1
|
Gao P, Tang K, Lu Y, Wang M, Wang W, Wang T, Sun Y, Zhao J, Mao Y. Increased expression of ficolin-1 is associated with airway obstruction in asthma. BMC Pulm Med 2023; 23:470. [PMID: 37996869 PMCID: PMC10668451 DOI: 10.1186/s12890-023-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The activated complement cascade is involved in asthmatic airway inflammation. Ficolins are essential for innate immunity and can activate the complement lectin pathway. Despite this, the significance of ficolins in asthma has yet to be determined. This study aimed to explore the presence of ficolins in individuals with asthma and to determine the relationship between ficolins and clinical characteristics. METHODS For the study, 68 asthmatic patients and 30 healthy control subjects were recruited. Enzyme-linked immunosorbent assay was used to determine plasma ficolin-1, ficolin-2, and ficolin-3 concentrations both before and after inhaled corticosteroid (ICS) therapy. Further, the associations of plasma ficolin-1 level with pulmonary function and asthma control questionnaire (ACQ) score were examined in the asthma patients. RESULTS Patients with asthma exhibited significantly elevated plasma ficolin-1 levels (median, 493.9 ng/mL; IQR, 330.2-717.8 ng/mL) in comparison to healthy controls (median, 330.6 ng/mL; IQR, 233.8-371.1 ng/mL). After ICS treatment, plasma ficolin-1 (median, 518.1 ng/mL; IQR, 330.2-727.0 ng/mL) in asthmatic patients was significantly reduced (median, 374.7 ng/mL; IQR, 254.8-562.5 ng/mL). Additionally, ficolin-1 expressions in plasma were significantly correlated with pulmonary function parameters and ACQ score in asthmatic patients. Asthma patients with higher plasma ficolin-1 levels demonstrated poorer lung function than those with lower plasma ficolin-1 levels. CONCLUSIONS The results revealed that asthmatic patients had higher plasma ficolin-1 concentrations, which decreased after ICS treatment and were linked to their lung function, implying a potential involvement of ficolin-1 in asthma pathogenesis.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China.
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Kun Tang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tongsheng Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuxia Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yimin Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
2
|
Chen X, Gao Y, Xie J, Hua H, Pan C, Huang J, Jing M, Chen X, Xu C, Gao Y, Li P. Identification of FCN1 as a novel macrophage infiltration-associated biomarker for diagnosis of pediatric inflammatory bowel diseases. J Transl Med 2023; 21:203. [PMID: 36932401 PMCID: PMC10022188 DOI: 10.1186/s12967-023-04038-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The incidence of pediatric inflammatory bowel disease (PIBD) has been steadily increasing globally. Delayed diagnosis of PIBD increases the risk of complications and contributes to growth retardation. To improve long-term outcomes, there is a pressing need to identify novel markers for early diagnosis of PIBD. METHODS The candidate biomarkers for PIBD were identified from the GSE117993 dataset by two machine learning algorithms, namely LASSO and mSVM-RFE, and externally validated in the GSE126124 dataset and our PIBD cohort. The role of ficolin-1 (FCN1) in PIBD and its association with macrophage infiltration was investigated using the CIBERSORT method and enrichment analysis of the single-cell dataset GSE121380, and further validated using immunoblotting, qRT-PCR, and immunostaining in colon biopsies from PIBD patients, a juvenile murine DSS-induced colitis model, and THP-1-derived macrophages. RESULTS FCN1 showed great diagnostic performance for PIBD in an independent clinical cohort with the AUC of 0.986. FCN1 expression was upregulated in both colorectal biopsies and blood samples from PIBD patients. Functionally, FCN1 was associated with immune-related processes in the colonic mucosa of PIBD patients, and correlated with increased proinflammatory M1 macrophage infiltration. Furthermore, single-cell transcriptome analysis and immunostaining revealed that FCN1 was almost exclusively expressed in macrophages infiltrating the colonic mucosa of PIBD patients, and these FCN1+ macrophages were related to hyper-inflammation. Notably, proinflammatory M1 macrophages derived from THP-1 expressed high levels of FCN1 and IL-1β, and FCN1 overexpression in THP-1-derived macrophages strongly promoted LPS-induced activation of the proinflammatory cytokine IL-1β via the NLRP3-caspase-1 axis. CONCLUSIONS FCN1 is a novel and promising diagnostic biomarker for PIBD. FCN1+ macrophages enriched in the colonic mucosa of PIBD exhibit proinflammatory phenotypes, and FCN1 promotes IL-1β maturation in macrophages via the NLRP3-caspase-1 axis.
