1
|
Ding Q, Zhou Y, Feng Y, Sun L, Zhang T. Bruton's tyrosine kinase: A promising target for treating systemic lupus erythematosus. Int Immunopharmacol 2024; 142:113040. [PMID: 39216117 DOI: 10.1016/j.intimp.2024.113040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder involving multiple organs and systems. There is growing evidence that autoreactive B cells occupy a central role in the occurrence and progression of SLE due to their ability to generate pathogenic autoantibodies. Small molecule inhibitors targeting Bruton's tyrosine kinase (BTK), a crucial intracellular kinase regulating B cell development and function, emerge as a new strategy to treat SLE in recent years and are superior to biologic agents depleting B cells in many aspects. Supportive data obtained from lupus-prone mice preliminarily demonstrated the promising therapeutic potential of BTK inhibition. However, these BTK inhibitors, including elsubrutinib, evobrutinib, etc., mostly face with unsatisfactory efficacy and certain safety issues during clinical use, driving the quest for new-generation inhibitors with improved potency and higher selectivity. This paper elaborates the importance of BTK involvement in SLE pathogenesis, reviews the clinical research progress of BTK inhibitors for SLE and discusses limitations and challenges the drugs met in development, in order to contribute to a deeper understanding of disease mechanism and provide a reference for new-generation BTK inhibitor research.
Collapse
Affiliation(s)
- Qiaoyi Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yifan Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Sousa B, de Almeida CR, Barahona AF, Lopes R, Martins-Logrado A, Cavaco M, Neves V, Carvalho LA, Labão-Almeida C, Coelho AR, Leal Bento M, Lopes RMR, Oliveira BL, Castanho MARB, Neumeister P, Deutsch A, Vladimer GI, Krall N, João C, Corzana F, Seixas JD, Fior R, Bernardes GJL. Selective Inhibition of Bruton's Tyrosine Kinase by a Designed Covalent Ligand Leads to Potent Therapeutic Efficacy in Blood Cancers Relative to Clinically Used Inhibitors. ACS Pharmacol Transl Sci 2022; 5:1156-1168. [PMID: 36407952 PMCID: PMC9667546 DOI: 10.1021/acsptsci.2c00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation. JS25 also inhibited the proliferation of myeloid and lymphoid B-cell cancer cell lines. Its therapeutic potential was further tested against ibrutinib in preclinical models of B-cell cancers. JS25 treatment induced a more pronounced cell death in a murine xenograft model of Burkitt's lymphoma, causing a 30-40% reduction of the subcutaneous tumor and an overall reduction in the percentage of metastasis and secondary tumor formation. In a patient model of diffuse large B-cell lymphoma, the drug response of JS25 was higher than that of ibrutinib, leading to a 64% "on-target" efficacy. Finally, in zebrafish patient-derived xenografts of chronic lymphocytic leukemia, JS25 was faster and more effective in decreasing tumor burden, producing superior therapeutic effects compared to ibrutinib. We expect JS25 to become therapeutically relevant as a BTK inhibitor and to find applications in the treatment of hematological cancers and other pathologies with unmet clinical treatment.
Collapse
Affiliation(s)
- Bárbara
B. Sousa
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | | | - Ana F. Barahona
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Raquel Lopes
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | | | - Marco Cavaco
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Vera Neves
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Luís A.
R. Carvalho
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Carlos Labão-Almeida
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Ana R. Coelho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Marta Leal Bento
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- Centro
Hospitalar Lisboa Norte, Department of Hematology and Bone Marrow
Transplantation, Avenida
Prof. Egas Moniz, 1649-035 Lisbon, Portugal
| | - Ricardo M. R.
M. Lopes
- Research
Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1600-277 Lisbon, Portugal
| | - Bruno L. Oliveira
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Peter Neumeister
- Division
of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria
| | - Alexander Deutsch
- Division
of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria
| | - Gregory I. Vladimer
- Exscientia, The Schrödinger Building,
Oxford Science Park, Oxford OX4 4GE, U.K.
| | - Nikolaus Krall
- Exscientia, The Schrödinger Building,
Oxford Science Park, Oxford OX4 4GE, U.K.
| | - Cristina João
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Francisco Corzana
- Centro
de Investigación en Síntesis Química, Departamento
de Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - João D. Seixas
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- TARGTEX
S.A., Avenida Tenente
Valadim, N°17, 2F, 2560-275 Torres Vedras, Portugal
| | - Rita Fior
- Champalimaud
Foundation, Avenida de Brasília, 1400-038, Lisbon, Portugal
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina,
Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028, Lisbon, Portugal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Rijvers L, van Langelaar J, Bogers L, Melief MJ, Koetzier SC, Blok KM, Wierenga-Wolf AF, de Vries HE, Rip J, Corneth OB, Hendriks RW, Grenningloh R, Boschert U, Smolders J, van Luijn MM. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight 2022; 7:160909. [PMID: 35852869 PMCID: PMC9462504 DOI: 10.1172/jci.insight.160909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recent clinical trials have shown promising results for the next-generation Bruton’s tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear. Compared with levels of BTK protein, we found higher levels of phospho-BTK in ex vivo blood memory B cells from patients with relapsing-remitting MS and secondary progressive MS compared with controls. In these MS groups, BTK activity was induced to a lesser extent after anti-IgM stimulation. BTK positively correlated with CXCR3 expression, both of which were increased in blood B cells from clinical responders to natalizumab (anti–VLA-4 antibody) treatment. Under in vitro T follicular helper–like conditions, BTK phosphorylation was enhanced by T-bet–inducing stimuli, IFN-γ and CpG-ODN, while the expression of T-bet and T-bet–associated molecules CXCR3, CD21, and CD11c was affected by evobrutinib. Furthermore, evobrutinib interfered with in vitro class switching, as well as memory recall responses, and disturbed CXCL10-mediated migration of CXCR3+ switched B cells through human brain endothelial monolayers. These findings demonstrate a functional link between BTK activity and disease-relevant B cells and offer valuable insights into how next-generation BTK inhibitors could modulate the clinical course of patients with MS.
