1
|
Viiklepp K, Knuutila JS, Nissinen L, Siljamäki E, Rappu P, Suwal U, Pellinen T, Kallajoki M, Meri S, Heino J, Kähäri VM, Riihilä P. Expression of C1q by macrophages and fibroblasts in tumor microenvironment is associated with progression and metastasis of cutaneous squamous cell carcinoma. J Invest Dermatol 2025:S0022-202X(25)00446-4. [PMID: 40311866 DOI: 10.1016/j.jid.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/10/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer, with poor prognosis for metastatic cases. We demonstrated previously that cSCC cells in culture express C1r and C1s components of the complement C1qr2s2 complex, but not C1q. Here, significantly higher mRNA levels of C1QA, C1QB, C1QC variants 1 and 2 were found in cSCC tumors compared to normal skin. Analysis of single cell RNA seq data of cSCC revealed expression of mRNAs for C1QA, C1QB, C1QC in macrophages and activated fibroblasts. C1q staining was detected on the surface of cSCC tumor cells, in peri- and intratumoral macrophages and in peritumoral activated fibroblasts using immunohistochemistry and multiplexed immunofluorescence. Expression was higher in cSCCs compared to normal skin, actinic keratoses, and cSCC in situ. C1q production was induced in 3D spheroid co-cultures of cSCC cells, fibroblasts, and macrophages. C1q stimulated growth of cSCC cells in culture. C1q expression was significantly more prevalent in metastatic primary cSCCs and in metastases compared to non-metastatic cSCCs. High C1q expression in cSCC correlated with poor prognosis. These findings provide evidence for macrophage- and fibroblast-derived C1q in the progression of cSCC. They also suggest stromal C1q as a marker for cSCC metastasis and poor prognosis.
Collapse
Affiliation(s)
- Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital,Turku, Finland
| | - Jaakko S Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital,Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital,Turku, Finland
| | - Elina Siljamäki
- MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland; Department of Life Technologies and InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Pekka Rappu
- MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland; Department of Life Technologies and InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Ujjwal Suwal
- MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland; Department of Life Technologies and InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland, FIMM, Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program, University of Helsinki, Finland
| | - Jyrki Heino
- MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland; Department of Life Technologies and InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital,Turku, Finland.
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland; FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital,Turku, Finland.
| |
Collapse
|
2
|
Pegoraro S, Balduit A, Mangogna A, Kishore U, Ricci G, Agostinis C, Bulla R. Epigenetic regulation of complement C1Q gene expression. Front Immunol 2024; 15:1498097. [PMID: 39697348 PMCID: PMC11653359 DOI: 10.3389/fimmu.2024.1498097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Human C1q is a multifaceted complement protein whose functions range from activating the complement classical pathway to immunomodulation and promoting placental development and tumorigenesis. It is encoded by the C1QA, C1QB, and C1QC genes located on chromosome 1. C1q, unlike most complement components, has extrahepatic expression by a range of cells including macrophages, monocytes and immature dendritic cells. Its local synthesis under the conditions of inflammation and for the purpose of removal of altered self requires its strict transcriptional regulation. To delve into C1Q transcriptional regulation and unravel potential epigenetic influences, we conducted an in silico analysis utilizing a range of online tools and datasets. Co-expression analysis revealed tight coordination between C1QA, C1QB, and C1QC genes. Strikingly, distinct epigenetic patterns emerged across various cell types expressing or lacking these genes, with unique histone marks and DNA methylation status characterizing their regulatory landscape. Notably, the investigation extended to tumor contexts, unveiled potential epigenetic roles in malignancies. The cell type and tumor-specific histone modifications and chromatin accessibility patterns underscore the dynamic nature of epigenetic regulation of C1Q, providing crucial insights into the intricate mechanisms governing the expression of these immunologically significant genes. The findings provide a foundation for future investigations into targeted epigenetic modulation, offering insights into potential therapeutic avenues for immune-related disorders and cancer mediated via C1q.
Collapse
Affiliation(s)
- Silvia Pegoraro
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
| | - Andrea Balduit
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates (U.E.A.) University, Al Ain, ;United Arab Emirates
- Zayed Centre for Health Sciences, U.E.A. University, Al Ain, ;United Arab Emirates
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, ;Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, ;Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, ;Italy
| |
Collapse
|
3
|
Mao A, Li Z, Shi X, Zhang K, Kan H, Geng L, He D. Complement Factor C1q Mediates Vascular Endothelial Dysfunction in STZ-Induced Diabetic Mice. Diabetes 2024; 73:1527-1536. [PMID: 38869460 DOI: 10.2337/db23-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Diabetes is a significant global public health issue with implications for vascular endothelial cells (ECs) dysfunction and the subsequent development and advancement of diabetes complications. This study aims to compare the cellular and molecular properties of the aorta in normal and streptozotocin (STZ)-induced diabetic mice, with a focus on elucidating potential mechanism underlying EC dysfunction. Here, we performed a single-cell RNA sequencing survey of 32,573 cells from the aorta of normal and STZ-induced diabetic mice. We found a compendium of 10 distinct cell types, mainly ECs, smooth muscle cells, fibroblast, pericyte, immune cells, and stromal cells. As the diabetes condition progressed, we observed a subpopulation of aortic ECs that exhibited significantly elevated expression of complement (C) molecule C1qa compared with their healthy counterparts. This increased expression of C1qa was found to induce reactive oxygen species (ROS) production, facilitate EC migration and increased permeability, and impair the vasodilation within the aortic segment of mice. Furthermore, AAV-Tie2-shRNA-C1qa was administered into diabetic mice by tail vein injection, showing that inhibition of C1qa in the endothelium led to a reduction in ROS production, decreased vascular permeability, and improved vasodilation. Collectively, these findings highlight the crucial involvement of C1qa in endothelial dysfunction associated with diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zicheng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoming Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Kan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongxu He
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Javandoust Gharehbagh F, Soltani-Zangbar MS, Yousefzadeh Y. Immunological mechanisms in preeclampsia: A narrative review. J Reprod Immunol 2024; 164:104282. [PMID: 38901108 DOI: 10.1016/j.jri.2024.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Maternal immunologic mechanisms for tolerance are essential for a successful pregnancy because they prevent maladaptive immune responses to the placenta and semi-allogeneic fetus and promote fetal growth. Preeclampsia is a major global cause of fetal mortality and morbidity. It is characterized by new-onset hypertension and proteinuria that occurs at twenty weeks of pregnancy or later. Preeclampsia is defined by a rise in cytokines that are pro-inflammatory and antiangiogenic components in the fetoplacental unit and the vascular endothelium of pregnant women, as well as an excessive and increasing stimulation of the immune system. Crucially, inflammation can result in low birth weight and inadequate placental perfusion in neonates. Preeclampsia, which is ultimately connected to inflammatory responses, can be impacted by several immunological mechanisms. Our goal in this work was to compile the most recent research on the pathoimmunology of preeclampsia, including studies on angiogenic variables and, in particular, immunological components.
Collapse
Affiliation(s)
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Fageräng B, Cyranka L, Schjalm C, McAdam KE, Larsen CS, Heinzelbecker J, Gedde-Dahl T, Würzner R, Espevik T, Tjønnfjord GE, Garred P, Barratt-Due A, Tvedt THA, Mollnes TE. The function of the complement system remains fully intact throughout the course of allogeneic stem cell transplantation. Front Immunol 2024; 15:1422370. [PMID: 38938578 PMCID: PMC11208304 DOI: 10.3389/fimmu.2024.1422370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Hematopoietic stem cell transplantation (HSCT) is associated with immune complications and endothelial dysfunction due to intricate donor-recipient interactions, conditioning regimens, and inflammatory responses. Methods This study investigated the role of the complement system during HSCT and its interaction with the cytokine network. Seventeen acute myeloid leukemia patients undergoing HSCT were monitored, including blood sampling from the start of the conditioning regimen until four weeks post-transplant. Clinical follow-up was 200 days. Results Total complement functional activity was measured by WIELISA and the degree of complement activation by ELISA measurement of sC5b-9. Cytokine release was measured using a 27-multiplex immuno-assay. At all time-points during HSCT complement functional activity remained comparable to healthy controls. Complement activation was continuously stable except for two patients demonstrating increased activation, consistent with severe endotheliopathy and infections. In vitro experiments with post-HSCT whole blood challenged with Escherichia coli, revealed a hyperinflammatory cytokine response with increased TNF, IL-1β, IL-6 and IL-8 formation. Complement C3 inhibition markedly reduced the cytokine response induced by Staphylococcus aureus, Aspergillus fumigatus, and cholesterol crystals. Discussion In conclusion, HSCT patients generally retained a fully functional complement system, whereas activation occurred in patients with severe complications. The complement-cytokine interaction indicates the potential for new complement-targeting therapeutic strategies in HSCT.
