1
|
Alam J, Huda MN, Tackett AJ, Miah S. Oncogenic signaling-mediated regulation of chromatin during tumorigenesis. Cancer Metastasis Rev 2023; 42:409-425. [PMID: 37147457 PMCID: PMC10348982 DOI: 10.1007/s10555-023-10104-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Signaling pathways play critical roles in executing and controlling important biological processes within cells. Cells/organisms trigger appropriate signal transduction pathways in order to turn on or off intracellular gene expression in response to environmental stimuli. An orchestrated regulation of different signaling pathways across different organs and tissues is the basis of many important biological functions. Presumably, any malfunctions or dysregulation of these signaling pathways contribute to the pathogenesis of disease, particularly cancer. In this review, we discuss how the dysregulation of signaling pathways (TGF-β signaling, Hippo signaling, Wnt signaling, Notch signaling, and PI3K-AKT signaling) modulates chromatin modifications to regulate the epigenome, thereby contributing to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Nazmul Huda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Al-Khreisat MJ, Hussain FA, Abdelfattah AM, Almotiri A, Al-Sanabra OM, Johan MF. The Role of NOTCH1, GATA3, and c-MYC in T Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:cancers14112799. [PMID: 35681778 PMCID: PMC9179380 DOI: 10.3390/cancers14112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphomas are heterogeneous malignant tumours of white blood cells characterised by the aberrant proliferation of mature lymphoid cells or their precursors. Lymphomas are classified into main types depending on the histopathologic evidence of biopsy taken from an enlarged lymph node, progress stages, treatment strategies, and outcomes: Hodgkin and non-Hodgkin lymphoma (NHL). Moreover, lymphomas can be further divided into subtypes depending on the cell origin, and immunophenotypic and genetic aberrations. Many factors play vital roles in the progression, pathogenicity, incidence, and mortality rate of lymphomas. Among NHLs, peripheral T cell lymphomas (PTCLs) are rare lymphoid malignancies, that have various cellular morphology and genetic mutations. The clinical presentations are usually observed at the advanced stage of the disease. Many recent studies have reported that the expressions of NOTCH1, GATA3, and c-MYC are associated with poorer prognosis in PTCL and are involved in downstream activities. However, questions have been raised about the pathological relationship between these factors in PTCLs. Therefore, in this review, we investigate the role and relationship of the NOTCH1 pathway, transcriptional factor GATA3 and proto-oncogene c-MYC in normal T cell development and malignant PTCL subtypes.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ali Mahmoud Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences—Dawadmi, Shaqra University, Dawadmi 17464, Saudi Arabia;
| | - Ola Mohammed Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-97-67-62-00
| |
Collapse
|
3
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Martínez-Corrales G, Cabrero P, Dow JAT, Terhzaz S, Davies SA. Novel roles for GATAe in growth, maintenance and proliferation of cell populations in the Drosophila renal tubule. Development 2019; 146:dev.178087. [PMID: 31036543 DOI: 10.1242/dev.178087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
The GATA family of transcription factors is implicated in numerous developmental and physiological processes in metazoans. In Drosophila melanogaster, five different GATA factor genes (pannier, serpent, grain, GATAd and GATAe) have been reported as essential in the development and identity of multiple tissues, including the midgut, heart and brain. Here, we present a novel role for GATAe in the function and homeostasis of the Drosophila renal (Malpighian) tubule. We demonstrate that reduced levels of GATAe gene expression in tubule principal cells induce uncontrolled cell proliferation, resulting in tumorous growth with associated altered expression of apoptotic and carcinogenic key genes. Furthermore, we uncover the involvement of GATAe in the maintenance of stellate cells and migration of renal and nephritic stem cells into the tubule. Our findings of GATAe as a potential master regulator in the events of growth control and cell survival required for the maintenance of the Drosophila renal tubule could provide new insights into the molecular pathways involved in the formation and maintenance of a functional tissue and kidney disease.