Collapse
Affiliation(s)
| | | | | | | | | | - Katelijn M. Blok
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Ursula Boschert
- Ares Trading SA, Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Joost Smolders
- Department of Immunology and
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
4
|
Fukasawa T, Yoshizaki A, Ebata S, Yoshizaki-Ogawa A, Asano Y, Enomoto A, Miyagawa K, Kazoe Y, Mawatari K, Kitamori T, Sato S. Single-cell-level protein analysis revealing the roles of autoantigen-reactive B lymphocytes in autoimmune disease and the murine model. eLife 2021; 10:e67209. [PMID: 34854378 PMCID: PMC8639144 DOI: 10.7554/elife.67209] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022] Open
Abstract
Despite antigen affinity of B cells varying from cell to cell, functional analyses of antigen-reactive B cells on individual B cells are missing due to technical difficulties. Especially in the field of autoimmune diseases, promising pathogenic B cells have not been adequately studied to date because of its rarity. In this study, functions of autoantigen-reactive B cells in autoimmune disease were analyzed at the single-cell level. Since topoisomerase I is a distinct autoantigen, we targeted systemic sclerosis as autoimmune disease. Decreased and increased affinities for topoisomerase I of topoisomerase I-reactive B cells led to anti-inflammatory and pro-inflammatory cytokine production associated with the inhibition and development of fibrosis, which is the major symptom of systemic sclerosis. Furthermore, inhibition of pro-inflammatory cytokine production and increased affinity of topoisomerase I-reactive B cells suppressed fibrosis. These results indicate that autoantigen-reactive B cells contribute to the disease manifestations in autoimmune disease through their antigen affinity.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of MedicineTokyoJapan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of MedicineTokyoJapan
| | - Satoshi Ebata
- Department of Dermatology, The University of Tokyo Graduate School of MedicineTokyoJapan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of MedicineTokyoJapan
| | - Yoshihide Asano
- Department of Dermatology, The University of Tokyo Graduate School of MedicineTokyoJapan
| | - Atsushi Enomoto
- Laboratory of Radiology and Biomedical Engineering, The University of Tokyo Graduate School of MedicineTokyoJapan
| | - Kiyoshi Miyagawa
- Laboratory of Radiology and Biomedical Engineering, The University of Tokyo Graduate School of MedicineTokyoJapan
| | - Yutaka Kazoe
- Department of System Design Engineering, Keio university, Faculty of Science and technologyTokyoJapan
| | - Kazuma Mawatari
- Department of Applied Chemistry, The University of Tokyo Graduate School of EngineeringTokyoJapan
| | - Takehiko Kitamori
- Department of Mechanical Engineering, The University of Tokyo Graduate School of EngineeringTokyoJapan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of MedicineTokyoJapan
| |
Collapse
|
5
|
Neys SFH, Hendriks RW, Corneth OBJ. Targeting Bruton's Tyrosine Kinase in Inflammatory and Autoimmune Pathologies. Front Cell Dev Biol 2021; 9:668131. [PMID: 34150760 PMCID: PMC8213343 DOI: 10.3389/fcell.2021.668131] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) was discovered due to its importance in B cell development, and it has a critical role in signal transduction downstream of the B cell receptor (BCR). Targeting of BTK with small molecule inhibitors has proven to be efficacious in several B cell malignancies. Interestingly, recent studies reveal increased BTK protein expression in circulating resting B cells of patients with systemic autoimmune disease (AID) compared with healthy controls. Moreover, BTK phosphorylation following BCR stimulation in vitro was enhanced. In addition to its role in BCR signaling, BTK is involved in many other pathways, including pattern recognition, Fc, and chemokine receptor signaling in B cells and myeloid cells. This broad involvement in several immunological pathways provides a rationale for the targeting of BTK in the context of inflammatory and systemic AID. Accordingly, numerous in vitro and in vivo preclinical studies support the potential of BTK targeting in these conditions. Efficacy of BTK inhibitors in various inflammatory and AID has been demonstrated or is currently evaluated in clinical trials. In addition, very recent reports suggest that BTK inhibition may be effective as immunosuppressive therapy to diminish pulmonary hyperinflammation in coronavirus disease 2019 (COVID-19). Here, we review BTK's function in key signaling pathways in B cells and myeloid cells. Further, we discuss recent advances in targeting BTK in inflammatory and autoimmune pathologies.
Collapse
|
6
|
B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol 2021; 62:301-323. [PMID: 33534064 DOI: 10.1007/s12016-020-08820-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease with high heterogeneity but the common characterization of numerous autoantibodies and systemic inflammation which lead to the damage of multiple organs. Aberrance of B cells plays a pivotal role in the immunopathogenesis of SLE via both antibody-dependent and antibody-independent manners. Escape of autoreactive B cells from the central and peripheral tolerance checkpoints, over-activation of B cells and their excessive cytokines release which drive T cells and dendritic cells stimulation, and dysregulated surface molecules, as well as intracellular signal pathways involved in B cell biology, are all contributing to B cell aberrance and participating in the pathogenesis of SLE. Based on that rationale, targeting aberrance of B cells and relevant molecules and pathways is expected to be a promising strategy for lupus control. Multiple approaches targeting B cells through different mechanisms have been attempted, including B-cell depletion via monoclonal antibodies against B-cell-specific molecules, blockade of B-cell survival and activation factors, suppressing T-B crosstalk by interrupting costimulatory molecules and inhibiting intracellular activation signaling cascade by targeting pathway molecules in B cells. Though most attempts ended in failure, the efficacy of B-cell targeting has been encouraged by the FDA approval of belimumab that blocks B cell-activating factor (BAFF) and the recommended use of anti-CD20 as a remedial therapy in refractory lupus. Still, quantities of clinical trials targeting B cells or relevant molecules are ongoing and some of them have displayed promising preliminary results. Additionally, advances in multi-omics studies help deepen our understandings of B cell biology in lupus and may promote the discovery of novel potential therapeutic targets. The combination of real-world data with basic research achievements may pave the road to conquering lupus.
Collapse
|
7
|
Haselmayer P, Camps M, Liu-Bujalski L, Nguyen N, Morandi F, Head J, O'Mahony A, Zimmerli SC, Bruns L, Bender AT, Schroeder P, Grenningloh R. Efficacy and Pharmacodynamic Modeling of the BTK Inhibitor Evobrutinib in Autoimmune Disease Models. THE JOURNAL OF IMMUNOLOGY 2019; 202:2888-2906. [PMID: 30988116 DOI: 10.4049/jimmunol.1800583] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Because of its role in mediating both B cell and Fc receptor signaling, Bruton's tyrosine kinase (BTK) is a promising target for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Evobrutinib is a novel, highly selective, irreversible BTK inhibitor that potently inhibits BCR- and Fc receptor-mediated signaling and, thus, subsequent activation and function of human B cells and innate immune cells such as monocytes and basophils. We evaluated evobrutinib in preclinical models of RA and SLE and characterized the relationship between BTK occupancy and inhibition of disease activity. In mouse models of RA and SLE, orally administered evobrutinib displayed robust efficacy, as demonstrated by reduction of disease severity and histological damage. In the SLE model, evobrutinib inhibited B cell activation, reduced autoantibody production and plasma cell numbers, and normalized B and T cell subsets. In the RA model, efficacy was achieved despite failure to reduce autoantibodies. Pharmacokinetic/pharmacodynamic modeling showed that mean BTK occupancy in blood cells of 80% was linked to near-complete disease inhibition in both RA and SLE mouse models. In addition, evobrutinib inhibited mast cell activation in a passive cutaneous anaphylaxis model. Thus, evobrutinib achieves efficacy by acting both on B cells and innate immune cells. Taken together, our data show that evobrutinib is a promising molecule for the chronic treatment of B cell-driven autoimmune disorders.
