1
|
Giraud M, Peterson P. The Autoimmune Regulator (AIRE) Gene, The Master Activator of Self-Antigen Expression in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:199-221. [PMID: 40067588 DOI: 10.1007/978-3-031-77921-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
It has been more than 20 years since the AIRE gene was discovered. The mutations in the AIRE gene cause a rare and life-threatening autoimmune disease with severe manifestations against a variety of organs. Since the identification of the AIRE gene in 1997, more than two decades of investigations have revealed key insights into the role of AIRE and its mode of action. These studies have shown that AIRE uniquely induces the expression of thousands of tissue-restricted self-antigens in the thymus. These self-antigens are presented to developing T cells, resulting in the deletion of the self-reactive T cells and the generation of regulatory T cells. Thus, AIRE is a master guardian in establishing and maintaining central immune tolerance.
Collapse
Affiliation(s)
- Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Ochoa S, Hsu AP, Oler AJ, Kumar D, Chauss D, van Hamburg JP, van Laar GG, Oikonomou V, Ganesan S, Ferré EMN, Schmitt MM, DiMaggio T, Barber P, Constantine GM, Rosen LB, Auwaerter PG, Gandhi B, Miller JL, Eisenberg R, Rubinstein A, Schussler E, Balliu E, Shashi V, Neth O, Olbrich P, Le KM, Mamia N, Laakso S, Nevalainen PI, Grönholm J, Seppänen MRJ, Boon L, Uzel G, Franco LM, Heller T, Winer KK, Ghosh R, Seifert BA, Walkiewicz M, Notarangelo LD, Zhou Q, Askentijevich I, Gahl W, Dalgard CL, Perera L, Afzali B, Tas SW, Holland SM, Lionakis MS. A deep intronic splice-altering AIRE variant causes APECED syndrome through antisense oligonucleotide-targetable pseudoexon inclusion. Sci Transl Med 2024; 16:eadk0845. [PMID: 39292801 PMCID: PMC12038428 DOI: 10.1126/scitranslmed.adk0845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/28/2024] [Indexed: 09/20/2024]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a life-threatening monogenic autoimmune disorder primarily caused by biallelic deleterious variants in the autoimmune regulator (AIRE) gene. We prospectively evaluated 104 patients with clinically diagnosed APECED syndrome and identified 17 patients (16%) from 14 kindreds lacking biallelic AIRE variants in exons or flanking intronic regions; 15 had Puerto Rican ancestry. Through whole-genome sequencing, we identified a deep intronic AIRE variant (c.1504-818 G>A) cosegregating with the disease in all 17 patients. We developed a culture system of AIRE-expressing primary patient monocyte-derived dendritic cells and demonstrated that c.1504-818 G>A creates a cryptic splice site and activates inclusion of a 109-base pair frame-shifting pseudoexon. We also found low-level AIRE expression in patient-derived lymphoblastoid cell lines (LCLs) and confirmed pseudoexon inclusion in independent extrathymic AIRE-expressing cell lines. Through protein modeling and transcriptomic analyses of AIRE-transfected human embryonic kidney 293 and thymic epithelial cell 4D6 cells, we showed that this variant alters the carboxyl terminus of the AIRE protein, abrogating its function. Last, we developed an antisense oligonucleotide (ASO) that reversed pseudoexon inclusion and restored the normal AIRE transcript sequence in LCLs. Thus, our findings revealed c.1504-818 G>A as a founder APECED-causing AIRE variant in the Puerto Rican population and uncovered pseudoexon inclusion as an ASO-reversible genetic mechanism underlying APECED.