Collapse
Affiliation(s)
- Guillermo Martínez-Corrales
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Dorfman DM, Morgan EA, Pelton A, Unitt C. T-cell transcription factor GATA-3 is an immunophenotypic marker of acute leukemias with T-cell differentiation. Hum Pathol 2017; 65:166-174. [PMID: 28551327 DOI: 10.1016/j.humpath.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022]
Abstract
T-cell transcription factor GATA-3, known to play a role in early T-cell development and in the development of T-cell neoplasms, is expressed at high levels in fetal and adult thymus, as well as in acute leukemias with T-cell differentiation, including T-lymphoblastic leukemia/lymphoma (22/22 cases), early T-cell precursor lymphoblastic leukemia (11/11 cases), and mixed-phenotype acute leukemia, T/myeloid (4/5 cases), but only rarely in acute myeloid leukemia/myeloid sarcoma (1/36 cases), and not in B-lymphoblastic leukemia (0/16 cases). In contrast, T-bet, the other T-cell transcription factor that controls Th1/Th2 T-cell fate, is not expressed to any significant extent in immature thymocytes or in cases of T-lymphoblastic leukemia or acute myeloid leukemia/myeloid sarcoma, but is expressed in most cases (15/16) of B-lymphoblastic leukemia and in mixed-phenotype acute leukemia, B/myeloid. GATA-3-positive acute leukemias with T-cell differentiation were also found to express proto-oncogene C-MYC, in an average of 52% of neoplastic cells, which, along with GATA-3, may contribute to leukemogenesis, as suggested by transgenic mouse models. We conclude that GATA-3 is a sensitive and specific marker for the diagnosis of acute leukemias with T-cell differentiation and may be a useful addition to the panel of immunophenotypic markers for the diagnostic evaluation of acute leukemias.
Collapse
Affiliation(s)
- David M Dorfman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ashley Pelton
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christine Unitt
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Manso R, Bellas C, Martín-Acosta P, Mollejo M, Menárguez J, Rojo F, Llamas P, Piris MA, Rodríguez-Pinilla SM. C-MYC is related to GATA3 expression and associated with poor prognosis in nodal peripheral T-cell lymphomas. Haematologica 2016; 101:e336-8. [PMID: 27151990 DOI: 10.3324/haematol.2016.143768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Rebeca Manso
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid
| | - Carmen Bellas
- Pathology Department, Hospital Universitario Puerta de Hierro, Madrid
| | | | - Manuela Mollejo
- Pathology Department, Hospital Universitario Virgen de la Salud, Toledo
| | - Javier Menárguez
- Pathology Department, Hospital Universitario Gregorio Marañón, Madrid
| | - Federico Rojo
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid
| | - Pilar Llamas
- Haematology Department, Fundación Jiménez Díaz, UAM, Madrid
| | - Miguel A Piris
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, IDIVAL, Santander, Spain
| | | |
Collapse
|
7
|
Hünten S, Kaller M, Drepper F, Oeljeklaus S, Bonfert T, Erhard F, Dueck A, Eichner N, Friedel CC, Meister G, Zimmer R, Warscheid B, Hermeking H. p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses. Mol Cell Proteomics 2015; 14:2609-29. [PMID: 26183718 DOI: 10.1074/mcp.m115.050237] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/20/2022] Open
Abstract
We determined the effect of p53 activation on de novo protein synthesis using quantitative proteomics (pulsed stable isotope labeling with amino acids in cell culture/pSILAC) in the colorectal cancer cell line SW480. This was combined with mRNA and noncoding RNA expression analyses by next generation sequencing (RNA-, miR-Seq). Furthermore, genome-wide DNA binding of p53 was analyzed by chromatin-immunoprecipitation (ChIP-Seq). Thereby, we identified differentially regulated proteins (542 up, 569 down), mRNAs (1258 up, 415 down), miRNAs (111 up, 95 down) and lncRNAs (270 up, 123 down). Changes in protein and mRNA expression levels showed a positive correlation (r = 0.50, p < 0.0001). In total, we detected 133 direct p53 target genes that were differentially expressed and displayed p53 occupancy in the vicinity of their promoter. More transcriptionally induced genes displayed occupied p53 binding sites (4.3% mRNAs, 7.2% miRNAs, 6.3% lncRNAs, 5.9% proteins) than repressed genes (2.4% mRNAs, 3.2% miRNAs, 0.8% lncRNAs, 1.9% proteins), suggesting indirect