Collapse
Affiliation(s)
- Beatrice Fageräng
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Leon Cyranka
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Karin Ekholt McAdam
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Julia Heinzelbecker
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tobias Gedde-Dahl
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Terje Espevik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Erland Tjønnfjord
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Garred
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Andreas Barratt-Due
- Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | | | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| |
Collapse
|
6
|
Yasmin H, Agostinis C, Toffoli M, Roy T, Pegoraro S, Balduit A, Zito G, Di Simone N, Ricci G, Madan T, Kishore U, Bulla R. Protective role of complement factor H against the development of preeclampsia. Front Immunol 2024; 15:1351898. [PMID: 38464530 PMCID: PMC10920295 DOI: 10.3389/fimmu.2024.1351898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Pregnancy is an immunologically regulated, complex process. A tightly controlled complement system plays a crucial role in the successful establishment of pregnancy and parturition. Complement inhibitors at the feto-maternal interface are likely to prevent inappropriate complement activation to protect the fetus. In the present study, we aimed to understand the role of Factor H (FH), a negative regulator of complement activation, in normal pregnancy and in a model of pathological pregnancy, i.e. preeclampsia (PE). The distribution and expression of FH was investigated in placental tissues, various placental cells, and in the sera of healthy (CTRL) or PE pregnant women via immunohistochemistry, RT-qPCR, ELISA, and Western blot. Our results showed a differential expression of FH among the placental cell types, decidual stromal cells (DSCs), decidual endothelial cells (DECs), and extravillous trophoblasts (EVTs). Interestingly, FH was found to be considerably less expressed in the placental tissues of PE patients compared to normal placental tissue both at mRNA and protein levels. Similar results were obtained by measuring circulating FH levels in the sera of third trimester CTRL and PE mothers. Syncytiotrophoblast microvesicles, isolated from the placental tissues of PE and CTRL women, downregulated FH expression by DECs. The present study appears to suggest that FH is ubiquitously present in the normal placenta and plays a homeostatic role during pregnancy.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Miriam Toffoli
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Tamali Roy
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Silvia Pegoraro
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Andrea Balduit
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive and Child Health (NIRRCH), Mumbai, India
| | - Uday Kishore
- Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB, Luthra K, Sharma RS, Biswas S, Dhar R, Karmakar S. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol 2023; 89:e13670. [PMID: 36565013 DOI: 10.1111/aji.13670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are one of the commonest maladies, affecting 5%-10% of pregnancies worldwide. The American College of Obstetricians and Gynecologists (ACOG) identifies four categories of HDP, namely gestational hypertension (GH), Preeclampsia (PE), chronic hypertension (CH), and CH with superimposed PE. PE is a multisystem, heterogeneous disorder that encompasses 2%-8% of all pregnancy-related complications, contributing to about 9% to 26% of maternal deaths in low-income countries and 16% in high-income countries. These translate to 50 000 maternal deaths and over 500 000 fetal deaths worldwide, therefore demanding high priority in understanding clinical presentation, screening, diagnostic criteria, and effective management. PE is accompanied by uteroplacental insufficiency leading to vascular and metabolic changes, vasoconstriction, and end-organ ischemia. PE is diagnosed after 20 weeks of pregnancy in women who were previously normotensive or hypertensive. Besides shallow trophoblast invasion and inadequate remodeling of uterine arteries, dysregulation of the nonimmune system has been the focal point in PE. This results from aberrant immune system activation and imbalanced differentiation of T cells. Further, a failure of tolerance toward the semi-allogenic fetus results due to altered distribution of Tregs such as CD4+FoxP3+ or CD4+CD25+CD127(low) FoxP3+ cells, thereby creating a cytotoxic environment by suboptimal production of immunosuppressive cytokines like IL-10, IL-4, and IL-13. Also, intracellular production of complement protein C5a may result in decreased FoxP3+ regulatory T cells. With immune system dysfunction as a major driver in PE pathogenesis, it is logical that therapeutic targeting of components of the immune system with pharmacologic agents like anti-inflammatory and immune-modulating molecules are either being used or under clinical trial. Cholesterol synthesis inhibitors like Pravastatin may improve placental perfusion in PE, while Eculizumab (monoclonal antibody inhibiting C5) and small molecular inhibitor of C5a, Zilucoplan are under investigation. Monoclonal antibody against IL-17(Secukinumab) has been proposed to alter the Th imbalance in PE. Autologous Treg therapy and immune checkpoint inhibitors like anti-CTLA-4 are emerging as new candidates in immune horizons for PE management in the future.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abhibrato Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhey Shyam Sharma
- Ex-Head and Scientist G, Indian Council of Medical Research, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Smith-Jackson K, Harrison RA. Alternative pathway activation in pregnancy, a measured amount "complements" a successful pregnancy, too much results in adverse events. Immunol Rev 2023; 313:298-319. [PMID: 36377667 PMCID: PMC10100418 DOI: 10.1111/imr.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During pregnancy, the maternal host must adapt in order to enable growth of the fetus. These changes affect all organ systems and are designed both to protect the fetus and to minimize risk to the mother. One of the most prominent adaptations involves the immune system. The semi-allogenic fetoplacental unit has non-self components and must be protected against attack from the host. This requires both attenuation of adaptive immunity and protection from innate immune defense mechanisms. One of the key innate immune players is complement, and it is important that the fetoplacental unit is not identified as non-self and subjected to complement attack. Adaptation of the complement response must, however, be managed in such a way that maternal protection against infection is not compromised. As the complement system also plays a significant facilitating role in many of the stages of a normal pregnancy, it is also important that any necessary adaptation to accommodate the semi-allogenic aspects of the fetoplacental unit does not compromise this. In this review, both the physiological role of the alternative pathway of complement in facilitating a normal pregnancy, and its detrimental participation in pregnancy-specific disorders, are discussed.
Collapse
Affiliation(s)
- Kate Smith-Jackson
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Faculty of Medical Science, Newcastle University, Newcastle-upon-Tyne, UK.,The National Renal Complement Therapeutics Centre (NRCTC), Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
9
|
Agostinis C, Zito G, Toffoli M, Peterlunger I, Simoni L, Balduit A, Curtolo E, Mangogna A, Belmonte B, Vacca D, Romano F, Stampalija T, Salviato T, Defendi F, Di Simone N, Kishore U, Ricci G, Bulla R. A longitudinal study of C1q and anti-C1q autoantibodies in homologous and heterologous pregnancies for predicting pre-eclampsia. Front Immunol 2022; 13:1037191. [DOI: 10.3389/fimmu.2022.1037191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
C1q, the recognition molecule of the classical pathway of the complement system, plays a central role in pregnancy. Lack of C1q is characterized by poor trophoblast invasion and pregnancy failure. C1q can be the target of an antibody response: anti‐C1q autoantibodies (anti-C1q) are present in several infectious and autoimmune diseases. The presence of these autoantibodies has been detected also in 2-8% of the general population. Recent evidence indicates that women who undergo assisted reproductive technology (ART) have an increased risk of developing pre-eclampsia (PE), particularly oocyte donation (OD) pregnancies. The aim of this study was to characterize the levels of C1q and anti-C1q in PE gestations, in healthy spontaneous, homologous and heterologous ART pregnancies. Serum of the following four groups of women, who were followed throughout two or three trimesters, were collected: PE, patients diagnosed with PE; OD, oocyte donation recipients; HOM, homologous ART women; Sp, spontaneous physiological pregnancy. Our results indicate that PE patients have lower levels of anti-C1q. In ART pregnant women, the trend of C1q and anti-C1q levels were similar to PE patients, even though these women did not develop PE-like symptoms during pregnancy. This finding suggests an immunological dysfunction at the foetal-maternal interface in ART pregnancies, a hypothesis confirmed by the observation of C1q deposition in placentae derived from OD, comparable to PE. Since significantly lower levels of anti-C1q were detected in PE compared to healthy control sera, we hypothesize the possible binding on placental syncytiotrophoblast microvesicles (STBM), which are increased in the circulation of PE mothers. Furthermore, the characterization of the binding-epitope of anti-C1q revealed that “physiological” autoantibodies were mainly directed against C1q globular domain. We concluded that anti-C1q could have a physiological role in pregnancy: during the healthy spontaneous pregnancy the raised levels of these autoantibodies can be important for the clearance of STBM. In PE and in pathological pregnancies (but also in OD pregnancies), the increase in syncytiotrophoblast apoptosis and consequent increase of the circulating STMB levels lead to a consumption of C1q and anti-C1q.
Collapse
|
10
|
Variation of Complement Protein Levels in Maternal Plasma and Umbilical Cord Blood during Normal Pregnancy: An Observational Study. J Clin Med 2022; 11:jcm11133611. [PMID: 35806894 PMCID: PMC9267899 DOI: 10.3390/jcm11133611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system constitutes a crucial part of the innate immunity, mediating opsonization, lysis, inflammation, and elimination of potential pathogens. In general, there is an increased activity of the complement system during pregnancy, which is essential for maintaining the host’s defense and fetal survival. Unbalanced or excessive activation of the complement system in the placenta is associated with pregnancy complications, such as miscarriage, preeclampsia, and premature birth. Nonetheless, the actual clinical value of monitoring the activation of the complement system during pregnancy remains to be investigated. Unfortunately, normal reference values specifically for pregnant women are missing, and for umbilical cord blood (UCB), data on complement protein levels are scarce. Herein, complement protein analyses (C1q, C3, C4, C3d levels, and C3d/C3 ratio) were performed in plasma samples from 100 healthy, non-medicated and non-smoking pregnant women, collected during different trimesters and at the time of delivery. In addition, UCB was collected at all deliveries. Maternal plasma C1q and C3d/C3 ratio showed the highest mean values during the first trimester, whereas C3, C4, and C3d had rising values until delivery. We observed low levels of C1q and C4 as well as increased C3d and C3d/C3 ratio, particularly during the first trimester, as a sign of complement activation in some women. However, the reference limits of complement analyses applied for the general population appeared appropriate for the majority of the samples. As expected, the mean complement concentrations in UCB were much lower than in maternal plasma, due to the immature complement system in neonates.
Collapse
|
11
|
Govender S, Naicker T. The Contribution of Complement Protein C1q in COVID-19 and HIV Infection Comorbid with Preeclampsia: A Review. Int Arch Allergy Immunol 2022; 183:1114-1126. [PMID: 35661665 PMCID: PMC9393774 DOI: 10.1159/000524976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulation in component 1q (C1q) levels is associated with weak placental development in preeclampsia (PE). Human immunodeficiency virus infection (HIV-1) triggers the C1q complex, resulting in opsonization of healthy host cells, contributing to their removal, and augmented progression of HIV disease. In coronavirus disease 2019 (COVID-19)-infected patients, the deposition of C1q activates the complement. Considering the paucity of data, this review highlights a significant gap in the potential of C1q in the immunocompromised state of preeclamptic HIV-infected women and COVID-19 infection. In PE, C1q is downregulated; while in antiretroviral treatment-treated HIV/COVID-19 infected patients, C1q is upregulated. It is plausible that C1q is augmented in the triad and may exacerbate severity of disease. This thereby provides a foundation for future intended research which involves the investigation of single nucleotide polymorphism expression of the C1q gene, specifically in these diseases.