Collapse
Affiliation(s)
- Sebastian Ochoa
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Jan Piet van Hamburg
- Departments of Rheumatology and Clinical Immunology and Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, Netherlands
| | - Gustaaf G. van Laar
- Departments of Rheumatology and Clinical Immunology and Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Elise M. N. Ferré
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Monica M. Schmitt
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tom DiMaggio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Princess Barber
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | - Lindsey B. Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Paul G. Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bhumika Gandhi
- Division of Internal Medicine-Pediatrics, Department of Medicine, Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Jennifer L. Miller
- Division of Pediatric Endocrinology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rachel Eisenberg
- Division of Allergy and Immunology, Department of Pediatrics, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Arye Rubinstein
- Division of Allergy and Immunology, Department of Pediatrics, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Microbiology and Immunology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Edith Schussler
- Division of Pulmonary, Allergy, and Immunology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Erjola Balliu
- Department of Endocrinology, Diabetes and Metabolism, Lakeland Regional Health Grasslands Campus, Lakeland, FL 33803, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Undiagnosed Diseases Network, Duke University Medical Center, Durham, NC 27710, USA
| | - Olaf Neth
- Inborn Errors of Immunity Laboratory, Biomedicine Institute in Seville (IBiS), University of Seville/CSIC, “Red de Investigación Translacional en Infectología Pediátrica,” Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Virgen del Rocío University Hospital, Seville 41013, Spain
| | - Peter Olbrich
- Inborn Errors of Immunity Laboratory, Biomedicine Institute in Seville (IBiS), University of Seville/CSIC, “Red de Investigación Translacional en Infectología Pediátrica,” Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Virgen del Rocío University Hospital, Seville 41013, Spain
- Departamento de Farmacología, Pediatría y Radiología, Facultad de Medicina, Universidad de Sevilla, Seville 41004, Spain
| | - Kim My Le
- Translational Immunology Research Program, University of Helsinki, Helsinki 00014, Finland
- Pediatric Research Center, New Children’s Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki 00290, Finland
| | - Nanni Mamia
- Pediatric Research Center, New Children’s Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki 00290, Finland
| | - Saila Laakso
- Pediatric Research Center, New Children’s Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki 00290, Finland
- Folkhälsan Research Center, Helsinki 00250, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | | | - Juha Grönholm
- Translational Immunology Research Program, University of Helsinki, Helsinki 00014, Finland
- Pediatric Research Center, New Children’s Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki 00290, Finland
| | - Mikko R. J. Seppänen
- Translational Immunology Research Program, University of Helsinki, Helsinki 00014, Finland
- Pediatric Research Center, New Children’s Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki 00290, Finland
- European Reference Network Rare Immunodeficiency Autoinflammatory and Autoimmune Diseases Network (ERN RITA) Core Center, Utrecht, 3584 CX, Netherlands
| | | | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Luis M. Franco
- Functional Immunogenomics Unit, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Karen K. Winer
- Pediatric Growth and Nutrition Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Rajarshi Ghosh
- Centralized Sequencing Program, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bryce A. Seifert
- Centralized Sequencing Program, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| | - Magdalena Walkiewicz
- Centralized Sequencing Program, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Qing Zhou
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ivona Askentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - William Gahl
- Medical Genetics Branch, National Human Genome Research Institute, and NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD 20892, USA
| | - Cliffton L. Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Sander W. Tas
- Departments of Rheumatology and Clinical Immunology and Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, Netherlands
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Huoh YS, Zhang Q, Törner R, Baca SC, Arthanari H, Hur S. Mechanism for controlled assembly of transcriptional condensates by Aire. Nat Immunol 2024; 25:1580-1592. [PMID: 39169234 PMCID: PMC11362013 DOI: 10.1038/s41590-024-01922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators.
Collapse
Affiliation(s)
- Yu-San Huoh
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qianxia Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Cruz Marino T, Leblanc J, Pratte A, Tardif J, Thomas MJ, Fortin CA, Girard L, Bouchard L. Portrait of autosomal recessive diseases in the French-Canadian founder population of Saguenay-Lac-Saint-Jean. Am J Med Genet A 2023; 191:1145-1163. [PMID: 36786328 DOI: 10.1002/ajmg.a.63147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
The population of the Saguenay-Lac-Saint-Jean (SLSJ) region, located in the province of Quebec, Canada, is recognized as a founder population, where some rare autosomal recessive diseases show a high prevalence. Through the clinical and molecular study of 82 affected individuals from 60 families, this study outlines 12 diseases identified as recurrent in SLSJ. Their carrier frequency was estimated with the contribution of 1059 healthy individuals, increasing the number of autosomal recessive diseases with known carrier frequency in this region from 14 to 25. We review the main clinical and molecular features previously reported for these disorders. Five of the studied diseases have a potential lethal effect and three are associated with intellectual deficiency. Therefore, we believe that the provincial program for carrier screening should be extended to include these eight disorders. The high-carrier frequency, together with the absence of consanguinity in most of these unrelated families, suggest a founder effect and genetic drift for the 12 recurrent variants. We recommend further studies to validate this hypothesis, as well as to extend the present study to other regions in the province of Quebec, since some of these disorders could also be present in other French-Canadian families.
