the Obinutuzumab/Venetoclax combination did not affect this aspect of RBCs' rheological behavior. In contrast, targeted therapy with Ibrutinib preserves the aggregation state of CLL RBCs to levels seen in healthy controls, demonstrating that Ibrutinib mitigates the alterations in the rheological properties of RBCs associated with CLL. Our findings highlight the alterations in RBC aggregation in CLL and the impact of different targeted therapies on RBCs' rheological properties, which is critical for predicting the potential complications and side effects of CLL treatments, particularly concerning blood flow dynamics.
Collapse
Affiliation(s)
- Anika Alexandrova-Watanabe
- Institute of Mechanics, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
| | - Emilia Abadjieva
- Institute of Mechanics, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
| | - Lidia Gartcheva
- National Specialized Hospital for Active Treating of Hematological Diseases, Zdrave Str. 2, 1756 Sofia, Bulgaria; (L.G.); (M.G.)
| | - Ariana Langari
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (M.I.); (S.K.)
| | - Miroslava Ivanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (M.I.); (S.K.)
| | - Margarita Guenova
- National Specialized Hospital for Active Treating of Hematological Diseases, Zdrave Str. 2, 1756 Sofia, Bulgaria; (L.G.); (M.G.)
| | - Tihomir Tiankov
- Institute of Mechanics, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
| | - Velichka Strijkova
- Institute of Optical Materials and Technologies “Acad. Yordan Malinovski”, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 109, 1113 Sofia, Bulgaria;
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (M.I.); (S.K.)
| | - Svetla Todinova
- Center of Competence at Mechatronics and Clean Technologies—MIRACle, “Acad. G. Bontchev” Str. 4, 1113 Sofia, Bulgaria;
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (M.I.); (S.K.)
| |
Collapse
|
5
|
Nguyen OTP, Lara S, Ferro G, Peipp M, Kleinau S. Rituximab-IgG2 is a phagocytic enhancer in antibody-based immunotherapy of B-cell lymphoma by altering CD47 expression. Front Immunol 2024; 15:1483617. [PMID: 39712032 PMCID: PMC11659266 DOI: 10.3389/fimmu.2024.1483617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) by monocytes and macrophages contributes significantly to the efficacy of many therapeutic monoclonal antibodies (mAbs), including anti-CD20 rituximab (RTX) targeting CD20+ B-cell non-Hodgkin lymphomas (NHL). However, ADCP is constrained by various immune checkpoints, notably the anti-phagocytic CD47 molecule, necessitating strategies to overcome this resistance. We have previously shown that the IgG2 isotype of RTX induces CD20-mediated apoptosis in B-cell lymphoma cells and, when combined with RTX-IgG1 or RTX-IgG3 mAbs, can significantly enhance Fc receptor-mediated phagocytosis. Here, we report that the apoptotic effect of RTX-IgG2 on lymphoma cells contributes to changes in the tumor cell's CD47 profile by reducing its overall expression and altering its surface distribution. Furthermore, when RTX-IgG2 is combined with other lymphoma-targeting mAbs, such as anti-CD59 or anti-PD-L1, it significantly enhances the ADCP of lymphoma cells compared to single mAb treatment. In summary, RTX-IgG2 acts as a potent phagocytic enhancer by promoting Fc-receptor mediated phagocytosis through apoptosis and reduction of CD47 in CD20+ malignant B-cells. RTX-IgG2 represents a valuable therapeutic component in enhancing the effectiveness of different mAbs targeting B-cell NHL.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Giovanni Ferro
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Kimotho J, Sein Y, Sayed S, Shah R, Mwai K, Saleh M, Wanjiku P, Mwacharo J, Nyagwange J, Karanja H, Kutima B, Gitonga JN, Mugo D, Karanu A, Moranga L, Oluoch V, Shah J, Mutiso J, Mburu A, Nneka Z, Betti P, Usyu Mutinda W, Issak Abdi A, Bejon P, Isabella Ochola-Oyier L, M.Warimwe G, Nduati EW, M. Ndungu F. Kinetics of naturally induced binding and neutralising anti-SARS-CoV-2 antibody levels and potencies among SARS-CoV-2 infected Kenyans with diverse grades of COVID-19 severity: an observational study. Wellcome Open Res 2024; 8:350. [PMID: 39640868 PMCID: PMC11617823 DOI: 10.12688/wellcomeopenres.19414.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Given the low levels of coronavirus disease 2019 (COVID-19) vaccine coverage in sub-Saharan Africa (sSA), despite high levels of natural severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) exposures, strategies for extending the breadth and longevity of naturally acquired immunity are warranted. Designing such strategies will require a good understanding of naturally acquired immunity. Methods We measured whole-spike immunoglobulin G (IgG) and spike-receptor binding domain (RBD) total immunoglobulins (Igs) on 585 plasma samples collected longitudinally over five successive time points within six months of COVID-19 diagnosis in 309 COVID-19 patients. We measured antibody-neutralising potency against the wild-type (Wuhan) SARS-CoV-2 pseudovirus in a subset of 51 patients over three successive time points. Binding and neutralising antibody levels and potencies were then tested for correlations with COVID-19 severities. Results Rates of seroconversion increased from day 0 (day of PCR testing) to day 180 (six months) (63.6% to 100 %) and (69.3 % to 97%) for anti-spike-IgG and anti-spike-RBD binding Igs, respectively. Levels of these binding antibodies peaked at day 28 (p<0.01) and were subsequently maintained for six months without significant decay (p>0.99). Similarly, antibody-neutralising potencies peaked at day 28 (p<0.01) but declined by three-fold, six months after COVID-19 diagnosis (p<0.01). Binding antibody levels were highly correlated with neutralising antibody potencies at all the time points analysed (r>0.60, p<0.01). Levels and potencies of binding and neutralising antibodies increased with disease severity. Conclusions Most COVID-19 patients generated SARS-CoV-2 specific binding antibodies that remained stable in the first six months of infection. However, the respective neutralising antibodies decayed three-fold by month-six of COVID-19 diagnosis suggesting that they are short-lived, consistent with what has been observed elsewhere in the world. Thus, regular vaccination boosters are required to sustain the high levels of anti-SARS-CoV-2 naturally acquired neutralising antibody potencies in our population.
Collapse
Affiliation(s)
- John Kimotho
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
| | - Yiakon Sein
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Shahin Sayed
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Reena Shah
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Mansoor Saleh
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Perpetual Wanjiku
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Jedidah Mwacharo
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - James Nyagwange
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Henry Karanja
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Bernadette Kutima
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - John N. Gitonga
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Ann Karanu
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Linda Moranga
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Viviane Oluoch
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Jasmit Shah
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Julius Mutiso
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Alfred Mburu
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Zaitun Nneka
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Peter Betti
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | | | - Abdirahman Issak Abdi
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - George M.Warimwe
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eunice W. Nduati
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francis M. Ndungu
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
van Stigt AC, Gualtiero G, Cinetto F, Dalm VA, IJspeert H, Muscianisi F. The biological basis for current treatment strategies for granulomatous disease in common variable immunodeficiency. Curr Opin Allergy Clin Immunol 2024; 24:479-487. [PMID: 39431514 PMCID: PMC11537477 DOI: 10.1097/aci.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
PURPOSE OF REVIEW The pathogenesis of granulomatous disease in common variable immunodeficiency (CVID) is still largely unknown, which hampers effective treatment. This review describes the current knowledge on the pathogenesis of granuloma formation in CVID and the biological basis of the current treatment options. RECENT FINDINGS Histological analysis shows that T and B cells are abundantly present in the granulomas that are less well organized and are frequently associated with lymphoid hyperplasia. Increased presence of activation markers such as soluble IL-2 receptor (sIL-2R) and IFN-ɣ, suggest increased Th1-cell activity. Moreover, B-cell abnormalities are prominent in CVID, with elevated IgM, BAFF, and CD21low B cells correlating with granulomatous disease progression. Innate immune alterations, as M2 macrophages and neutrophil dysregulation, indicate chronic inflammation. Therapeutic regimens include glucocorticoids, DMARDs, and biologicals like rituximab. SUMMARY Our review links the biological context of CVID with granulomatous disease or GLILD to currently prescribed therapies and potential targeted treatments.
Collapse
Affiliation(s)
- Astrid C. van Stigt
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giulia Gualtiero
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED)
- Veneto Institute of Molecular Medicine (VIMM)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Liu J, Zhao Y, Zhao H. Chimeric antigen receptor T-cell therapy in autoimmune diseases. Front Immunol 2024; 15:1492552. [PMID: 39628482 PMCID: PMC11611814 DOI: 10.3389/fimmu.2024.1492552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The administration of T cells that have been modified to carry chimeric antigen receptors (CARs) aimed at B cells has been an effective strategy in treating B cell malignancies. This breakthrough has spurred the creation of CAR T cells intended to specifically reduce or alter the faulty immune responses associated with autoimmune disorders. Early positive outcomes from clinical trials involving CAR T cells that target the B cell protein CD19 in patients suffering from autoimmune diseases driven by B cells have been reported. Additional strategies are being developed to broaden the use of CAR T cell therapy and enhance its safety in autoimmune conditions. These include employing chimeric autoantireceptors (CAAR) to specifically eliminate B cells that are reactive to autoantigens, and using regulatory T cells (Tregs) engineered to carry antigen-specific CARs for precise immune modulation. This discussion emphasizes key factors such as choosing the right target cell groups, designing CAR constructs, defining tolerable side effects, and achieving a lasting immune modification, all of which are critical for safely integrating CAR T cell therapy in treating autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Regulatory/immunology
- B-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Autoantigens/immunology
- Antigens, CD19/immunology
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zhao
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Choi JY, Nam EJ, Han MH, Kim YJ, Lim JH, Jung HY, Cho JH, Kim CD, Kim YL, Park SH. Successful treatment with rituximab in anti-phospholipid syndrome nephropathy associated with systemic lupus erythematosus: A case report and literature review. Nephrology (Carlton) 2024; 29:758-762. [PMID: 39082196 DOI: 10.1111/nep.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 10/19/2024]
Abstract
Anti-phospholipid syndrome (APS) nephropathy is an autoimmune disease that is sometimes accompanied by systemic lupus erythematosus (SLE). Here, we report the use of rituximab to treat a case of APS nephropathy in a SLE patient with recurrent vascular thrombosis. A 52-year-old woman, who had been diagnosed with SLE 11 years earlier, was referred to a nephrology clinic for evaluation of azotaemia and proteinuria. She had experienced spontaneous abortion at 35 years of age. The patient had been diagnosed with right popliteal thrombosis at 39 years of age, and with left pulmonary artery thrombosis and SLE at 41 years of age. Before admission, she was undergoing anticoagulant and immunosuppressive therapies, with follow-up in the rheumatology clinic. At her last outpatient clinic visit before admission, she exhibited mild bilateral lower-limb pitting oedema, impaired renal function and proteinuria. Renal biopsy revealed arteriolar wall thickening, with thrombi in the capillary lumina and marked inflammatory cell infiltration in the interstitium. The patient was treated with warfarin and high-dose corticosteroids. Intravenous rituximab (500 mg) was also administered twice at a 4-week interval. Her renal function did not worsen any further, and her proteinuria decreased. Here we report the successful use of rituximab to treat APS nephropathy in a patient with SLE, who had progressive renal insufficiency.