mechanisms of repression. Around 50% of the down-regulated proteins displayed seed-matching sequences of p53-induced miRNAs in the corresponding 3'-UTRs. Moreover, proteins repressed by p53 significantly overlapped with those previously shown to be repressed by miR-34a. We confirmed up-regulation of the novel direct p53 target genes LINC01021, MDFI, ST14 and miR-486 and showed that ectopic LINC01021 expression inhibits proliferation in SW480 cells. Furthermore, KLF12, HMGB1 and CIT mRNAs were confirmed as direct targets of the p53-induced miR-34a, miR-205 and miR-486-5p, respectively. In line with the loss of p53 function during tumor progression, elevated expression of KLF12, HMGB1 and CIT was detected in advanced stages of cancer. In conclusion, the integration of multiple omics methods allowed the comprehensive identification of direct and indirect effectors of p53 that provide new insights and leads into the mechanisms of p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Sabine Hünten
- From the ‡Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Straβe 36, 80337 Munich, Germany
| | - Markus Kaller
- From the ‡Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Straβe 36, 80337 Munich, Germany
| | - Friedel Drepper
- ‖Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Silke Oeljeklaus
- ‖Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Bonfert
- ‡‡Institute for Informatics, Ludwig-Maximilians-University Munich, 80337 Munich, Germany
| | - Florian Erhard
- ‡‡Institute for Informatics, Ludwig-Maximilians-University Munich, 80337 Munich, Germany
| | - Anne Dueck
- §§Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Norbert Eichner
- §§Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Caroline C Friedel
- ‡‡Institute for Informatics, Ludwig-Maximilians-University Munich, 80337 Munich, Germany
| | - Gunter Meister
- §§Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Ralf Zimmer
- ‡‡Institute for Informatics, Ludwig-Maximilians-University Munich, 80337 Munich, Germany
| | - Bettina Warscheid
- ‖Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; **Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104 Freiburg, Germany
| | - Heiko Hermeking
- From the ‡Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Straβe 36, 80337 Munich, Germany; §German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany; ¶German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| |
Collapse
|
8
|
Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity 2014; 41:191-206. [PMID: 25148023 DOI: 10.1016/j.immuni.2014.06.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Koyama D, Kikuchi J, Hiraoka N, Wada T, Kurosawa H, Chiba S, Furukawa Y. Proteasome inhibitors exert cytotoxicity and increase chemosensitivity via transcriptional repression of Notch1 in T-cell acute lymphoblastic leukemia. Leukemia 2013; 28:1216-26. [PMID: 24301524 PMCID: PMC4051216 DOI: 10.1038/leu.2013.366] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/11/2013] [Accepted: 11/29/2013] [Indexed: 12/15/2022]
Abstract
The Notch signaling pathway has been recognized as a key factor for the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL), because of the high incidence of activating mutations of Notch1. Notch inhibition could serve as a new treatment strategy for T-ALL; however, the attempts to perturb Notch signaling pathways have been unsuccessful so far. In this study, we found that proteasome inhibitors exert cytotoxic effects on T-ALL cells with constitutive activation of Notch1 to a similar extent as myeloma cells. The proteasome inhibitor bortezomib repressed the transcription of Notch1 and downstream effectors including Hes1, GATA3, RUNX3 and nuclear factor-κB (NF-κB) (p65 and p50), coincided with downregulation of the major transactivator Sp1 and its dissociation from Notch1 promoter. Overexpression of the Notch1 intracellular domain (NICD) significantly ameliorated bortezomib-induced cytotoxicity against T-ALL cells. Drug combination studies revealed that bortezomib showed synergistic or additive effects with key drugs for the treatment of T-ALL such as dexamethasone (DEX), doxorubicin and cyclophosphamide, which were readily abolished by NICD overexpression. The synergy of bortezomib and DEX was confirmed in vivo using a murine xenograft model. Our findings provide a molecular basis and rationale for the inclusion of proteasome inhibitors in treatment strategies for T-ALL.