Collapse
Affiliation(s)
- Tania Cruz Marino
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada
| | - Josianne Leblanc
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada
| | - Annabelle Pratte
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada
| | - Jessica Tardif
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada
| | | | - Carol-Ann Fortin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Quebec, Canada
| | - Lysanne Girard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Quebec, Canada
| | - Luigi Bouchard
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada.,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Cruz Marino T, Villeneuve H, Leblanc J, Duranceau C, Caron P, Morin C, Milot M, Chrétien R, Gagnon MM, Mathieu J, Ellezam B, Buhas D. French-Canadian families from Saguenay-Lac-Saint-Jean: a new founder population for APECED. Endocrine 2022; 75:48-58. [PMID: 34846681 DOI: 10.1007/s12020-021-02826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is more prevalent in some founder populations, but relatively unexplored in Canada. This study aimed at investigating the French-Canadian patients through phenotypic and genotypic characterization. METHOD Phenotype and demographic characterization were done for 12 affected individuals belonging to eight unrelated families. Samples from 11 cases were analyzed in a molecular clinical laboratory, and muscle biopsies were reviewed for two individuals with a limb-girdle muscle dystrophy. RESULTS The clinical phenotype was similar to that observed in European Caucasian populations but differed in the non-endocrine spectrum from the American-reported series of cases. Two cases exhibited a limb-girdle muscle dystrophy, and we found preliminary evidence of a mitochondrial dysfunction, since all three biopsies examined showed COX-deficient fibers in excess of what would be expected for age. Electron microscopy showed mitochondrial accumulation without abnormal cristea or inclusions. The c.1616C > T variant in the AIRE gene was responsible for 100% of APECED cases in the French-Canadian population of Saguenay-Lac-Saint-Jean in Quebec, Canada. CONCLUSIONS We report the first series of French-Canadian cases affected with APECED. The Saguenay-Lac-Saint-Jean region was uncovered as a new founder population for this condition. Muscle biopsy findings expanded the range of previously described APECED-related myopathology. Long term follow-up of our genetically homogeneous French-Canadian cases may help determine if the c.1616C > T variant increases the risk of muscle involvement. A neonatal screening program is under consideration to prevent undesired life-threatening endocrine manifestations.
Collapse
Affiliation(s)
- Tania Cruz Marino
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada.
| | - Hélène Villeneuve
- Department of Endocrinology, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada
| | - Josianne Leblanc
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada
| | - Caroline Duranceau
- Department of Endocrinology, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada
| | - Philippe Caron
- Department of Endocrinology, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada
| | - Charles Morin
- Department of Pediatrics, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada
| | - Marcel Milot
- Department of Pediatrics, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada
| | - Raphaëlle Chrétien
- Department of Pediatrics, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada
| | - Maude-Marie Gagnon
- Clinique des Maladies Neuromusculaires, CIUSSS Saguenay-Lac-St-Jean, Saguenay, QC, Canada
| | - Jean Mathieu
- Department of Neurology, Université de Sherbrooke, QC, Sherbrooke, Canada
| | - Benjamin Ellezam
- Department of Pathology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine; Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
A Quorum Sensing-Regulated Protein Binds Cell Wall Components and Enhances Lysozyme Resistance in Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00701-17. [PMID: 29555699 DOI: 10.1128/jb.00701-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/10/2018] [Indexed: 12/28/2022] Open
Abstract
The Rgg2/3 quorum sensing (QS) system is conserved among all sequenced isolates of group A Streptococcus (GAS; Streptococcus pyogenes). The molecular architecture of the system consists of a transcriptional activator (Rgg2) and a transcriptional repressor (Rgg3) under the control of autoinducing peptide pheromones (SHP2 and SHP3). Activation of the Rgg2/3 pathway leads to increases in biofilm formation and resistance to the bactericidal effects of the host factor lysozyme. In this work, we show that deletion of a small gene, spy49_0414c, abolished both phenotypes in response to pheromone signaling. The gene encodes a small, positively charged, secreted protein, referred to as StcA. Analysis of recombinant StcA showed that it can directly interact with GAS cell wall preparations containing phosphodiester-linked carbohydrate polymers but not with preparations devoid of them. Immunofluorescence microscopy detected antibody against StcA bound to the surface of paraformaldehyde-fixed wild-type cells. Expression of StcA in bacterial culture induced a shift in the electrostatic potential of the bacterial cell surface, which became more positively charged. These results suggest that StcA promotes phenotypes by way of ionic interactions with the GAS cell wall, most likely with negatively charged cell wall-associated polysaccharides.IMPORTANCE This study focuses on a small protein, StcA, that is expressed and secreted under induction of Rgg2/3 QS, ionically associating with negatively charged domains on the cell surface. These data present a novel mechanism of resistance to the host factor lysozyme by GAS and have implications in the relevance of this circuit in the interaction between the bacterium and the human host that is mediated by the bacterial cell surface.