Collapse
Affiliation(s)
- Ji-Young Choi
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eon Jeong Nam
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yong-Jin Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong-Hoon Lim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Yeon Jung
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jang-Hee Cho
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yong-Lim Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sun-Hee Park
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
10
|
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol 2024; 24:830-845. [PMID: 38831163 DOI: 10.1038/s41577-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | - Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Enemark MH, Hemmingsen JK, Jensen ML, Kridel R, Ludvigsen M. Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review. Int J Mol Sci 2024; 25:11179. [PMID: 39456961 PMCID: PMC11508793 DOI: 10.3390/ijms252011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Follicular lymphoma (FL) is the most prevalent indolent B-cell lymphoma entity, often characterized by the t(14;18) BCL2-IGH translocation. The malignancy represents a clinically and biologically highly heterogeneous disease. Most patients have favorable prognoses; however, despite therapeutic advancements, the disease remains incurable, with recurrent relapses or early disease progression. Moreover, transformation to an aggressive histology, most often diffuse large-B-cell lymphoma, remains a critical event in the disease course, which is associated with poor outcomes. Understanding the individual patient's risk of transformation remains challenging, which has motivated much research on novel biomarkers within the past four decades. This review systematically assessed the research on molecular biomarkers in FL transformation and outcome. Following the PRISMA guidelines for systemic reviews, the PubMed database was searched for English articles published from January 1984 through September 2024, yielding 6769 results. The identified publications were carefully screened and reviewed, of which 283 original papers met the inclusion criteria. The included studies focused on investigating molecular biomarkers as predictors of transformation or as prognostic markers of time-related endpoints (survival, progression, etc.). The effects of each biomarker were categorized based on their impact on prognosis or risk of transformation as none, favorable, or inferior. The biomarkers included genetic abnormalities, gene expression, microRNAs, markers of B cells/FL tumor cells, markers of the tumor microenvironment, and soluble biomarkers. This comprehensive review provides an overview of the research conducted in the past four decades, underscoring the persistent challenge in risk anticipation of FL patients.
Collapse
Affiliation(s)
- Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas Klejs Hemmingsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Maja Lund Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Komura K. CD19: a promising target for systemic sclerosis. Front Immunol 2024; 15:1454913. [PMID: 39421745 PMCID: PMC11484411 DOI: 10.3389/fimmu.2024.1454913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by immune dysregulation, vascular damage, and fibrosis. B cells play a significant role in SSc through autoantibody production, cytokine secretion, and T cell regulation. Autoantibodies like anti-topoisomerase I and anti-RNA polymerase III are specific to SSc and linked to clinical features such as skin and lung involvement. B cell depletion therapies, particularly anti-CD20 antibodies like rituximab, have shown benefits in treating SSc, improving skin and lung disease symptoms. However, CD19, another B cell marker, is more widely expressed and has emerged as a promising target in autoimmune diseases. CD19-targeted therapies, such as CAR T cells and Uplizna® (inebilizumab), have demonstrated potential in treating refractory autoimmune diseases, including SSc. Uplizna® offers advantages over rituximab by targeting a broader range of B cells and showing higher efficacy in specific patient subsets. Clinical trials currently investigate Uplizna®'s effectiveness in SSc, particularly in severe cases. While these therapies offer hope, long-term safety and efficacy remain unknown. SSc is still a complex disease, but advancing B cell-targeted treatments could significantly improve patient outcomes and knowledge about the pathogenesis.
Collapse
Affiliation(s)
- Kazuhiro Komura
- Department of Dermatology, Kanazawa Red Cross Hospital, Japanese Red Cross Society, Kanazawa, Ishikawa, Japan
| |
Collapse
|
13
|
Tsunoda S, Harada T, Kikushige Y, Kishimoto T, Yoshizaki K. Immunology and targeted therapy in Castleman disease. Expert Rev Clin Immunol 2024; 20:1101-1112. [PMID: 38785062 DOI: 10.1080/1744666x.2024.2357689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Castleman disease (CD) is a benign lymphoproliferative disease causing severe systemic inflammation. Interleukin-6 (IL-6) is a major pathogenesis of multicentric CD (MCD), but only 30-60% of patients respond to IL-6 inhibitors. Novel agents for IL-6 inhibitor-refractory cases are needed. Clinical data and samples are being collected on a large scale and the clinical, pathological, and pathogenetic aspects are being elucidated. AREAS COVERED The pathological and clinical classification of CD is outlined. Focusing on idiopathic MCD (iMCD), this review identifies therapeutic targets and summarizes currently recommended drugs and promising therapeutic candidates. EXPERT OPINION The pathogenesis of MCD has been implicated in the activation of the Janus kinase (JAK)-transcriptional signaling activator (STAT) 3 pathway and the phosphatidylinositol 3-kinase (PI3K)/Akt/mechanical target of rapamycin (mTOR) signaling pathway. iMCD-TAFRO (thrombocytopenia, anasarca, fever/elevated CRP, reticulin myelofibrosis/renal dysfunction, organ enlargement) is resistant to IL-6 inhibitors, and cyclosporine and mTOR inhibitors are sometimes effective. JAK inhibitors and mTOR inhibitors may be therapeutic agents for iMCD. Recently, we have shown that peripheral helper T (Tph) cell abnormalities are at the core of iMCD pathogenesis. Therapies targeting chemokine (C-X-C motif) ligand 13 (CXCL13) produced by Tph cells and blocking the Tph-CXCL13-B cell pathway may satisfy unmet need in refractory cases.
Collapse
Affiliation(s)
- Shinichiro Tsunoda
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, Sumitomo Hospital, Osaka, Japan
| | - Takuya Harada
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Department of Hematology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kazuyuki Yoshizaki
- The Institute of Scientific and Industrial Research, SANKEN, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Sui C, Wu H, Li X, Wang Y, Wei J, Yu J, Wu X. Cancer immunotherapy and its facilitation by nanomedicine. Biomark Res 2024; 12:77. [PMID: 39097732 PMCID: PMC11297660 DOI: 10.1186/s40364-024-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Cancer immunotherapy has sparked a wave of cancer research, driven by recent successful proof-of-concept clinical trials. However, barriers are emerging during its rapid development, including broad adverse effects, a lack of reliable biomarkers, tumor relapses, and drug resistance. Integration of nanomedicine may ameliorate current cancer immunotherapy. Ultra-large surface-to-volume ratio, extremely small size, and easy modification surface of nanoparticles enable them to selectively detect cells and kill cancer cells in vivo. Exciting synergistic applications of the two approaches have emerged in treating various cancers at the intersection of cancer immunotherapy and cancer nanomedicine, indicating the potential that the combination of these two therapeutic modalities can lead to new paradigms in the treatment of cancer. This review discusses the status of current immunotherapy and explores the possible opportunities that the nanomedicine platform can make cancer immunotherapy more powerful and precise by synergizing the two approaches.