Collapse
Affiliation(s)
- D Koyama
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - J Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - N Hiraoka
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - T Wada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - H Kurosawa
- Department of Pediatrics, Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - S Chiba
- Department of Hematology and Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Y Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
10
|
Calvo J, Sánchez-Cid L, Muñoz M, Lozano JJ, Thomson TM, Fernández PL. Infrequent loss of luminal differentiation in ductal breast cancer metastasis. PLoS One 2013; 8:e78097. [PMID: 24205108 PMCID: PMC3804564 DOI: 10.1371/journal.pone.0078097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/07/2013] [Indexed: 12/11/2022] Open
Abstract
Lymph node involvement is a major prognostic variable in breast cancer. Whether the molecular mechanisms that drive breast cancer cells to colonize lymph nodes are shared with their capacity to form distant metastases is yet to be established. In a transcriptomic survey aimed at identifying molecular factors associated with lymph node involvement of ductal breast cancer, we found that luminal differentiation, assessed by the expression of estrogen receptor (ER) and/or progesterone receptor (PR) and GATA3, was only infrequently lost in node-positive primary tumors and in matched lymph node metastases. The transcription factor GATA3 critically determines luminal lineage specification of mammary epithelium and is widely considered a tumor and metastasis suppressor in breast cancer. Strong expression of GATA3 and ER in a majority of primary node-positive ductal breast cancer was corroborated by quantitative RT-PCR and immunohistochemistry in the initial sample set, and by immunohistochemistry in an additional set from 167 patients diagnosed of node-negative and –positive primary infiltrating ductal breast cancer, including 102 samples from loco-regional lymph node metastases matched to their primary tumors, as well as 37 distant metastases. These observations suggest that loss of luminal differentiation is not a major factor driving the ability of breast cancer cells to colonize regional lymph nodes.
Collapse
Affiliation(s)
- Julia Calvo
- Department of Pathology, Hospital Clínic, Barcelona, Spain
| | - Lourdes Sánchez-Cid
- Department of Pathology, Hospital Clínic, Barcelona, Spain
- Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), National Research Council (CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Montserrat Muñoz
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Department o de Anatomia Patológica, Farmacología y Microbiología, University of Barcelona, Barcelona, Spain
| | - Juan José Lozano
- Plataforma de Bioinformática, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Hospital Clinic, Barcelona, Spain
- Plataforma de Bioinformática, Centre d’ Investigacions Esther Koplowitz
| | - Timothy M. Thomson
- Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), National Research Council (CSIC), Barcelona, Spain
- (CEK), Barcelona, Spain
- * E-mail: (PLF); (TMT)
| | - Pedro L. Fernández
- Department of Pathology, Hospital Clínic, Barcelona, Spain
- Department o de Anatomia Patológica, Farmacología y Microbiología, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- * E-mail: (PLF); (TMT)
| |
Collapse
|
11
|
Wang Y, Misumi I, Gu AD, Curtis TA, Su L, Whitmire JK, Wan YY. GATA-3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling. Nat Immunol 2013; 14:714-22. [PMID: 23708251 PMCID: PMC3688666 DOI: 10.1038/ni.2623] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/26/2013] [Indexed: 12/13/2022]
Abstract
GATA-3 controls T helper type 2 (TH2) differentiation. However, whether GATA-3 regulates the function of mature T cells beyond TH2 determination remains poorly understood. We found that signaling via the T cell antigen receptor (TCR) and cytokine stimulation promoted GATA-3 expression in CD8(+) T cells, which controlled cell proliferation. Although GATA-3-deficient CD8(+) T cells were generated, their peripheral maintenance was impaired, with lower expression of the receptor for interleukin 7 (IL-7R). GATA-3-deficient T cells had defective responses to viral infection and alloantigen. The proto-oncoprotein c-Myc was a critical target of GATA-3 in promoting T cell proliferation. Our study thus demonstrates an essential role for GATA-3 in controlling the maintenance and proliferation of T cells and provides insight into immunoregulation.