Collapse
Affiliation(s)
- Philipp Haselmayer
- Translational Innovation Platform Immunology, Merck KGaA, Darmstadt 64293, Germany
| | | | - Lesley Liu-Bujalski
- Medicinal Chemistry, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Ngan Nguyen
- Medicinal Chemistry, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Federica Morandi
- Molecular Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Jared Head
- Molecular Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Alison O'Mahony
- Eurofins DiscoverX Corporation, South San Francisco, CA 94080
| | - Simone C Zimmerli
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| | - Lisa Bruns
- Translational Innovation Platform Immunology, Merck KGaA, Darmstadt 64293, Germany
| | - Andrew T Bender
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| | - Patricia Schroeder
- Translational Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Roland Grenningloh
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| |
Collapse
|
8
|
Rip J, de Bruijn MJW, Appelman MK, Pal Singh S, Hendriks RW, Corneth OBJ. Toll-Like Receptor Signaling Drives Btk-Mediated Autoimmune Disease. Front Immunol 2019; 10:95. [PMID: 30761150 PMCID: PMC6363707 DOI: 10.3389/fimmu.2019.00095] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is a signaling molecule involved in development and activation of B cells through B-cell receptor (BCR) and Toll-like receptor (TLR) signaling. We have previously shown that transgenic mice that overexpress human Btk under the control of the CD19 promoter (CD19-hBtk) display spontaneous germinal center formation, increased cytokine production, anti-nuclear autoantibodies (ANAs), and systemic autoimsmune disease upon aging. As TLR and BCR signaling are both implicated in autoimmunity, we studied their impact on splenic B cells. Using phosphoflow cytometry, we observed that phosphorylation of ribosomal protein S6, a downstream Akt target, was increased in CD19-hBtk B cells following BCR stimulation or combined BCR/TLR stimulation, when compared with wild-type (WT) B cells. The CD19-hBtk transgene enhanced BCR-induced B cell survival and proliferation, but had an opposite effect following TLR9 or combined BCR/TLR9 stimulation. Although the expression of TLR9 was reduced in CD19-hBtk B cells compared to WT B cells, a synergistic effect of TLR9 and BCR stimulation on the induction of CD25 and CD80 was observed in CD19-hBtk B cells. In splenic follicular (Fol) and marginal zone (MZ) B cells from aging CD19-hBtk mice BCR signaling stimulated in vitro IL-10 production in synergy with TLR4 and particularly TLR9 stimulation, but not with TLR3 and TLR7. The enhanced capacity of CD19-hBtk Fol B cells to produce the pro-inflammatory cytokines IFNγ and IL-6 compared with WT B cells was however not further increased following in vitro BCR or TLR9 stimulation. Finally, we used crosses with mice deficient for the TLR-associated molecule myeloid differentiation primary response 88 (MyD88) to show that TLR signaling was crucial for spontaneous formation of germinal centers, increased IFNγ, and IL-6 production by B cells and anti-nuclear autoantibody induction in CD19-hBtk mice. Taken together, we conclude that high Btk expression does not only increase B cell survival following BCR stimulation, but also renders B cells more sensitive to TLR stimulation, resulting in increased expression of CD80, and IL-10 in activated B cells. Although BCR-TLR interplay is complex, our findings show that both signaling pathways are crucial for the development of pathology in a Btk-dependent model for systemic autoimmune disease.
Collapse
Affiliation(s)
- Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | | | | | - Simar Pal Singh
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
9
|
Kawahata W, Asami T, Kiyoi T, Irie T, Taniguchi H, Asamitsu Y, Inoue T, Miyake T, Sawa M. Design and Synthesis of Novel Amino-triazine Analogues as Selective Bruton's Tyrosine Kinase Inhibitors for Treatment of Rheumatoid Arthritis. J Med Chem 2018; 61:8917-8933. [PMID: 30216722 DOI: 10.1021/acs.jmedchem.8b01147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a promising drug target for the treatment of multiple diseases, such as B-cell malignances, asthma, and rheumatoid arthritis. A series of novel aminotriazines were identified as highly selective inhibitors of BTK by a scaffold-hopping approach. Subsequent SAR studies of this series using two conformationally different BTK proteins, an activated form of BTK and an unactivated form of BTK, led to the discovery of a highly selective BTK inhibitor, 4b. With significant efficacy in models in vivo and good ADME and safety profiles, 4b was advanced into preclinical studies.
Collapse
Affiliation(s)
- Wataru Kawahata
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Tokiko Asami
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Takao Kiyoi
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Takayuki Irie
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Haruka Taniguchi
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Yuko Asamitsu
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Tomoko Inoue
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Takahiro Miyake
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Masaaki Sawa
- Research and Development , Carna Biosciences, Inc. , 3rd Floor, BMA, 1-5-5 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| |
Collapse
|
10
|
Goess C, Harris CM, Murdock S, McCarthy RW, Sampson E, Twomey R, Mathieu S, Mario R, Perham M, Goedken ER, Long AJ. ABBV-105, a selective and irreversible inhibitor of Bruton's tyrosine kinase, is efficacious in multiple preclinical models of inflammation. Mod Rheumatol 2018; 29:510-522. [PMID: 29862859 DOI: 10.1080/14397595.2018.1484269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase required for intracellular signaling downstream of multiple immunoreceptors. We evaluated ABBV-105, a covalent BTK inhibitor, using in vitro and in vivo assays to determine potency, selectivity, and efficacy to validate the therapeutic potential of ABBV-105 in inflammatory disease. METHODS ABBV-105 potency and selectivity were evaluated in enzymatic and cellular assays. The impact of ABBV-105 on B cell function in vivo was assessed using mechanistic models of antibody production. Efficacy of ABBV-105 in chronic inflammatory disease was evaluated in animal models of arthritis and lupus. Measurement of BTK occupancy was employed as a target engagement biomarker. RESULTS ABBV-105 irreversibly inhibits BTK, demonstrating superior kinome selectivity and is potent in B cell receptor, Fc receptor, and TLR-9-dependent cellular assays. Oral administration resulted in rapid clearance in plasma, but maintenance of BTK splenic occupancy. ABBV-105 inhibited antibody responses to thymus-independent and thymus-dependent antigens, paw swelling and bone destruction in rat collagen induced arthritis, and reduced disease in an IFNα-accelerated lupus nephritis model. BTK occupancy in disease models correlated with in vivo efficacy. CONCLUSION ABBV-105, a selective BTK inhibitor, demonstrates compelling efficacy in pre-clinical mechanistic models of antibody production and in models of rheumatoid arthritis and lupus.