Collapse
Affiliation(s)
- Chao Sui
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA
| | - Heqing Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China
| | - Yuhang Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqi Wei
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Zhao M, Wang L, Wang X, He J, Yu K, Li D. Non-neoplastic cells as prognostic biomarkers in diffuse large B-cell lymphoma: A system review and meta-analysis. TUMORI JOURNAL 2024; 110:227-240. [PMID: 38183180 DOI: 10.1177/03008916231221636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The microenvironment of diffuse large B-cell lymphoma (DLBCL) is composed of various components, including immune cells and immune checkpoints, some of which have been correlated with the prognosis of DLBCL, but their results remain controversial. Therefore, we conducted a systematic review and meta-analysis to investigate the association between the microenvironment and prognosis in DLBCL. We searched PubMed, Web of Science, and EMBASE for relevant articles between 2001 and 2022. Twenty-five studies involving 4495 patients with DLBCL were included in the analysis. This meta-analysis confirmed that high densities of Foxp3+Tregs and PD-1+T cells are good indicators for overall survival (OS) in DLBCL, while high densities of programmed cell death protein ligand1(PD-L1)-positive expression cells and T-cell immunoglobulin-and mucin domain-3-containing molecule 3 (TIM-3)-positive expression tumor-infiltrating cells (TILs) play a contrary role in OS. Additionally, higher numbers of T-cell intracytoplasmic antigen-1(TIA-1)-positive expression T cells imply better OS and progression-free survival (PFS), while high numbers of lymphocyte activation gene(LAG)-positive expression TILs predict bad OS and PFS. Various non-tumoral cells in the microenvironment play important roles in the prognosis of DLBCL.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Prognosis
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| | - Lixing Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xingyu Wang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Juan He
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Kuai Yu
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
- Department of Pathology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Taylor RP. T cells reinforce NK cell-mediated ADCC. Blood 2024; 143:1786-1787. [PMID: 38696196 DOI: 10.1182/blood.2024024444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
|
17
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
18
|
Wöhner M, Brechtelsbauer S, Friedrich N, Vorsatz C, Bulang J, Liang C, Schorr L, Beschin A, Guilliams M, Ravetch J, Nimmerjahn F, Biburger M. Tissue niche occupancy determines the contribution of fetal- versus bone-marrow-derived macrophages to IgG effector functions. Cell Rep 2024; 43:113757. [PMID: 38354088 DOI: 10.1016/j.celrep.2024.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding the mechanisms underlying cytotoxic immunoglobulin G (IgG) activity is critical for improving therapeutic antibody activity and inhibiting autoantibody-mediated tissue pathology. While prior research highlights the important role of the mononuclear phagocytic system for removing opsonized target cells, it remains unclear which monocyte or macrophage subsets stemming from fetal or post-natal bone-marrow (BM)-associated definitive hematopoiesis are involved in target cell depletion. By using a titrated irradiation approach as well as Kupffer-cell-specific deletion of activated Fcγ receptor signaling, we establish conditions under which the contribution of BM-derived monocytes versus yolk-sac-derived liver-resident macrophages to cytotoxic IgG activity can be studied. Our results demonstrate that liver-resident macrophages originating from either fetal or adult hematopoiesis play a central role in IgG-mediated depletion of opsonized target cells from the peripheral blood under steady-state conditions, highlighting the impact of the tissue niche and not macrophage origin for cytotoxic antibody activity.
Collapse
Affiliation(s)
- Miriam Wöhner
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sarah Brechtelsbauer
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Niklas Friedrich
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christof Vorsatz
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Johanna Bulang
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; Department of Bioinformatics, University of Würzburg, 97074 Würzburg, Germany
| | - Lena Schorr
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alain Beschin
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Myeloid Cell Immunology Laboratory, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, 9000 Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
| | - Jeffrey Ravetch
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Falk Nimmerjahn
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Markus Biburger
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
19
|
Hontecillas-Prieto L, García-Domínguez DJ, Palazón-Carrión N, Martín García-Sancho A, Nogales-Fernández E, Jiménez-Cortegana C, Sánchez-León ML, Silva-Romeiro S, Flores-Campos R, Carnicero-González F, Ríos-Herranz E, de la Cruz-Vicente F, Rodríguez-García G, Fernández-Álvarez R, Martínez-Banaclocha N, Gumà-Padrò J, Gómez-Codina J, Salar-Silvestre A, Rodríguez-Abreu D, Gálvez-Carvajal L, Labrador J, Guirado-Risueño M, Provencio-Pulla M, Sánchez-Beato M, Marylene L, Álvaro-Naranjo T, Casanova-Espinosa M, Rueda-Domínguez A, Sánchez-Margalet V, de la Cruz-Merino L. CD8+ NKs as a potential biomarker of complete response and survival with lenalidomide plus R-GDP in the R2-GDP-GOTEL trial in recurrent/refractory diffuse large B cell lymphoma. Front Immunol 2024; 15:1293931. [PMID: 38469299 PMCID: PMC10926187 DOI: 10.3389/fimmu.2024.1293931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma worldwide. DLBCL is an aggressive disease that can be cured with upfront standard chemoimmunotherapy schedules. However, in approximately 35-40% of the patients DLBCL relapses, and therefore, especially in this setting, the search for new prognostic and predictive biomarkers is an urgent need. Natural killer (NK) are effector cells characterized by playing an important role in antitumor immunity due to their cytotoxic capacity and a subset of circulating NK that express CD8 have a higher cytotoxic function. In this substudy of the R2-GDP-GOTEL trial, we have evaluated blood CD8+ NK cells as a predictor of treatment response and survival in relapsed/refractory (R/R) DLBCL patients. Methods 78 patients received the R2-GDP schedule in the phase II trial. Blood samples were analyzed by flow cytometry. Statistical analyses were carried out in order to identify the prognostic potential of CD8+ NKs at baseline in R/R DLBCL patients. Results Our results showed that the number of circulating CD8+ NKs in R/R DLBCL patients were lower than in healthy donors, and it did not change during and after treatment. Nevertheless, the level of blood CD8+ NKs at baseline was associated with complete responses in patients with R/R DLBCL. In addition, we also demonstrated that CD8+ NKs levels have potential prognostic value in terms of overall survival in R/R DLBCL patients. Conclusion CD8+ NKs represent a new biomarker with prediction and prognosis potential to be considered in the clinical management of patients with R/R DLBCL. Clinical trial registration https://www.clinicaltrialsregister.eu/ctr-search/search?query=2014-001620-29 EudraCT, ID:2014-001620-29.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
| | - Natalia Palazón-Carrión
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Alejandro Martín García-Sancho
- Department of Hematology, Hospital Universitario de Salamanca, IBSAL, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Esteban Nogales-Fernández
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - María L. Sánchez-León
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Silvia Silva-Romeiro
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Rocío Flores-Campos
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | | | | | | | | | | | - Natividad Martínez-Banaclocha
- Oncology Dept., Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Josep Gumà-Padrò
- Department of Clinical Oncology, Hospital Universitari Sant Joan de Reus URV, IISPV, Reus, Spain
| | - José Gómez-Codina
- Department of Clinical Oncology, Hospital Universitario La Fé, Valencia, Spain
| | | | - Delvys Rodríguez-Abreu
- Department of Clinical Oncology, Hospital Universitario Insular, Las Palmas de Gran Canaria, Spain
| | - Laura Gálvez-Carvajal
- Department of Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Jorge Labrador
- Department of Hematology, Research Unit, Hospital Universitario de Burgos, Burgos, Spain
| | - María Guirado-Risueño
- Department of Clinical Oncology, Hospital General Universitario de Elche, Elche, Spain
| | - Mariano Provencio-Pulla
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, Facultad de Medicina, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| | - Margarita Sánchez-Beato
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, CIBERONC, Madrid, Spain
| | - Lejeune Marylene
- Department of Pathology, Plataforma de Estudios Histológicos, Citológicos y de Digitalización, Hospital de Tortosa Verge de la Cinta, IISPV, URV, Tortosa, Tarragona, Spain
| | - Tomás Álvaro-Naranjo
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Tarragona, Spain
| | | | | | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- Clinical Oncology Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
20
|
Perry TA, Masand N, Vrzalikova K, Pugh M, Wei W, Hollows R, Bouchalova K, Nohtani M, Fennell E, Bouchal J, Kearns P, Murray PG. The Oncogenic Lipid Sphingosine-1-Phosphate Impedes the Phagocytosis of Tumor Cells by M1 Macrophages in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2024; 16:574. [PMID: 38339325 PMCID: PMC10854869 DOI: 10.3390/cancers16030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND A total of 30-40% of diffuse large B cell lymphoma (DLBCL) patients will either not respond to the standard therapy or their disease will recur. The first-line treatment for DLBCL is rituximab and combination chemotherapy. This treatment involves the chemotherapy-induced recruitment of tumor-associated macrophages that recognize and kill rituximab-opsonized DLBCL cells. However, we lack insights into the factors responsible for the recruitment and functionality of macrophages in DLBCL tumors. METHODS We have studied the effects of the immunomodulatory lipid sphingosine-1-phosphate (S1P) on macrophage activity in DLBCL, both in vitro and in animal models. RESULTS We show that tumor-derived S1P mediates the chemoattraction of both monocytes and macrophages in vitro and in animal models, an effect that is dependent upon the S1P receptor S1PR1. However, S1P inhibited M1 macrophage-mediated phagocytosis of DLBCL tumor cells opsonized with the CD20 monoclonal antibodies rituximab and ofatumumab, an effect that could be reversed by an S1PR1 inhibitor. CONCLUSIONS Our data show that S1P signaling can modulate macrophage recruitment and tumor cell killing by anti-CD20 monoclonal antibodies in DLBCL. The administration of S1PR1 inhibitors could enhance the phagocytosis of tumor cells and improve outcomes for patients.
Collapse
Affiliation(s)
- Tracey A. Perry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
| | - Navta Masand
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
| | - Katerina Vrzalikova
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (K.V.); (M.P.)
- Royal College of Surgeons in Ireland Medical University of Bahrain, Manama P.O. Box 15503, Bahrain
| | - Matthew Pugh
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (K.V.); (M.P.)
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
- The Palatine Centre, Durham University, Durham DH1 3LE, UK
| | - Robert Hollows
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
| | - Katerina Bouchalova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Mahdi Nohtani
- Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute and School of Medicine, University of Limerick, Limerick V94 T9PX, Ireland; (M.N.); (E.F.)
| | - Eanna Fennell
- Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute and School of Medicine, University of Limerick, Limerick V94 T9PX, Ireland; (M.N.); (E.F.)
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Pamela Kearns
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (N.M.); (W.W.); (R.H.); (P.K.)
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul G. Murray
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (K.V.); (M.P.)
- Royal College of Surgeons in Ireland Medical University of Bahrain, Manama P.O. Box 15503, Bahrain
- Limerick Digital Cancer Research Centre, Health Research Institute and Bernal Institute and School of Medicine, University of Limerick, Limerick V94 T9PX, Ireland; (M.N.); (E.F.)
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| |
Collapse
|
21
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. Blood 2023; 142:1724-1739. [PMID: 37683180 PMCID: PMC10667349 DOI: 10.1182/blood.2023020400] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.