Collapse
Affiliation(s)
- Yunqi Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
E2A transcription factors limit expression of Gata3 to facilitate T lymphocyte lineage commitment. Blood 2013; 121:1534-42. [PMID: 23297135 DOI: 10.1182/blood-2012-08-449447] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E2A transcription factors promote the development of thymus-seeding cells, but it remains unknown whether these proteins play a role in T lymphocyte lineage specification or commitment. Here, we showed that E2A proteins were required to promote T-lymphocyte commitment from DN2 thymocytes and to extinguish their potential for alternative fates. E2A proteins functioned in DN2 cells to limit expression of Gata3, which encodes an essential T-lymphocyte transcription factor whose ectopic expression can arrest T-cell differentiation. Genetic, or small interfering RNA-mediated, reduction of Gata3 rescued T-cell differentiation in the absence of E2A and restricted the development of alternative lineages by limiting the expanded self-renewal potential in E2A−/− DN2 cells. Our data support a novel paradigm in lymphocyte lineage commitment in which the E2A proteins are necessary to limit the expression of an essential lineage specification and commitment factor to restrain self-renewal and to prevent an arrest in differentiation.
Collapse
|
13
|
GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice. Blood 2013; 121:1749-59. [PMID: 23287858 DOI: 10.1182/blood-2012-06-440065] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors orchestrate T-lineage differentiation in the thymus. One critical checkpoint involves Notch1 signaling that instructs T-cell commitment at the expense of the B-lineage program. While GATA-3 is required for T-cell specification, its mechanism of action is poorly understood. We show that GATA-3 works in concert with Notch1 to commit thymic progenitors to the T-cell lineage via 2 distinct pathways. First, GATA-3 orchestrates a transcriptional “repertoire” that is required for thymocyte maturation up to and beyond the pro-T-cell stage. Second, GATA-3 critically suppresses a latent B-cell potential in pro–T cells. As such, GATA-3 is essential to sealing in Notch-induced T-cell fate in early thymocyte precursors by promoting T-cell identity through the repression of alternative developmental options.
Collapse
|
14
|
Tiemessen MM, Baert MRM, Schonewille T, Brugman MH, Famili F, Salvatori DCF, Meijerink JPP, Ozbek U, Clevers H, van Dongen JJM, Staal FJT. The nuclear effector of Wnt-signaling, Tcf1, functions as a T-cell-specific tumor suppressor for development of lymphomas. PLoS Biol 2012. [PMID: 23185135 PMCID: PMC3502537 DOI: 10.1371/journal.pbio.1001430] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tcf1 is known to function as a transcriptional activator of Wnt-induced proliferation during T cell development in the thymus. Evidence for an additional contrasting role for Tcf1 as a T-cell specific tumor suppressor gene is now presented. The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1−/− mice have previously been characterized and show developmental blocks at the CD4−CD8− double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1−/− mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1−/− mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cell–specific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus. Cancers often develop as a consequence of deregulated expression of key factors that operate during normal development. T-cell factor 1 (Tcf1) has an established role in the nuclear response to Wnt signaling during normal T-cell development in the thymus. Here we show in mice that the absence of Tcf1 can trigger tumorigenesis. As expected from previous work, lack of Tcf1 results in a small thymus with several partial blocks in T-cell development in the thymus. Surprisingly, we observe that a large proportion of Tcf1−/− mice spontaneously develop thymic lymphomas. Thorough investigation of these thymic-derived tumors revealed that the mechanism underlying these lymphomas is, paradoxically, increased levels of Wnt-signaling. We propose that Wnt-signaling in these tumors is mediated by up-regulated expression of the Tcf1-homologue, Lef1, and specifically its long isoform. Furthermore, we have evidence to propose that in a normal thymus, short isoforms of Tcf1 that cannot respond to Wnt signals act as repressors of Lef1-mediated Wnt-signaling. Thus, we propose that Tcf1 has a dual function developing T cells in mice: it functions as a T-cell–specific tumor suppressor gene in addition to its established role as a transcriptional activator of Wnt-induced proliferation. Whether loss of function of Tcf-1 as a tumor suppressor gene actually occurs in human T-cell lymphoblastic leukemias is currently under investigation.