Collapse
|
7
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
8
|
The molecular basis of immune regulation in autoimmunity. Clin Sci (Lond) 2018; 132:43-67. [PMID: 29305419 DOI: 10.1042/cs20171154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases can be triggered and modulated by various molecular and cellular characteristics. The mechanisms of autoimmunity and the pathogenesis of autoimmune diseases have been investigated for several decades. It is well accepted that autoimmunity is caused by dysregulated/dysfunctional immune susceptible genes and environmental factors. There are multiple physiological mechanisms that regulate and control self-reactivity, but which can also lead to tolerance breakdown when in defect. The majority of autoreactive T or B cells are eliminated during the development of central tolerance by negative selection. Regulatory cells such as Tregs (regulatory T) and MSCs (mesenchymal stem cells), and molecules such as CTLA-4 (cytotoxic T-lymphocyte associated antigen 4) and IL (interleukin) 10 (IL-10), help to eliminate autoreactive cells that escaped to the periphery in order to prevent development of autoimmunity. Knowledge of the molecular basis of immune regulation is needed to further our understanding of the underlying mechanisms of loss of tolerance in autoimmune diseases and pave the way for the development of more effective, specific, and safer therapeutic interventions.
Collapse
|
9
|
Sparks AE, Chen C, Breslin MB, Lan MS. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells. J Biol Chem 2016; 291:11313-22. [PMID: 27048654 PMCID: PMC4900276 DOI: 10.1074/jbc.m116.722488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/30/2016] [Indexed: 01/30/2023] Open
Abstract
INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity.
Collapse
Affiliation(s)
- Avis E Sparks
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118 and
| | - Chiachen Chen
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118 and
| | - Mary B Breslin
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118 and
| | - Michael S Lan
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118 and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
10
|
Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 2014; 24:1918-31. [PMID: 25224068 PMCID: PMC4248310 DOI: 10.1101/gr.171645.113] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population.
Collapse
Affiliation(s)
- Stephen N Sansom
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom;
| | - Noriko Shikama-Dorn
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Saule Zhanybekova
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Gretel Nusspaumer
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Iain C Macaulay
- Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Mary E Deadman
- Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Andreas Heger
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Chris P Ponting
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Georg A Holländer
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland; Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
11
|
Incani F, Serra ML, Meloni A, Cossu C, Saba L, Cabras T, Messana I, Rosatelli MC. AIRE acetylation and deacetylation: effect on protein stability and transactivation activity. J Biomed Sci 2014; 21:85. [PMID: 25158603 PMCID: PMC4256887 DOI: 10.1186/s12929-014-0085-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/16/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The AIRE protein plays a remarkable role as a regulator of central tolerance by controlling the promiscuous expression of tissue-specific antigens in thymic medullary epithelial cells. Defects in AIRE gene cause the autoimmune polyendocrinopathy- candidiasis-ectodermal dystrophy, a rare disease frequent in Iranian Jews, Finns, and Sardinian population. RESULTS In this study, we have precisely mapped, by mass spectrometry experiments, the sites of protein acetylation and, by mutagenesis assays, we have described a set of acetylated lysines as being crucial in influencing the subcellular localization of AIRE. Furthermore, we have also determined that the de-acetyltransferase enzymes HDAC1-2 are involved in the lysine de-acetylation of AIRE. CONCLUSIONS On the basis of our results and those reported in literature, we propose a model in which lysines acetylation increases the stability of AIRE in the nucleus. In addition, we observed that the interaction of AIRE with deacetylases complexes inhibits its transcriptional activity and is probably responsible for the instability of AIRE, which becomes more susceptible to degradation in the proteasome.