Collapse
Affiliation(s)
- Xixi Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Yuanqi Gao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Jinfang Xie
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Huiying Hua
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Chun Pan
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Mengxia Jing
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Xuehua Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China.
| | - Yujing Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Er Rd.197, Shanghai, 200025, China.
| |
Collapse
|
3
|
Tanio M. Calcium-dependent reversible coaggregation activity of C-reactive protein and M-ficolin. Mol Immunol 2022; 149:157-164. [PMID: 35841688 DOI: 10.1016/j.molimm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
C-reactive protein (CRP) and M-ficolin are the pattern recognition proteins of the innate immune system. In this report, a mixture of CRP and M-ficolin reversibly co-aggregated in a calcium-dependent manner. This coaggregation was enhanced at low pH (6.5) or low salt (35 mM NaCl) concentrations. The co-aggregate was dissolved by adding EDTA and reformed by adding calcium. The M-ficolin fibrinogen-like domain (FD1), the ligand-binding domain of M-ficolin, also showed calcium-dependent coaggregation with CRP, indicating that reversible coaggregation is caused by CRP interacting with FD1. Interestingly, adding phosphocholine (PC), the ligand of CRP, to a CRP-FD1 mixture abolished the reversible coaggregation activity. PC also inhibited the interaction between CRP and FD1. These results indicate that CRP retains PC-binding activity in the coaggregation state and that FD1 binds specifically to the PC-binding site on CRP but does not fully occupy the five PC-binding sites on a CRP pentamer as judged by SDS-PAGE analysis of precipitates. Coaggregation analysis using FD1 mutants showed that FD1 also retains ligand-binding activity in the coaggregation state and that coaggregation requires the trimeric form of FD1. It was also found that modifications to the ligand-binding site of FD1 affect coaggregation efficiency. Although the biological functions of the coaggregation activity of CRP and M-ficolin remain unresolved, the co-aggregates may function as bacteria-trapping particles with affinities for ligands of CRP and M-ficolin. In addition, coaggregation may be involved in CRP deposition in the lesions of several arterial diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Michikazu Tanio
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Musashimurayama-city, Tokyo 208-0011, Japan.
| |
Collapse
|
4
|
Comparative Transcriptome Analysis on the Regulatory Mechanism of Thoracic Ganglia in Eriocheir sinensis at Post-Molt and Inter-Molt Stages. Life (Basel) 2022; 12:life12081181. [PMID: 36013360 PMCID: PMC9409648 DOI: 10.3390/life12081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Eriocheir sinensis is an aquatic species found distributed worldwide. It is found in the Yangtze River of China, where the commercial fishing of this valuable catadromous aquatic species has been banned. As an important member of the phylum Arthropoda, E. sinensis grows by molting over its whole lifespan. The central nervous system of Eriocheir sinensis plays an important regulatory role in molting growth. Nevertheless, there are no reports on the regulatory mechanisms of the nervous system in E. sinensis during the molting cycle. In this study, a comparative transcriptome analysis of E. sinensis thoracic ganglia at post-molt and inter-molt stages was carried out for the first time to reveal the key regulatory pathways and functional genes operating at the post-molt stage. The results indicate that pathways and regulatory genes related to carapace development, tissue regeneration, glycolysis and lipolysis and immune and anti-stress responses were significantly differentially expressed at the post-molt stage. The results of this study lay a theoretical foundation for research on the regulatory network of the E. sinensis nervous system during the post-molt developmental period. Detailed knowledge of the regulatory network involved in E. sinensis molting can be used as a basis for breeding improved E. sinensis species, recovery of the wild E. sinensis population and prosperous development of the E. sinensis artificial breeding industry.