Collapse
Affiliation(s)
| | | | - Sara Murdock
- a AbbVie Bioresearch Center , Worcester , MA , USA
| | | | - Erik Sampson
- a AbbVie Bioresearch Center , Worcester , MA , USA
| | | | | | - Regina Mario
- a AbbVie Bioresearch Center , Worcester , MA , USA
| | | | | | | |
Collapse
|
11
|
Nyhoff LE, Clark ES, Barron BL, Bonami RH, Khan WN, Kendall PL. Bruton's Tyrosine Kinase Is Not Essential for B Cell Survival beyond Early Developmental Stages. THE JOURNAL OF IMMUNOLOGY 2018; 200:2352-2361. [PMID: 29483358 DOI: 10.4049/jimmunol.1701489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a crucial regulator of B cell signaling and is a therapeutic target for lymphoma and autoimmune disease. BTK-deficient patients suffer from humoral immunodeficiency, as their B cells fail to progress beyond the bone marrow. However, the role of Btk in fully developed, mature peripheral B cells is not well understood. Analysis using BTK inhibitors is complicated by suboptimal inhibition, off-target effects, or failure to eliminate BTK's adaptor function. Therefore a Btkflox/Cre-ERT2 mouse model was developed and used to excise Btk after B cell populations were established. Mice lacking Btk from birth are known to have reduced follicular (FO) compartments, with expanded transitional populations, suggesting a block in development. In adult Btkflox/Cre-ERT2 mice, Btk excision did not reduce FO B cells, which persisted for weeks. Autoimmune-prone B1 cells also survived conditional Btk excision, contrasting their near absence in global Btk-deficient mice. Therefore, Btk supports BCR signaling during selection into the FO and B1 compartments, but is not needed to maintain these cell populations. B1-related natural IgM levels remained normal, contrasting global Btk deficiency, but B cell proliferation and T-independent type II immunization responses were blunted. Thus, B cells have nuanced signaling responses that are differentially regulated by Btk for development, survival, and function. These findings raise the possibility that Btk may also be expendable for survival of mature human B cells, therefore requiring prolonged dosing to be effective, and that success of BTK inhibitors may depend in part on off-target effects.
Collapse
Affiliation(s)
- Lindsay E Nyhoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Emily S Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Bridgette L Barron
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rachel H Bonami
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Wasif N Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Peggy L Kendall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; .,Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
12
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
14
|
Kim YY, Park KT, Jang SY, Lee KH, Byun JY, Suh KH, Lee YM, Kim YH, Hwang KW. HM71224, a selective Bruton's tyrosine kinase inhibitor, attenuates the development of murine lupus. Arthritis Res Ther 2017; 19:211. [PMID: 28950886 PMCID: PMC5615432 DOI: 10.1186/s13075-017-1402-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 01/16/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is associated with B cell hyperactivity, and lupus nephritis (LN), in particular, is promoted by the production of autoantibodies and immune complex deposition. Bruton’s tyrosine kinase (BTK) plays critical roles in B cell receptor-related and Fc receptor-related signaling. We aimed to investigate the impact of therapeutic intervention with HM71224 (LY3337641), a selective BTK inhibitor, on the development of murine SLE-like disease features. Methods We examined the therapeutic effects of HM71224 on SLE-like disease features in MRL/lpr and NZB/W F1 mice. The disease-related skin lesion was macroscopically observed in MRL/lpr mice, and the impact on splenomegaly and lymphadenopathy was determined by the weight of the spleen and cervical lymph node. The renal function was evaluated by measuring blood urea nitrogen, serum creatinine, and urine protein, and the renal damage was assessed by histopathological grading. Survival rate was observed during the administration period. The impact of B cell inhibition was investigated in splenocytes from both mice using flow cytometry. Autoantibody was measured in serum by ELISA. Results HM71224 effectively suppressed splenic B220+GL7+, B220+CD138+, and B220+CD69+ B cell counts, and anti-dsDNA IgG and reduced splenomegaly and lymph node enlargement. The compound also prevented skin lesions caused by lupus development, ameliorated renal inflammation and damage with increased blood urea nitrogen and creatinine, and decreased proteinuria. Furthermore, HM71224 also decreased mortality from lupus development in both mouse models. Conclusion Our results indicate that inhibition of BTK by HM71224 effectively reduced B cell hyperactivity and significantly attenuated the development of SLE and LN in rodent SLE models.
Collapse
Affiliation(s)
- Yu-Yon Kim
- Host Defense Modulation Lab, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.,Hanmi Research Center, Hanmi Pharm. Co. Ltd, 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do, 18469, Republic of Korea
| | - Ki Tae Park
- Hanmi Research Center, Hanmi Pharm. Co. Ltd, 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do, 18469, Republic of Korea
| | - Sun Young Jang
- Hanmi Research Center, Hanmi Pharm. Co. Ltd, 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do, 18469, Republic of Korea
| | - Kyu Hang Lee
- Hanmi Research Center, Hanmi Pharm. Co. Ltd, 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do, 18469, Republic of Korea
| | - Joo-Yun Byun
- Hanmi Research Center, Hanmi Pharm. Co. Ltd, 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do, 18469, Republic of Korea
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co. Ltd, 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do, 18469, Republic of Korea
| | - Young-Mi Lee
- Hanmi Research Center, Hanmi Pharm. Co. Ltd, 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do, 18469, Republic of Korea
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd, 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do, 18469, Republic of Korea.
| | - Kwang Woo Hwang
- Host Defense Modulation Lab, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
15
|
Nyhoff LE, Crofford LJ, Kendall PL. Reply. Arthritis Rheumatol 2017; 69:475-477. [DOI: 10.1002/art.39957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 11/12/2022]
|
16
|
Nyhoff LE, Barron B, Johnson EM, Bonami RH, Maseda D, Fensterheim BA, Han W, Blackwell TS, Crofford LJ, Kendall PL. Bruton's Tyrosine Kinase Deficiency Inhibits Autoimmune Arthritis in Mice but Fails to Block Immune Complex-Mediated Inflammatory Arthritis. Arthritis Rheumatol 2016; 68:1856-68. [PMID: 26945549 PMCID: PMC5668904 DOI: 10.1002/art.39657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Bruton's tyrosine kinase (BTK) is a B cell signaling protein that also contributes to innate immunity. BTK inhibitors prevent autoimmune arthritis but have off-target effects, and the mechanisms of protection remain unknown. We undertook these studies using genetic deletion to investigate the role of BTK in adaptive and innate immune responses that drive inflammatory arthritis. METHODS BTK-deficient K/BxN mice were generated to study the role of BTK in a spontaneous model that requires both adaptive and innate immunity. The K/BxN serum-transfer model was used to bypass the adaptive system and elucidate the role of BTK in innate immune contributions to arthritis. RESULTS BTK deficiency conferred disease protection to K/BxN mice, confirming outcomes of BTK inhibitors. B lymphocytes were profoundly reduced, more than in other models of BTK deficiency. Subset analysis revealed loss of B cells at all developmental stages. Germinal center B cells were also decreased, with downstream effects on numbers of follicular helper T cells and greatly reduced autoantibodies. In contrast, total IgG was only mildly decreased. Strikingly, and in contrast to small molecule inhibitors, BTK deficiency had no effect in the serum-transfer model of arthritis. CONCLUSION BTK contributes to autoimmune arthritis primarily through its role in B cell signaling and not through innate immune components.