Collapse
Affiliation(s)
- Sumeshree Govender
- Optics & Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics & Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Belmonte B, Mangogna A, Gulino A, Cancila V, Morello G, Agostinis C, Bulla R, Ricci G, Fraggetta F, Botto M, Garred P, Tedesco F. Distinct Roles of Classical and Lectin Pathways of Complement in Preeclamptic Placentae. Front Immunol 2022; 13:882298. [PMID: 35711467 PMCID: PMC9197446 DOI: 10.3389/fimmu.2022.882298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
Pre-eclampsia is a pregnancy complication characterized by defective vascular remodeling in maternal decidua responsible for reduced blood flow leading to functional and structural alterations in the placenta. We have investigated the contribution of the complement system to decidual vascular changes and showed that trophoblasts surrounding unremodeled vessels prevalent in preeclamptic decidua fail to express C1q that are clearly detected in cells around remodeled vessels predominant in control placenta. The critical role of C1q is supported by the finding that decidual trophoblasts of female C1qa-/- pregnant mice mated to C1qa+/+ male mice surrounding remodeled vessels express C1q of paternal origin. Unlike C1qa-/- pregnant mice, heterozygous C1qa+/- and wild type pregnant mice share a high percentage of remodeled vessels. C1q was also found in decidual vessels and stroma of normal placentae and the staining was stronger in preeclamptic placentae. Failure to detect placental deposition of C1r and C1s associated with C1q rules out complement activation through the classical pathway. Conversely, the intense staining of decidual endothelial cells and villous trophoblast for ficolin-3, MASP-1 and MASP-2 supports the activation of the lectin pathway that proceeds with the cleavage of C4 and C3 and the assembly of the terminal complex. These data extend to humans our previous findings of complement activation through the lectin pathway in an animal model of pre-eclampsia and provide evidence for an important contribution of C1q in decidual vascular remodeling.
Collapse
Affiliation(s)
- Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Pathology Unit, Azienda Sanitaria Provinciale (ASP) Catania, “Gravina” Hospital, Caltagirone, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Filippo Fraggetta
- Pathology Unit, Azienda Sanitaria Provinciale (ASP) Catania, “Gravina” Hospital, Caltagirone, Italy
| | - Marina Botto
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Imperial Lupus Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Tedesco
- Istituto Auxologico Italiano, Laboratory of Immuno-Rheumatology, IRCCS, Milan, Italy
- *Correspondence: Francesco Tedesco,
| |
Collapse
|
13
|
Park JY, Mani S, Clair G, Olson HM, Paurus VL, Ansong CK, Blundell C, Young R, Kanter J, Gordon S, Yi AY, Mainigi M, Huh DD. A microphysiological model of human trophoblast invasion during implantation. Nat Commun 2022; 13:1252. [PMID: 35292627 PMCID: PMC8924260 DOI: 10.1038/s41467-022-28663-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Successful establishment of pregnancy requires adhesion of an embryo to the endometrium and subsequent invasion into the maternal tissue. Abnormalities in this critical process of implantation and placentation lead to many pregnancy complications. Here we present a microenigneered system to model a complex sequence of orchestrated multicellular events that plays an essential role in early pregnancy. Our implantation-on-a-chip is capable of reconstructing the three-dimensional structural organization of the maternal-fetal interface to model the invasion of specialized fetal extravillous trophoblasts into the maternal uterus. Using primary human cells isolated from clinical specimens, we demonstrate in vivo-like directional migration of extravillous trophoblasts towards a microengineered maternal vessel and their interactions with the endothelium necessary for vascular remodeling. Through parametric variation of the cellular microenvironment and proteomic analysis of microengineered tissues, we show the important role of decidualized stromal cells as a regulator of extravillous trophoblast migration. Furthermore, our study reveals previously unknown effects of pre-implantation maternal immune cells on extravillous trophoblast invasion. This work represents a significant advance in our ability to model early human pregnancy, and may enable the development of advanced in vitro platforms for basic and clinical research of human reproduction.
Collapse
Affiliation(s)
- Ju Young Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sneha Mani
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles K Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Young
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Kanter
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Charreau B. Cellular and Molecular Crosstalk of Graft Endothelial Cells During AMR: Effector Functions and Mechanisms. Transplantation 2021; 105:e156-e167. [PMID: 33724240 DOI: 10.1097/tp.0000000000003741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Graft endothelial cell (EC) injury is central to the pathogenesis of antibody-mediated rejection (AMR). The ability of donor-specific antibodies (DSA) to bind C1q and activate the classical complement pathway is an efficient predictor of graft rejection highlighting complement-dependent cytotoxicity as a key process operating during AMR. In the past 5 y, clinical studies further established the cellular and molecular signatures of AMR revealing the key contribution of other, IgG-dependent and -independent, effector mechanisms mediated by infiltrating NK cells and macrophages. Beyond binding to alloantigens, DSA IgG can activate NK cells and mediate antibody-dependent cell cytotoxicity through interacting with Fcγ receptors (FcγRs) such as FcγRIIIa (CD16a). FcRn, a nonconventional FcγR that allows IgG recycling, is highly expressed on ECs and may contribute to the long-term persistence of DSA in blood. Activation of NK cells and macrophages results in the production of proinflammatory cytokines such as TNF and IFNγ that induce transient and reversible changes in the EC phenotype and functions promoting coagulation, inflammation, vascular permeability, leukocyte trafficking. MHC class I mismatch between transplant donor and recipient can create a situation of "missing self" allowing NK cells to kill graft ECs. Depending on the microenvironment, cellular proximity with ECs may participate in macrophage polarization toward an M1 proinflammatory or an M2 phenotype favoring inflammation or vascular repair. Monocytes/macrophages participate in the loss of endothelial specificity in the process of endothelial-to-mesenchymal transition involved in renal and cardiac fibrosis and AMR and may differentiate into ECs enabling vessel and graft (re)-endothelialization.
Collapse
Affiliation(s)
- Béatrice Charreau
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et en Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
15
|
Collier ARY, Smith LA, Karumanchi SA. Review of the immune mechanisms of preeclampsia and the potential of immune modulating therapy. Hum Immunol 2021; 82:362-370. [PMID: 33551128 DOI: 10.1016/j.humimm.2021.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Successful pregnancy relies on maternal immunologic tolerance mechanisms limit maladaptive immune responses against the semi-allogeneic fetus and placenta and support fetal growth. Preeclampsia is a common disorder of pregnancy that affects 4-10% of pregnancies and is a leading cause of maternal and neonatal morbidity and mortality. Preeclampsia clinically manifests as maternal hypertension, proteinuria, and progressive multi-organ injury likely triggered by hypoxic injury to the placenta, resulting in local and systemic anti-angiogenic and inflammatory factor production. Despite the steady rising rates of preeclampsia in the United States, effective treatment options are limited to delivery, which improves maternal status often at the cost of prematurity in the newborn. Preeclampsia also increases the lifelong risk of cardiovascular disease for both mother and infant. Thus, identifying new therapeutic targets is a high priority area to improve maternal, fetal, and infant health outcomes. Immune abnormalities in the placenta and in the maternal circulation have been reported to precede the clinical onset of disease. In particular, excessive systemic and placental complement activation and impaired adaptive T cell tolerance with Th1/Th2/Th17/Treg imbalance has been reported in humans and in animal models of preeclampsia. In this review, we focus on the evidence for the immune origins of preeclampsia, discuss the promise of immune modulating therapy for prevention or treatment, and highlight key areas for future research.
Collapse
Affiliation(s)
- Ai-Ris Y Collier
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Laura A Smith
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - S Ananth Karumanchi
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Chighizola CB, Lonati PA, Trespidi L, Meroni PL, Tedesco F. The Complement System in the Pathophysiology of Pregnancy and in Systemic Autoimmune Rheumatic Diseases During Pregnancy. Front Immunol 2020; 11:2084. [PMID: 32973817 PMCID: PMC7481445 DOI: 10.3389/fimmu.2020.02084] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system plays a double role in pregnancy exerting both protective and damaging effects at placental level. Complement activation at fetal-maternal interface participates in protection against infectious agents and helps remove apoptotic and necrotic cells. Locally synthesized C1q contributes to the physiologic vascular remodeling of spiral arteries characterized by loss of smooth muscle cells and transformation into large dilated vessels. Complement activation triggered by the inflammatory process induced by embryo implantation can damage trophoblast and other decidual cells that may lead to pregnancy complications if the cells are not protected by the complement regulators CD55, CD46, and CD59 expressed on cell surface. However, uncontrolled complement activation induces placental alterations resulting in adverse pregnancy outcomes. This may occur in pathological conditions characterized by placental localization of complement fixing antibodies directed against beta2-glycoprotein 1, as in patients with anti-phospholipid syndrome, or circulating immune complexes deposited in placenta, as in patients with systemic lupus erythematosus. In other diseases, such as preeclampsia, the mechanism of complement activation responsible for complement deposits in placenta is unclear. Conflicting results have been reported on the relevance of complement assays as diagnostic and prognostic tools to assess complement involvement in pregnant patients with these disorders.
Collapse
Affiliation(s)
- Cecilia Beatrice Chighizola
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Paola Adele Lonati
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Laura Trespidi
- Department of Obstetrics and Gynaecology, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Francesco Tedesco
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
17
|
Balduit A, Mangogna A, Agostinis C, Zito G, Romano F, Ricci G, Bulla R. Zinc Oxide Exerts Anti-Inflammatory Properties on Human Placental Cells. Nutrients 2020; 12:nu12061822. [PMID: 32570911 PMCID: PMC7353449 DOI: 10.3390/nu12061822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: An aberrant and persistent inflammatory state at the fetal-maternal interface is considered as a key contributor in compromised pregnancies. Decidual endothelial cells (DECs) play a pivotal role in the control of the local decidual inflammation. The aim of the current study was to determine whether dietary supplement with zinc oxide (ZnO), due to its very low adverse effects, may be useful for modulating the inflammatory response in the first trimester of pregnancy. Methods: The anti-inflammatory properties of ZnO in pregnancy were evaluated by in vitro tests on endothelial cells isolated from normal deciduas and on a trophoblast cell line (HTR8/Svneo). The effects of this treatment were analyzed in terms of adhesion molecule expression and inflammatory cytokine secretion, by real time-quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Results: Our data showed that ZnO was able to reduce the inflammatory response of DECs, in terms of vascular cell adhesion molecule-1 (VCAM-1), interleukin (IL)-8, IL-6, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) expression induced by TNF-α stimulation. This compound exerted no effect on intracellular adhesion molecule-1 (ICAM-1) exocytosis induced by TNF-α on stimulated trophoblast cells, but significantly reduced their IL-6 expression. Conclusion: According to these results, it can be suggested that the ZnO supplement, through its modulation of the pro-inflammatory response of DECs, can be used in pregnancy for the prevention of local decidual inflammation.
