1
|
Hasbullah JS, Scott EN, Bhavsar AP, Gunaretnam EP, Miao F, Soliman H, Carleton BC, Ross CJD. All-trans retinoic acid (ATRA) regulates key genes in the RARG-TOP2B pathway and reduces anthracycline-induced cardiotoxicity. PLoS One 2022; 17:e0276541. [PMID: 36331922 PMCID: PMC9635745 DOI: 10.1371/journal.pone.0276541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
The effectiveness of anthracycline chemotherapeutics (e.g., doxorubicin) is limited by anthracycline-induced cardiotoxicity (ACT). A nonsynonymous variant (S427L) in the retinoic acid receptor-γ (RARG) gene has been associated with ACT. This variant causes reduced RARG activity, which is hypothesized to lead to increased susceptibility to ACT through reduced activation of the retinoic acid pathway. This study explored the effects of activating the retinoic acid pathway using a RAR-agonist, all-trans retinoic acid (ATRA), in human cardiomyocytes and mice treated with doxorubicin. In human cardiomyocytes, ATRA induced the gene expression of RARs (RARG, RARB) and repressed the expression of topoisomerase II enzyme genes (TOP2A, TOP2B), which encode for the molecular targets of anthracyclines and repressed downstream ACT response genes. Importantly, ATRA enhanced cell survival of human cardiomyocytes exposed to doxorubicin. The protective effect of ATRA was also observed in a mouse model (B6C3F1/J) of ACT, in which ATRA treatment improved heart function compared to doxorubicin-only treated mice. Histological analyses of the heart also indicated that ATRA treatment reduced the pathology associated with ACT. These findings provide additional evidence for the retinoic acid pathway's role in ACT and suggest that the RAR activator ATRA can modulate this pathway to reduce ACT.
Collapse
Affiliation(s)
- Jafar S. Hasbullah
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Erika N. Scott
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erandika P. Gunaretnam
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fudan Miao
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hesham Soliman
- School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce C. Carleton
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J. D. Ross
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Xie B, Luo A. Nucleic Acid Sensing Pathways in DNA Repair Targeted Cancer Therapy. Front Cell Dev Biol 2022; 10:903781. [PMID: 35557952 PMCID: PMC9089908 DOI: 10.3389/fcell.2022.903781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
The repair of DNA damage is a complex process, which helps to maintain genome fidelity, and the ability of cancer cells to repair therapeutically DNA damage induced by clinical treatments will affect the therapeutic efficacy. In the past decade, great success has been achieved by targeting the DNA repair network in tumors. Recent studies suggest that DNA damage impacts cellular innate and adaptive immune responses through nucleic acid-sensing pathways, which play essential roles in the efficacy of DNA repair targeted therapy. In this review, we summarize the current understanding of the molecular mechanism of innate immune response triggered by DNA damage through nucleic acid-sensing pathways, including DNA sensing via the cyclic GMP-AMP synthase (cGAS), Toll-like receptor 9 (TLR9), absent in melanoma 2 (AIM2), DNA-dependent protein kinase (DNA-PK), and Mre11-Rad50-Nbs1 complex (MRN) complex, and RNA sensing via the TLR3/7/8 and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Furthermore, we will focus on the recent developments in the impacts of nucleic acid-sensing pathways on the DNA damage response (DDR). Elucidating the DDR-immune response interplay will be critical to harness immunomodulatory effects to improve the efficacy of antitumor immunity therapeutic strategies and build future therapeutic approaches.
Collapse
Affiliation(s)
- Bingteng Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing, China.,Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment, Beijing Institute of Technology, Ministry of Industry and Information Technology, Beijing, China
| |
Collapse
|
3
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
4
|
Montamat G, Leonard C, Poli A, Klimek L, Ollert M. CpG Adjuvant in Allergen-Specific Immunotherapy: Finding the Sweet Spot for the Induction of Immune Tolerance. Front Immunol 2021; 12:590054. [PMID: 33708195 PMCID: PMC7940844 DOI: 10.3389/fimmu.2021.590054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Prevalence and incidence of IgE-mediated allergic diseases have increased over the past years in developed and developing countries. Allergen-specific immunotherapy (AIT) is currently the only curative treatment available for allergic diseases that has long-term efficacy. Although AIT has been proven successful as an immunomodulatory therapy since its beginnings, it still faces several unmet needs and challenges today. For instance, some patients can experience severe side effects, others are non-responders, and prolonged treatment schedules can lead to lack of patient adherence and therapy discontinuation. A common strategy to improve AIT relies on the use of adjuvants and immune modulators to boost its effects and improve its safety. Among the adjuvants tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated with limited success and without reaching phase III trials for clinical allergy treatment. However, recently discovered immune tolerance-promoting properties of CpG-ODN place this adjuvant again in a prominent position as an immune modulator for the treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and concentration are crucial in promoting immune regulation through the recruitment of pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger a tolerogenic response that can reverse a pre-established allergic milieu. Consistently, CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and revert allergic reactions in several animal models showing its potential as both preventive and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-based therapies for allergic diseases, despite having shown limited success in the past, can still be exploited further as an adjuvant or immune modulator in the context of AIT and deserves additional attention. Here, we discuss the past and current knowledge, which highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT when used in appropriate conditions and formulations.
Collapse
Affiliation(s)
- Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cathy Leonard
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ludger Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
Yazar V, Kilic G, Bulut O, Canavar Yildirim T, Yagci FC, Aykut G, Klinman DM, Gursel M, Gursel I. A suppressive oligodeoxynucleotide expressing TTAGGG motifs modulates cellular energetics through the mTOR signaling pathway. Int Immunol 2020; 32:39-48. [PMID: 31633763 DOI: 10.1093/intimm/dxz059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023] Open
Abstract
Immune-mediated inflammation must be down-regulated to facilitate tissue remodeling during homeostatic restoration of an inflammatory response. Uncontrolled or over-exuberant immune activation can cause autoimmune diseases, as well as tissue destruction. A151, the archetypal example of a chemically synthesized suppressive oligodeoxynucleotide (ODN) based on repetitive telomere-derived TTAGGG sequences, was shown to successfully down-regulate a variety of immune responses. However, the degree, duration and breadth of A151-induced transcriptome alterations remain elusive. Here, we performed a comprehensive microarray analysis in combination with Ingenuity Pathway Analysis (IPA) using murine splenocytes to investigate the underlying mechanism of A151-dependent immune suppression. Our results revealed that A151 significantly down-regulates critical mammalian target of rapamycin (mTOR) activators (Pi3kcd, Pdpk1 and Rheb), elements downstream of mTOR signaling (Rps6ka1, Myc, Stat3 and Slc2a1), an important component of the mTORC2 protein complex (Rictor) and Mtor itself. The effects of A151 on mTOR signaling were dose- and time-dependent. Moreover, flow cytometry and immunoblotting analyses demonstrated that A151 is able to reverse mTOR phosphorylation comparably to the well-known mTOR inhibitor rapamycin. Furthermore, Seahorse metabolic assays showed an A151 ODN-induced decrease in both oxygen consumption and glycolysis implying that a metabolically inert state in macrophages could be triggered by A151 treatment. Overall, our findings suggested novel insights into the mechanism by which the immune system is metabolically modulated by A151 ODN.