Collapse
Affiliation(s)
- Machteld M. Tiemessen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department Immunology, ErasmusMC, Rotterdam, The Netherlands
| | - Miranda R. M. Baert
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department Immunology, ErasmusMC, Rotterdam, The Netherlands
| | - Tom Schonewille
- Department Immunology, ErasmusMC, Rotterdam, The Netherlands
| | - Martijn H. Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Farbod Famili
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela C. F. Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Jules P. P. Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia's Children's Hospital, Rotterdam, The Netherlands
| | - Ugur Ozbek
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | | | | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department Immunology, ErasmusMC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Abstract
It has been almost a quarter century since it was first appreciated that a class of oncogenes contained in rapidly transforming avian retroviruses encoded DNA-binding transcription factors. As with other oncogenes, genetic recombination with the viral genome led to their overexpression or functional alteration. In the years that followed, alterations of numerous transcription factors were shown to be causatively involved in various cancers in human patients and model organisms. Depending on their normal cellular functions, these factors were subsequently categorized as proto-oncogenes or tumor suppressor genes. This review focuses on the role of GATA transcription factors in carcinogenesis. GATA factors are zinc finger DNA binding proteins that control the development of diverse tissues by activating or repressing transcription. GATA factors thus coordinate cellular maturation with proliferation arrest and cell survival. Therefore, a role of this family of genes in human cancers is not surprising. Prominent examples include structural mutations in GATA1 that are found in almost all megakaryoblastic leukemias in patients with Down syndrome; loss of GATA3 expression in aggressive, dedifferentiated breast cancers; and silencing of GATA4 and GATA5 expression in colorectal and lung cancers. Here, we discuss possible mechanisms of carcinogenesis vis-à-vis the normal functions of GATA factors as they pertain to human patients and mouse models of cancer.
Collapse
Affiliation(s)
- Rena Zheng
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
16
|
An NK and T cell enhancer lies 280 kilobase pairs 3' to the gata3 structural gene. Mol Cell Biol 2011; 31:1894-904. [PMID: 21383068 DOI: 10.1128/mcb.05065-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcription factor GATA-3 is vital for multiple stages of T cell and natural killer (NK) cell development, and yet the factors that directly regulate Gata3 transcription during hematopoiesis are only marginally defined. Here, we show that neither of the Gata3 promoters, previously implicated in its tissue-specific regulation, is alone capable of directing Gata3 transcription in T lymphocytes. In contrast, by surveying large swaths of DNA surrounding the Gata3 locus, we located a cis element that can recapitulate aspects of the Gata3-dependent T cell regulatory program in vivo. This element, located 280 kbp 3' to the structural gene, directs both T cell- and NK cell-specific transcription in vivo but harbors no other tissue activity. This novel, distant element regulates multiple major developmental stages that require GATA-3 activity.
Collapse
|
17
|
Chari S, Umetsu SE, Winandy S. Notch target gene deregulation and maintenance of the leukemogenic phenotype do not require RBP-J kappa in Ikaros null mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:410-7. [PMID: 20511547 DOI: 10.4049/jimmunol.0903688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ikaros and Notch are transcriptional regulators essential for normal T cell development. Aberrant activation of Notch target genes is observed in Ikaros-deficient thymocytes as well as leukemia cell lines. However, it is not known whether Notch deregulation plays a preferential or obligatory role in the leukemia that arise in Ikaros null (Ik(-/-)) mice. To answer this question, the expression of the DNA-binding Notch target gene activator RBP-Jkappa was abrogated in Ik(-/-) double-positive thymocytes. This was accomplished through conditional inactivation using CD4-Cre transgenic mice containing floxed RBP-Jkappa alleles (RBPJ(fl/fl)). Ik(-/-) x RBPJ(fl/fl) x CD4-Cre(+) transgenic mice develop clonal T cell populations in the thymus that escape to the periphery, with similar kinetics and penetrance as their CD4-Cre(-) counterparts. The clonal populations do not display increased RBP-Jkappa expression compared with nontransformed thymocytes, suggesting there is no selection for clones that have not fully deleted RBP-Jkappa. However, RBPJ-deficient clonal populations do not expand as aggressively as their RBPJ-sufficient counterparts, suggesting a qualitative role for deregulated Notch target gene activation in the leukemogenic process. Finally, these studies show that RBP-Jkappa plays no role in Notch target gene repression in double-positive thymocytes but rather that it is Ikaros that is required for the repression of these genes at this critical stage of T cell development.