Collapse
Affiliation(s)
- Andrea Balduit
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (R.B.)
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (R.B.)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
- Correspondence: ; Tel.: +39-04055-88646
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (R.B.)
| |
Collapse
|
18
|
Lubbers R, van Schaarenburg RA, Kwekkeboom JC, Levarht EWN, Bakker AM, Mahdad R, Monteagudo S, Cherifi C, Lories RJ, Toes REM, Ioan-Facsinay A, Trouw LA. Complement component C1q is produced by isolated articular chondrocytes. Osteoarthritis Cartilage 2020; 28:675-684. [PMID: 31634584 DOI: 10.1016/j.joca.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Inflammation and innate immune responses may contribute to development and progression of Osteoarthritis (OA). Chondrocytes are the sole cell type of the articular cartilage and produce extracellular-matrix molecules. How inflammatory mediators reach chondrocytes is incompletely understood. Previous studies have shown that chondrocytes express mRNA encoding complement proteins such as C1q, suggesting local protein production, which has not been demonstrated conclusively. The aim of this study is to explore C1q production at the protein level by chondrocytes. DESIGN We analysed protein expression of C1q in freshly isolated and cultured human articular chondrocytes using Western blot, ELISA and flow cytometry. We examined changes in mRNA expression of collagen, MMP-1 and various complement genes upon stimulation with pro-inflammatory cytokines or C1q. mRNA expression of C1 genes was determined in articular mouse chondrocytes. RESULTS Primary human articular chondrocytes express genes encoding C1q, C1QA, C1QB, C1QC, and secrete C1q to the extracellular medium. Stimulation of chondrocytes with pro-inflammatory cytokines upregulated C1QA, C1QB, C1QC mRNA expression, although this was not confirmed at the protein level. Extracellular C1q bound to the chondrocyte surface dose dependently. In a pilot study, binding of C1q to chondrocytes resulted in changes in the expression of collagens with a decrease in collagen type 2 and an increase in type 10. Mouse articular chondrocytes also expressed C1QA, C1QB, C1QC, C1R and C1S at the mRNA level. CONCLUSIONS C1q protein can be expressed and secreted by human articular chondrocytes and is able to bind to chondrocytes influencing the relative collagen expression.
Collapse
Affiliation(s)
- R Lubbers
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - R A van Schaarenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands; Charles River, Leiden, the Netherlands
| | - J C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - E W N Levarht
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - A M Bakker
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - R Mahdad
- Department of Orthopedic Surgery, Alrijne Hospital, Leiderdorp, the Netherlands
| | - S Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - C Cherifi
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - R J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium
| | - R E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - A Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - L A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical, Center, Leiden, the Netherlands.
| |
Collapse
|
19
|
Koucký M, Malíčková K, Kopřivová H, Cindrová-Davies T, Čapek V, Pařízek A. Serum mannose-binding lectin (MBL) concentrations are reduced in non-pregnant women with previous adverse pregnancy outcomes. Scand J Immunol 2020; 92:e12892. [PMID: 32335925 DOI: 10.1111/sji.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
Mannose-binding lectin (MBL) is an important component of the innate immunity, and it is responsible not only for opsonization of micro-organisms, but also for efferocytosis. The aim of this study was to investigate whether MBL concentrations and lectin complement pathway activity are altered in non-pregnant women with previous adverse pregnancy outcomes. Patients were divided into four groups on the basis of their history of pregnancy complications, including control patients who had uncomplicated pregnancies and term deliveries (control, n = 33), and three groups of patients with a history of pregnancy complications, including preterm labour (n = 29), recurrent miscarriage (n = 19) or unexplained intrauterine foetal death (IUFD; n = 17). All women enrolled in the study had an interval of three to six months following their previous pregnancy, and they agreed to have a blood sample taken. We found significantly higher MBL concentrations and functional activity of the lectin complement pathway in healthy controls who had previous uneventful term pregnancies (1341 ng/mL; activity 100% (IQR: 62%-100%)), compared to women with the history of IUFD (684 ng/mL, P = .008; activity 8.5% (IQR: 0%-97.8%), P = .011), recurrent miscarriage (524 ng/mL, P = .022; activity 44% (IQR: 4%-83%), P = .011) or preterm labour (799 ng/mL, P = .022; activity 62.5% (IQR: 0%-83%), P = .003). Our results suggest that inadequate function of the complement lectin pathway is associated with a higher risk of preterm labour, recurrent miscarriage and unexplained intrauterine foetal death.
Collapse
Affiliation(s)
- Michal Koucký
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Karin Malíčková
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Helena Kopřivová
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Tereza Cindrová-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Antonín Pařízek
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
20
|
Stojanovska V, Zenclussen AC. Innate and Adaptive Immune Responses in HELLP Syndrome. Front Immunol 2020; 11:667. [PMID: 32351511 PMCID: PMC7174768 DOI: 10.3389/fimmu.2020.00667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Innate and adaptive immune involvement in hemolysis, elevated liver enzymes and low platelet (HELLP) syndrome is an understudied field, although it is of high clinical importance. This syndrome implies a risk of serious morbidity and mortality to both the mother and the fetus during pregnancy. It was proposed that HELLP syndrome occurs in a circulatory inflammatory milieu, that might in turn participate in a complex interplay between the secreted inflammatory immunomodulators and immune cell surface receptors. Meanwhile, reported immune cell attenuation during HELLP may consequently lead to a prolonged immunoactivation and tissue damage. In this regard, learning more about the immune components of this syndrome should widen the understanding of the HELLP pathophysiology and eventually enable development of novel immune-based therapeutics. This review aims to summarize and discuss the recent and previous findings of the innate and adaptive immune responses during HELLP in order to update the current knowledge of the immune involvement in HELLP pathogenesis.
Collapse
Affiliation(s)
- Violeta Stojanovska
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
21
|
He Y, Xu B, Song D, Wang Y, Yu F, Chen Q, Zhao M. Normal range of complement components during pregnancy: A prospective study. Am J Reprod Immunol 2020; 83:e13202. [PMID: 31646704 PMCID: PMC7027513 DOI: 10.1111/aji.13202] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
PROBLEM The complement system plays a key role in normal placentation, and delicate regulation of complement system activation is critical for successful pregnancy. Therefore, establishing a normal range of complement components during pregnancy is important for clinical evaluation and research. METHODS We performed a prospective study to investigate the normal range of complement components in circulation during different stages of pregnancy. Plasma concentrations of complement factor B (CFB), C1q, complement factor H (CFH), C3, C3c, and C4 were measured using an immunoturbidimetric assay; mannan-binding lectin (MBL), C3a, C5a, and soluble C5b-9 (sC5b-9) levels at different time points of pregnancy were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS A total of 733 plasma samples were collected from 362 women with a normal pregnancy and 65 samples from non-pregnant women. In the first trimester of pregnancy, the levels of CFB, CFH, MBL, C3c, C4, and C3a were 414.5 ± 85.9 mg/L (95% CI for mean: 402.4-426.6 mg/L), 381.0 ± 89.0 mg/L (95% CI for mean: 368.5-393.6 mg/L), 4274.5 ± 2752 ng/mL (95% CI for mean: 3881.1-4656.4 ng/mL), 1346.9 ± 419.8 mg/L (95% CI for mean: 1287.7-1406.0 mg/L), 357.4 ± 101.8 mg/L (95% CI for mean: 343.0-371.7 mg/L), and 182.5 ± 150.0 ng/mL (95% CI for mean: 186.9-229.1 ng/mL), respectively. The levels of C3 and C4 increased gradually throughout pregnancy. The levels of C1q, C5a, and sC5b-9 in the first and second trimesters were nearly the same as those in non-pregnant women. CONCLUSION The results of this study show that pregnancy itself may influence the plasma levels of complement system components.
Collapse
Affiliation(s)
- Ying‐dong He
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Bing‐ning Xu
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Di Song
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Ya‐qin Wang
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Feng Yu
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
| | - Qian Chen
- Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina
| | - Ming‐hui Zhao
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaKey Laboratory of Chronic Kidney Disease Prevention and TreatmentMinistry of Education of ChinaBeijingChina
- Department of MedicineRenal DivisionPeking University First HospitalPeking University Institute of NephrologyBeijingChina
- Peking‐Tsinghua Center for Life SciencesBeijingChina
| |
Collapse
|
22
|
Brosens I, Brosens JJ, Muter J, Puttemans P, Benagiano G. Preeclampsia: the role of persistent endothelial cells in uteroplacental arteries. Am J Obstet Gynecol 2019; 221:219-226. [PMID: 30738027 DOI: 10.1016/j.ajog.2019.01.239] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/11/2019] [Accepted: 01/31/2019] [Indexed: 01/22/2023]
Abstract
We explore the potential role of the endothelial lining of uteroplacental arteries in the pathogenesis of preeclampsia, a severe pregnancy disorder characterized by incomplete invasion of the uterine vasculature by extravillous trophoblast and angiogenic imbalance. In normal pregnancy, the endothelium disappears progressively from the uteroplacental arteries and is replaced by trophoblast and deposition of fibrofibrinoid structure, underpinning the so-called physiological transformation of uterine spiral arteries. We hypothesize that partial persistence of the endothelium, albeit injured, initiates a chain of events leading to the emergence of preeclampsia in 3 sequential stages. The first stage results in retention of the endothelium in uteroplacental arteries secondary to incomplete physiological transformation of the vessels. Consequently, the uteroplacental vessels are reactive to pathological cues, which drives local arteriopathy. The second stage starts with progressive reduction in uteroplacental blood flow, generating oxidative stress in the whole placenta, and heightened maternal inflammation in response to circulating trophoblastic debris. In the third stage, generalized endotheliosis causes systemic angiogenic imbalance, hypertension, and other clinical manifestation of preeclampsia.