Collapse
Affiliation(s)
- Zhiwei Ang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katharina E. Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Carolin Schmidt
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Manuel Torres Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Feng Xu
- Division of Genomic Diagnostic, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Urvi Zankharia
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Samantha Soldan
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Sisi Zheng
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Joseph P. Loftus
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scarlett Y. Yang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mukta Asnani
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Vinodh Pillai
- Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Emeline Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Marilyn M. Li
- Division of Genomic Diagnostic, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Paul M. Lieberman
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Division of Hematology/Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
22
|
Ang Z, Paruzzo L, Hayer KE, Schmidt C, Torres Diz M, Xu F, Zankharia U, Zhang Y, Soldan S, Zheng S, Falkenstein CD, Loftus JP, Yang SY, Asnani M, King Sainos P, Pillai V, Chong E, Li MM, Tasian SK, Barash Y, Lieberman PM, Ruella M, Schuster SJ, Thomas-Tikhonenko A. Alternative splicing of its 5'-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529123. [PMID: 37645778 PMCID: PMC10461923 DOI: 10.1101/2023.02.19.529123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aberrant skipping of coding exons in CD19 and CD22 compromises responses to immunotherapy for B-cell malignancies. Here, we show that the MS4A1 gene encoding human CD20 also produces several mRNA isoforms with distinct 5' untranslated regions (5'-UTR). Four variants (V1-4) were detectable by RNA-seq in distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant by far. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform was found to contain upstream open reading frames (uORFs) and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching Morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, while V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed CAR T cells were able to kill both V3- and V1-expressing cells, but the bispecific T cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on four post-mosunetuzumab follicular lymphoma relapses and discovered that in two of them downregulation of CD20 was accompanied by the V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies. Key Points In normal & malignant human B cells, CD20 mRNA is alternatively spliced into four 5'-UTR isoforms, some of which are translation-deficient.The balance between translation-deficient and -competent isoforms modulates CD20 protein levels & responses to CD20-directed immunotherapies. Explanation of Novelty We discovered that in normal and malignant B-cells, CD20 mRNA is alternatively spliced to generate four distinct 5'-UTRs, including the longer translation-deficient V1 variant. Cells predominantly expressing V1 were still sensitive to CD20-targeting chimeric antigen receptor T-cells. However, they were resistant to the bispecific anti-CD3/CD20 antibody mosunetuzumab, and the shift to V1 were observed in CD20-negative post-mosunetuzumab relapses of follicular lymphoma.
Collapse
|
23
|
Athni TS, Barmettler S. Hypogammaglobulinemia, late-onset neutropenia, and infections following rituximab. Ann Allergy Asthma Immunol 2023; 130:699-712. [PMID: 36706910 PMCID: PMC10247428 DOI: 10.1016/j.anai.2023.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Rituximab is a chimeric anti-CD20 monoclonal antibody that targets CD20-expressing B lymphocytes, has a well-defined efficacy and safety profile, and is broadly used to treat a wide array of diseases. In this review, we cover the mechanism of action of rituximab and focus on hypogammaglobulinemia and late-onset neutropenia-2 immune effects secondary to rituximab-and subsequent infection. We review risk factors and highlight key considerations for immunologic monitoring and clinical management of rituximab-induced secondary immune deficiencies. In patients treated with rituximab, monitoring for hypogammaglobulinemia and infections may help to identify the subset of patients at high risk for developing poor B cell reconstitution, subsequent infections, and adverse complications. These patients may benefit from early interventions such as vaccination, antibacterial prophylaxis, and immunoglobulin replacement therapy. Systematic evaluation of immunoglobulin levels and peripheral B cell counts by flow cytometry, both at baseline and periodically after therapy, is recommended for monitoring. In addition, in those patients with prolonged hypogammaglobulinemia and increased infections after rituximab use, immunologic evaluation for inborn errors of immunity may be warranted to further risk stratification, increase monitoring, and assist in therapeutic decision-making. As the immunologic effects of rituximab are further elucidated, personalized approaches to minimize the risk of adverse reactions while maximizing benefit will allow for improved care of patients with decreased morbidity and mortality.
Collapse
Affiliation(s)
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
24
|
Reinhardt SCM, Masullo LA, Baudrexel I, Steen PR, Kowalewski R, Eklund AS, Strauss S, Unterauer EM, Schlichthaerle T, Strauss MT, Klein C, Jungmann R. Ångström-resolution fluorescence microscopy. Nature 2023; 617:711-716. [PMID: 37225882 PMCID: PMC10208979 DOI: 10.1038/s41586-023-05925-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/07/2023] [Indexed: 05/26/2023]
Abstract
Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.
Collapse
Affiliation(s)
- Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | | | - Isabelle Baudrexel
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Philipp R Steen
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Alexandra S Eklund
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Eduard M Unterauer
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Thomas Schlichthaerle
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Maximilian T Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Christian Klein
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany.
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
25
|
Deng L, Xu G. Update on the Application of Monoclonal Antibody Therapy in Primary Membranous Nephropathy. Drugs 2023; 83:507-530. [PMID: 37017915 DOI: 10.1007/s40265-023-01855-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
When first introduced, rituximab (RTX), a chimeric anti-CD20 monoclonal antibody, brought about an alternative therapeutic paradigm for primary membranous nephropathy (PMN). Rituximab was shown to be effective and safe in PMN patients with kidney dysfunction, with. patients receiving second-line rituximab therapy achieving remission as effectively as those patients who had not previously received immunotherapy. No safety issues were reported. The B cell-driven protocol seems to be as efficient as the 375 mg/m2 × 4 regimen or 1 g × 2 regimen in achieving B cell depletion and remission, but patients with high M-type phospholipase A2 receptor (PLA2R) antibody levels may benefit from a higher dose of rituximab. While rituximab added another therapeutic option to the treatment regimen, it does have limitations as 20 to 40% of patients do not respond. Not all patients respond to RTX therapy for lymphoproliferative disorders either, therefore further novel anti-CD20 monoclonal antibodies have been developed and these may provide alternative therapeutic options for PMN. Ofatumumab, a fully human monoclonal antibody, specifically recognizes an epitope encompassing both the small and large extracellular loops of the CD20 molecule, resulting in increased complement-dependent cytotoxic activity. Ocrelizumab binds an alternative but overlapping epitope region to rituximab and displays enhanced antibody-dependent cellular cytotoxic (ADCC) activities. Obinutuzumab is designed to have a modified elbow-hinge amino acid sequence, leading to increased direct cell death induction and ADCC activities. In PMN clinical studies, ocrelizumab and obinutuzumab showed promising results, while ofatumumab displayed mixed results. However, there is a lack of randomized controlled trials with large samples, especially direct head-to-head comparisons. Alternative molecular mechanisms have been suggested in this context to explore novel therapeutic strategies. B cell activator-targeted, plasma cell-targeted and complement-directed treatments may lead to novel therapy paradigms for PMN. Exploratory strategies for the use of drugs with different mechanisms, such as a combination of rituximab and cyclophosphamide and a steroid, a combination of rituximab and a calcineurin inhibitor, may provide more rapid and efficient remission, but the combination of standard immunosuppression with rituximab could increase infection risk.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
26
|
An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14:1394. [PMID: 36914633 PMCID: PMC10011572 DOI: 10.1038/s41467-023-37029-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
Collapse
|
27
|
Maleki R, Rahimpour A, Rajabibazl M. Construction and evaluation of wild and mutant ofatumumab scFvs against the human CD20 antigen. Prep Biochem Biotechnol 2023; 53:239-246. [PMID: 35579623 DOI: 10.1080/10826068.2022.2073598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several monoclonal antibodies targeting the CD20 have been produced and Ofatumumab is a case in point. Although whole antibodies target cancer cells effectively, their applications are restricted in some ways. Single-chain fragment variable antibodies, rather than employing the entire structure of antibodies, have proven a practical approach for creating completely functional antigen-binding fragments. In current research, the DNA coding sequence of VL and VH of the wild and mutant forms of ofatumumab were joined with a flexible linker (GGGGS)3 separately. Using the E. coli BL21 (DE3) expression system, the VL-linker-VH genes were cloned into the pET-28 a (+), and the associated recombinant proteins were produced. Purified and refolded scFvs (scFv-C and scFv-V3) represented a concentration of around 0.7 mg/ml from 1 L of initial E. coli culture with a molecular weight of about 27 kDa. Affinity measurement disclosed anti-CD20 scFv-V3 possesses a higher affinity constant compared to anti-CD20 scFv-C. The recombinant scFvs exclusively attach to Raji cells but not to Jurkat cells, according to a cell-ELISA analysis. The MTT test signified anti-CD20 scFvs could affect cell viability in Raji cells but had no impact on Jurkat cells and also, Raji cells viability was affected more significantly by anti-CD20 scFv-V3.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Hypogammaglobulinemia in Children After Hematopoietic Stem Cell Transplantation and Rituximab Treatment: Relevance of B Cell Subsets. J Pediatr Hematol Oncol 2023; 45:e145-e149. [PMID: 36598967 DOI: 10.1097/mph.0000000000002582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/17/2022] [Indexed: 01/05/2023]
Abstract
Rituximab (RTX) is widely employed to treat Epstein-Barr virus reactivation in children undergoing Hematopoietic Cell Transplantation (HCT). The resulting loss of B cells may cause persistent hypogammaglobulinemia. This retrospective cross-sectional study aims to identify flow cytometry biomarkers associated with persistent hypogammaglobulinemia in patients receiving RTX after HCT. We analyzed 5 patients (cases group) requiring immunoglobulin substitution due to low level of IgG (IgG <5 g/L) detected after RTX treatment and 5 patients (controls group) not requiring long-term immunoglobulin (Ig) substitution. We investigated the B cell reconstitution, and in patients group we observed a significantly lower count in B total, IgD+CD27+ marginal B cells and IgD-CD27+ switched-memory B cells, after a median of 5 years from HCT, compared with the control group. Despite the importance limits of our study and the heterogeneity of our data (age of included patients, time of evaluation, interval between RTX dose and assessment) we conclude that RTX given early after HCT might cause a deranged B cell maturation, contributing to the delation in B cell recovery following HCT, and switched memory and marginal zone B cell counts could be a promising biomarker to identify patients requiring long-term Ig substitution.