Collapse
|
5
|
Lenfant L, Cancel-Tassin G, Gazut S, Compérat E, Rouprêt M, Cussenot O. Genetic variability in 13q33 and 9q34 is linked to aggressiveness patterns and a higher risk of progression of non-muscle-invasive bladder cancer at the time of diagnosis. BJU Int 2020; 127:375-383. [PMID: 32975901 DOI: 10.1111/bju.15254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify single nucleotide polymorphisms (SNPs) associated with patterns of aggressiveness of non-muscle-invasive bladder cancer (NMIBC). PATIENTS AND METHODS From January 2011 to December 2018, 476 patients with NMIBC were prospectively included. The first step aimed to identify SNPs associated with aggressiveness patterns (e.g. ≥pT1or high-grade/Grade 3 or presence of carcinoma in situ) by analysing the data of a genome-wide association study (GWAS) on 165 patients with BC. The second step aimed to validate the SNPs previously identified, by genotyping the germline DNA of 311 patients with NMIBC. RESULTS Overall, the median (interquartile range) age was 66 (58-75) years and the rate of patients with aggressive NMIBC was comparable between both groups (46% vs 46%, P = 1). GWAS data analysis identified four SNPs associated with an aggressive NMIBC (rs12615669, rs4976845, rs2989734, and rs2802288). In the validation cohort, the genotype CC of rs12615669, as well as age >70 years at the time of diagnosis were associated with aggressive NMIBC (P = 0.008 and P < 0.001, respectively). Genotyping of the entire cohort showed an association between aggressive NMIBC and the T allele of rs12615669 (P = 0.0007), the A allele of rs4976845 (P = 0.012), and the A allele of rs2989734 (P = 0.007). A significant association was also found for the entire cohort between the risk of progression and the A allele of rs4976845 (P = 0.04). CONCLUSION This two-phase study identified three SNPs (rs12615669, rs4976845, and rs2989734) associated with aggressive NMIBC and one SNP (rs4976845) associated with a higher risk of progression.
Collapse
Affiliation(s)
- Louis Lenfant
- GRC n°5 Predictive Onco-Urology, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.,GRC n°5 Predictive Onco-Urology, AP-HP, Tenon Hospital, Sorbonne University, Paris, France
| | - Geraldine Cancel-Tassin
- GRC n°5 Predictive Onco-Urology, AP-HP, Tenon Hospital, Sorbonne University, Paris, France.,CeRePP, Paris, France
| | | | - Eva Compérat
- GRC n°5 Predictive Onco-Urology, AP-HP, Tenon Hospital, Sorbonne University, Paris, France.,CeRePP, Paris, France
| | - Morgan Rouprêt
- GRC n°5 Predictive Onco-Urology, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.,CeRePP, Paris, France
| | - Olivier Cussenot
- GRC n°5 Predictive Onco-Urology, AP-HP, Tenon Hospital, Sorbonne University, Paris, France.,CeRePP, Paris, France
| |
Collapse
|
6
|
Elkoumi MA, Abdellatif SH, Mohamed FY, Sherif AH, Elashkar SSA, Saleh RM, Boraey NF, Abdelaal NM, Akeel NE, Elhewala AA, Mosbah AA, Zakaria MT, Soliman MM, Salah A, Sedky YM, Sobieh AA, Mashali MH, Waked NM, Elshreif AM, Hafez SF, Hashem MIA, Shehab MM, Soliman AA, Emam AA, Ahmed AAA, Fahim MS, Elshehawy NA, Abdel-Aziz MM, Abdou AM, El-Shehawy AA, Youssef MAA, Fahmy DS, Malek MM, Osman SF, Ibrahim MAM, Alanwar MI, Zeidan NMS. Ficolin-1 gene (FCN1) -144 C/A polymorphism is associated with adverse outcome of severe pneumonia in the under-five Egyptian children: A multicenter study. Pediatr Pulmonol 2020; 55:1175-1183. [PMID: 32142211 DOI: 10.1002/ppul.24719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pneumonia is the foremost cause of child death worldwide. M-ficolin is encoded by the FCN1 gene and represents a novel link between innate and adaptive immunity. OBJECTIVES To investigate the FCN1 -144 C/A (rs10117466) polymorphism as a potential marker for pneumonia severity and adverse outcome namely complications or mortality in the under-five Egyptian children. METHODS This was a prospective multicenter study that included 620 children hospitalized with World Health Organization-defined severe pneumonia and 620 matched healthy control children. Polymorphism rs10117466 of the FCN1 gene promoter was analyzed by PCR-SSP, while serum M-ficolin levels were assessed by ELISA. RESULTS The FCN1 A/A genotype and A allele at the -144 position were more frequently observed in patients compared to the control children (43.4% vs 27.6%; odds ratio [OR]: 1.62; [95% confidence interval {CI}: 1.18-2.2]; for the A/A genotype) and (60.8% vs 52.5%; OR: 1.4; [95% CI: 1.19-1.65]; for the A allele); P < .01. The FCN1 -144 A/A homozygous patients had significantly higher serum M-ficolin concentrations (mean: 1844 ± 396 ng/mL) compared with those carrying the C/C or C/A genotype (mean: 857 ± 278 and 1073 ± 323 ng/mL, respectively; P = .002). FCN1 -144 A/A genotype was an independent risk factor for adverse outcomes in children with severe pneumonia (adjusted OR = 4.85, [95% CI: 2.96-10.25]; P = .01). CONCLUSION The FCN1 A/A genotype at the -144 position was associated with high M-ficolin serum levels and possibly contributes to enhanced inflammatory response resulting in the adverse outcome of pneumonia in the under-five Egyptian children.