Collapse
|
23
|
Weckman AM, Ngai M, Wright J, McDonald CR, Kain KC. The Impact of Infection in Pregnancy on Placental Vascular Development and Adverse Birth Outcomes. Front Microbiol 2019; 10:1924. [PMID: 31507551 PMCID: PMC6713994 DOI: 10.3389/fmicb.2019.01924] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Healthy fetal development is dependent on nutrient and oxygen transfer via the placenta. Optimal growth and function of placental vasculature is therefore essential to support in utero development. Vasculogenesis, the de novo formation of blood vessels, and angiogenesis, the branching and remodeling of existing vasculature, mediate the development and maturation of placental villi, which form the materno-fetal interface. Several lines of evidence indicate that systemic maternal infection and consequent inflammation can disrupt placental vasculogenesis and angiogenesis. The resulting alterations in placental hemodynamics impact fetal growth and contribute to poor birth outcomes including preterm delivery, small-for-gestational age (SGA), stillbirth, and low birth weight (LBW). Furthermore, pathways involved in maternal immune activation and placental vascularization parallel those involved in normal fetal development, notably neurovascular development. Therefore, immune-mediated disruption of angiogenic pathways at the materno-fetal interface may also have long-term neurological consequences for offspring. Here, we review current literature evaluating the influence of maternal infection and immune activation at the materno-fetal interface and the subsequent impact on placental vascular function and birth outcome. Immunomodulatory pathways, including chemokines and cytokines released in response to maternal infection, interact closely with the principal pathways regulating placental vascular development, including the angiopoietin-Tie-2, vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) pathways. A detailed mechanistic understanding of how maternal infections impact placental and fetal development is critical to the design of effective interventions to promote placental growth and function and thereby reduce adverse birth outcomes.
Collapse
Affiliation(s)
- Andrea M Weckman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michelle Ngai
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Julie Wright
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Chloe R McDonald
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Roumenina LT, Daugan MV, Noé R, Petitprez F, Vano YA, Sanchez-Salas R, Becht E, Meilleroux J, Clec'h BL, Giraldo NA, Merle NS, Sun CM, Verkarre V, Validire P, Selves J, Lacroix L, Delfour O, Vandenberghe I, Thuilliez C, Keddani S, Sakhi IB, Barret E, Ferré P, Corvaïa N, Passioukov A, Chetaille E, Botto M, de Reynies A, Oudard SM, Mejean A, Cathelineau X, Sautès-Fridman C, Fridman WH. Tumor Cells Hijack Macrophage-Produced Complement C1q to Promote Tumor Growth. Cancer Immunol Res 2019; 7:1091-1105. [PMID: 31164356 DOI: 10.1158/2326-6066.cir-18-0891] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022]
Abstract
Clear-cell renal cell carcinoma (ccRCC) possesses an unmet medical need, particularly at the metastatic stage, when surgery is ineffective. Complement is a key factor in tissue inflammation, favoring cancer progression through the production of complement component 5a (C5a). However, the activation pathways that generate C5a in tumors remain obscure. By data mining, we identified ccRCC as a cancer type expressing concomitantly high expression of the components that are part of the classical complement pathway. To understand how the complement cascade is activated in ccRCC and impacts patients' clinical outcome, primary tumors from three patient cohorts (n = 106, 154, and 43), ccRCC cell lines, and tumor models in complement-deficient mice were used. High densities of cells producing classical complement pathway components C1q and C4 and the presence of C4 activation fragment deposits in primary tumors correlated with poor prognosis. The in situ orchestrated production of C1q by tumor-associated macrophages (TAM) and C1r, C1s, C4, and C3 by tumor cells associated with IgG deposits, led to C1 complex assembly, and complement activation. Accordingly, mice deficient in C1q, C4, or C3 displayed decreased tumor growth. However, the ccRCC tumors infiltrated with high densities of C1q-producing TAMs exhibited an immunosuppressed microenvironment, characterized by high expression of immune checkpoints (i.e., PD-1, Lag-3, PD-L1, and PD-L2). Our data have identified the classical complement pathway as a key inflammatory mechanism activated by the cooperation between tumor cells and TAMs, favoring cancer progression, and highlight potential therapeutic targets to restore an efficient immune reaction to cancer.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France. .,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Marie V Daugan
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Rémi Noé
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Florent Petitprez
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France.,Programme Cartes d'Identité des Tumeurs, Ligue Nationale contre le Cancer, Paris, France
| | - Yann A Vano
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France.,Department of Oncology, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | | | - Etienne Becht
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Julie Meilleroux
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France.,Department of Pathology, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Bénédicte Le Clec'h
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Nicolas A Giraldo
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Nicolas S Merle
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Cheng-Ming Sun
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Virginie Verkarre
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Department of Pathology, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | - Pierre Validire
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Janick Selves
- Department of Pathology, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Laetitia Lacroix
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | | | | | | | - Sonia Keddani
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Imene B Sakhi
- INSERM, UMR_S 1138, Cordeliers Research Center, Team "Complement and diseases", Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France
| | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | - Pierre Ferré
- Pierre Fabre Research Institute, Toulouse, France
| | | | | | | | - Marina Botto
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Aurélien de Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale contre le Cancer, Paris, France
| | - Stephane Marie Oudard
- Department of Oncology, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | - Arnaud Mejean
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Department of Urology, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | - Xavier Cathelineau
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | - Catherine Sautès-Fridman
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France.,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| | - Wolf H Fridman
- Sorbonne Paris Cite, Cordeliers Research Center, University Paris Descartes Paris 5, Paris, France. .,Cordeliers Research Center, Sorbonne University, Paris, France.,INSERM, UMR_S 1138, Cordeliers Research Center, Team "Cancer, Immune Control and Escape", Paris, France
| |
Collapse
|
25
|
Mangogna A, Agostinis C, Bonazza D, Belmonte B, Zacchi P, Zito G, Romano A, Zanconati F, Ricci G, Kishore U, Bulla R. Is the Complement Protein C1q a Pro- or Anti-tumorigenic Factor? Bioinformatics Analysis Involving Human Carcinomas. Front Immunol 2019; 10:865. [PMID: 31130944 PMCID: PMC6509152 DOI: 10.3389/fimmu.2019.00865] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
C1q is the first subcomponent of the classical pathway of the complement system and belongs to the C1q/Tumor Necrosis Factor superfamily. C1q can perform a diverse range of immune and non-immune functions in a complement-dependent as well as -independent manner. Being a pattern recognition molecule of the innate immunity, C1q can recognize a number of self, non-self and altered-self ligands and bring about effector mechanisms designed to clear pathogens via opsonisation and inflammatory response. C1q is locally synthesized by macrophages and dendritic cells, and thus, can get involved in a range of biological processes, such as angiogenesis and tissue remodeling, immune modulation, and immunologic tolerance. The notion of C1q involvement in the pathogenesis of cancer is still evolving. C1q appears to have a dual role in cancer: tumor promoting as well as tumor-protective, depending on the context of the disease. In the current study, we performed a bioinformatics analysis to investigate whether C1q can serve as a potential prognostic marker for human carcinoma. We used the Oncomine database and the survival analysis platforms Kaplan-Meier plotter. Our results showed that high levels of C1q have a favorable prognostic index in basal-like breast cancer for disease-free survival, and in HER2-positive breast cancer for overall survival, while it showed a pro-tumorigenic role of C1q in lung adenocarcinoma, and in clear cell renal cell carcinoma. This in silico study, if validated via a retrospective study, can be a step forward in establishing C1q as a new tool as a prognostic biomarker for various carcinoma.
Collapse
Affiliation(s)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Andrea Romano
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
26
|
Transcriptomics and Immunological Analyses Reveal a Pro-Angiogenic and Anti-Inflammatory Phenotype for Decidual Endothelial Cells. Int J Mol Sci 2019; 20:ijms20071604. [PMID: 30935090 PMCID: PMC6479455 DOI: 10.3390/ijms20071604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/09/2023] Open
Abstract
Background: In pregnancy, excessive inflammation and break down of immunologic tolerance can contribute to miscarriage. Endothelial cells (ECs) are able to orchestrate the inflammatory processes by secreting pro-inflammatory mediators and bactericidal factors by modulating leakiness and leukocyte trafficking, via the expression of adhesion molecules and chemokines. The aim of this study was to analyse the differences in the phenotype between microvascular ECs isolated from decidua (DECs) and ECs isolated from human skin (ADMECs). Methods: DECs and ADMECs were characterized for their basal expression of angiogenic factors and adhesion molecules. A range of immunological responses was evaluated, such as vessel leakage, reactive oxygen species (ROS) production in response to TNF-α stimulation, adhesion molecules expression and leukocyte migration in response to TNF-α and IFN-γ stimulation. Results: DECs produced higher levels of HGF, VEGF-A and IGFBP3 compared to ADMECs. DECs expressed adhesion molecules, ICAM-2 and ICAM-3, and a mild response to TNF-α was observed. Finally, DECs produced high levels of CXCL9/MIG and CXCL10/IP-10 in response to IFN-γ and selectively recruited Treg lymphocytes. Conclusion: DEC phenotype differs considerably from that of ADMECs, suggesting that DECs may play an active role in the control of immune response and angiogenesis at the foetal-maternal interface.
Collapse
|
27
|
Affiliation(s)
- Sarosh Rana
- From the Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, IL (S.R.)
| | - Elizabeth Lemoine
- Harvard Medical School, Boston, MA (E.L.)
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (E.L., S.A.K.)
| | - Joey P. Granger
- Department of Physiology, University of Mississippi Medical Center, Jackson (J.P.G.)
| | - S. Ananth Karumanchi
- Departments of Medicine, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (S.A.K.)
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (E.L., S.A.K.)
| |
Collapse
|
28
|
Abstract
Preeclampsia (PE) is a devastating adverse outcome of pregnancy. Characterized by maternal hypertension, PE, when left untreated, can result in death of both mother and baby. The cause of PE remains unknown, and there is no way to predict which women will develop PE during pregnancy. The only known treatment is delivery of both the fetus and placenta; therefore, an abnormal placenta is thought to play a causal role. Women with obesity before pregnancy have an increased chance of developing PE. Increased adiposity results in a heightened state of systemic inflammation that can influence placental development. Adipose tissue is a rich source of proinflammatory cytokines and complement proteins, which have been implicated in the pathogenesis of PE by promoting the expression of antiangiogenic factors in the mother. Because an aggravated inflammatory response, angiogenic imbalance, and abnormal placentation are observed in PE, we hypothesize that maternal obesity and complement proteins derived from adipose tissue play an important role in the development of PE.