Collapse
|
29
|
Robinson JI, Md Yusof MY, Davies V, Wild D, Morgan M, Taylor JC, El-Sherbiny Y, Morris DL, Liu L, Rawstron AC, Buch MH, Plant D, Cordell HJ, Isaacs JD, Bruce IN, Emery P, Barton A, Vyse TJ, Barrett JH, Vital EM, Morgan AW. Comprehensive genetic and functional analyses of Fc gamma receptors influence on response to rituximab therapy for autoimmunity. EBioMedicine 2022; 86:104343. [PMID: 36371989 PMCID: PMC9663864 DOI: 10.1016/j.ebiom.2022.104343] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rituximab is widely used to treat autoimmunity but clinical response varies. Efficacy is determined by the efficiency of B-cell depletion, which may depend on various Fc gamma receptor (FcγR)-dependent mechanisms. Study of FcγR is challenging due to the complexity of the FCGR genetic locus. We sought to assess the effect of FCGR variants on clinical response, B-cell depletion and NK-cell-mediated killing in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). METHODS A longitudinal cohort study was conducted in 835 patients [RA = 573; SLE = 262]. Clinical outcome measures were two-component disease activity score in 28-joints (2C-DAS28CRP) for RA and British Isles Lupus Assessment Group (BILAG)-2004 major clinical response (MCR) for SLE at 6 months. B-cells were evaluated by highly-sensitive flow cytometry. Single nucleotide polymorphism and copy number variation for genes encoding five FcγRs were measured using multiplex ligation-dependent probe amplification. Ex vivo studies assessed NK-cell antibody-dependent cellular cytotoxicity (ADCC) and FcγR expression. FINDINGS In RA, carriage of FCGR3A-158V and increased FCGR3A-158V copies were associated with greater 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP). In SLE, MCR was associated with increased FCGR3A-158V, OR 1.64 (95% CI 1.12-2.41) and FCGR2C-ORF OR 1.93 (95% CI 1.09-3.40) copies. 236/413 (57%) patients with B-cell data achieved complete depletion. Homozygosity for FCGR3A-158V and increased FCGR3A-158V copies were associated with complete depletion in combined analyses. FCGR3A genotype was associated with rituximab-induced ADCC, and increased NK-cell FcγRIIIa expression was associated with improved clinical response and depletion in vivo. Furthermore, disease status and concomitant therapies impacted both NK-cell FcγRIIIa expression and ADCC. INTERPRETATION FcγRIIIa is the major low affinity FcγR associated with rituximab response. Increased copies of the FCGR3A-158V allele (higher affinity for IgG1), influences clinical and biological responses to rituximab in autoimmunity. Enhancing FcγR-effector functions could improve the next generation of CD20-depleting therapies and genotyping may stratify patients for optimal treatment protocols. FUNDING Medical Research Council, National Institute for Health and Care Research, Versus Arthritis.
Collapse
Affiliation(s)
- James I Robinson
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Md Yuzaiful Md Yusof
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Vinny Davies
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; School of Mathematics and Statistics, University of Glasgow, UK
| | - Dawn Wild
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Michael Morgan
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - John C Taylor
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Yasser El-Sherbiny
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, UK; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - David L Morris
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Lu Liu
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Andy C Rawstron
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals NHS Trust, UK
| | - Maya H Buch
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and NIHR Manchester BRC, Manchester University NHS Foundation Trust, UK
| | - Darren Plant
- Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and NIHR Manchester BRC, Manchester University NHS Foundation Trust, UK
| | | | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Ian N Bruce
- Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and NIHR Manchester BRC, Manchester University NHS Foundation Trust, UK
| | - Paul Emery
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; NIHR Leeds Medtech and In vitro Diagnostics Co-operative, Leeds Teaching Hospitals NHS Trust, UK
| | - Anne Barton
- Versus Arthritis Centre for Genetics and Genomics, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester and NIHR Manchester BRC, Manchester University NHS Foundation Trust, UK
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Jennifer H Barrett
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Edward M Vital
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Ann W Morgan
- School of Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, UK; NIHR Leeds Medtech and In vitro Diagnostics Co-operative, Leeds Teaching Hospitals NHS Trust, UK.
| |
Collapse
|
30
|
Yu W, Yang Z. Clinical significance of circulating neutrophils and lymphocyte subsets in newly diagnosed patients with diffuse large B-cell lymphoma. Clin Exp Med 2022:10.1007/s10238-022-00867-4. [PMID: 35939174 DOI: 10.1007/s10238-022-00867-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Lymphocytes play crucial roles in tumor surveillance in diffuse large B-cell lymphoma (DLBCL). Neutrophil-to-lymphocyte ratio (NLR), a biomarker for systematic inflammation, has been confirmed to be a prognostic factor for many malignant diseases. Herein, we conducted a systemic in-depth study of circulating neutrophils and lymphocyte subsets in DLBCL patients and their dynamics along with chemoimmunotherapy. A total of 61 patients with DLBCL were enrolled. Detection of lymphocyte subsets by flow cytometry was conducted at diagnosis and after 2/4/6/8 cycles' treatment of R-CHOP. Clinical significance, including incidence of infection, curative effect and disease-free survival (DFS), was analyzed based on the patients' clinical data and the quantity of lymphocyte subsets. The absolute numbers of neutrophils in stage III-IV DLBCL patients were obviously increased (p = 0.012), while the absolute numbers of lymphocytes were decreased (p = 0.025). Consequently, DLBCL patients had significantly higher NLR than healthy controls (p < 0.001). Further analysis of lymphocyte subsets showed a significantly reduced CD4 + T cells in DLBCL patients (p = 0.001). Patients with a lower lymphocyte counts (< 1.26*10E9/L) were more susceptible to infection (p < 0.001). NK cells were much higher in patients achieving complete remission than those of non-complete remission (p = 0.032). Higher neutrophils and NLR were closely associated with poorer DFS (p = 0.001 and p = 0.045, respectively). Circulating cells in DLBCL patients were dysregulated, featured with increased neutrophils and reduced lymphocytes. Higher NK cells before treatment predicted better therapeutic outcome. Higher neutrophils and NLR can be regarded as inferior prognostic predictors for DLBCL patients at diagnosis.
Collapse
Affiliation(s)
- Wei Yu
- Department of International Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266555, Shandong, People's Republic of China.
| | - Zhiluo Yang
- Department of Hematology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
31
|
Simpson AP, Roghanian A, Oldham RJ, Chan HTC, Penfold CA, Kim HJ, Inzhelevskaya T, Mockridge CI, Cox KL, Bogdanov YD, James S, Tutt AL, Rycroft D, Morley P, Dahal LN, Teige I, Frendeus B, Beers SA, Cragg MS. FcγRIIB controls antibody-mediated target cell depletion by ITIM-independent mechanisms. Cell Rep 2022; 40:111099. [PMID: 35858562 PMCID: PMC9638011 DOI: 10.1016/j.celrep.2022.111099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Many therapeutic antibodies deplete target cells and elicit immunotherapy by engaging activating Fc gamma receptors (FcγRs) on host effector cells. These antibodies are negatively regulated by the inhibitory FcγRIIB (CD32B). Dogma suggests inhibition is mediated through the FcγRIIB immunoreceptor tyrosine-based inhibition motif (ITIM), negatively regulating immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling from activating FcγR. To assess this, we generated experimental models expressing human (h)FcγRIIB on targets or effectors, lacking or retaining ITIM signaling capacity. We demonstrate that signaling through the hFcγRIIB ITIM is dispensable for impairing monoclonal antibody (mAb)-mediated depletion of normal and malignant murine target cells through three therapeutically relevant surface receptors (CD20, CD25, and OX40) affecting immunotherapy. We demonstrate that hFcγRIIB competition with activating FcγRs for antibody Fc, rather than ITIM signaling, is sufficient to impair activating FcγR engagement, inhibiting effector function and immunotherapy.
Collapse
Affiliation(s)
- Alexander P Simpson
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Robert J Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Hyung J Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Yury D Bogdanov
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Alison L Tutt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Daniel Rycroft
- Biopharm Discovery, GSK, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Peter Morley
- Biopharm Discovery, GSK, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ingrid Teige
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden
| | - Björn Frendeus
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden.
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
32
|
Reddy VR, Pepper RJ, Shah K, Cambridge G, Henderson SR, Klein C, Kell L, Taylor SJ, Isenberg DA, Cragg MS, Leandro MJ. Disparity in peripheral and renal B-cell depletion with rituximab in systemic lupus erythematosus: an opportunity for obinutuzumab? Rheumatology (Oxford) 2022; 61:2894-2904. [PMID: 34788412 PMCID: PMC9258539 DOI: 10.1093/rheumatology/keab827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/05/2021] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVES To investigate key factors that may contribute to the variability of rituximab-mediated peripheral and renal B cell depletion (BCD) in SLE. METHODS We analysed: (i) CD19+ B cell counts in patients with SLE before and 1, 2, 3 and 6 months after treatment with rituximab, comparing them with RA patients; (ii) the presence of B cells in renal biopsies after rituximab therapy; (iii) whether the duration of BCD correlated with patient demographics and B cell expression of CD20 and FcγRIIb; and (iv) the effect of B cell activation factor (BAFF) on the efficiency of rituximab and obinutuzumab at inducing BCD in whole blood assays, in vitro. RESULTS In SLE (n = 71), the duration of BCD was shorter compared with RA (n = 27). B cells were detectable in renal biopsy samples (n = 6) after treatment with rituximab in all patients with poor response while peripheral blood B cells remained low or undetectable in the same patients. There were no significant relationships between peripheral BCD and patient age, disease duration, serum C3 levels or the level of expression of B cell surface proteins CD20 and FcγRIIb. Obinutuzumab was more efficient than rituximab at inducing BCD in whole blood assays, regardless of excess BAFF. CONCLUSIONS BCD in SLE is less efficient than in RA. Renal B cell presence following rituximab treatment was associated with poor outcomes. No significant relationships between any measured B cell related, clinical or laboratory parameters and the efficiency of BCD by rituximab was found. Obinutuzumab was superior to rituximab at inducing BCD.