Collapse
Affiliation(s)
- Lindsay E. Nyhoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bridgette Barron
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Elizabeth M. Johnson
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Damian Maseda
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Benjamin A. Fensterheim
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Wei Han
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Timothy S. Blackwell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leslie J. Crofford
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Peggy L. Kendall
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
17
|
Singh N, Kumar B, Aluri V, Lenert P. Interfering with baffled B cells at the lupus tollway: Promises, successes, and failed expectations. J Allergy Clin Immunol 2016; 137:1325-33. [PMID: 26953155 DOI: 10.1016/j.jaci.2015.12.1326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/30/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022]
Abstract
B cells play an important role in systemic lupus erythematosus by acting not only as precursors of autoantibody-producing cells but also as antigen-presenting, cytokine-secreting, and regulatory cells. Unopposed activation of B cells through their B-cell receptor for antigen, as seen in B cells lacking Lyn kinase, results in systemic autoimmunity. The B-cell activating factor of the TNF family (BAFF), nucleic acid-sensing Toll-like receptors (TLRs), and type I interferon can affect B-cell survival and decrease their threshold for activation. Herein we discuss both direct and indirect strategies aimed at targeting B cells in patients with lupus by blocking BAFF, type I interferon, or TLR7 to TLR9. Although BAFF-depleting therapy with belimumab achieved approval for lupus, other BAFF inhibitors were much less beneficial in clinical trials. Inhibitors of the B-cell receptor for antigen signaling and antibodies against type I interferon are in the pipeline. The TLR7 to TLR9 blocker hydroxychloroquine has been in use in patients with lupus for more than 50 years, but oligonucleotide-based inhibitors of TLR7 to TLR9, despite showing promise in animal models of lupus, have not reached the primary end point in a recent phase 1 trial. These data point toward possible redundancies in B-cell signaling/survival pathways, which must be better understood before future clinical trials are executed.
Collapse
Affiliation(s)
- Namrata Singh
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Bharat Kumar
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Vijay Aluri
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Petar Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
18
|
Crofford LJ, Nyhoff LE, Sheehan JH, Kendall PL. The role of Bruton's tyrosine kinase in autoimmunity and implications for therapy. Expert Rev Clin Immunol 2016; 12:763-73. [PMID: 26864273 DOI: 10.1586/1744666x.2016.1152888] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bruton's tyrosine kinase (BTK) mediates B cell signaling and is also present in innate immune cells but not T cells. BTK propagates B cell receptor (BCR) responses to antigen-engagement as well as to stimulation via CD40, toll-like receptors (TLRs), Fc receptors (FCRs) and chemokine receptors. Importantly, BTK can modulate signaling, acting as a "rheostat" rather than an "on-off" switch; thus, overexpression leads to autoimmunity while decreased levels improve autoimmune disease outcomes. Autoreactive B cells depend upon BTK for survival to a greater degree than normal B cells, reflected as loss of autoantibodies with maintenance of total antibody levels when BTK is absent. This review describes contributions of BTK to immune tolerance, including studies testing BTK-inhibitors for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Leslie J Crofford
- a Division of Rheumatology & Immunology, Department of Medicine , Vanderbilt University , Nashville , TN , USA.,b Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , TN , USA
| | - Lindsay E Nyhoff
- b Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , TN , USA
| | - Jonathan H Sheehan
- c Center for Structural Biology, Department of Biochemistry , Vanderbilt University , Nashville , TN , USA
| | - Peggy L Kendall
- b Department of Pathology, Microbiology & Immunology , Vanderbilt University , Nashville , TN , USA.,d Division of Allergy, Pulmonary and Critical Care, Department of Medicine , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
19
|
Ruer-Laventie J, Simoni L, Schickel JN, Soley A, Duval M, Knapp AM, Marcellin L, Lamon D, Korganow AS, Martin T, Pasquali JL, Soulas-Sprauel P. Overexpression of Fkbp11, a feature of lupus B cells, leads to B cell tolerance breakdown and initiates plasma cell differentiation. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:265-79. [PMID: 26417441 PMCID: PMC4578525 DOI: 10.1002/iid3.65] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 05/03/2015] [Indexed: 12/20/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is a severe systemic autoimmune disease, characterized by multi-organ damages, triggered by an autoantibody-mediated inflammation, and with a complex genetic influence. It is today accepted that adult SLE arises from the building up of many subtle gene variations, each one adding a new brick on the SLE susceptibility and contributing to a phenotypic trait to the disease. One of the ways to find these gene variations consists in comprehensive analysis of gene expression variation in a precise cell type, which can constitute a good complementary strategy to genome wide association studies. Using this strategy, and considering the central role of B cells in SLE, we analyzed the B cell transcriptome of quiescent SLE patients, and identified an overexpression of FKBP11, coding for a cytoplasmic putative peptidyl-prolyl cis/trans isomerase and chaperone enzyme. To understand the consequences of FKBP11 overexpression on B cell function and on autoimmunity's development, we created lentiviral transgenic mice reproducing this gene expression variation. We showed that high expression of Fkbp11 reproduces by itself two phenotypic traits of SLE in mice: breakdown of B cell tolerance against DNA and initiation of plasma cell differentiation by acting upstream of Pax5 master regulator gene.
Collapse
Affiliation(s)
- Julie Ruer-Laventie
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Léa Simoni
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Jean-Nicolas Schickel
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne Soley
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France
| | - Monique Duval
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne-Marie Knapp
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France
| | - Luc Marcellin
- Department of Anatomopathology, H, ô, pitaux Universitaires de Strasbourg F-67085, France
| | - Delphine Lamon
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne-Sophie Korganow
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Thierry Martin
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Jean-Louis Pasquali
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Pauline Soulas-Sprauel
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France ; Université de Strasbourg, UFR Sciences Pharmaceutiques Illkirch, F-67401, France
| |
Collapse
|
20
|
Case JB, Bonami RH, Nyhoff LE, Steinberg HE, Sullivan AM, Kendall PL. Bruton's Tyrosine Kinase Synergizes with Notch2 To Govern Marginal Zone B Cells in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:61-70. [PMID: 26034172 DOI: 10.4049/jimmunol.1400803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Expansion of autoimmune-prone marginal zone (MZ) B cells has been implicated in type 1 diabetes. To test disease contributions of MZ B cells in NOD mice, Notch2 haploinsufficiency (Notch2(+/-)) was introduced but failed to eliminate the MZ, as it does in C57BL/6 mice. Notch2(+/-)/NOD have MZ B cell numbers similar to those of wild-type C57BL/6, yet still develop diabetes. To test whether BCR signaling supports Notch2(+/-)/NOD MZ B cells, Bruton's tyrosine kinase (Btk) deficiency was introduced. Surprisingly, MZ B cells failed to develop in Btk-deficient Notch2(+/-)/NOD mice. Expression of Notch2 and its transcriptional target, Hes5, was increased in NOD MZ B cells compared with C57BL/6 MZ B cells. Btk deficiency reduced Notch2(+/-) signaling exclusively in NOD B cells, suggesting that BCR signaling enhances Notch2 signaling in this autoimmune model. The role of BCR signaling was further investigated using an anti-insulin transgenic (Tg) BCR (125Tg). Anti-insulin B cells in 125Tg/Notch2(+/-)/NOD mice populate an enlarged MZ, suggesting that low-level BCR signaling overcomes reliance on Notch2. Tracking clonotypes of anti-insulin B cells in H chain-only VH125Tg/NOD mice showed that BTK-dependent selection into the MZ depends on strength of antigenic binding, whereas Notch2-mediated selection does not. Importantly, anti-insulin B cell numbers were reduced by Btk deficiency, but not Notch2 haploinsufficiency. These studies show that 1) Notch2 haploinsufficiency limits NOD MZ B cell expansion without preventing type 1 diabetes, 2) BTK supports the Notch2 pathway in NOD MZ B cells, and 3) autoreactive NOD B cell survival relies on BTK more than Notch2, regardless of MZ location, which may have important implications for disease-intervention strategies.