Collapse
Affiliation(s)
- Volkan Yazar
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Gizem Kilic
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Ozlem Bulut
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Tugce Canavar Yildirim
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Fuat C Yagci
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Gamze Aykut
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Dennis M Klinman
- Immune Modulation Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mayda Gursel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ihsan Gursel
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
6
|
Lee BC, Shin N, Lee JY, Kang I, Kim JJ, Lee SE, Choi SW, Webster GA, Kang KS. MIS416 Enhances Therapeutic Functions of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Against Experimental Colitis by Modulating Systemic Immune Milieu. Front Immunol 2018; 9:1078. [PMID: 29892282 PMCID: PMC5985498 DOI: 10.3389/fimmu.2018.01078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Human adult stem cells, including umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), have recently been considered a promising alternative treatment for inflammatory bowel disease (IBD) due to their unique immunomodulatory properties and ability to promote tissue regeneration. However, despite many years of research and pre-clinical studies, results from clinical trials using these cells have been diverse and conflicting. This discrepancy is caused by several factors, such as poor engraftment, low survival rate, and donor-dependent variation of the cells. Enhancement of consistency and efficacy of MSCs remains a challenge for the feasibility of cell-based therapy. In this study, we investigated whether administration of MIS416, a novel microparticle that activates NOD2 and TLR9 signaling, could enhance the therapeutic efficacy of hUCB-MSCs against Crohn’s disease, using dextran sulfate sodium (DSS)-induced colitis model. Colitis was experimentally induced in mice by using 3% DSS, and mice were administered a retro-orbital injection of MIS416 and subsequent intraperitoneal injection of hUCB-MSCs. Mice were examined grossly, and blood, spleen, and colon tissues were subsequently collected for further ex vivo analyses. To explore the effects of MIS416 on the therapeutic process, hUCB-MSCs and primary isolated immune cells were cultured with MIS416, and in vitro assays were performed. Compared to the single administration of hUCB-MSCs, co-administration with MIS416 improved the therapeutic efficiency of the stem cells by significantly alleviating the symptoms of IBD. Interestingly, MIS416 did not exert any direct effect on the immunomodulatory capacity of hUCB-MSCs. Instead, systemically injected MIS416 altered the immune milieu in the colon which caused hUCB-MSCs to be more readily recruited toward the lesion site and to suppress inflammation more efficiently. In addition, considerable numbers of regulatory immune cells were stimulated as a result of the cooperation of MIS416 and hUCB-MSCs. These findings indicate that co-administration with MIS416 enhances the therapeutic potential of hUCB-MSCs by systemically regulating the immune response, which might be an effective strategy for overcoming the current obstacles to stem cell therapy in clinical practice.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Nari Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Seung Eun Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | | | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Hilbert T, Markowski P, Frede S, Boehm O, Knuefermann P, Baumgarten G, Hoeft A, Klaschik S. Synthetic CpG oligonucleotides induce a genetic profile ameliorating murine myocardial I/R injury. J Cell Mol Med 2018; 22:3397-3407. [PMID: 29671939 PMCID: PMC6010716 DOI: 10.1111/jcmm.13616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that pre‐conditioning with CpG oligonucleotide (ODN) 1668 induces quick up‐regulation of gene expression 3 hours post‐murine myocardial ischaemia/reperfusion (I/R) injury, terminating inflammatory processes that sustain I/R injury. Now, performing comprehensive microarray and biocomputational analyses, we sought to further enlighten the “black box” beyond these first 3 hours. C57BL/6 mice were pretreated with either CpG 1668 or with control ODN 1612, respectively. Sixteen hours later, myocardial ischaemia was induced for 1 hour in a closed‐chest model, followed by reperfusion for 24 hours. RNA was extracted from hearts, and labelled cDNA was hybridized to gene microarrays. Data analysis was performed with BRB ArrayTools and Ingenuity Pathway Analysis. Functional groups mediating restoration of cellular integrity were among the top up‐regulated categories. Genes known to influence cardiomyocyte survival were strongly induced 24 hours post‐I/R. In contrast, proinflammatory pathways were down‐regulated. Interleukin‐10, an upstream regulator, suppressed specifically selected proinflammatory target genes at 24 hours compared to 3 hours post‐I/R. The IL1 complex is supposed to be one regulator of a network increasing cardiovascular angiogenesis. The up‐regulation of numerous protective pathways and the suppression of proinflammatory activity are supposed to be the genetic correlate of the cardioprotective effects of CpG 1668 pre‐conditioning.
Collapse
Affiliation(s)
- Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Paul Markowski
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Pascal Knuefermann
- Department of Anesthesiology and Intensive Care Medicine, Gemeinschaftskrankenhaus Bonn St. Elisabeth - St. Petrus - St. Johannes gGmbH, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Johanniter Hospital Bonn, Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Regulation of the maturation of human monocytes into immunosuppressive macrophages. Blood Adv 2017; 1:2510-2519. [PMID: 29296902 DOI: 10.1182/bloodadvances.2017011221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Human monocytes differentiate into either proinflammatory or immunosuppressive macrophages in response to distinct stimuli. Results show that the Toll-like receptor 2/1 agonist PAM3 replicates the ability of macrophage colony-stimulating factor (M-CSF) to induce the preferential generation of immunosuppressive macrophages in vitro, an activity confirmed by in vivo studies of rhesus macaques. By comparing the gene expression pattern of monocytes treated with M-CSF vs PAM3, the pathways regulating macrophage maturation were identified. NF-κB and Akt were found to play a central role in the overall process of monocyte into macrophage differentiation. Pathways regulated by p38 MAPK and PTGS2 biased this process toward the generation of immunosuppressive rather than proinflammatory macrophages. ERK and JNK contribute to PAM3- but not M-CSF-driven monocyte maturation. These findings clarify the mechanisms underlying the generation of immunosuppressive macrophages and support the use of PAM3 in the treatment of autoimmune and inflammatory diseases.