Collapse
Affiliation(s)
- Venkat R Reddy
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, University College London
| | - Ruth J Pepper
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust
- Department of Renal Medicine (formerly Centre for Nephrology), Royal Free Hospital, London, UK
| | - Kavina Shah
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, University College London
| | - Geraldine Cambridge
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, University College London
| | - Scott R Henderson
- Department of Renal Medicine (formerly Centre for Nephrology), Royal Free Hospital, London, UK
| | - Christian Klein
- Cancer Immunotherapy Discovery, Oncology Discovery & Translational AreaRoche Pharma Research & Early Development, Roche Innovation Center, Zurich, Switzerland
| | - Loren Kell
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, University College London
| | - Samuel J Taylor
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, University College London
| | - David A Isenberg
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, University College London
| | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Maria J Leandro
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust
- Centre for Rheumatology and Bloomsbury Rheumatology Unit, University College London
| |
Collapse
|
33
|
Lindorfer MA, Taylor RP. FcγR-Mediated Trogocytosis 2.0: Revisiting History Gives Rise to a Unifying Hypothesis. Antibodies (Basel) 2022; 11:antib11030045. [PMID: 35892705 PMCID: PMC9326535 DOI: 10.3390/antib11030045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
There is increasing interest in the clinical implications and immunology of trogocytosis, a process in which the receptors on acceptor cells remove and internalize cognate ligands from donor cells. We have reported that this phenomenon occurs in cancer immunotherapy, in which cells that express FcγR remove and internalize CD20 and bound mAbs from malignant B cells. This process can be generalized to include other reactions including the immune adherence phenomenon and antibody-induced immunosuppression. We discuss in detail FcγR-mediated trogocytosis and the evidence supporting a proposed predominant role for liver sinusoidal endothelial cells via the action of the inhibitory receptor FcγRIIb2. We describe experiments to test the validity of this hypothesis. The elucidation of the details of FcγR-mediated trogocytosis has the potential to allow for the development of novel therapies that can potentially block or enhance this reaction, depending upon whether the process leads to unfavorable or positive biological effects.
Collapse
|
34
|
Pourmontaseri H, Habibzadeh N, Entezari S, Samadian F, Kiyani S, Taheri M, Ahmadi A, Fallahi MS, Sheikhzadeh F, Ansari A, Tamimi A, Deravi N. Monoclonal antibodies for the treatment of acute lymphocytic leukemia: A literature review. Hum Antibodies 2022; 30:117-130. [PMID: 35662114 DOI: 10.3233/hab-211511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acute lymphocytic leukemia (ALL) is a type of blood cancer that is more prevalent in children. Several treatment methods are available for ALL, including chemotherapy, upfront treatment regimens, and pediatric-inspired regimens for adults. Monoclonal antibodies (Mabs) are the novel Food and Drug Administration (FDA) approved remedies for the relapsed/refractory (R/R) adult ALL. In this article, we aimed to review studies that investigated the efficacy and safety of Mabs on ALL. METHODS We gathered studies through a complete search with all proper related keywords in ISI Web of Science, SID, Scopus, Google Scholar, Science Direct, and PubMed for English language publications up to 2020. RESULTS The most commonly studied Mabs for ALL therapies are CD-19, CD-20, CD-22, and CD-52. The best results have been reported in the administration of blinatumomab, rituximab, ofatumumab, and inotuzumab with acceptable low side effects. CONCLUSION Appling personalized approach for achieving higher efficacy is one of the most important aspects of treatment. Moreover, we recommend that the wide use of these Mabs depends on designing further cost-effectiveness trials in this field.
Collapse
Affiliation(s)
- Hossein Pourmontaseri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.,Bitab knowledge enterprise, Fasa University of Medical Sciences, Fasa, Iran
| | - Niloofar Habibzadeh
- Student Research Committee, School of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sarina Entezari
- Student Research Committee, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samadian
- Nursing Department, Shahid Beheshti University of Medical science, Tehran, Iran
| | - Shamim Kiyani
- Midwifery Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Taheri
- Student Research Committee, School of Pharmacy Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Ahmadi
- Faculty of Biological Sciences and Technologies, Islamic Azad University Sari Branch, Sari, Iran
| | | | - Farzad Sheikhzadeh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Tamimi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Bispecific mAb2 Antibodies Targeting CD59 Enhance the Complement-Dependent Cytotoxicity Mediated by Rituximab. Int J Mol Sci 2022; 23:ijms23095208. [PMID: 35563599 PMCID: PMC9103234 DOI: 10.3390/ijms23095208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Inhibition of complement activation via the overexpression of complement-regulatory proteins (CRPs), most notably CD46, CD55 and CD59, is an efficient mechanism of disguise of cancer cells from a host immune system. This phenomenon extends to counteract the potency of therapeutic antibodies that could lyse target cells by eliciting complement cascade. The manifold functions and ubiquitous expression of CRPs preclude their systemic specific inhibition. We selected CD59-specific Fc fragments with a novel antigen binding site (Fcabs) from yeast display libraries using recombinant antigens expressed in bacterial or mammalian cells. To produce a bispecific antibody, we endowed rituximab, a clinically applied anti-CD20 antibody, used for therapy of various lymphoid malignancies, with an anti-CD59 Fcab. This bispecific antibody was able to induce more potent complement-dependent cytotoxicity for CD20 and CD59 expressing Raji cell line measured with lactate dehydrogenase-release assay, but had no effect on the cells with lower levels of the primary CD20 antigen or CD20-negative cells. Such molecules are promising candidates for future therapeutic development as they elicit a higher specific cytotoxicity at a lower concentration and hence cause a lower exhaustion of complement components.
Collapse
|
36
|
Otani IM, Lehman HK, Jongco AM, Tsao LR, Azar AE, Tarrant TK, Engel E, Walter JE, Truong TQ, Khan DA, Ballow M, Cunningham-Rundles C, Lu H, Kwan M, Barmettler S. Practical guidance for the diagnosis and management of secondary hypogammaglobulinemia: A Work Group Report of the AAAAI Primary Immunodeficiency and Altered Immune Response Committees. J Allergy Clin Immunol 2022; 149:1525-1560. [PMID: 35176351 DOI: 10.1016/j.jaci.2022.01.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Secondary hypogammaglobulinemia (SHG) is characterized by reduced immunoglobulin levels due to acquired causes of decreased antibody production or increased antibody loss. Clarification regarding whether the hypogammaglobulinemia is secondary or primary is important because this has implications for evaluation and management. Prior receipt of immunosuppressive medications and/or presence of conditions associated with SHG development, including protein loss syndromes, are histories that raise suspicion for SHG. In patients with these histories, a thorough investigation of potential etiologies of SHG reviewed in this report is needed to devise an effective treatment plan focused on removal of iatrogenic causes (eg, discontinuation of an offending drug) or treatment of the underlying condition (eg, management of nephrotic syndrome). When iatrogenic causes cannot be removed or underlying conditions cannot be reversed, therapeutic options are not clearly delineated but include heightened monitoring for clinical infections, supportive antimicrobials, and in some cases, immunoglobulin replacement therapy. This report serves to summarize the existing literature regarding immunosuppressive medications and populations (autoimmune, neurologic, hematologic/oncologic, pulmonary, posttransplant, protein-losing) associated with SHG and highlights key areas for future investigation.
Collapse
Affiliation(s)
- Iris M Otani
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF Medical Center, San Francisco, Calif.
| | - Heather K Lehman
- Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Artemio M Jongco
- Division of Allergy and Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| | - Lulu R Tsao
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF Medical Center, San Francisco, Calif
| | - Antoine E Azar
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore
| | - Teresa K Tarrant
- Division of Rheumatology and Immunology, Duke University, Durham, NC
| | - Elissa Engel
- Division of Hematology and Oncology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jolan E Walter
- Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston
| | - Tho Q Truong
- Divisions of Rheumatology, Allergy and Clinical Immunology, National Jewish Health, Denver
| | - David A Khan
- Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas
| | - Mark Ballow
- Division of Allergy and Immunology, Morsani College of Medicine, Johns Hopkins All Children's Hospital, St Petersburg
| | | | - Huifang Lu
- Department of General Internal Medicine, Section of Rheumatology and Clinical Immunology, The University of Texas MD Anderson Cancer Center, Houston
| | - Mildred Kwan
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill
| | - Sara Barmettler
- Allergy and Immunology, Massachusetts General Hospital, Boston.
| |
Collapse
|
37
|
Wang J, Zhang R, Ding X, Jin Y, Qin R, Xia B, Liao Q, Hu H, Song W, Wang Z, Zhang X, Xu J. Pathologically complete remission to combination of invariant NK T cells and anti-CD20 antibody in a refractory HIV+ diffuse large B-cell lymphoma patient. Immunotherapy 2022; 14:599-607. [PMID: 35443802 DOI: 10.2217/imt-2021-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although there is a high curability rate with rituximab chemotherapy, approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) develop disease relapse or primary-refractory lymphoma. The prognosis of HIV+ DLBCL patients is even worse with limited therapeutic options. The case is presented of a 28-year-old man who was diagnosed with HIV-DLBCL, refractory to rituximab-based chemo-immunotherapies and radiotherapy before and maintained a pathologically complete regression with the infusion of haplotype-matched invariant NK T cells and anti-CD20 antibody. His abdominal mass kept shrinking during the period of follow-up without relapse to date. A combination of haplotype-matched invariant NK T cells was likely to reinvigorate the efficacy of anti-CD20 antibody and may offer a viable treatment option for refractory DLBCL patients.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Renfang Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yanling Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ran Qin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Bili Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Huiliang Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Wei Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhenyan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiaoyan Zhang
- Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Jianqing Xu
- Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| |
Collapse
|
38
|
Silva‐Gomes R, Mapelli SN, Boutet M, Mattiola I, Sironi M, Grizzi F, Colombo F, Supino D, Carnevale S, Pasqualini F, Stravalaci M, Porte R, Gianatti A, Pitzalis C, Locati M, Oliveira MJ, Bottazzi B, Mantovani A. Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. J Leukoc Biol 2022; 111:817-836. [PMID: 34346525 PMCID: PMC9290968 DOI: 10.1002/jlb.2a0421-200r] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIβ), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.