Collapse
Affiliation(s)
- Mohamed A Elkoumi
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sawsan H Abdellatif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Faisal Y Mohamed
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed H Sherif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa S A Elashkar
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabab M Saleh
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Naglaa F Boraey
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - NourEldin M Abdelaal
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nagwa E Akeel
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Elhewala
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira A Mosbah
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mervat T Zakaria
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohammed M Soliman
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Salah
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Yasser M Sedky
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Alaa A Sobieh
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohamed H Mashali
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nevin M Waked
- Department of Pediatrics, Faculty of Medicine, October 6 University, Cairo, Egypt
| | - Anas M Elshreif
- Department of Pediatrics, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Sahbaa F Hafez
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mustafa I A Hashem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Shehab
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attia A Soliman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Emam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Mohamed S Fahim
- Department of Anathesia, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Naglaa A Elshehawy
- Department of Anathesia, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Marwa M Abdel-Aziz
- Department of Anathesia, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Adel M Abdou
- Department of Clinical pathology, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Ahmed A El-Shehawy
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Manal A A Youssef
- Department of Rheumatology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia S Fahmy
- Department of Rheumatology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mai M Malek
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherif F Osman
- Department of Radiology, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| | - Mohamed A M Ibrahim
- Department of Clinical pathology, Faculty of Medicine, Sohag University, Egypt
| | - Mohamed I Alanwar
- Department of Cardiothoracic surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nancy M S Zeidan
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Mannan-Binding Lectin Regulates Inflammatory Cytokine Production, Proliferation, and Cytotoxicity of Human Peripheral Natural Killer Cells. Mediators Inflamm 2019; 2019:6738286. [PMID: 31915415 PMCID: PMC6930792 DOI: 10.1155/2019/6738286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells represent the founding members of innate lymphoid cells (ILC) and play critical roles in inflammation and the immune response. NK cell effector functions are regulated and fine-tuned by various immune modulators. Mannan (or mannose)-binding lectin (MBL), a soluble C-type lectin, is traditionally recognized as an initiator of the complement pathway. Recently, it is also considered as an immunomodulator by its interaction with kinds of immune cells. However, the effect of MBL on NK cell function remains unexplored. In this study, we found that human plasma MBL could interact directly with peripheral NK cells partially via its collagen-like region (CLR). This MBL binding markedly suppressed the interleukin-2- (IL-2-) induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) production but increased the IL-10 production in NK cells. In addition, the expression of activation surface markers such as CD25 and CD69 declined after MBL treatment. Also, MBL impaired the proliferation and lymphokine-activated killing (LAK) of NK cells. Moreover, we demonstrated that MBL inhibited IL-2-induced signal transducers and activators of transcription 5 (STAT5) activation in NK cells. In conclusion, we have uncovered a far unknown regulatory role of MBL on NK cells, a new clue that could be important in the immunomodulatory networks of immune responses.