Collapse
|
9
|
Cerkovnik P, Novaković BJ, Stegel V, Novaković S. Changes in expression of genes involved in antitumor immunity in mice vaccinated with tumor vaccine composed of irradiated syngeneic tumor cells and CpG oligodeoxynucleotides. Mol Immunol 2016; 79:1-13. [PMID: 27677155 DOI: 10.1016/j.molimm.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023]
Abstract
In our previous studies, it has been demonstrated that in more than 80% of mice long-lasting antitumor immunity has been established following intraperitoneal (i.p.) vaccination with tumor vaccine composed of irradiated syngeneic tumor cells and CpG ODNs class C. The aim of this study was, therefore, to investigate molecular mechanisms through which this vaccine triggers the immunity and to define genes particularly involved in this process. Changes in gene expression were followed in mononuclear cells isolated from peritoneal lavages, spleens and bone marrow samples. The expression of 84 genes significant for T-cell and B-cell activation as well as genes engaged in activation of macrophages, NK cells and DCs was determined using the RT2- Profiler PCR array. It has been observed that this tumor vaccine induces the up-regulation of genes involved in activation, proliferation and survival of memory T-cells (Cd8a, Cd8b1, Prlr, Was, Cxcl12, Il12, Sftpd, Tnfrsf13c, Il15, Il18), and prevents the activation of genes involved in generation of Treg and induction of immune tolerance (Sit1, Sla2, Cd1d1, Pdcd1lg2, Pawr, Socs5, Il27, Il4). We may conclude based on results of gene expression analysis, that tumor vaccine fine-tunes the proportion of cytotoxic to regulatory lymphocytes having an important impact on the induction and maintenance of memory cells in bone marrow.
Collapse
Affiliation(s)
- Petra Cerkovnik
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | | | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Celhar T, Pereira-Lopes S, Thornhill SI, Lee HY, Dhillon MK, Poidinger M, Connolly JE, Lim LHK, Biswas SK, Fairhurst AM. TLR7 and TLR9 ligands regulate antigen presentation by macrophages. Int Immunol 2016; 28:223-32. [PMID: 26567289 PMCID: PMC4888346 DOI: 10.1093/intimm/dxv066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022] Open
Abstract
The toll-like receptors (TLRs) are important innate receptors recognizing potentially pathogenic material. However, they also play a significant role in the development of Alzheimer's disease, cancer, autoimmunity and the susceptibility to viral infections. Macrophages are essential for an effective immune response to foreign material and the resolution of inflammation. In these studies, we examined the impact of different TLR ligands on macrophage cell function. We demonstrate that stimulation of all TLRs tested increases the phagocytosis of apoptotic cells by macrophages. TLR7 and TLR9 ligation decreased the levels of the surface co-expression molecules CD86 and MHCII, which was associated with a concomitant reduction in antigen presentation and proliferation of T cells. This down-regulation in macrophage function was not due to an increase in cell death. In fact, exposure to TLR7 or TLR9 ligands promoted cell viability for up to 9 days, in contrast to TLR3 or TLR4. Additionally, macrophages exposed to TLR7/TLR9 ligands had a significantly lower ratio of Il-12/Il-10 mRNA expression compared with those treated with the TLR4 ligand, LPS. Taken together, these data demonstrate that TLR7/TLR9 ligands push the macrophage into a phagocytic long-lived cell, with a decreased capacity of antigen presentation and reminiscent of the M2 polarized state.
Collapse
Affiliation(s)
- Teja Celhar
- Singapore Immunology Network, A*STAR, Singapore 138648, Singapore
| | - Selma Pereira-Lopes
- Grupo Biología del Macrófago, Departamento de Fisiología e Inmunología, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Hui Yin Lee
- Singapore Immunology Network, A*STAR, Singapore 138648, Singapore
| | | | | | - John E Connolly
- Singapore Immunology Network, A*STAR, Singapore 138648, Singapore Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore NUS Immunology Program, National University of Singapore, Singapore 117456, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network, A*STAR, Singapore 138648, Singapore
| | | |
Collapse
|
11
|
Synergistic Stimulation with Different TLR7 Ligands Modulates Gene Expression Patterns in the Human Plasmacytoid Dendritic Cell Line CAL-1. Mediators Inflamm 2015; 2015:948540. [PMID: 26770023 PMCID: PMC4684865 DOI: 10.1155/2015/948540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 12/26/2022] Open
Abstract
Objective. TLR7 ligation in plasmacytoid dendritic cells is promising for the treatment of cancer, allergy, and infectious diseases; however, high doses of ligands are required. We hypothesized that the combination of structurally different TLR7 ligands exponentiates the resulting immune response. Methods. CAL-1 (human pDC line) cells were incubated with the TLR7-specific adenine analog CL264 and single-stranded 9.2s RNA. Protein secretion was measured by ELISA. Microarray technique was used to detect modified gene expression patterns upon synergistic stimulation, revealing underlying functional groups and networks. Cell surface binding properties were studied using FACS analysis. Results. CL264 in combination with 9.2s RNA significantly enhanced cytokine and interferon secretion to supra-additive levels. This effect was due to a stronger stimulation of already regulated genes (by monostimulation) as well as to recruitment of thus far unregulated genes. Top scoring canonical pathways referred to immune-related processes. Network analysis revealed IL-1β, IL-6, TNF, and IFN-β as major regulatory nodes, while several minor regulatory nodes were also identified. Binding of CL264 to the cell surface was enhanced by 9.2s RNA. Conclusion. Structurally different TLR7 ligands act synergistically on gene expression patterns and on the resulting inflammatory response. These data could impact future strategies optimizing TLR7-targeted drug design.
Collapse
|
12
|
Yamshchikov V. Development of a human live attenuated West Nile infectious DNA vaccine: conceptual design of the vaccine candidate. Virology 2015; 484:59-68. [PMID: 26071925 DOI: 10.1016/j.virol.2015.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
Abstract
West Nile virus has become an important epidemiological problem attracting significant attention of health authorities, mass media, and the public. Although there are promising advancements toward addressing the vaccine need, the perspectives of the commercial availability of the vaccine remain uncertain. To a large extent this is due to lack of a sustained interest for further commercial development of the vaccines already undergoing the preclinical and clinical development, and a predicted insignificant cost effectiveness of mass vaccination. There is a need for a safe, efficacious and cost effective vaccine, which can improve the feasibility of a targeted vaccination program. In the present report, we summarize the background, the rationale, and the choice of the development pathway that we selected for the design of a live attenuated human West Nile vaccine in a novel infectious DNA format.
Collapse
Affiliation(s)
- Vladimir Yamshchikov
- Southern Research, Division of Drug Discovery, Birmingham, Alabama, United States.
| |
Collapse
|
13
|
Wang Y, Yamamoto Y, Shigemori S, Watanabe T, Oshiro K, Wang X, Wang P, Sato T, Yonekura S, Tanaka S, Kitazawa H, Shimosato T. Inhibitory/suppressive oligodeoxynucleotide nanocapsules as simple oral delivery devices for preventing atopic dermatitis in mice. Mol Ther 2014; 23:297-309. [PMID: 25502904 DOI: 10.1038/mt.2014.239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 12/05/2014] [Indexed: 12/19/2022] Open
Abstract
Here, we report a simple and low-cost oral oligodeoxynucleotide (ODN) delivery system targeted to the gut Peyer's patches (PPs). This system requires only Dulbecco's modified eagle's medium, calcium chloride, ODNs, and basic laboratory equipment. ODN nanocapsules (ODNcaps) were directly delivered to the PPs through oral administration and were taken up by macrophages in the PPs, where they induced an immune response. Long-term continuous oral dosing with inhibitory/suppressive ODNcaps (iODNcaps, "iSG3caps" in this study) was evaluated using an atopic dermatitis mouse model to visually monitor disease course. Administration of iSG3caps improved skin lesions and decreased epidermal thickness. Underlying this effect is the ability of iSG3 to bind to and prevent phosphorylation of signal transducer and activator of transcription 6, thereby blocking the interleukin-4 signaling cascade mediated by binding of allergens to type 2 helper T cells. The results of our iSG3cap oral delivery experiments suggest that iSG3 may be useful for treating allergic diseases.