Collapse
Affiliation(s)
- James B Case
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H Bonami
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lindsay E Nyhoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Hannah E Steinberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Allison M Sullivan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Peggy L Kendall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
21
|
Shao WH, Cohen PL. The role of tyrosine kinases in systemic lupus erythematosus and their potential as therapeutic targets. Expert Rev Clin Immunol 2014; 10:573-82. [PMID: 24678775 DOI: 10.1586/1744666x.2014.893827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The autoimmune disease systemic lupus erythematosus is characterized by loss of tolerance to nuclear antigens. Breakdown of tolerance is associated with alterations in T-cell and B-cell receptor signal transduction, including increased protein phosphorylation that may underlie pathogenesis and explain the characteristic hyperactivity of T and B cells and other immune cells in active disease. Tyrosine kinases play a central role in signaling processes in cells known to be important in the pathogenesis of autoimmune diseases. Considerable progress has been made in understanding the function of tyrosine kinases in immune cell signaling pathways. In this review, we will summarize the function of tyrosine kinases and their novel inhibitors from studies made in animal lupus models and systemic lupus erythematosus patients.
Collapse
Affiliation(s)
- Wen-Hai Shao
- Department of Medicine and Temple Autoimmunity Center, Section of Rheumatology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
22
|
Peterson LK, Pennington LF, Shaw LA, Brown M, Treacy EC, Friend SF, Hatlevik Ø, Rubtsova K, Rubtsov AV, Dragone LL. SLAP deficiency decreases dsDNA autoantibody production. Clin Immunol 2014; 150:201-9. [PMID: 24440645 DOI: 10.1016/j.clim.2013.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022]
Abstract
Src-like adaptor protein (SLAP) adapts c-Cbl, an E3 ubiquitin ligase, to activated components of the BCR signaling complex regulating BCR levels and signaling in developing B cells. Based on this function, we asked whether SLAP deficiency could decrease the threshold for tolerance and eliminate development of autoreactive B cells in two models of autoantibody production. First, we sensitized mice with a dsDNA mimetope that causes an anti-dsDNA response. Despite equivalent production of anti-peptide antibodies compared to BALB/c controls, SLAP(-/-) mice did not produce anti-dsDNA. Second, we used the 56R tolerance model. SLAP(-/-) 56R mice had decreased levels of dsDNA-reactive antibodies compared to 56R mice due to skewed light chain usage. Thus, SLAP is a critical regulator of B-cell development and function and its deficiency leads to decreased autoreactive B cells that are otherwise maintained by inefficient receptor editing or failed negative selection.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Luke F Pennington
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Laura A Shaw
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Meredith Brown
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Eric C Treacy
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Samantha F Friend
- Department of Pediatrics, University of Colorado Denver, 13001 E. 17th Place, Aurora, CO 80045, USA; Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Øyvind Hatlevik
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kira Rubtsova
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Anatoly V Rubtsov
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Leonard L Dragone
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Department of Pediatrics, University of Colorado Denver, 13001 E. 17th Place, Aurora, CO 80045, USA; Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Division of Rheumatology, Colorado Children's Hospital, 13123 E. 16th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
23
|
|
24
|
|
25
|
Mina-Osorio P, LaStant J, Keirstead N, Whittard T, Ayala J, Stefanova S, Garrido R, Dimaano N, Hilton H, Giron M, Lau KY, Hang J, Postelnek J, Kim Y, Min S, Patel A, Woods J, Ramanujam M, DeMartino J, Narula S, Xu D. Suppression of glomerulonephritis in lupus-prone NZB × NZW mice by RN486, a selective inhibitor of Bruton's tyrosine kinase. ACTA ACUST UNITED AC 2013; 65:2380-91. [PMID: 23754328 DOI: 10.1002/art.38047] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 05/30/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Bruton's tyrosine kinase (BTK) plays a critical role in B cell development and function. We recently described a selective BTK inhibitor, RN486, that blocks B cell receptor (BCR) and Fcγ receptor signaling and is efficacious in animal models of arthritis. The aim of this study was to examine the potential efficacy of BTK in systemic lupus erythematosus (SLE), using an NZB × NZW mouse model of spontaneous SLE. METHODS Mice received RN486 or its vehicle (administered in chow) at a final concentration of 30 mg/kg for 8 weeks, starting at 32 weeks of age. RESULTS The administration of RN486 completely stopped disease progression, as determined by histologic and functional analyses of glomerular nephritis. The efficacy was associated with striking inhibition of B cell activation, as demonstrated by a significant reduction in CD69 expression in response to BCR crosslinking. RN486 markedly reduced the secretion of IgG anti-double-stranded DNA (anti-dsDNA) secretion, as determined by enzyme-linked immunosorbent and enzyme-linked immunospot assays. Flow cytometric analysis demonstrated depletion of CD138(high) B220(low) plasma cells in the spleen. RN486 inhibited secretion of IgG anti-dsDNA but not IgM anti-dsDNA, suggesting that pharmacologic blockade of BTK resembles the reported transgenic expression of low levels of endogenous BTK in B cells. In addition, RN486 may also impact the effector function of autoantibodies, as evidenced by a significant reduction in immune complex-mediated activation of human monocytes in vitro and down-regulation of the expression of macrophage-related and interferon-inducible genes in both the kidneys and spleens of treated mice. CONCLUSION Collectively, our data suggest that BTK inhibitors may simultaneously target autoantibody-producing and effector cells in SLE, thus constituting a promising therapeutic alternative for this disease.
Collapse
|
26
|
Nündel K, Busto P, Debatis M, Marshak-Rothstein A. The role of Bruton's tyrosine kinase in the development and BCR/TLR-dependent activation of AM14 rheumatoid factor B cells. J Leukoc Biol 2013; 94:865-75. [PMID: 23804807 DOI: 10.1189/jlb.0313126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protein kinase Btk has been implicated in the development, differentiation, and activation of B cells through its role in the BCR and TLR signaling cascades. These receptors and in particular, the BCR and either TLR7 or TLR9 also play a critical role in the activation of autoreactive B cells by RNA- or DNA-associated autoantigens. To explore the role of Btk in the development of autoreactive B cells, as well as their responses to nucleic acid-associated autoantigens, we have now compared Btk-sufficient and Btk-deficient mice that express a prototypic RF BCR encoded by H- and L-chain sdTgs. These B cells bind autologous IgG2a with low affinity and only proliferate in response to IgG2a ICs that incorporate DNA or RNA. We found that Btk-sufficient RF(+) B cells mature into naïve FO B cells, all of which express the Tg BCR, despite circulating levels of IgG2a. By contrast, a significant proportion of Btk-deficient RF(+) B cells acquires a MZ or MZ precursor phenotype. Remarkably, despite the complete inability of RF(+) Xid/y B cells to respond to F(ab')2 anti-IgM, RF(+) Xid/y B cells could respond well to autoantigen-associated ICs. These data reveal unique features of the signaling cascades responsible for the activation of autoreactive B cells.