Collapse
Affiliation(s)
- Sheila Chari
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
18
|
Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol 2009; 222:42-9. [PMID: 19798694 DOI: 10.1002/jcp.21943] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is increasing evidence that the numerous mechanisms that regulate cell differentiation during normal development are also involved in tumorigenesis. In breast cancer, differentiation markers expressed by the primary tumor are routinely profiled to guide clinical decisions. Indeed, numerous studies have shown that the differentiation profile correlates with the metastatic potential of tumors. The transcription factor GATA3 has emerged recently as a strong predictor of clinical outcome in human luminal breast cancer. In the mammary gland, GATA3 is required for luminal epithelial cell differentiation and commitment, and its expression is progressively lost during luminal breast cancer progression as cancer cells acquire a stem cell-like phenotype. Importantly, expression of GATA3 in GATA3-negative, undifferentiated breast carcinoma cells is sufficient to induce tumor differentiation and inhibits tumor dissemination in a mouse model. These findings demonstrate the exquisite ability of a differentiation factor to affect malignant properties, and raise the possibility that GATA3 or its downstream genes could be used in treating luminal breast cancer. This review highlights our recent understanding of GATA3 in both normal mammary development and tumor differentiation.
Collapse
Affiliation(s)
- Jonathan Chou
- Department of Anatomy, University of California, San Francisco, California 94143-0452, USA
| | | | | |
Collapse
|
19
|
van Hamburg JP, de Bruijn MJW, Ribeiro de Almeida C, Dingjan GM, Hendriks RW. Gene expression profiling in mice with enforced Gata3 expression reveals putative targets of Gata3 in double positive thymocytes. Mol Immunol 2009; 46:3251-60. [PMID: 19729201 DOI: 10.1016/j.molimm.2009.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 07/29/2009] [Accepted: 08/04/2009] [Indexed: 11/24/2022]
Abstract
The zinc-finger transcription factors Gata3 and ThPOK have both been implicated in positive selection of double positive (DP) thymocytes towards the CD4 lineage. As in the absence of Gata3, expression of ThPOK is lacking, Gata3 may directly regulate ThPOK expression. As ThPOK failed to promote CD4(+) lineage differentiation of Gata3-deficient cells, ThPOK cannot be the only Gata3 target gene essential for the induction of the CD4(+) lineage program. Therefore, it is conceivable that Gata3 is essential for selected DP T cells to reach the developmental stage at which ThPOK expression is induced. Here, we show that Gata3 overexpression does not affect ThPOK expression levels in DP or CD4(+) thymocytes, providing evidence that Gata3 does not directly regulate ThPOK. To identify additional target genes that clarify Gata3 function at the DP thymocyte stage, we performed gene expression profiling assays in wild-type mice and transgenice mice with enforced expression of Gata3, in the presence or absence of the MHC class II-restricted DO11.10 TCR. We found that Gata3 expression in DP cells undergoing positive selection was associated with downregulation of the V(D)J-recombination machinery genes Rag1, Rag2 and TdT. Moreover, Gata3 overexpression was associated with downregulation of many signaling molecules and the induction of modulators of TCR signaling, including Ctla-4 and thrombospondin 2. Together with our previous finding that Gata3 reduces expression of CD5, a negative regulator of TCR signaling, and upregulates TCR expression, these findings indicate that Gata3 in DP cells mainly functions to (i) terminate TCRalpha gene rearrangement, and (ii) regulate TCR signal intensity or duration in cells undergoing positive selection towards the CD4 lineage.
Collapse
|
20
|
Scobie L, Hector RD, Grant L, Bell M, Nielsen AA, Meikle S, Philbey A, Philbey A, Thrasher AJ, Thrasher AJ, Cameron ER, Blyth K, Neil JC. A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity. Mol Ther 2009; 17:1031-8. [PMID: 19337236 DOI: 10.1038/mt.2009.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The emergence of leukemia following gene transfer to restore common cytokine receptor gamma chain (gammaC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human gammaC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after gamma-retrovirus infection. The human CD2-gammaC transgene rescued T and B-cell development in gammaC(-/-) mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that gammaC(-/-) mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the gammaC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of gammaC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development.
Collapse
Affiliation(s)
- Linda Scobie
- Division of Pathological Sciences, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|