Collapse
Affiliation(s)
- Yeqin Wang
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan
| | | | - Suguru Shigemori
- 1] Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan [2] Research Fellow of the Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Japan
| | | | - Kazushi Oshiro
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Xinyu Wang
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Pengfei Wang
- Graduate School of Agriculture, Shinshu University, Kamiina, Japan
| | - Takashi Sato
- Department of Internal Medicine and Clinical Immunology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shinichi Yonekura
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Kamiina, Japan
| | - Sachi Tanaka
- Frontier Agriscience and Technology Center (FAST), Shinshu University, Kamiina, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takeshi Shimosato
- 1] Interdisciplinary Graduate School of Science and Technology, Shinshu University, Kamiina, Japan [2] Graduate School of Agriculture, Shinshu University, Kamiina, Japan [3] Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Kamiina, Japan
| |
Collapse
|
14
|
Műzes G, Sipos F, Fűri I, Constantinovits M, Spisák S, Wichmann B, Valcz G, Tulassay Z, Molnár B. Preconditioning with intravenous colitic cell-free DNA prevents DSS-colitis by altering TLR9-associated gene expression profile. Dig Dis Sci 2014; 59:2935-2946. [PMID: 25217236 DOI: 10.1007/s10620-014-3325-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 08/07/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Presence of cell-free-circulating DNA (fcDNA) sequences in sera of patients with inflammatory bowel diseases (IBD) is a well-established phenomenon. Potential roles of fcDNA in diagnosis, prognosis and therapy monitoring of chronic inflammatory colonic disorders have already been examined, albeit its actual biological function still remains unclear. AIMS AND METHODS In the present experiment, we studied the immunobiological effects of isolated fcDNA of normal and inflammatory origin administered intravenously to mice prior to induction of dextran sulfate sodium (DSS)-colitis. In addition to evaluate the current disease and histological activity, changes of the gene expression profile in isolated lamina propria cells upon TLR9 ligation were assayed. RESULTS A single intravenous dose of fcDNA pretreatment with colitic fcDNA exhibited beneficial response concerning the clinical and histological severity of DSS-colitis as compared to effects of normal fcDNA. Pretreatment with colitic fcDNA substantially altered the expression of several TLR9-related and inflammatory cytokine genes in a clinically favorable manner. CONCLUSIONS During the process of acute colitis, the subsequent inflammatory environment presumably results in changes of fcDNA with the potential to facilitate the downregulation of inflammation and improvement of regeneration. Thus, preconditioning of mice with colitis-derived fcDNA via TLR9 signaling could exert a tissue-protective effect and influence beneficially the course of DSS-colitis. Elucidating mechanisms of immune response alterations by nucleic acids may provide further insight into the etiology of IBD and develop the basis of novel immunotherapies.
Collapse
Affiliation(s)
- Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, 1088, Hungary,
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim I, He YY. Ultraviolet radiation-induced non-melanoma skin cancer: Regulation of DNA damage repair and inflammation. Genes Dis 2014; 1:188-198. [PMID: 25642450 PMCID: PMC4307792 DOI: 10.1016/j.gendis.2014.08.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023] Open
Abstract
Exposure to ultraviolet (UV) radiation is associated with approximately 65% of melanoma cases, and 90% of non-melanoma skin cancers (NMSC), including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). While the incidence of most other malignancies has either stabilized or declined, that of NMSC has increased and is developing even in younger age groups. NMSCs account for nearly 15,000 deaths, 3.5 million new cases, and more than 3 billion dollars a year in medical costs in the United States alone, representing a major public health concern. As sun protection efforts have not been proven effective, targeted chemoprevention strategies are much needed. Skin carcinogenesis by DNA damage is considered a predominant paradigm for UV toxicity. Exposure to UV radiation can activate various oncogenes while inactivating tumor suppressor genes, resulting in inappropriate survival and proliferation of keratinocytes that harbor these damages. Moreover, increasing evidence demonstrate that inflammatory responses by the immune cells within the tumor microenvironment also contribute significantly to skin tumorigenesis. Initiation and progression of skin carcinogenesis mediated by UV radiation involve complex pathways, including those of apoptosis, proliferation, autophagy, DNA repair, checkpoint signaling, metabolism, and inflammation. In this review, we highlight the recent advances in two of these key molecular processes that result in UV-mediated skin carcinogenesis. In particular, we discuss 1) pathways that regulate DNA damage repair and 2) the regulation of the inflammatory process its crosstalk with DNA repair potentially leading to non-melanoma skin carcinogenesis.
Collapse
Affiliation(s)
- InYoung Kim
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Chen H, Wang ZD, Chen MS, Zhang XQ, Shen LP, Zhang JX, Chen Y. Activation of Toll-like receptors by intestinal microflora reduces radiation-induced DNA damage in mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 774:22-8. [PMID: 25440907 DOI: 10.1016/j.mrgentox.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/24/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022]
Abstract
Activation of Toll-like receptors (TLRs) signaling by intestinal microflora-derived bacterial products plays a key role in injury defence for the host. We investigated the role of TLRs activated by intestinal microflora in radiation-induced DNA damage in mice. We analyzed DNA damage induced by 2Gy γ-ray radiation in an intestinal commensal bacteria-depleted mouse model (CD group), in which TLRs (TLR2/6, TLR4 and TLR5) ligand levels in serum were reduced. Chromosomal aberrations were measured in bone marrow cells and peripheral blood leukocyte comet assays were performed. DNA damage was increased in the CD group compared with the control group. Treatment of mice with TLR agonists (CBLB502, LPS and lipopeptide) 1h before radiation resulted in a significant decrease in DNA damage. Genes induced by TLR5 activation were analyzed; activation of TLRs regulated the expression of Gadd45b, Sod2, and Rad21, which are involved in DNA damage repair. In summary, our data indicate that TLRs activation by intestinal microflora reduces DNA damage induced by radiation and regulates expression of several DNA repair genes.