Collapse
Affiliation(s)
- Kelsey N Olson
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana.,Reproductive Endocrinology & Women's Health Lab, Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Leanne M Redman
- Reproductive Endocrinology & Women's Health Lab, Pennington Biomedical Research Center , Baton Rouge, Louisiana
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana
| |
Collapse
|
29
|
Moradi MT, Rahimi Z, Vaisi-Raygani A. New insight into the role of long non-coding RNAs in the pathogenesis of preeclampsia. Hypertens Pregnancy 2019; 38:41-51. [PMID: 30707634 DOI: 10.1080/10641955.2019.1573252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Dysregulation of lncRNAs and the absence of coordination between them could affect the normal placentation, uteroplacental circulation, and endothelial cell function. All these misfunctions can finally lead to preeclampsia. METHODS In the present review, we discuss current literature (till May 2018) about lncRNAs expression and function in the placenta, trophoblast cells, and decidua. RESULTS AND CONCLUSION It is explained how altered expression of the lncRNAs and abnormal regulation of them affect the risk of preeclampsia. However, the interaction between various lncRNAs and coordinate regulation of them in health and failure of such coordinative mechanisms in diseases such as preeclampsia need to be elucidated.
Collapse
Affiliation(s)
- Mohammad-Taher Moradi
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Zohreh Rahimi
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,b Department of Clinical Biochemistry , Medical School, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Asad Vaisi-Raygani
- c Fertility and Infertility Research Center , Medical School, Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
30
|
Complement Activation During Early Pregnancy and Clinical Predictors of Preterm Birth in African American Women. J Perinat Neonatal Nurs 2019; 33:E15-E26. [PMID: 31651632 PMCID: PMC6818745 DOI: 10.1097/jpn.0000000000000443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Complement activation is essential for select physiologic processes during pregnancy; however, excess activation has been associated with an increased risk for preterm birth (PTB). African American (AA) women experience disproportionately higher rates of inflammation-associated PTB than other groups of women; thus, the purpose of this study was to explore the relationship between complement activation and perinatal outcomes among AA women. A plasma sample was collected between 8 and 14 weeks' gestation from a cohort of healthy AA women (N = 144) enrolled in a larger PTB cohort study. Medical record review was conducted to collect information on clinical factors (cervical length, health behaviors, gestational age at delivery). Multiple regression analysis was used to explore the relationships between complement marker (C3a/Bb) concentrations and the outcomes of interest after adjusting for baseline characteristics. C3a/Bb concentrations were not significant predictors of the gestational age at delivery, cervical length, or behavioral risk factors for PTB in this sample. Complement markers may not influence pregnancy outcomes among AA women in the same way as in predominantly white populations; however, more studies are needed to define complement dysregulation and the relationship with outcomes among AA women.
Collapse
|
31
|
Tedesco F, Borghi MO, Gerosa M, Chighizola CB, Macor P, Lonati PA, Gulino A, Belmonte B, Meroni PL. Pathogenic Role of Complement in Antiphospholipid Syndrome and Therapeutic Implications. Front Immunol 2018; 9:1388. [PMID: 29971066 PMCID: PMC6018396 DOI: 10.3389/fimmu.2018.01388] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Antiphospholipid syndrome (APS) is an acquired autoimmune disease characterized by thromboembolic events, pregnancy morbidity, and the presence of antiphospholipid (aPL) antibodies. There is sound evidence that aPL act as pathogenic autoantibodies being responsible for vascular clots and miscarriages. However, the exact mechanisms involved in the clinical manifestations of the syndrome are still a matter of investigation. In particular, while vascular thrombosis is apparently not associated with inflammation, the pathogenesis of miscarriages can be explained only in part by the aPL-mediated hypercoagulable state and additional non-thrombotic effects, including placental inflammation, have been described. Despite this difference, evidence obtained from animal models and studies in APS patients support the conclusion that complement activation is a common denominator in both vascular and obstetric APS. Tissue-bound aPL rather than circulating aPL-beta2 glycoprotein I immune complexes seem to be responsible for the activation of the classical and the alternative complement pathways. The critical role of complement is supported by the finding that complement-deficient animals are protected from the pathogenic effect of passively infused aPL and similar results have been obtained blocking complement activation. Moreover, elevated levels of complement activation products in the absence of abnormalities in regulatory molecules have been found in the plasma of APS patients, strongly suggesting that the activation of complement cascade is the result of aPL binding to the target antigen rather than of a defective regulation. Placental complement deposits represent a further marker of complement activation both in animals and in patients, and there is also some suggestive evidence that complement activation products are deposited in the affected vessels. The aim of this review is to analyze the state of the art of complement involvement in the pathogenesis of APS in order to provide insights into the role of this system as predictive biomarker for the clinical manifestations and as therapeutic target.
Collapse
Affiliation(s)
- Francesco Tedesco
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Maria Orietta Borghi
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maria Gerosa
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Adele Lonati
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Pier Luigi Meroni
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
32
|
Abstract
From its discovery in the late nineteenth century, as a 'complement' to the cellular immune response, the complement system has been widely affirmed as a powerful controller of innate and adaptive immune responses. In recent decades however, new roles for complement have been discovered, with multiple complement proteins now known to function in a broad array of non-immune systems. This includes during development, where complement exerts control over stem cell populations from fertilization and implantation throughout embryogenesis and beyond post-natal development. It is involved in processes as diverse as cell localisation, tissue morphogenesis, and the growth and refinement of the brain. Such physiological actions of complement have also been described in adult stem cell populations, with roles in proliferation, differentiation, survival, and regeneration. With such a broad range of complement functions now described, it is likely that current research only describes a fraction of the full reach of complement proteins. Here, we review how complement control of physiological cell processes has been harnessed in stem cell populations throughout both development and in adult physiology.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Liam G Coulthard
- School of Clinical Medicine, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Susanna Mantovani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia.
| |
Collapse
|
33
|
Song X, Rui C, Meng L, Zhang R, Shen R, Ding H, Li J, Li J, Long W. Long non-coding RNA RPAIN regulates the invasion and apoptosis of trophoblast cell lines via complement protein C1q. Oncotarget 2018; 8:7637-7646. [PMID: 28032589 PMCID: PMC5352349 DOI: 10.18632/oncotarget.13826] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulatory molecules that are involved in a variety of biological processes and human diseases. Their impact on early onset preeclampsia remains unclear. In this study, we tested the expression of RPAIN (transcript variant 12 of RPA interacting protein, a non-coding RNA, NR_027683.1) in placenta tissues derived from 25 pregnant women with PE and 15 healthy pregnant women using quantitative real-time PCR. The effect of RPAIN on trophoblast proliferation, invasion, and apoptosis and the underlying mechanisms were examined in trophoblast cell lines (HTR-8/SVneo). The results showed that RPAIN expression levels were significantly increased in early onset preeclamptic placentas compared to normal controls. The proliferation and invasive abilities of the trophoblast cells were significantly inhibited, and the apoptosis abilities of the trophoblast cells were significantly promoted when RPAIN was overexpressed. In addition, the overexpression of RPAIN inhibited the expression of complement protein C1q. Furthermore, C1q overexpression rescued the decreased cell invasion and enhanced cell apoptosis in RPAIN-overexpressing trophoblast cells. Our results suggest that increased RPAIN levels may contribute to the development of preeclampsia through regulating trophoblast invasion and apoptosis via C1q. Therefore, we proposed RPAIN as a novel lncRNA molecule, which might contribute to the development of PE (preeclampsia) and might compose a potential diagnostic and therapeutic target for this disease.
Collapse
Affiliation(s)
- Xuejing Song
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Can Rui
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Meng
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Rong Shen
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jun Li
- State key Laboratory of Reproductive Medicine, Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jingyun Li
- State key Laboratory of Reproductive Medicine, Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Long
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Mohlin C, Sandholm K, Kvanta A, Ekdahl KN, Johansson K. A model to study complement involvement in experimental retinal degeneration. Ups J Med Sci 2018; 123:28-42. [PMID: 29436895 PMCID: PMC5901466 DOI: 10.1080/03009734.2018.1431744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The complement system (CS) plays a role in the pathogenesis of a number of ocular diseases, including diabetic retinopathy (DR), glaucoma, uveitis, and age-related macular degeneration (AMD). Given that many of the complex eye-related degenerative diseases have limited treatment opportunities, we aimed to mimic the in vivo retinal degenerative process by developing a relevant co-culture system. METHOD AND MATERIALS The adult porcine retina was co-cultured with the spontaneously arising human retinal pigment epithelial cells-19 (ARPE-19). RESULTS Inflammatory activity was found after culture and included migrating microglial cells, gliosis, cell death, and CS activation (demonstrated by a minor increase in the secreted anaphylotoxin C3a in co-culture). CS components, including C1q, C3, C4, soluble C5b-9, and the C5a receptor, were expressed in the retina and/or ARPE cells after culture. C1q, C3, and CS regulators such as C4 binding protein (C4BP), factor H (CFH), and factor I (CFI) were secreted after culture. DISCUSSION Thus, our research indicates that this co-culturing system may be useful for investigations of the CS and its involvement in experimental neurodegenerative diseases.