Collapse
Affiliation(s)
- Federica Incani
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Maria Luisa Serra
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Alessandra Meloni
- />Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Carla Cossu
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Luisella Saba
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Tiziana Cabras
- />Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Biochimica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Irene Messana
- />Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Biochimica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Rosatelli
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| |
Collapse
|
12
|
Perniola R, Musco G. The biophysical and biochemical properties of the autoimmune regulator (AIRE) protein. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:326-37. [PMID: 24275490 DOI: 10.1016/j.bbadis.2013.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023]
Abstract
AIRE (for autoimmune regulator) is a multidomain protein that performs a fundamental function in the thymus and possibly in the secondary lymphoid organs: the regulation, especially in the sense of activation, of the process of gene transcription in cell lines deputed to the presentation of self-antigens to the maturing T lymphocytes. The apoptosis of the elements bearing T-cell receptors with critical affinity for the exhibited self-antigens prevents the escape of autoreactive clones and represents a simple and efficient mechanism of deletional self-tolerance. However, AIRE action relies on an articulated complex of biophysical and biochemical properties, in most cases attributable to single subspecialized domains. Here a thorough review of the matter is presented, with a privileged look at the pathogenic changes of AIRE that interfere with such properties and lead to the impairment in its chief function.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics - Neonatal Intensive Care, V. Fazzi Regional Hospital, Piazza F. Muratore, I-73100, Lecce, Italy.
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute at San Raffaele Scientific Institute, Via Olgettina 58, I-20132, Milan, Italy.
| |
Collapse
|
13
|
Zumer K, Saksela K, Peterlin BM. The mechanism of tissue-restricted antigen gene expression by AIRE. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:2479-82. [PMID: 23456700 DOI: 10.4049/jimmunol.1203210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The autoimmune regulator is a critical transcription factor for generating central tolerance in the thymus. Recent studies have revealed how the autoimmune regulator targets many otherwise tissue-restricted Ag genes to enable negative selection of autoreactive T cells.
Collapse
Affiliation(s)
- Kristina Zumer
- Department of Virology, Haartman Institute, Helsinki University Central Hospital, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
14
|
Yang S, Bansal K, Lopes J, Benoist C, Mathis D. Aire's plant homeodomain(PHD)-2 is critical for induction of immunological tolerance. Proc Natl Acad Sci U S A 2013; 110:1833-8. [PMID: 23319629 PMCID: PMC3562810 DOI: 10.1073/pnas.1222023110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aire impacts immunological tolerance by regulating the expression of a large set of genes in thymic medullary epithelial cells, thereby controlling the repertoire of self-antigens encountered by differentiating thymocytes. Both humans and mice lacking Aire develop multiorgan autoimmunity. Currently, there are few molecular details on how Aire performs this crucial function. The more amino-terminal of its two plant homeodomains (PHDs), PHD1, helps Aire target poorly transcribed loci by "reading" the methylation status of a particular lysine residue of histone-3, a process that does not depend on the more carboxyl-terminal PHD-2. This study addresses the role of PHD2 in Aire function by comparing the behavior of wild-type and PHD2-deleted Aire in both transfected cells and transgenic mice. PHD2 was required for Aire to interact with sets of protein partners involved in chromatin structure/binding or transcription but not with those implicated in pre-mRNA processing; it also was not required for Aire's nuclear translocation or regional distribution. PHD2 strongly influenced the ability of Aire to regulate the medullary epithelial cell transcriptome and so was crucial for effective central tolerance induction. Thus, Aire's two PHDs seem to play distinct roles in the scenario by which it assures immunological tolerance.
Collapse
Affiliation(s)
| | | | | | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Gallo V, Giardino G, Capalbo D, Palamaro L, Romano R, Santamaria F, Maio F, Salerno M, Vajro P, Pignata C. Alterations of the autoimmune regulator transcription factor and failure of central tolerance: APECED as a model. Expert Rev Clin Immunol 2013; 9:43-51. [PMID: 23256763 DOI: 10.1586/eci.12.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Self-nonself discrimination plays a key role in inducing a productive immunity and in preventing autoimmune reactions. Central tolerance within the thymus and peripheral tolerance in peripheral lymphoid organs lead to immunologic nonresponsiveness against self-components. The central tolerance represents the mechanism by which T cells binding with high avidity to self-antigens are eliminated through the so-called negative selection. Thymic medullary epithelial cells and medullary dendritic cells play a key role in this process, through the expression of a large number of tissue-specific self-antigens involving the transcription factor autoimmune regulator (AIRE). Mutations of AIRE result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy, a rare autosomal recessive disease (OMIM 240300), which is the paradigm of a genetically determined failure of central tolerance and autoimmunity. This review focuses on recent advances in the molecular mechanisms of central tolerance, their alterations and clinical implication.