Collapse
Affiliation(s)
- Hong Chen
- Department of Developmental Biology, School of Life Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013, China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Zhi-Dong Wang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| | - Mao-Sheng Chen
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Xue-Qing Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Li-Ping Shen
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Jian-Xiang Zhang
- Department of Developmental Biology, School of Life Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013, China
| | - Ying Chen
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
17
|
Kutikhin AG, Yuzhalin AE, Tsitko EA, Brusina EB. Pattern recognition receptors and DNA repair: starting to put a jigsaw puzzle together. Front Immunol 2014; 5:343. [PMID: 25101085 PMCID: PMC4107940 DOI: 10.3389/fimmu.2014.00343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/05/2014] [Indexed: 01/26/2023] Open
Affiliation(s)
- Anton G Kutikhin
- Laboratory for Genomic Medicine, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases under the Siberian Branch of the Russian Academy of Medical Sciences , Kemerovo , Russia ; Department of Epidemiology, Kemerovo State Medical Academy , Kemerovo , Russia ; Central Research Laboratory, Kemerovo State Medical Academy , Kemerovo , Russia
| | - Arseniy E Yuzhalin
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford , Oxford , UK
| | - Eugene A Tsitko
- Department of Public Health, Kemerovo State Medical Academy , Kemerovo , Russia
| | - Elena B Brusina
- Department of Epidemiology, Kemerovo State Medical Academy , Kemerovo , Russia ; Laboratory for Homeostasis Research, Division of Diagnostics of Cardiovascular Diseases, Research Institute for Complex Issues of Cardiovascular Diseases under the Siberian Branch of the Russian Academy of Medical Sciences , Kemerovo , Russia
| |
Collapse
|
18
|
Fűri I, Sipos F, Spisák S, Kiszner G, Wichmann B, Schöller A, Tulassay Z, Műzes G, Molnár B. Association of self-DNA mediated TLR9-related gene, DNA methyltransferase, and cytokeratin protein expression alterations in HT29-cells to DNA fragment length and methylation status. ScientificWorldJournal 2013; 2013:293296. [PMID: 24459426 PMCID: PMC3891537 DOI: 10.1155/2013/293296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/18/2013] [Indexed: 02/08/2023] Open
Abstract
To understand the biologic role of self-DNA bound to Toll-like Receptor 9 (TLR9), we assayed its effect on gene and methyltransferase expressions and cell differentiation in HT29 cells. HT29 cells were incubated separately with type-1 (normally methylated/nonfragmented), type-2 (normally methylated/fragmented), type-3 (hypermethylated/nonfragmented), or type-4 (hypermethylated/fragmented) self-DNAs. Expression levels of TLR9-signaling and proinflammatory cytokine-related genes were assayed by qRT-PCR. Methyltransferase activity and cell differentiation were examined by using DNA methyltransferase (DNMT1, -3A, -3B) and cytokeratin (CK) antibodies. Treatment with type-1 DNA resulted in significant increase in TLR9 expression. Type-2 treatment resulted in the overexpression of TLR9-related signaling molecules (MYD88A, TRAF6) and the IL8 gene. In the case of type-3 treatment, significant overexpression of NFkB, IRAK2, and IL8 as well as downregulation of TRAF6 was detected. Using type-4 DNA, TRAF6 and MYD88A gene expression was upregulated, while MYD88B, IRAK2, IL8, and TNFSF10 were all underexpressed. CK expression was significantly higher only after type-1 DNA treatment. DNMT3A expression could also be induced by type-1 DNA treatment. DNA structure may play a significant role in activation of the TLR9-dependent and even independent proinflammatory pathways. There may be a molecular link between TLR9 signaling and DNMT3A. The mode of self-DNA treatment may influence HT29 cell differentiation.
Collapse
Affiliation(s)
- István Fűri
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Sándor Spisák
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Nádor Street 7, Budapest 1051, Hungary
| | - Gergő Kiszner
- 1st Department of Pathology and Experimental Oncology, Semmelweis University, Üllői Street 26, Budapest 1085, Hungary
| | - Barnabás Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Andrea Schöller
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Nádor Street 7, Budapest 1051, Hungary
| | - Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Béla Molnár
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Nádor Street 7, Budapest 1051, Hungary
| |
Collapse
|
19
|
Markowski P, Boehm O, Goelz L, Haesner AL, Ehrentraut H, Bauerfeld K, Tran N, Zacharowski K, Weisheit C, Langhoff P, Schwederski M, Hilbert T, Klaschik S, Hoeft A, Baumgarten G, Meyer R, Knuefermann P. Pre-conditioning with synthetic CpG-oligonucleotides attenuates myocardial ischemia/reperfusion injury via IL-10 up-regulation. Basic Res Cardiol 2013; 108:376. [PMID: 23929312 PMCID: PMC3778842 DOI: 10.1007/s00395-013-0376-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 07/18/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023]
Abstract
The aim of the study was to investigate whether pre-conditioning with CpG-oligodeoxynucleotides (CpG-ODN) may change cardiac ischemia/reperfusion (I/R)-dependent inflammation and modulates infarct size and cardiac performance. WT and TLR9-deficient mice were pre-treated with 1668-, 1612- and H154-thioate or D-Gal as control. Priming with 1668-thioate significantly induced inflammatory mediators in the serum and a concomitant increase of immune cells in the blood and spleen of WT mice. Furthermore, it induced myocardial pattern recognition receptors and pro-inflammatory cytokines peaking 2 h after priming and a continuous increase of IL-10. 16 h after pre-conditioning, myocardial ischemia was induced for 1 h. Infarct size determined after 24 h of I/R was reduced by 75 % due to pre-conditioning with 1668-thioate but not in the other groups. During reperfusion, cytokine expression in 1668-thioate primed mice increased further with IL-10 exceeding the other mediators by far. These changes were observed neither in animals pre-treated with 1612- or H154-thioate nor in TLR9-deficient mice. The 1668-thioate-dependent increase of IL-10 was further supported by results of a micro-array analysis 3 h after begin of reperfusion. Block of IL-10 signaling increased I/R size and prevented influence of priming. In the group pre-treated with 1668-thioate, cardiac function was preserved 24 h, 14 days and 28 days after I/R, whereas animals without pre-conditioning exhibited impaired heart function 24 h and 14 days after I/R. The excessive 1668-thioate-dependent IL-10 up-regulation during pre-conditioning and after I/R seems to be the key factor for reducing infarct size and improving cardiac function. This is in agreement with the finding that IL-10 block prevents cardioprotection by pre-conditioning.
Collapse
Affiliation(s)
- P Markowski
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol 2013; 4:114. [PMID: 23720661 PMCID: PMC3655441 DOI: 10.3389/fimmu.2013.00114] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022] Open
Abstract
Adjuvants are used in many vaccines, but their mechanisms of action are not fully understood. Studies from the past decade on adjuvant mechanisms are slowly revealing the secrets of adjuvant activity. In this review, we have summarized the recent progress in our understanding of the mechanisms of action of adjuvants. Adjuvants may act by a combination of various mechanisms including formation of depot, induction of cytokines and chemokines, recruitment of immune cells, enhancement of antigen uptake and presentation, and promoting antigen transport to draining lymph nodes. It appears that adjuvants activate innate immune responses to create a local immuno-competent environment at the injection site. Depending on the type of innate responses activated, adjuvants can alter the quality and quantity of adaptive immune responses. Understanding the mechanisms of action of adjuvants will provide critical information on how innate immunity influences the development of adaptive immunity, help in rational design of vaccines against various diseases, and can inform on adjuvant safety.