Collapse
Affiliation(s)
- Rita Silva‐Gomes
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- IRCCS Humanitas Research Hospital, RozzanoMilanItaly
- ICBAS‐Institute of Biomedical Sciences Abel SalazarUniversity of PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia BiomédicaUniversidade do PortoPortoPortugal
| | | | - Marie‐Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Regenerative Medicine and Skeleton, RMeS, Inserm UMR 1229, Oniris, CHU NantesUniversité de NantesNantesFrance
| | - Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and ImmunologyCharité‐Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
- Mucosal and Developmental ImmunologyBerlinGermany
| | - Marina Sironi
- IRCCS Humanitas Research Hospital, RozzanoMilanItaly
| | - Fabio Grizzi
- IRCCS Humanitas Research Hospital, RozzanoMilanItaly
| | | | - Domenico Supino
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
| | - Silvia Carnevale
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
| | - Fabio Pasqualini
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
| | | | - Rémi Porte
- IRCCS Humanitas Research Hospital, RozzanoMilanItaly
- InfinityUniversité Toulouse, CNRS, Inserm, UPSToulouseFrance
| | - Andrea Gianatti
- Unit of PathologyAzienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIIIBergamoItaly
| | - Constantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, RozzanoMilanItaly
- Department of Medical Biotechnologies and Translational MedicineUniversity of MilanMilanItaly
| | - Maria José Oliveira
- ICBAS‐Institute of Biomedical Sciences Abel SalazarUniversity of PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- Department of Pathology and Oncology, Faculty of MedicineUniversity of PortoPortoPortugal
| | | | - Alberto Mantovani
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- IRCCS Humanitas Research Hospital, RozzanoMilanItaly
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
39
|
Asano T, Suzuki H, Kaneko MK, Kato Y. Epitope Mapping of Rituximab Using HisMAP Method. Monoclon Antib Immunodiagn Immunother 2022; 41:8-14. [PMID: 35225667 DOI: 10.1089/mab.2021.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CD20 is expressed in the B lymphocyte, and an effective target for the detection and treatment of B cell lymphomas. Therefore, CD20 has been studied as a therapeutic target of B cell lymphomas and autoimmune disorders. Specific anti-CD20 monoclonal antibodies (mAbs), such as rituximab, ofatumumab, veltuzumab, and ocaratuzumab, have been developed. Revealing the recognition mechanism of antigen by mAbs could contribute to understanding the function of mAbs and could be useful for the development of vaccine. Rituximab is a mouse-human chimeric anti-CD20 mAb, which was developed and approved for the treatment of the B cell malignancies. Hence, the binding epitope of rituximab for CD20 has been studied. Some reports show that 170-ANPS-173, especially Ala170 and Pro172 of CD20 are important for rituximab binding. However, only phage display results showed that 182-YCYSI-186 of CD20 is also important for rituximab binding to CD20. In this study, we tried to determine the binding epitope of rituximab for CD20 using histidine-tag insertion for epitope mapping (HisMAP) method. The results showed that two regions of CD20 (169-PANPSE-174 and 183-CYSIQ-187) are important for rituximab-binding for CD20.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
40
|
Abstract
CD47 is a "don't eat me" signal to phagocytes that is overexpressed on many tumor cells as a potential mechanism for immune surveillance evasion. CD47 and its interaction with signal-regulating protein alpha (SIRPα) on phagocytes is therefore a promising cancer target. Therapeutic antibodies and fusion proteins that block CD47 or SIRPα have been developed and have shown activity in preclinical models of hematologic and solid tumors. Anemia is a common adverse event associated with anti-CD47 treatment, but mitigation strategies-including use of a low 'priming' dose-have substantially reduced this risk in clinical studies. While efficacy in single-agent clinical studies is lacking, findings from studies of CD47-SIRPα blockade in combination with agents that increase 'eat me' signals or with antitumor antibodies are promising. Magrolimab, an anti-CD47 antibody, is the furthest along in clinical development among agents in this class. Magrolimab combination therapy in phase Ib/II studies has been well tolerated with encouraging response rates in hematologic and solid malignancies. Similar combination therapy studies with other anti-CD47-SIRPα agents are beginning to report. Based on these early clinical successes, many trials have been initiated in hematologic and solid tumors testing combinations of CD47-SIRPα blockade with standard therapies. The results of these studies will help determine the role of this novel approach in clinical practice and are eagerly awaited.
Collapse
Affiliation(s)
- R. Maute
- Gilead Sciences, Inc., Foster City, USA
| | - J. Xu
- Gilead Sciences, Inc., Foster City, USA
| | - I.L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
41
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
42
|
Markovič T, Podgornik H, Avsec D, Nabergoj S, Mlinarič-Raščan I. The Enhanced Cytotoxic Effects in B-Cell Leukemia and Lymphoma Following Activation of Prostaglandin EP4 Receptor and Targeting of CD20 Antigen by Monoclonal Antibodies. Int J Mol Sci 2022; 23:ijms23031599. [PMID: 35163524 PMCID: PMC8835876 DOI: 10.3390/ijms23031599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Anti-CD20 monoclonal antibodies (MAbs) have revolutionized the treatment of B-cell leukemia and lymphoma. However, many patients do not respond to such treatment due to either deficiency of the complementary immune response or resistance to apoptosis. Other currently available treatments are often inadequate or induce major side effects. Therefore, there is a constant need for improved therapies. The prostaglandin E2 receptor 4 (EP4) receptor has been identified as a promising therapeutic target for hematologic B-cell malignancies. Herein, we report that EP4 receptor agonists PgE1-OH and L-902688 have exhibited enhanced cytotoxicity when applied together with anti-CD20 MAbs rituximab, ofatumumab and obinutuzumab in vitro in Burkitt lymphoma cells Ramos, as well as in p53-deficient chronic lymphocytic leukemia (CLL) cells MEC-1. Moreover, the enhanced cytotoxic effects of EP4 receptor agonists and MAbs targeting CD20 have been identified ex vivo on primary lymphocytes B obtained from patients diagnosed with CLL. Incubation of cells with PgE1-OH and L-902688 preserved the expression of CD20 molecules, further confirming the anti-leukemic potential of EP4 receptor agonists in combination with anti-CD20 MAbs. Additionally, we demonstrated that the EP4 receptor agonist PgE-1-OH induced apoptosis and inhibited proliferation via the EP4 receptor triggering in CLL. This work has revealed very important findings leading towards the elucidation of the anticancer potential of PgE1-OH and L-902688, either alone or in combination with MAbs. This may contribute to the development of potential therapeutic alternatives for patients with B-cell malignancies.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD20/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Synergism
- Gene Expression Regulation, Neoplastic/drug effects
- Heptanoic Acids/pharmacology
- Humans
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/metabolism
- Pyrrolidinones/pharmacology
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Tetrazoles/pharmacology
Collapse
Affiliation(s)
- Tijana Markovič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
| | - Helena Podgornik
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
- Department of Haematology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Damjan Avsec
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
| | - Sanja Nabergoj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
- Correspondence:
| |
Collapse
|
43
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
44
|
Fernández-Ruiz M. Overview of the Risk of Infection Associated with Biologic and Target Therapies. INFECTIOUS COMPLICATIONS IN BIOLOGIC AND TARGETED THERAPIES 2022:3-15. [DOI: 10.1007/978-3-031-11363-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
45
|
Kang CE, Lee S, Seo DH, Heo W, Kwon SH, Kim J, Lee J, Ko BJ, Koiwa H, Kim WT, Kim JY. Comparison of CD20 Binding Affinities of Rituximab Produced in Nicotiana benthamiana Leaves and Arabidopsis thaliana Callus. Mol Biotechnol 2021; 63:1016-1029. [PMID: 34185248 DOI: 10.1007/s12033-021-00360-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Plants are promising drug-production platforms with high economic efficiency, stability, and convenience in mass production. However, studies comparing the equivalency between the original antibodies and those produced in plants are limited. Amino acid sequences that constitute the Fab region of an antibody are diverse, and the post-transcriptional modifications that occur according to these sequences in animals and plants are also highly variable. In this study, rituximab, a blockbuster antibody drug used in the treatment of non-Hodgkin's lymphoma, was produced in Nicotiana benthamiana leaves and Arabidopsis thaliana callus, and was compared to the original rituximab produced in CHO cells. Interestingly, the epitope recognition and antigen-binding abilities of rituximab from N. benthamiana leaves were almost lost. In the case of rituximab produced in A. thaliana callus, the specific binding ability and CD20 capping activity were maintained, but the binding affinity was less than 50% of that of original rituximab from CHO cells. These results suggest that different plant species exhibit different binding affinities. Accordingly, in addition to the differences in PTMs between mammals and plants, the differences between the species must also be considered in the process of producing antibodies in plants.