Collapse
Affiliation(s)
- Vera Gallo
- Department of Pediatrics, Federico II University, S Pansini 5, 8013 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fierabracci A, Bizzarri C, Palma A, Milillo A, Bellacchio E, Cappa M. A novel heterozygous mutation of the AIRE gene in a patient with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED). Gene 2012; 511:113-117. [PMID: 23000069 DOI: 10.1016/j.gene.2012.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/07/2012] [Accepted: 09/05/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) is an autosomal recessive disease due to mutations of the autoimmune regulator (AIRE) gene. Typical manifestations include candidiasis, Addison's disease, and hypoparathyroidism. Type 1 diabetes, alopecia, vitiligo, ectodermal dystrophy, celiac disease and other intestinal dysfunctions, chronic atrophic gastritis, chronic active hepatitis, autoimmune thyroid disorders, pernicious anemia and premature ovarian failure are other rare associated diseases although other conditions have been associated with APECED. CASE PRESENTATION What follows is the clinical, endocrinological and molecular data of a female APECED patient coming from Lithuania. The patient was affected by chronic mucocutaneous candidiasis, hypoparathyroidism and pre-clinical Addison's disease. Using direct sequencing of all the 14 exons of the AIRE gene in the patient's DNA, we identified in exon 6 the known mutation c.769 C>T (p.Arg257X) in compound heterozygosity with the newly discovered mutation c.1214delC (p.Pro405fs) in exon 10. The novel mutation results in a frameshift that is predicted to alter the sequence of the protein starting from amino acid 405 as well as to cause its premature truncation, therefore a non-functional Aire protein. CONCLUSIONS A novel mutation has been described in a patient with APECED with classical clinical components, found in compound heterozygosity with the c.769 C>T variation. Expanded epidemiological investigations based on AIRE gene sequencing are necessary to verify the relevancy of the novel mutation to APECED etiopathogenesis in the Lithuanian population and to prove its diagnostic efficacy in association with clinical and immunological findings.
Collapse
|
17
|
Gaetani M, Matafora V, Saare M, Spiliotopoulos D, Mollica L, Quilici G, Chignola F, Mannella V, Zucchelli C, Peterson P, Bachi A, Musco G. AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome. Nucleic Acids Res 2012; 40:11756-68. [PMID: 23074189 PMCID: PMC3526288 DOI: 10.1093/nar/gks933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 12/21/2022] Open
Abstract
Mutations in autoimmune regulator (AIRE) gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of peripheral-tissue antigens to mediate deletional tolerance, thereby preventing self-reactivity. AIRE contains two plant homeodomains (PHDs) which are sites of pathological mutations. AIRE-PHD fingers are important for AIRE transcriptional activity and presumably play a crucial role in the formation of multimeric protein complexes at chromatin level which ultimately control immunological tolerance. As a step forward the understanding of AIRE-PHD fingers in normal and pathological conditions, we investigated their structure and used a proteomic SILAC approach to assess the impact of patient mutations targeting AIRE-PHD fingers. Importantly, both AIRE-PHD fingers are structurally independent and mutually non-interacting domains. In contrast to D297A and V301M on AIRE-PHD1, the C446G mutation on AIRE-PHD2 destroys the structural fold, thus causing aberrant AIRE localization and reduction of AIRE target genes activation. Moreover, mutations targeting AIRE-PHD1 affect the formation of a multimeric protein complex at chromatin level. Overall our results reveal the importance of AIRE-PHD domains in the interaction with chromatin-associated nuclear partners and gene regulation confirming the role of PHD fingers as versatile protein interaction hubs for multiple binding events.