Collapse
Affiliation(s)
- Sunita Awate
- Vaccine and Infectious Disease Organization-International Vaccine Centre, School of Public Health, University of Saskatchewan Saskatoon, SK, Canada ; Vaccinology and Immunotherapeutics program, School of Public Health, University of Saskatchewan Saskatoon, SK, Canada
| | | | | |
Collapse
|
21
|
Abstract
Toll-like receptor (TLR) signaling is a well-characterized, innate immune cellular defense mechanism used to detect and respond to pathogen-associated molecular patterns (PAMPs). TLR signaling is highly conserved and has evolved to have both extracellular and endosomal receptors that recognize PAMPs from a wide range of microbial pathogens. Recent literature has emerged to show that activation of TLRs not only leads to the upregulation of cellular defense mechanisms, but also results in upregulation of DNA repair genes and increased functional DNA repair. Endosomal TLR agonists result in increased survival and repair after both ionizing and UV radiation, suggesting that the repair pathways for single- and double-strand breaks are affected. This review brings together these and other experimental findings to examine how DNA repair pathways may be linked to TLR signaling. Also discussed are the varied outcomes and related physiological implications that increased DNA repair after injury might have.
Collapse
Affiliation(s)
- Erin Harberts
- Department of Molecular Microbiology and Immunology, University of Maryland Medical School, Baltimore
| | - Anthony Gaspari
- Department of Molecular Microbiology and Immunology, University of Maryland Medical School, Baltimore
- Department of Dermatology, University of Maryland, Baltimore
| |
Collapse
|
22
|
Mastelic B, Kamath AT, Fontannaz P, Tougne C, Rochat AF, Belnoue E, Combescure C, Auderset F, Lambert PH, Tacchini-Cottier F, Siegrist CA. Environmental and T cell-intrinsic factors limit the expansion of neonatal follicular T helper cells but may be circumvented by specific adjuvants. THE JOURNAL OF IMMUNOLOGY 2012; 189:5764-72. [PMID: 23162125 DOI: 10.4049/jimmunol.1201143] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follicular Th (T(FH)) cells have emerged as a new Th subset providing help to B cells and supporting their differentiation into long-lived plasma cells or memory B cells. Their differentiation had not yet been investigated following neonatal immunization, which elicits delayed and limited germinal center (GC) responses. We demonstrate that neonatal immunization induces CXCR5(high)PD-1(high) CD4(+) T(FH) cells that exhibit T(FH) features (including Batf, Bcl6, c-Maf, ICOS, and IL-21 expression) and are able to migrate into the GCs. However, neonatal T(FH) cells fail to expand and to acquire a full-blown GC T(FH) phenotype, as reflected by a higher ratio of GC T(FH)/non-GC CD4(+) T cells in immunized adults than neonates (3.8 × 10(-3) versus 2.2 × 10(-3), p = 0.01). Following the adoptive transfer of naive adult OT-II CD4(+) T cells, OT-II T(FH) cells expand in the vaccine-draining lymph nodes of immunized adult but not infant recipients, whereas naive 2-wk-old CD4(+) OT-II cells failed to expand in adult hosts, reflecting the influence of both environmental and T cell-intrinsic factors. Postponing immunization to later in life increases the number of T(FH) cells in a stepwise manner, in direct correlation with the numbers of GC B cells and plasma cells elicited. Remarkably, adjuvantation with CpG oligonucleotides markedly increased GC T(FH) and GC B cell neonatal responses, up to adult levels. To our knowledge, this is the first demonstration that the T(FH) cell development limits early life GC responses and that adjuvants/delivery systems supporting T(FH) differentiation may restore adultlike early life GC B cell responses.
Collapse
Affiliation(s)
- Béatris Mastelic
- Department of Pathology-Immunology, World Health Organization Collaborating Center for Vaccinology and Neonatal Immunology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Velten M, Duerr GD, Pessies T, Schild J, Lohner R, Mersmann J, Dewald O, Zacharowski K, Klaschik S, Hilbert T, Hoeft A, Baumgarten G, Meyer R, Boehm O, Knuefermann P. Priming with synthetic oligonucleotides attenuates pressure overload-induced inflammation and cardiac hypertrophy in mice. Cardiovasc Res 2012; 96:422-32. [PMID: 22977006 DOI: 10.1093/cvr/cvs280] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Inflammation and Toll-like receptor (TLR) signalling have been linked to the development of cardiac hypertrophy following transverse aortic constriction (TAC). In the present study, we investigated whether pre-treatment with the synthetic TLR9 ligands 1668-thioate or 1612-thioate modulates the progression of TAC-induced cardiac inflammation and hypertrophy. METHODS AND RESULTS C57BL/6N-mice were pre-treated with 1668-thioate, 1612-thioate (0.25 nmol/g, i.p.), or phosphate-buffered saline 16 h prior to TAC or sham surgery. Heart-weight/body-weight ratio (HW/BW), cardiomyocyte cell size, cellular macrophage accumulation, myofibroblast differentiation, and collagen deposition were investigated for up to 28 days. Cardiac function was monitored using a pressure-volume catheter and M-mode echocardiography. Inflammatory gene expression in the heart was analysed via gene array, while the time course of mRNA expression of key inflammatory mediators was assessed via RT-qPCR. TAC increased the HW/BW ratio and cardiomyocyte cell size and induced macrophage accumulation, myofibroblast differentiation, and collagen deposition. These changes were accompanied by cardiac inflammation and a significant loss of left ventricular function. Pre-treatment with cytosine-phosphate-guanine (CpG)-containing 1668-thioate attenuated the inflammatory response, the progression of cardiac hypertrophy, and cardiac remodelling, which resulted in a prolonged preservation of left ventricular function. These changes were induced to a smaller extent by the use of the non-CG-containing oligodeoxynucleotide 1612-thioate. CONCLUSION Pre-treatment with 1668-thioate attenuated cardiac hypertrophy following pressure overload, possibly by modifying the hypertrophy-induced inflammatory response, thereby reducing cardiac growth and fibrosis as well as delaying loss of cardiac function.