Collapse
Affiliation(s)
- Cho Eun Kang
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Seungeun Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea
| | - Dong Hye Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Sun Hyung Kwon
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - JeongRyeol Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Byoung Joon Ko
- Mass Analysis Team, New Drug Development Center, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hisashi Koiwa
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX77843-2133, USA
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea.
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
46
|
Follicular lymphoma and macrophages: impact of approved and novel therapies. Blood Adv 2021; 5:4303-4312. [PMID: 34570196 PMCID: PMC8945644 DOI: 10.1182/bloodadvances.2021005722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022] Open
Abstract
The survival and proliferation of follicular lymphoma (FL) cells are strongly dependent on macrophages, because their presence is necessary for the propagation of FL cells in vitro. To this regard, as also shown for the majority of solid tumors, a high tissue content of tumor-associated macrophages (TAMs), particularly if showing a protumoral phenotype (also called M2), is strongly associated with a poor outcome among patients with FL treated with chemotherapy. The introduction of rituximab, an anti-CD20 antibody that can be used by TAMs to facilitate antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis, has challenged this paradigm. In the rituximab era, clinical studies have yielded conflicting results in FL, showing variable outcomes based on the type of regimen used. This highlighted, for the first time, that the impact of TAMs on the prognosis of patients with FL may depend on the administered treatment, emphasizing the need to better understand how currently available therapies affect macrophage function in FL. We summarize the impact of approved and novel therapies for FL, including radiation therapy, chemotherapy, anti-CD20 monoclonal antibodies, lenalidomide, and targeted agents, on the biology of TAMs and describe their effects on macrophage phagocytosis, polarization, and function. Although novel agents targeting the CD47/SIRPα axis are being developed and show promising activity in FL, a deeper understanding of macrophage biology and their complex pathways will help to develop novel and safer therapeutic strategies for patients with this type of lymphoma.
Collapse
|
47
|
Interdonato A, Choblet S, Sana M, Valgardsdottir R, Cribioli S, Alzani R, Roth M, Duonor-Cerutti M, Golay J. BL-01, an Fc-bearing, tetravalent CD20 × CD5 bispecific antibody, redirects multiple immune cells to kill tumors in vitro and in vivo. Cytotherapy 2021; 24:161-171. [PMID: 34538717 DOI: 10.1016/j.jcyt.2021.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AIMS The authors describe here a novel therapeutic strategy combining a bispecific antibody (bsAb) with cytokine-induced killer (CIK) cells. METHODS The authors have designed, produced and purified a novel tetravalent IgG1-like CD20 × CD5 bsAb called BL-01. The bsAb is composed of a fused heavy chain and two free light chains that pair correctly to the heavy chain sequences thanks to complementary mutations in the monoclonal antibody 2 CH1/CL sequences. RESULTS The authors show that BL-01 can bind specifically to CD20 and CD5 with an affinity of 4-6 nM, demonstrating correct pairing of two light chains to the fused heavy chain. The CD20 × CD5 BL-01 bsAb has a functional human IgG1 Fc and can induce up to 65% complement-dependent cytotoxicity of a CD20+ lymphoma cell line in the presence of human complement, similar to anti-CD20 rituximab. The bsAb also induces significant natural killer cell activation and antibody-dependent cytotoxicity of up to 25% as well as up to 65% phagocytosis by human macrophages in the presence of CD20+ tumor cells. The BL-01 bsAb binds to CD20 and CD5 simultaneously and can redirect CIK cells in vitro to kill CD20+ targets, increasing the cytotoxicity of CIK cells by about 3-fold. The authors finally show that the CD20 × CD5 BL-01 bsAb synergizes with CIK cells in vivo in controlling tumor growth and prolonging survival of nonobese diabetic/severe combined immunodeficiency mice inoculated with a patient-derived, aggressive diffuse large B-cell lymphoma xenograft. CONCLUSIONS The authors suggest that the efficacy of bsAb in vivo is due to the combined activation of innate immunity by Fc and redirection of CIK cells to kill the tumor target.
Collapse
Affiliation(s)
- Antonella Interdonato
- Division of Hematology, Center of Cellular Therapy "G. Lanzani," Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Sylvie Choblet
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Thérapie," Saint-Christol-Lez Alès, France
| | - Mirco Sana
- Division of Hematology, Center of Cellular Therapy "G. Lanzani," Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Rut Valgardsdottir
- Division of Hematology, Center of Cellular Therapy "G. Lanzani," Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Muriel Roth
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Thérapie," Saint-Christol-Lez Alès, France
| | - Martine Duonor-Cerutti
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Thérapie," Saint-Christol-Lez Alès, France
| | - Josée Golay
- Division of Hematology, Center of Cellular Therapy "G. Lanzani," Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; Fondazione per la Ricerca Ospedale Maggiore, Bergamo, Italy.
| |
Collapse
|
48
|
Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 2021; 597:549-554. [PMID: 34497417 PMCID: PMC9419706 DOI: 10.1038/s41586-021-03879-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Monoclonal antibody therapies targeting tumour antigens drive cancer cell elimination in large part by triggering macrophage phagocytosis of cancer cells1-7. However, cancer cells evade phagocytosis using mechanisms that are incompletely understood. Here we develop a platform for unbiased identification of factors that impede antibody-dependent cellular phagocytosis (ADCP) using complementary genome-wide CRISPR knockout and overexpression screens in both cancer cells and macrophages. In cancer cells, beyond known factors such as CD47, we identify many regulators of susceptibility to ADCP, including the poorly characterized enzyme adipocyte plasma membrane-associated protein (APMAP). We find that loss of APMAP synergizes with tumour antigen-targeting monoclonal antibodies and/or CD47-blocking monoclonal antibodies to drive markedly increased phagocytosis across a wide range of cancer cell types, including those that are otherwise resistant to ADCP. Additionally, we show that APMAP loss synergizes with several different tumour-targeting monoclonal antibodies to inhibit tumour growth in mice. Using genome-wide counterscreens in macrophages, we find that the G-protein-coupled receptor GPR84 mediates enhanced phagocytosis of APMAP-deficient cancer cells. This work reveals a cancer-intrinsic regulator of susceptibility to antibody-driven phagocytosis and, more broadly, expands our knowledge of the mechanisms governing cancer resistance to macrophage phagocytosis.
Collapse
|
49
|
Singh A, Behl T, Sehgal A, Singh S, Sharma N, Naved T, Bhatia S, Al-Harrasi A, Chakrabarti P, Aleya L, Vargas-De-La-Cruz C, Bungau S. Mechanistic insights into the role of B cells in rheumatoid arthritis. Int Immunopharmacol 2021; 99:108078. [PMID: 34426116 DOI: 10.1016/j.intimp.2021.108078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease epitomized by severe inflammation that induces tendon, cartilage, and bone damage over time. Although different types of cells undertake pathogenic functions in RA, the B cell's significant involvement has increasingly been known following the development of rheumatoid factor and it has been re-emphasized in recent years. Therefore, the rheumatoid factors and anti-cyclic citrullinated peptide antibodies are well-known indications of infection and clinical manifestations, and that they can precede the development of illness by several years. The emergence of rituximab a B cell reducing chimeric antidote in 1997 and 1998 transformed B-cell-targeted therapy for inflammatory disorder from a research hypothesis to a functional fact. Ever since, several autoantibody-related conditions were addressed, including the more intriguing indications of effectiveness seen in rheumatoid arthritis patients. Numerous types of B-cell-targeted compounds are currently being researched. From the beginning, one of the primary goals of B-cell therapy was to reinstate some kind of immune tolerance. While B cells have long been recognized as essential autoantibody producers, certain antibody-independent functions and usefulness as a key targeted therapy were not recognized until recently. The knowledge of B cells' diverse physical and pathogenic roles in autoimmune diseases is growing. As a result, the number of successful agents targeting the B cell complex is becoming more ubiquitous. Therefore, in this article, we explore fresh perspectives upon the roles of B cells in arthritis treatment, as well as new evidence regarding the effectiveness of B lymphocytes reduction and the therapeutic outcome of biological markers.
Collapse
Affiliation(s)
- Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
50
|
Zeng JC, Zhang RL, Wei XJ, Lin GH. Acupuncture for improving a case of widespread herpes zoster after non-Hodgkin's lymphoma chemotherapy. Explore (NY) 2021; 18:608-611. [PMID: 34417113 DOI: 10.1016/j.explore.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Herpes zoster presents as clustered blisters on one side of the body, accompanied by nerve pain. This is caused by reactivation of the varicella zoster virus, and it occurs primarily in people with weakened immunity. Tumor and chemotherapy drugs can impair the patient's immune function, induce herpes zoster and prolong the course of disease.In these patients, skin changes can last for months and blisters can recur and cause serious complications such as postherpetic neuralgia.Acupuncture is a common alternative therapy for herpes zoster in East Asia. CASE PRESENTATION We report a case of an elderly male patient with widespread herpes zoster in the trunk after non-Hodgkin's lymphoma chemotherapy. The patient had received conventional treatment with valaciclovir and mecobalamin within 24 hours of symptom onset. Because neither the clustered blisters nor the nerve pain were improved a week later, acupuncture and related techniques were applied. These included electro-acupuncture, surrounding acupuncture, fire acupuncture, and cupping. The patient recovered 20 days after the herpes zoster attack, and there were no adverse reactions during the treatment process. CONCLUSIONS This case suggests that acupuncture and related techniques are effective interventions for this condition.This case report is innovative because it shows that acupuncture as an adjuvant treatment can improve the skin lesions in patients with HZ after tumour chemotherapy, relieve pain, and shorten the course of HZ.
Collapse
Affiliation(s)
- Jing-Chun Zeng
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rui-Lin Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Jing Wei
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo-Hua Lin
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|