Collapse
Affiliation(s)
- Massimiliano Gaetani
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Vittoria Matafora
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Mario Saare
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Dimitrios Spiliotopoulos
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Luca Mollica
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Francesca Chignola
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Valeria Mannella
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Pärt Peterson
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Angela Bachi
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute c/o S. Raffaele Scientific Institute, Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy and Department of Molecular Pathology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
18
|
Capalbo D, Giardino G, Martino LD, Palamaro L, Romano R, Gallo V, Cirillo E, Salerno M, Pignata C. Genetic basis of altered central tolerance and autoimmune diseases: a lesson from AIRE mutations. Int Rev Immunol 2012; 31:344-62. [PMID: 23083345 DOI: 10.3109/08830185.2012.697230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The thymus is a specialized organ that provides an inductive environment for the development of T cells from multipotent hematopoietic progenitors. Self-nonself discrimination plays a key role in inducing a productive immunity and in preventing autoimmune reactions. Tolerance represents a state of immunologic nonresponsiveness in the presence of a particular antigen. The immune system becomes tolerant to self-antigens through the two main processes, central and peripheral tolerance. Central tolerance takes place within the thymus and represents the mechanism by which T cells binding with high avidity self-antigens, which are potentially autoreactive, are eliminated through so-called negative selection. This process is mostly mediated by medullary thymic epithelia cells (mTECs) and medullary dendritic cells (DCs). A remarkable event in the process is the expression of tissue-specific antigens (TSA) by mTECs driven by the transcription factor autoimmune regulator (AIRE). Mutations in this gene result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), a rare autosomal recessive disease (OMIM 240300). Thus far, this syndrome is the paradigm of a genetically determined failure of central tolerance and autoimmunty. Patients with APECED have a variable pattern of autoimmune reactions, involving different endocrine and nonendocrine organs. However, although APECED is a monogenic disorder, it is characterized by a wide variability of the clinical expression, thus implying a further role for disease-modifying genes and environmental factors in the pathogenesis. Studies on this polyreactive autoimmune syndrome contributed enormously to unraveling several issues of the molecular basis of autoimmunity. This review focuses on the developmental, functional, and molecular events governing central tolerance and on the clinical implication of its failure.
Collapse
|
19
|
Capalbo D, De Martino L, Giardino G, Di Mase R, Di Donato I, Parenti G, Vajro P, Pignata C, Salerno M. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy: insights into genotype-phenotype correlation. Int J Endocrinol 2012; 2012:353250. [PMID: 23133448 PMCID: PMC3485503 DOI: 10.1155/2012/353250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare autosomal recessive disease, caused by mutations of a single gene named autoimmune regulator gene (AIRE) which results in a failure of T cell tolerance within the thymus. Chronic mucocutaneous candidiasis, chronic hypoparathyroidism, and Addison's disease are the hallmarks of the syndrome. APECED is also characterized by several autoimmune endocrine and nonendocrine manifestations, and the phenotype is often complex. Moreover, even though APECED is a monogenic disease, its clinical picture is generally dominated by a wide heterogeneity both in the severity and in the number of components even among siblings with the same AIRE genotype. The variability of its clinical expression implies that diagnosis can be challenging, and a considerable delay often occurs between the appearance of symptoms and the diagnosis. Since a prompt diagnosis is essential to prevent severe complications, clinicians should be aware of all symptoms and signs of suspicion. The aim of this paper is to give an overview on the clinical presentation and diagnostic criteria of APECED and to focus on current knowledge on genotype-phenotype correlation.
Collapse
Affiliation(s)
- Donatella Capalbo
- Department of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Lucia De Martino
- Department of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Giuliana Giardino
- Department of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaella Di Mase
- Department of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Iolanda Di Donato
- Department of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Giancarlo Parenti
- Department of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro Vajro
- Department of Pediatrics, University of Salerno, 84081 Salerno, Italy
| | - Claudio Pignata
- Department of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | - Mariacarolina Salerno
- Department of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
- *Mariacarolina Salerno:
| |
Collapse
|
20
|
Meloni A, Fiorillo E, Corda D, Incani F, Serra ML, Contini A, Cao A, Rosatelli MC. DAXX is a new AIRE-interacting protein. J Biol Chem 2010; 285:13012-21. [PMID: 20185822 PMCID: PMC2857146 DOI: 10.1074/jbc.m109.037747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 02/09/2010] [Indexed: 01/18/2023] Open
Abstract
The AIRE protein plays a remarkable role as a regulator of central tolerance by controlling the promiscuous expression of tissue-specific antigens in thymic medullary epithelial cells. Defects in the AIRE gene cause the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, a rare disease frequent in Iranian Jews, Finns, and Sardinian population. To this day, the precise function of the AIRE protein in regulating transcription and its interacting proteins has yet to be entirely clarified. The knowledge of novel AIRE interactors and their precise role will improve our knowledge of its biological activity and address some of the foremost autoimmunity-related questions. In this study, we have used a yeast two-hybrid system to identify AIRE-interacting proteins. This approach led us to the discovery of a new AIRE-interacting protein called DAXX. The protein is known to be a multifunctional adaptor with functions both in apoptosis and in transcription regulation pathways. The interaction between AIRE and DAXX has been validated by in vivo coimmunoprecipitation analysis and colocalization study in mammalian cells. The interaction has been further confirmed by showing in transactivation assays that DAXX exerts a strong repressive role on the transcriptional activity of AIRE.