Collapse
Affiliation(s)
- Camilla Mohlin
- Linnaeus University Faculty of Health and Life Science, Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- CONTACT Camilla Mohlin Linnaeus Center of Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Kerstin Sandholm
- Linnaeus University Faculty of Health and Life Science, Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, Section for Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kristina N. Ekdahl
- Linnaeus University Faculty of Health and Life Science, Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Kjell Johansson
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
35
|
Agostinis C, Rami D, Zacchi P, Bossi F, Stampalija T, Mangogna A, Amadio L, Vidergar R, Vecchi Brumatti L, Ricci G, Celeghini C, Radillo O, Sargent I, Bulla R. Pre-eclampsia affects procalcitonin production in placental tissue. Am J Reprod Immunol 2018; 79:e12823. [PMID: 29427369 DOI: 10.1111/aji.12823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/16/2018] [Indexed: 01/05/2023] Open
Abstract
PROBLEM Procalcitonin (PCT) is the prohormone of calcitonin which is usually released from neuroendocrine cells of the thyroid gland (parafollicular) and the lungs (K cells). PCT is synthesized by almost all cell types and tissues, including monocytes and parenchymal tissue, upon LPS stimulation. To date, there is no evidence for PCT expression in the placenta both in physiological and pathological conditions. METHOD Circulating and placental PCT levels were analysed in pre-eclamptic (PE) and control patients. Placental cells and macrophages (PBDM), stimulated with PE sera, were analysed for PCT expression. The effect of anti-TNF-α antibody was analysed. RESULTS Higher PCT levels were detected in PE sera and in PE placentae compared to healthy women. PE trophoblasts showed increased PCT expression compared to those isolated from healthy placentae. PE sera induced an upregulation of PCT production in macrophages and placental cells. The treatment of PBDM with PE sera in the presence of anti-TNF-α completely abrogated the effect induced by pathologic sera. CONCLUSION Trophoblast cells are the main producer of PCT in PE placentae. TNF-α, in association with other circulating factors present in PE sera, upregulates PCT production in macrophages and normal placental cells, thus contributing to the observed increased in circulating PCT in PE sera.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Damiano Rami
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Fleur Bossi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Tamara Stampalija
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Leonardo Amadio
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Romana Vidergar
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Oriano Radillo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Ian Sargent
- Nuffield Department of Obstetrics and Gynecology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
36
|
Agostinis C, Vidergar R, Belmonte B, Mangogna A, Amadio L, Geri P, Borelli V, Zanconati F, Tedesco F, Confalonieri M, Tripodo C, Kishore U, Bulla R. Complement Protein C1q Binds to Hyaluronic Acid in the Malignant Pleural Mesothelioma Microenvironment and Promotes Tumor Growth. Front Immunol 2017; 8:1559. [PMID: 29209316 PMCID: PMC5701913 DOI: 10.3389/fimmu.2017.01559] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023] Open
Abstract
C1q is the first recognition subcomponent of the complement classical pathway, which acts toward the clearance of pathogens and apoptotic cells. C1q is also known to modulate a range of functions of immune and non-immune cells, and has been shown to be involved in placental development and sensorial synaptic pruning. We have recently shown that C1q can promote tumor by encouraging their adhesion, migration, and proliferation in addition to angiogenesis and metastasis. In this study, we have examined the role of human C1q in the microenvironment of malignant pleural mesothelioma (MPM), a rare form of cancer commonly associated with exposure to asbestos. We found that C1q was highly expressed in all MPM histotypes, particularly in epithelioid rather than in sarcomatoid histotype. C1q avidly bound high and low molecular weight hyaluronic acid (HA) via its globular domain. C1q bound to HA was able to induce adhesion and proliferation of mesothelioma cells (MES) via enhancement of ERK1/2, SAPK/JNK, and p38 phosphorylation; however, it did not activate the complement cascade. Consistent with the modular organization of the globular domain, we demonstrated that C1q may bind to HA through ghA module, whereas it may interact with human MES through the ghC. In conclusion, C1q highly expressed in MPM binds to HA and enhances the tumor growth promoting cell adhesion and proliferation. These data can help develop novel diagnostic markers and molecular targets for MPM.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Romana Vidergar
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Beatrice Belmonte
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | | | - Leonardo Amadio
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Pietro Geri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Francesco Tedesco
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, Milan, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Claudio Tripodo
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Preeclampsia affects 3-4% of pregnancies with few treatment options to reduce maternal and fetal harm. Recent evidence that targeting the complement system may be an effective therapeutic strategy in prevention or treatment of preeclampsia will be reviewed. RECENT FINDINGS Studies in humans confirm the safety and efficacy of C5 blockade in complement-mediated disorders of pregnancy, including preeclampsia. Animal models mimic the placental abnormalities and/or the maternal symptoms which characterize preeclampsia. These models in mouse and rat have defined a role for complement and its regulators in placental dysfunction, hypertension, proteinuria, endothelial dysfunction, fetal growth restriction, and angiogenic imbalance, thus informing future human studies. Targeting excessive complement activation, particularly the terminal complement complex (C5b-9) and C5a may be an effective strategy to prolong pregnancy in women with preeclampsia. Continued research is needed to identify the initiator(s) of activation, the pathways involved, and the key component(s) in the pathophysiology to allow development of safe and effective therapeutics to target complement without compromising its role in homeostasis and host defense.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Dr., Duluth, MN, 55812, USA.
| | - Richard M Burwick
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
38
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
39
|
Canda MT, Caglayan LD, Demir N, Ortaç R. Increased C4d and Bb immunoreactivity and decreased MBL immunoreactivity characterise first-time pathologic first-trimester miscarriage: a case-control study. J OBSTET GYNAECOL 2017; 38:90-95. [DOI: 10.1080/01443615.2017.1328589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M. Tunc Canda
- Department of Obstetrics and Gynaecology, Kent Hospital, İzmir, Turkey
| | | | - Namik Demir
- Department of Obstetrics and Gynaecology, Kent Hospital, İzmir, Turkey
| | - Ragıp Ortaç
- Department of Pathology, Kent Hospital, İzmir, Turkey
| |
Collapse
|
40
|
Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ. C1q: A fresh look upon an old molecule. Mol Immunol 2017; 89:73-83. [PMID: 28601358 DOI: 10.1016/j.molimm.2017.05.025] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Originally discovered as part of C1, the initiation component of the classical complement pathway, it is now appreciated that C1q regulates a variety of cellular processes independent of complement activation. C1q is a complex glycoprotein assembled from 18 polypeptide chains, with a C-terminal globular head region that mediates recognition of diverse molecular structures, and an N-terminal collagen-like tail that mediates immune effector mechanisms. C1q mediates a variety of immunoregulatory functions considered important in the prevention of autoimmunity such as the enhancement of phagocytosis, regulation of cytokine production by antigen presenting cells, and subsequent alteration in T-lymphocyte maturation. Furthermore, recent advances indicate additional roles for C1q in diverse physiologic and pathologic processes including pregnancy, tissue repair, and cancer. Finally, C1q is emerging as a critical component of neuronal network refinement and homeostatic regulation within the central nervous system. This review summarizes the classical functions of C1q and reviews novel discoveries within the field.
Collapse
Affiliation(s)
| | - Francesco Tedesco
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Auxologico Italiano, Milan, Italy
| | | | | | | |
Collapse
|
41
|
Dunn AB, Dunlop AL, Hogue CJ, Miller A, Corwin EJ. The Microbiome and Complement Activation: A Mechanistic Model for Preterm Birth. Biol Res Nurs 2017; 19:295-307. [PMID: 28073296 DOI: 10.1177/1099800416687648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Preterm birth (PTB, <37 completed weeks' gestation) is one of the leading obstetrical problems in the United States, affecting approximately one of every nine births. Even more concerning are the persistent racial disparities in PTB, with particularly high rates among African Americans. There are several recognized pathophysiologic pathways to PTB, including infection and/or exaggerated systemic or local inflammation. Intrauterine infection is a causal factor linked to PTB thought to result most commonly from inflammatory processes triggered by microbial invasion of bacteria ascending from the vaginal microbiome. Trials to treat various infections have shown limited efficacy in reducing PTB risk, suggesting that other complex mechanisms, including those associated with inflammation, may be involved in the relationship between microbes, infection, and PTB. The complement system, a key mediator of the inflammatory response, is an innate defense mechanism involved in both normal physiologic processes that occur during pregnancy implantation and processes that promote the elimination of pathogenic microbes. Recent research has demonstrated an association between this system and PTB. The purpose of this article is to present a mechanistic model of inflammation-associated PTB, which hypothesizes a relationship between the microbiome and dysregulation of the complement system. Exploring the relationships between the microbial environment and complement biomarkers may elucidate a potentially modifiable biological pathway to PTB.
Collapse
Affiliation(s)
- Alexis B Dunn
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Carol J Hogue
- 2 Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Andrew Miller
- 3 School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Elizabeth J Corwin
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
42
|
C1q as an autocrine and paracrine regulator of cellular functions. Mol Immunol 2016; 84:26-33. [PMID: 27914690 DOI: 10.1016/j.molimm.2016.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
Most of the complement proteins in circulation are, by and large, synthesized in the liver. However data accumulated over the past several decades provide incontrovertible evidence that some if not most of the individual complement proteins are also synthesized extrahepatically by activated as well as non-activated cells. The question that is finally being addressed by various investigators is: are the locally synthesized proteins solely responsible for the myriad of biological functions in situ without the contribution of systemic complement? The answer is probably "yes". Among the proteins that are synthesized locally, C1q takes center stage for several reasons. First, it is synthesized predominantly by potent antigen presenting cells such as monocytes, macrophages and dendritic cells (DCs), which by itself is a clue that it plays an important role in antigen presentation and/or DC maturation. Second, it is transiently anchored on the cell surface via a transmembrane domain located in its A chain before it is cleaved off and released into the pericellular milieu. The membrane-associated C1q in turn, is able to sense danger patterns via its versatile antigen-capturing globular head domains. More importantly, locally synthesized C1q has been shown to induce a plethora of biological functions through the induction of immunomodulatory molecules by an autocrine- or paracrine- mediated signaling in a manner that mimics those of TNFα. These include recognition of pathogen- and danger- associated molecular patterns, phagocytosis, angiogenesis, apoptosis and induction of cytokines or chemokines that are important in modulating the inflammatory response. The functional convergence between C1q and TNFα in turn is attributed to their shared genetic ancestry. In this paper, we will infer to the aforementioned "local-synthesis-for-local function" paradigm using as an example, the role played by locally synthesized C1q in autoimmunity in general and in systemic lupus erythematosus in particular.