Collapse
Affiliation(s)
- Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn D-53105, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kubo S, Yamada T, Osawa Y, Ito Y, Narita N, Fujieda S. Cytosine-phosphate-guanosine-DNA induces CD274 expression in human B cells and suppresses T helper type 2 cytokine production in pollen antigen-stimulated CD4-positive cells. Clin Exp Immunol 2012; 169:1-9. [PMID: 22670772 DOI: 10.1111/j.1365-2249.2012.04585.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Co-stimulatory molecules are important for regulating T cell activation and immune response. CD274 [programmed death ligand 1 (PD-L1), B7-H1] has emerged as an important immune modulator that can block T cell receptor signalling. We have investigated whether PD-L1 and other co-stimulatory ligands could be expressed in human B cells stimulated by cytosine-phosphate-guanosine (CpG)-DNA. CpG-DNA strongly induced the co-inhibitory molecule ligand, PD-L1, of human B cells. Results show that nuclear factor-kappa B (NF-κB) signalling is involved directly in CpG-DNA-induced PD-L1 expression in human B cells. We sought to determine the effect of CpG-DNA-treated B cells on T helper type 2 (Th2) cytokine production in Cry j 1 (Japanese pollen antigen)-stimulated human CD4-positive cells from patients with seasonal allergic rhinitis caused by Japanese cedar pollen. CpG-DNA-treated B cells reduced Cry j 1-induced interleukin (IL)-5 and IL-13 production in CD4-positive cells. When the binding of PD-1 to PD-L1 was inhibited by PD-1-immunoglobulin (Ig), this chimera molecule reversed the previously described reductions in IL-5 and IL-13 production. In contrast, the CpG B-treated B cells increased both interferon (IFN)-γ and IL-12 production in the presence of Cry j 1-stimulated CD4-positive cells. CpG-DNA simultaneously reduced the expression of B7RP-1 [also known as inducible co-stimulator ligand (ICOSL), B7-H2] and the ligand of CD30 (CD30L). These results indicate that CpG-DNA induces co-inhibitory molecule ligand PD-L1 expression in human B cells and PD-L1 can suppress Th2 cytokine production in Cry j 1-stimulated CD4-positive cells, while CpG-DNA increased Th1 cytokine production and reduced the expression of co-stimulatory molecule ligands that can promote Th2 inflammatory responses.
Collapse
Affiliation(s)
- S Kubo
- Department of Otorhinolaryngology, University of Fukui, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Steinhagen F, Meyer C, Tross D, Gursel M, Maeda T, Klaschik S, Klinman DM. Activation of type I interferon-dependent genes characterizes the "core response" induced by CpG DNA. J Leukoc Biol 2012; 92:775-85. [PMID: 22750547 DOI: 10.1189/jlb.1011522] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synthetic ODNs expressing CpG motifs trigger an innate immune response via TLR9. pDCs are major effectors of this response. Two structurally distinct classes of CpG ODNs have been identified that differentially activate pDCs. "K" ODNs trigger the production of TNF-α and IL-6, whereas "D" ODNs preferentially induce the secretion of IFN-α. As K and D ODNs have distinct therapeutic effects, knowledge of their shared and sequence-specific activity is of considerable importance. This work uses the CAL-1 human pDC line to analyze the effect of CpG stimulation on gene expression. Genes up-regulated by both K and D ODNs (n=92) were largely dependent on type I IFN signaling and characterized functionally by antiviral activity. K ODNs induced a short-term increase in IFN-α/β production and uniquely up-regulated genes that supported antibacterial responses. In contrast, D ODNs triggered a persistent increase in IFN-α/β production and uniquely up-regulated genes associated with metabolic functions. Thus, the core functionality of human pDCs mediated by TLR9 ligation rests on a type I IFN response that differs from the response induced by the structural elements unique to specific classes of ODNs.
Collapse
Affiliation(s)
- Folkert Steinhagen
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
The counter regulatory response induced by CpG oligonucleotides prevents bleomycin induced pneumopathy. Respir Res 2012; 13:47. [PMID: 22708497 PMCID: PMC3424146 DOI: 10.1186/1465-9921-13-47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/18/2012] [Indexed: 11/23/2022] Open
Abstract
Bleomycin (BLM) induces life-threatening pneumonitis and pulmonary fibrosis in 20% of patients, limiting its use as a chemotherapeutic agent. Oligonucleotides expressing immunostimulatory CpG motifs (CpG ODN) stimulate cells that express Toll-like receptor 9 to initiate an inflammatory response. This short-lived inflammation is physiologically suppressed by a counter-regulatory process that peaks five days later. Using a murine model of BLM-induced lung injury, the effect of CpG ODN treatment on pulmonary inflammation, fibrosis and mortality was examined. Administering CpG ODN 5 days before BLM (so that the peak of the counter-regulatory process induced by CpG ODN coincided with BLM delivery) resulted in a dose-dependent reduction in pulmonary toxicity (p < 0.005). Delaying the initiation of therapy until the day of or after BLM administration worsened the inflammatory process, consistent with the counter-regulatory process rather than initial pro-inflammatory response being critical to CpG induced protection. The protection afforded by CpG ODN correlated with reduced leukocyte accumulation and inflammatory cytokine/chemokine production in the lungs. These changes were associated with the increased production of IL-10, a critical element of the counter-regulatory process triggered by CpG ODN, and the concomitant down-regulation of BLM-induced IL-17A and TGF-β1 (which promote pulmonary toxicity). This work represents the first example of the physiologic counter-regulation of TLR induced immune activation being harnessed to block an unrelated inflammatory response.
Collapse
|
27
|
Yamada T, Saito H, Kimura Y, Kubo S, Sakashita M, Susuki D, Ito Y, Ogi K, Imoto Y, Fujieda S. CpG-DNA suppresses poly(I:C)-induced TSLP production in human laryngeal arytenoid fibroblasts. Cytokine 2011; 57:245-50. [PMID: 22154513 DOI: 10.1016/j.cyto.2011.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/28/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) exerts a marked influence on the polarization of dendritic cells to drive T helper (Th) 2 cytokine production, and has been linked to allergic airway diseases. Although TSLP is produced by airway epithelium, TSLP production in laryngeal arytenoid fibroblasts remains largely unexplored. We examined the effect of Toll-like receptor (TLR) ligands and the cross-talk that occurs among different TLR ligands on TSLP production in arytenoid fibroblasts. Since mRNA of TLR 2, 3, 4, and 9 has been found to be expressed in arytenoid fibroblasts, we examined the effect on its production of TLR ligands. TSLP production by arytenoid fibroblasts was strongly induced in the presence of polyinosinic-polycytidylic acid (poly(I:C)), a ligand of TLR3. Its production was synergistically induced in the presence of IL-4, to a level more than 100 times higher than that observed in the absence of poly(I:C) or IL-4. We also revealed that B type DNA containing CpG motifs (CpG-DNA) coding for a TLR9 ligand markedly suppressed both poly(I:C)-induced and poly(I:C)-plus-IL-4-induced TSLP production. B type CpG-DNA decreased the poly(I:C)-induced phosphorylation of c-Jun N-terminal kinase (JNK), and pre-incubation with SP600125 (inhibitor of JNK) reduced the poly(I:C)-induced TSLP-production. These results indicate that human arytenoid fibroblasts strongly induce TSLP production with stimulation by double-stranded RNA (dsRNA), which can be inhibited by CpG-DNA and participate in immune allergic responses.