Collapse
Affiliation(s)
- Kerstin Nündel
- 2.Division of Rheumatology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
27
|
Taher TE, Muhammad HA, Bariller E, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. B-lymphocyte signalling abnormalities and lupus immunopathology. Int Rev Immunol 2013; 32:428-44. [PMID: 23768155 DOI: 10.3109/08830185.2013.788648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lupus is a complex autoimmune rheumatic disease of unknown aetiology. The disease is associated with diverse features of immunological abnormality in which B-lymphocytes play a central role. However, the cause of atypical B-lymphocyte responses remains unclear. In this article, we provide a synopsis of current knowledge on intracellular signalling abnormalities in B-lymphocytes in lupus and their potential effects on the response of these cells in mouse models and in patients. There are numerous reported defects in the regulation of intracellular signalling proteins and pathways in B-lymphocytes in lupus that, potentially, affect critical biological responses. Most of the evidence for these defects comes from studies of disease models and genetically engineered mice. However, there is also increasing evidence from studying B-lymphocytes from patients and from genome-wide linkage analyses for parallel defects to those observed in mice. These studies provide molecular and genetic explanations for the key immunological abnormalities associated with lupus. Most of the new information appears to relate to defects in intracellular signalling that impact B-lymphocyte tolerance, cytokine production and responses to infections. Some of these abnormalities will be discussed within the context of disease pathogenesis.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts
| | | | | | | | | | | | | |
Collapse
|
28
|
Tyrosine kinase inhibitors impair B-cell immune responses in CML through off-target inhibition of kinases important for cell signaling. Blood 2013; 122:227-38. [PMID: 23719297 DOI: 10.1182/blood-2012-11-465039] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have significant off-target multikinase inhibitory effects. We aimed to study the impact of TKIs on the in vivo B-cell response to vaccination. Cellular and humoral responses to influenza and pneumococcal vaccines were evaluated in 51 chronic phase chronic myeloid leukemia (CML) patients on imatinib, or second-line dasatinib and nilotinib, and 24 controls. Following vaccination, CML patients on TKI had significant impairment of IgM humoral response to pneumococcus compared with controls (IgM titer 79.0 vs 200 U/mL, P = .0006), associated with significantly lower frequencies of peripheral blood IgM memory B cells. To elucidate whether CML itself or treatment with TKI was responsible for the impaired humoral response, we assessed memory B-cell subsets in paired samples collected before and after imatinib therapy. Treatment with imatinib was associated with significant reductions in IgM memory B cells. In vitro coincubation of B cells with plasma from CML patients on TKI or with imatinib, dasatinib, or nilotinib induced significant and dose-dependent inhibition of Bruton's tyrosine kinase and indirectly its downstream substrate, phospholipase-C-γ2, both important in B-cell signaling and survival. These data indicate that TKIs, through off-target inhibition of kinases important in B-cell signaling, reduce memory B-cell frequencies and induce significant impairment of B-cell responses in CML.
Collapse
|
29
|
Tan SL, Liao C, Lucas MC, Stevenson C, DeMartino JA. Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther 2013; 138:294-309. [PMID: 23396081 DOI: 10.1016/j.pharmthera.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/08/2023]
Abstract
Spleen Tyrosine Kinase (SYK) and Bruton's Tyrosine Kinase (BTK) are non-receptor cytoplasmic tyrosine kinases that are primarily expressed in cells of hematopoietic lineage. Both are key mediators in coupling activated immunoreceptors to downstream signaling events that affect diverse biological functions, from cellular proliferation, differentiation and adhesion to innate and adaptive immune responses. As such, pharmacological inhibitors of SYK or BTK are being actively pursued as potential immunomodulatory agents for the treatment of autoimmune and inflammatory disorders. Deregulation of SYK or BTK activity has also been implicated in certain hematological malignancies. To date, from a clinical perspective, pharmacological inhibition of SYK activity has demonstrated encouraging efficacy in patients with rheumatoid arthritis (RA), while patients with relapsed or refractory chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) have benefited from covalent inhibitors of BTK in early clinical studies. Here, we review and discuss recent insights into the emerging role of the SYK-BTK axis in innate immune cell function as well as in the maintenance of survival and homing signals for tumor cell progression. The current progress on the clinical development of SYK and BTK inhibitors is also highlighted.
Collapse
Affiliation(s)
- Seng-Lai Tan
- Inflammation Discovery and Therapeutic Area, Hoffmann-La Roche, Nutley, NJ 07110, USA.
| | | | | | | | | |
Collapse
|
30
|
Hutcheson J, Vanarsa K, Bashmakov A, Grewal S, Sajitharan D, Chang BY, Buggy JJ, Zhou XJ, Du Y, Satterthwaite AB, Mohan C. Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus. Arthritis Res Ther 2012; 14:R243. [PMID: 23136880 PMCID: PMC3674619 DOI: 10.1186/ar4086] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity. The aim of this study was to determine the effect of Btk inhibition by PCI-32765 on the development of lupus in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice. METHODS B6.Sle1 or B6.Sle1.Sle3 mice received drinking water containing either the Btk inhibitor PCI-32765 or vehicle for 56 days. Following treatment, mice were examined for clinical and pathological characteristics of lupus. The effect of PCI-32765 on specific cell types was also investigated. RESULTS In this study, we report that Btk inhibition dampens humoral autoimmunity in B6.Sle1 monocongenic mice. Moreover, in B6.Sle1.Sle3 bicongenic mice that are prone to severe lupus, Btk inhibition also dampens humoral and cellular autoimmunity, as well as lupus nephritis. CONCLUSIONS These findings suggest that partial crippling of cell signaling in B cells and antigen presenting cells (APCs) may be a viable alternative to total depletion of these cells as a therapeutic modality for lupus.