Collapse
|
43
|
Degner K, Magness RR, Shah DM. Establishment of the Human Uteroplacental Circulation: A Historical Perspective. Reprod Sci 2016; 24:753-761. [PMID: 27733657 DOI: 10.1177/1933719116669056] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The uterine vasculature undergoes marked changes during pregnancy in order to provide the necessary increase in blood flow to support growth and nutrition of the uterus, placenta, and developing fetus. Pregnancy-associated uterine vascular transformations are orchestrated by a complex array of endocrine and cellular mechanisms to bring about structural modifications at the maternal-fetal interface, which collectively lead to development of the uteroplacental circulation. Understanding intrinsic uterine vascular remodeling in pregnancy is essential for understanding the physiologic and pathophysiologic regulation of maternal uterine blood flow. Aberrations of uterine vascular remodeling are potentially involved in the etiology of several pregnancy disorders, for example, preeclampsia, fetal growth restriction, and preterm labor; therefore, it is essential for subspecialist clinicians and investigators interested in reproductive physiology to fully understand the establishment of uteroplacental circulation. The foundational literature in this area is extensive; thus, a succinct review is likely to be a useful resource. Herein, we present and discuss a historical perspective on uterine vascular anatomy, maternal vascular growth associated with decidualization, trophoblast invasion, intervillous circulation, aberrations in uterine vascular modeling, and the clinical implications of improper development of the uteroplacental circulation.
Collapse
Affiliation(s)
- Kenna Degner
- 1 Department of Obstetrics and Gynecology, Divisions of Maternal Fetal Medicine and Reproductive Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ronald R Magness
- 1 Department of Obstetrics and Gynecology, Divisions of Maternal Fetal Medicine and Reproductive Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,2 Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,3 Department of Animal Sciences, University of Wisconsin, Madison, WI, USA.,4 Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Current affiliation
| | - Dinesh M Shah
- 1 Department of Obstetrics and Gynecology, Divisions of Maternal Fetal Medicine and Reproductive Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
44
|
Agostinis C, Stampalija T, Tannetta D, Loganes C, Vecchi Brumatti L, De Seta F, Celeghini C, Radillo O, Sargent I, Tedesco F, Bulla R. Complement component C1q as potential diagnostic but not predictive marker of preeclampsia. Am J Reprod Immunol 2016; 76:475-481. [PMID: 27666323 DOI: 10.1111/aji.12586] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
PROBLEM We have previously found that C1q is constitutively expressed by invading trophoblast and endothelial cells of decidua and contributes to vascular and tissue remodeling. Based on these findings, we sought to determine whether there were changes in the circulating level of C1q that may be used as a diagnostic and predictive marker of preeclampsia. METHOD OF STUDY We measured the levels of C1q, C4, and complement activation products in serum or plasma of normal pregnant women and preeclamptic patients from different cohorts. RESULTS We observed a marked decrease in the concentration of C1q associated with a reduced level of C4 in preeclamptic patients as compared to matched healthy pregnant woman but no significant difference in the circulating level of the activating products C5a and the soluble terminal complement complex sC5b-9. Analysis of serum samples collected at early phase of pregnancy from women who later developed preeclampsia failed to show a decrease in C1q level. CONCLUSION The results of the present investigation demonstrate that low levels of C1q and C4 are associated with preeclampsia but cannot be used as predictive markers.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Tamara Stampalija
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Dionne Tannetta
- Nuffield Department of Obstetrics and Gynecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Claudia Loganes
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Francesco De Seta
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Oriano Radillo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Ian Sargent
- Nuffield Department of Obstetrics and Gynecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
45
|
Agostinis C, Tedesco F, Bulla R. Alternative functions of the complement protein C1q at embryo implantation site. J Reprod Immunol 2016; 119:74-80. [PMID: 27687635 DOI: 10.1016/j.jri.2016.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/01/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
Complement component C1q is one of the recognition molecules of the complement system which can serve several functions unrelated to complement activation. This molecule is produced at foeto-maternal interface by macrophages as wells as by decidual endothelial cells and invading trophoblast. Foetal trophoblast cells migrating through the decidua in the early stages of pregnancy synthesize and express C1q on their surface, which is actively involved in promoting trophoblast endovascular and interstitial invasion of the decidua. These functions are mediated by two cell surface receptors, gC1qR and α4β1 integrin, which promote trophoblast adhesion and migration through the activation of ERK1/2 MAPKs. C1q-/- mice manifest increased frequency of foetal resorption, reduced foetal weight, and smaller litter size when compared to their wild-type counterparts, suggesting that defective local production of C1q may be involved in pregnancy disorders, such as pre-eclampsia. C1q acts also as a strong angiogenic factor and promotes neovascularization. These studies suggest novel and unexpected roles of this complement component in physiological and pathological pregnancies.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | | | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
46
|
He Y, Xu B, Song D, Yu F, Chen Q, Zhao M. Expression of the complement system's activation factors in plasma of patients with early/late-onset severe pre-eclampsia. Am J Reprod Immunol 2016; 76:205-11. [PMID: 27461873 DOI: 10.1111/aji.12541] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/03/2016] [Indexed: 11/27/2022] Open
Abstract
PROBLEM To investigate the expression of complement activation factors in plasma of patients with early/late-onset severe pre-eclampsia. METHODS A case-control study was performed. The study group consisted of 30 cases of early-onset severe pre-eclampsia (EOSPE) and 30 cases of late-onset severe pre-eclampsia (LOSPE). Thirty cases were selected as the early-onset control group (E-control) and 30 as the late-onset control group (L-control). ELISA was used to test C1q, C4d, MBL, Bb, C3a, C5a, and MAC in the maternal peripheral circulation. RESULTS The complement activation factors Bb, C3a, C5a, and MAC were increased significantly in EOSPE (all P<.01) and LOSPE (P value: .027, <.001, .001, and <.001, respectively) compared with E/L-control. C1q and C4d were increased significantly in LOSPE (P value: .003 and .014, respectively) compared with L-control. CONCLUSION Abnormal activation of the complement system exists in the maternal circulation of patients with early- and late-onset severe pre-eclampsia. In patients complicated with LOSPE, the complement system was activated through both the classical and alternative pathways, while in EOSPE, the complement system was activated mainly through the alternative pathway.
Collapse
Affiliation(s)
- Yingdong He
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Bingning Xu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Di Song
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.,Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
47
|
Madhukaran SP, Alhamlan FS, Kale K, Vatish M, Madan T, Kishore U. Role of collectins and complement protein C1q in pregnancy and parturition. Immunobiology 2016; 221:1273-88. [PMID: 27349595 DOI: 10.1016/j.imbio.2016.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022]
Abstract
Collectins such as surfactant proteins SP-A, SP-D, and mannan-binding lectin (MBL), as well as complement protein C1q are evolutionarily conserved innate immune molecules. They are known to opsonize a range of microbial pathogens (bacteria, fungi, virus, and parasites) and trigger effector clearance mechanisms involving phagocytosis and/or complement activation. Collectins and C1q have also attracted attention in studies involving pregnancy as they are expressed in the female reproductive tissues during pregnancy; a unique state of immune suppression with increased susceptibility to infectious diseases. Recent studies are beginning to unravel their functional significance in implantation, placentation, pregnancy maintenance and parturition in normal and adverse pregnancies. Collectins and C1q, expressed in gestational tissues during pregnancy, might alter the status of mother's immune response to the allogenic fetus and the microenvironment, thereby serving as important regulators of fetus-mother interaction. Here, we discuss the functional roles that have been assigned to SP-A, SP-D, MBL and C1q in pregnancy and parturition.
Collapse
Affiliation(s)
- Shanmuga Priyaa Madhukaran
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom; Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute for Advanced Studies, Secunderabad, Telangana, India
| | - Fatimah S Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Kavita Kale
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| | - Manu Vatish
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
48
|
C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun 2016; 7:10346. [PMID: 26831747 PMCID: PMC4740357 DOI: 10.1038/ncomms10346] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Complement C1q is the activator of the classical pathway. However, it is now recognized that C1q can exert functions unrelated to complement activation. Here we show that C1q, but not C4, is expressed in the stroma and vascular endothelium of several human malignant tumours. Compared with wild-type (WT) or C3- or C5-deficient mice, C1q-deficient (C1qa−/−) mice bearing a syngeneic B16 melanoma exhibit a slower tumour growth and prolonged survival. This effect is not attributable to differences in the tumour-infiltrating immune cells. Tumours developing in WT mice display early deposition of C1q, higher vascular density and an increase in the number of lung metastases compared with C1qa−/− mice. Bone marrow (BM) chimeras between C1qa−/− and WT mice identify non-BM-derived cells as the main local source of C1q that can promote cancer cell adhesion, migration and proliferation. Together these findings support a role for locally synthesized C1q in promoting tumour growth. C1q is known to initiate the activation of the complement classical pathway. Here, the authors show the C1q is expressed in the tumour microenvironment and can promote cancer cell migration and adhesion in a complement activation-independent manner.
Collapse
|
49
|
McDonald CR, Tran V, Kain KC. Complement Activation in Placental Malaria. Front Microbiol 2015; 6:1460. [PMID: 26733992 PMCID: PMC4685051 DOI: 10.3389/fmicb.2015.01460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
Abstract
Sixty percent of all pregnancies worldwide occur in malaria endemic regions. Pregnant women are at greater risk of malaria infection than their non-pregnant counterparts and have a higher risk of adverse birth outcomes including low birth weight resulting from intrauterine growth restriction and/or preterm birth. The complement system plays an essential role in placental and fetal development as well as the host innate immune response to malaria infection. Excessive or dysregulated complement activation has been associated with the pathobiology of severe malaria and with poor pregnancy outcomes, dependent and independent of infection. Here we review the role of complement in malaria and pregnancy and discuss its part in mediating altered placental angiogenesis, malaria-induced adverse birth outcomes, and disruptions to the in utero environment with possible consequences on fetal neurodevelopment. A detailed understanding of the mechanisms underlying adverse birth outcomes, and the impact of maternal malaria infection on fetal neurodevelopment, may lead to biomarkers to identify at-risk pregnancies and novel therapeutic interventions to prevent these complications.
Collapse
Affiliation(s)
- Chloe R McDonald
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, TorontoON, Canada; Department of Global Health and Population, Harvard School of Public Health, BostonMA, USA
| | - Vanessa Tran
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, Toronto ON, Canada
| | - Kevin C Kain
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, TorontoON, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, TorontoON, Canada
| |
Collapse
|
50
|
Petitbarat M, Durigutto P, Macor P, Bulla R, Palmioli A, Bernardi A, De Simoni MG, Ledee N, Chaouat G, Tedesco F. Critical Role and Therapeutic Control of the Lectin Pathway of Complement Activation in an Abortion-Prone Mouse Mating. THE JOURNAL OF IMMUNOLOGY 2015; 195:5602-7. [DOI: 10.4049/jimmunol.1501361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022]
|