Collapse
Affiliation(s)
- Allesandra Meloni
- From the
Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche and
| | - Edoardo Fiorillo
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Denise Corda
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Federica Incani
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Maria Luisa Serra
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Antonella Contini
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Antonio Cao
- From the
Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche and
| | - Maria Cristina Rosatelli
- the
Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| |
Collapse
|
21
|
Chakravarty S, Zeng L, Zhou MM. Structure and site-specific recognition of histone H3 by the PHD finger of human autoimmune regulator. Structure 2009; 17:670-9. [PMID: 19446523 PMCID: PMC2923636 DOI: 10.1016/j.str.2009.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/23/2009] [Accepted: 02/19/2009] [Indexed: 01/25/2023]
Abstract
Human autoimmune regulator (AIRE) functions to control thymic expression of tissue-specific antigens via sequence-specific histone H3 recognition by its plant homeodomain (PHD) finger. Mutations in the AIRE PHD finger have been linked to autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Here we report the three-dimensional solution structure of the first PHD finger of human AIRE bound to a histone H3 peptide. The structure reveals a detailed network of interactions between the protein and the amino-terminal residues of histone H3, and particularly key electrostatic interactions of a conserved aspartic acid 297 in AIRE with the unmodified lysine 4 of histone H3 (H3K4). NMR binding study with H3 peptides carrying known posttranslational modifications flanking H3K4 confirms that transcriptional regulation by AIRE through its interactions with histone H3 is confined to the first N-terminal eight residues in H3. Our study offers a molecular explanation for the APECED mutations and helps define a subclass of the PHD finger family proteins that recognize histone H3 in a sequence-specific manner.
Collapse
Affiliation(s)
- Suvobrata Chakravarty
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lei Zeng
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
22
|
Abstract
A pool of immature T cells with a seemingly unrestricted repertoire of antigen specificities is generated life-long in the thymus. Amongst these cells are, however, thymocytes that express a strongly self-reactive antigen receptor and hence hold the potential to trigger autoimmunity. To prevent such an outcome, the thymus employs several independent but functionally related strategies that act in parallel to enforce self-tolerance. The deletion of strongly self-reactive thymocytes and the generation of regulatory T cells constitute the two most efficient mechanisms to induce and maintain immunological tolerance. Thymic epithelial cells of the medulla express for this purpose tissue-restricted self-antigens. This review will focus on the cellular and molecular mechanisms operative in the thymus to shape a repertoire of mature T cells tolerant to self-antigens.
Collapse
Affiliation(s)
- G A Holländer
- Department of Clinical-Biological Sciences, Laboratory of Pediatric Immunology, Center for Biomedicine, University of Basel and The University Children's Hospital, Switzerland.
| | | |
Collapse
|
23
|
Abstract
Mutations in the transcriptional regulator, Aire, cause APECED, a polyglandular autoimmune disease with monogenic transmission. Animal models of APECED have revealed that Aire plays an important role in T cell tolerance induction in the thymus, mainly by promoting ectopic expression of a large repertoire of transcripts encoding proteins normally restricted to differentiated organs residing in the periphery. The absence of Aire results in impaired clonal deletion of self-reactive thymocytes, which escape into the periphery and attack a variety of organs. In addition, Aire is a proapoptotic factor, expressed at the final maturation stage of thymic medullary epithelial cells, a function that may promote cross-presentation of the antigens encoded by Aire-induced transcripts in these cells. Transcriptional regulation by Aire is unusual in being very broad, context-dependent, probabilistic, and noisy. Structure/function analyses and identification of its interaction partners suggest that Aire may impact transcription at several levels, including nucleosome displacement during elongation and transcript splicing or other aspects of maturation.
Collapse
Affiliation(s)
- Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and the Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
24
|
|
25
|
Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 2008; 8:948-57. [PMID: 19008896 PMCID: PMC2785478 DOI: 10.1038/nri2450] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The negative selection of T cells in the thymus is necessary for the maintenance of self tolerance. Medullary thymic epithelial cells have a key function in this process as they express a large number of tissue-specific self antigens that are presented to developing T cells. Mutations in the autoimmune regulator (AIRE) protein cause a breakdown of central tolerance that is associated with decreased expression of self antigens in the thymus. In this Review, we discuss the role of AIRE in the thymus and recent advances in our understanding of how AIRE might function at the molecular level to regulate gene expression.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of General and Molecular Pathology, University of Tartu, Tartu 5O411, Estonia.
| | | | | |
Collapse
|