Collapse
Affiliation(s)
- Jack Hutcheson
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Kamala Vanarsa
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Anna Bashmakov
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Simer Grewal
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Deena Sajitharan
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Betty Y Chang
- Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94085, USA
| | - Joseph J Buggy
- Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94085, USA
| | - Xin J Zhou
- University of Texas Southwestern Medical Center, Department of Pathology, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Yong Du
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Anne B Satterthwaite
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Chandra Mohan
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| |
Collapse
|
31
|
Abstract
The B-cell receptor (BCR) complex and its associated protein tyrosine kinases play a critical role in the development, proliferation, and survival of normal or malignant B cells. Regulated activity of the BCR complex promotes the expansion of selected B cells and the deletion of unwanted or self-reactive ones. Compounds that inhibit various components of this pathway, including spleen tyrosine kinase, Bruton's tyrosine kinase, and phosphoinositol-3 kinase, have been developed. We summarize the rationale for use of agents that can inhibit BCR signaling to treat patients with either indolent or aggressive B-cell lymphomas, highlight early clinical results, and speculate on the future application of such agents in the treatment of patients with various B-cell lymphomas.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Aminopyridines
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/metabolism
- Lymphoma, Mantle-Cell/pathology
- Morpholines
- Neoplasm Staging
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Oxazines/therapeutic use
- Phenylurea Compounds/therapeutic use
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Piperidines
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Purines/therapeutic use
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Pyrimidines/therapeutic use
- Quinazolinones/therapeutic use
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Sorafenib
Collapse
Affiliation(s)
- Michael Y Choi
- UC San Diego Moores Cancer Center, La Jolla, CA 92093, USA
| | | |
Collapse
|
32
|
Regulation of nucleocytoplasmic shuttling of Bruton's tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 2012; 32:2440-53. [PMID: 22527282 DOI: 10.1128/mcb.06620-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bruton's tyrosine kinase (Btk), belonging to the Tec family of tyrosine kinases (TFKs), is essential for B-lymphocyte development. Abrogation of Btk signaling causes human X-linked agammaglobulinemia (XLA) and murine X-linked immunodeficiency (Xid). We employed affinity purification of Flag-tagged Btk, combined with tandem mass spectrometry, to capture and identify novel interacting proteins. We here characterize the interaction with ankryin repeat domain 54 protein (ANKRD54), also known as Lyn-interacting ankyrin repeat protein (Liar). While Btk is a nucleocytoplasmic protein, the Liar pool was found to shuttle at a higher rate than Btk. Importantly, our results suggest that Liar mediates nuclear export of both Btk and another TFK, Txk/Rlk. Liar-mediated Btk shuttling was enriched for activation loop, nonphosphorylated Btk and entirely dependent on Btk's SH3 domain. Liar also showed reduced binding to an aspartic acid phosphomimetic SH3 mutant. Three other investigated nucleus-located proteins, Abl, estrogen receptor β (ERβ), and transcription factor T-bet, were all unaffected by Liar. We mapped the interaction site to the C terminus of the Btk SH3 domain. A biotinylated, synthetic Btk peptide, ARDKNGQEGYIPSNYVTEAEDS, was sufficient for this interaction. Liar is the first protein identified that specifically influences the nucleocytoplasmic shuttling of Btk and Txk and belongs to a rare group of known proteins carrying out this activity in a Crm1-dependent manner.
Collapse
|
33
|
Hendriks RW, Bredius RG, Pike-Overzet K, Staal FJ. Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man. Expert Opin Ther Targets 2011; 15:1003-21. [PMID: 21635151 DOI: 10.1517/14728222.2011.585971] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency in man, and is caused by a single genetic defect. Inactivating mutations in the Bruton's tyrosine kinase (BTK) gene are invariably the cause of XLA,. XLA is characterized by a differentiation arrest at the pre-B cell stage, the absence of immunoglobulins and recurrent bacterial infections, making it an insidious disease that gradually disables the patient, and can result in death due to chronic lung disease. Current treatment involves prophylactic antibiotics and immunoglobulin infusions, which are non-curative. This disease is a good candidate for curative hematopoietic stem cell (HSC)-based gene therapy, which could correct the B cell and myeloid deficiencies. AREAS COVERED This paper reviews the basic biology of BTK in B cell development, the clinical features of XLA, and the possibilities of gene therapy for XLA, covering the literature from 1995 to 2010. EXPERT OPINION Work from various laboratories demonstrates the feasibility of using gene-corrected HSCs to complement the immune defects of Btk-deficiency in mice. We propose that it is timely to start clinical programs to develop stem cell based therapy for XLA, using gene-corrected autologous HSC.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
34
|
Barone F, Vossenkamper A, Boursier L, Su W, Watson A, John S, Dunn-Walters DK, Fields P, Wijetilleka S, Edgeworth JD, Spencer J. IgA-producing plasma cells originate from germinal centers that are induced by B-cell receptor engagement in humans. Gastroenterology 2011; 140:947-56. [PMID: 21147106 PMCID: PMC7115992 DOI: 10.1053/j.gastro.2010.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS IgA contributes to homeostatic balance between host and intestinal microbiota. Mechanisms that initiate the IgA response are unclear and likely to differ between humans and animal models. We used multiple experimental approaches to investigate the origin of human intestinal plasma cells that produce IgA in the gastrointestinal tract. METHODS Complexity of IgA-producing plasma cell populations in human gastrointestinal mucosa and bone marrow and the specific response to oral cholera vaccine were compared by analysis of immunoglobulin genes. Flow cytometry, gene expression analysis, and immunohistochemistry were used to analyze signaling pathways induced by B-cell receptor engagement in human gut-associated lymphoid tissue (GALT) and involvement of innate immunity in B-cell activation in GALT compared with nonintestinal sites. RESULTS Human intestinal IgA-producing plasma cells appeared to be of germinal center origin; there was no evidence for the population complexity that accompanies multiple pathways of derivation observed in bone marrow. In germinal center B cells of human GALT, Btk and Erk are phosphorylated, CD22 is down-regulated, Lyn is translocated to the cell membrane, and Fos and Jun are up-regulated; these features indicate B-cell receptor ligation during germinal center evolution. No differences in innate activation of B cells were observed in GALT, compared with peripheral immune compartments. CONCLUSIONS IgA-producing plasma cells appear to be derived from GALT germinal centers in humans. B-cell receptor engagement promotes formation of germinal centers of GALT, with no more evidence for innate immune receptor activation in the mucosa than nonintestinal immune compartments. Germinal centers in GALT should be targets of mucosal vaccinations because they are the source of human intestinal IgA response.
Collapse
Affiliation(s)
- Francesca Barone
- Peter Gorer Department of Immunobiology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Anna Vossenkamper
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Cell and Molecular Science, Whitechapel, London E1 2AT, UK
| | - Laurent Boursier
- Peter Gorer Department of Immunobiology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Wen Su
- Peter Gorer Department of Immunobiology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Alan Watson
- Centre for Gastroenterology, Barts and the London NHS Trust, London, E1 1BB, UK
| | - Susan John
- Peter Gorer Department of Immunobiology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Deborah K. Dunn-Walters
- Peter Gorer Department of Immunobiology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Paul Fields
- Department of Haematology, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital SE1 9RT, UK
| | - Sonali Wijetilleka
- Peter Gorer Department of Immunobiology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Jonathan D. Edgeworth
- Directorate of Infection, Guy’s and St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London SE1 7EH, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
35
|
Belver L, de Yébenes VG, Ramiro AR. MicroRNAs prevent the generation of autoreactive antibodies. Immunity 2010; 33:713-22. [PMID: 21093320 PMCID: PMC3687137 DOI: 10.1016/j.immuni.2010.11.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/14/2010] [Accepted: 09/08/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs have been shown to be critical for a number of aspects of immune system regulation and function. Here, we have examined the role of microRNAs in terminal B cell differentiation by analyzing Cd19-Cre(ki/+) Dicer1(fl/fl) mice. We found that in the absence of Dicer, the transitional and marginal zone (MZ) B cell compartments were overrepresented and follicular (FO) B cell generation was impaired. microRNA analysis revealed that miR185, a microRNA overexpressed in FO cells, dampened B cell receptor (BCR) signaling through Bruton tyrosine kinase downregulation. Dicer-deficient B cells had a skewed BCR repertoire with hallmarks of autoreactivity, which correlated with high titers of autoreactive antibodies in serum and autoimmune features in females. Together, our results reveal a crucial role for microRNAs in late B cell differentiation and in the establishment of B cell tolerance.
Collapse
Affiliation(s)
- Laura Belver
- DNA Hypermutation and Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | | | | |
Collapse
|