Collapse
Affiliation(s)
- Takechiyo Yamada
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yamada T, Jiang X, Kubo S, Sakashita M, Narita N, Yamamoto H, Sunaga H, Fujieda S. B type CpG-DNA suppresses poly(I:C)-induced BLyS expression and production in human tonsillar fibroblasts. Clin Immunol 2011; 141:365-71. [PMID: 22015147 DOI: 10.1016/j.clim.2011.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Although B lymphocyte stimulator (BLyS) has potent costimulatory effects on B cells, the details of BLyS-expression in tonsillar fibroblasts remain unexplored. We examined the effect of the Toll-like receptor (TLR) ligands on BLyS-expression in human tonsillar fibroblasts as well as the crosstalk that occurs among different TLR ligands. The expression of BLyS mRNA by tonsillar fibroblasts was strongly induced in the presence of polyinosinic-polycytidylic acid (poly(I:C)) that is a ligand, of TLR3. We also revealed that DNA containing CpG motifs (CpG-DNA), coding for a TLR9 ligand, markedly suppressed the poly(I:C)-induced mRNA expression and protein production of BLyS. B type CpG-DNA decreased the poly(I:C)-induced phosphorylation of inhibitor kappa B alpha (IκBα) and its degradation. Pre-incubation with nuclear factor kappa B (NF-κB) signaling inhibitors reduced the poly(I:C)-induced BLyS-expression. These results indicate that human tonsillar fibroblasts strongly induce BLyS-expression and production that can be inhibited by CpG-DNA and regulated through NF-κB signaling.
Collapse
Affiliation(s)
- Takechiyo Yamada
- Department of Otorhinolaryngology, University of Fukui, Fukui, 910-1193, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Identification of novel innate immune genes by transcriptional profiling of macrophages stimulated with TLR ligands. Mol Immunol 2011; 48:1886-95. [PMID: 21665277 DOI: 10.1016/j.molimm.2011.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLRs) are key receptors in innate immunity and trigger responses following interaction with pathogen-associated molecular patterns (PAMPs). TLR3, TLR4 and TLR9 recognize double stranded RNA, lipopolysaccharide (LPS) and CpG DNA, respectively. These receptors differ importantly in downstream adaptor molecules. TLR4 signals through MyD88 and TRIF; in contrast, the TLR3 pathway involves only TRIF while TLR9 signals solely through MyD88. To determine how differences in downstream signaling could influence gene expression in innate immunity, gene expression patterns were determined for the RAW264.7 macrophage cell line stimulated with LPS, poly (I:C), or CpG DNA. Gene expression profiles 6 and 24h post-stimulation were analyzed to determine genes, pathways and transcriptional networks induced. As these experiments showed, the number and extent of genes expressed varied with stimulus. LPS and poly (I:C) induced an abundant array of genes in RAW264.7 cells at 6h and 24h following treatment while CpG DNA induced many fewer. By analyzing data for networks and pathways, we prioritized differentially expressed genes with respect to those common to the three TLR ligands as well as those shared by LPS and poly (I:C) but not CpG DNA. The importance of changes in gene expression was demonstrated by experiments indicating that RNA interference-mediated inhibition of two genes identified in this analysis, PLEC1 and TPST1, reduced IL-6 production by J774A.1 and RAW264.7 macrophages stimulated with LPS. Together, these findings delineate macrophage gene response patterns induced by different PAMPs and identify new genes that have not previously been implicated in innate immunity.
Collapse
|
30
|
Liu L, Shen L, Liu X, Yu Y, Li Y, Wang L, He C, Sun J, Li B. A safety study of a B-class CpG ODN in Sprague-Dawley rats. J Appl Toxicol 2011; 32:60-71. [PMID: 21538408 DOI: 10.1002/jat.1683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 02/10/2011] [Accepted: 02/26/2011] [Indexed: 12/29/2022]
Abstract
Oligodeoxynucleotides containing CpG motifs (CpG ODNs) are potent immune activators and are being tested as anti-tumor, antimicrobial agents and as adjuvants in vaccines. Little has been reported, however, about the systematic and comprehensive safety evaluation on repeated CpG ODN administration. To investigate the safety profile of a newly developed CpG ODN, CpG 684, we conducted a 28-day repeated dose toxicity study in rats, at dose levels of 5, 20 and 150 µg CpG 684 per rat. No abnormalities in clinical observations, growth, urinalysis and bone marrow cell counts were found in CpG 684 treated rats. CpG 684 was proved biologically active, capable of up-regulating the expressions of CD40 and CD86 molecules. The monocyte numbers were increased at the dose levels of 20 and 150 µg per rat. The spleen weights were increased in female rats at the dose level of 150 µg per rat. Microscopically, 5, 20 and 150 µg per rat CpG 684 caused local inflammatory cell infiltration and hyperplasia of fibrous tissue at injection sites; the treatment of 5 and 150 µg per rat CpG 684 induced enhanced inflammatory reaction in inguinal lymphoid tissue, and the dose of 150 µg per rat induced cell hyperplasia in white pulp of spleen and white pulp expansion. CpG 684 at 150 µg per rat led to decreases in peripheral lymphocyte, serum globulin, glucose, alkaline phosphatase and K+ levels in female rats, and induced the decrease in serum albumin and total protein in rats of both sexes. The data from this study will provide an important reference for developing CpG 684 as an adjuvant for vaccines of human use.
Collapse
Affiliation(s)
- Li Liu
- Department of Chinese Herbal Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines.
Collapse
Affiliation(s)
- Christian Bode
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Gan Zhao
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Folkert Steinhagen
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Takeshi Kinjo
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Dennis M Klinman
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review describes the pathophysiology of cellular and axonal injury in bacterial meningitis. RECENT FINDINGS Toll-like receptors have been recognized as important mediators for the initiation of the immune response within the central nervous system. Activation of microglial cells by bacterial products through these receptors increases their ability to phagocytose bacteria, but can also lead to destruction of neurons. The cholesterol-binding hemolysin pneumolysin has a direct toxic effect on neuronal cells. Adjuvant therapy with corticosteroids and glycerol improved the outcome of bacterial meningitis in clinical studies. SUMMARY Brain damage in bacterial meningitis leading to long-term neurologic sequelae and death is caused by several mechanisms. Bacterial invasion and the release of bacterial compounds promote inflammation, invasion of leukocytes and stimulation of microglia. Leukocytes, macrophages and microglia release free radicals, proteases, cytokines and excitatory amino acids, finally leading to energy failure and cell death. Vasculitis, focal ischemia and brain edema subsequent to an increase in cerebrospinal fluid outflow resistance, breakdown of the blood-brain barrier and swelling of necrotic cells cause secondary brain damage.
Collapse
|