Collapse
|
8
|
Nicola F, Loriano B. Morula cells as key hemocytes of the lectin pathway of complement activation in the colonial tunicate Botryllus schlosseri. FISH & SHELLFISH IMMUNOLOGY 2017; 63:157-164. [PMID: 28189764 DOI: 10.1016/j.fsi.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The complement system is deeply rooted in the evolution of humoral mechanism of innate immunity. In addition to the alternative pathway of complement activation, lectins and associated serine proteases exert important roles in the recognition of non-self and activation of the effectors. In the colonial tunicate Botryllus schlosseri, we identified, characterized and studied the expression of three orthologues of genes involved in the lectin pathway of complement activation of vertebrates, i.e., genes for a mannose-binding lectin (MBL), a ficolin and a mannose-associated serine protease 1 (MASP1). All the genes are transcribed by hemocytes, and specifically by morula cells, the same immunocytes responsible for the transcription of C3 and Bf orthologues. The transcription levels of MASP1 and ficolin orthologues are not affected by zymosan challenge, indicating a constitutive expression of complement system associated serine proteases, whereas the MBL orthologue is up-regulated after 15 min of zymosan exposure. Collectively, our data suggest the presence of a complete lectin activation pathway in Botryllus.
Collapse
Affiliation(s)
- Franchi Nicola
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100, Padova, Italy.
| | - Ballarin Loriano
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100, Padova, Italy
| |
Collapse
|
9
|
Arnold N, Girke T, Sureshchandra S, Nguyen C, Rais M, Messaoudi I. Genomic and functional analysis of the host response to acute simian varicella infection in the lung. Sci Rep 2016; 6:34164. [PMID: 27677639 PMCID: PMC5039758 DOI: 10.1038/srep34164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023] Open
Abstract
Varicella Zoster Virus (VZV) is the causative agent of varicella and herpes zoster. Although it is well established that VZV is transmitted via the respiratory route, the host-pathogen interactions during acute VZV infection in the lungs remain poorly understood due to limited access to clinical samples. To address these gaps in our knowledge, we leveraged a nonhuman primate model of VZV infection where rhesus macaques are intrabronchially challenged with the closely related Simian Varicella Virus (SVV). Acute infection is characterized by immune infiltration of the lung airways, a significant up-regulation of genes involved in antiviral-immunity, and a down-regulation of genes involved in lung development. This is followed by a decrease in viral loads and increased expression of genes associated with cell cycle and tissue repair. These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California-Riverside, CA, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California-Riverside, CA, USA
| | - Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, CA, USA
| | - Christina Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| | - Ilhem Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, CA, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
10
|
Chen Q, Bai S, Dong C. A fibrinogen-related protein identified from hepatopancreas of crayfish is a potential pattern recognition receptor. FISH & SHELLFISH IMMUNOLOGY 2016; 56:349-357. [PMID: 27417229 DOI: 10.1016/j.fsi.2016.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/30/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Fibrinogen-related protein (FREP) family is a large group of proteins containing fibrinogen-like (FBG) domain and plays multiple physiological roles in animals. However, their immune functions in crayfish are not fully explored. In the present study, a novel fibrinogen-like protein (designated as PcFBN1) was identified and characterized from hepatopancreas of red swamp crayfish Procambarus clarkii. The cDNA sequence of PcFBN1 contains an open reading frame (ORF) of 1353 bp encoding a protein of 450 amino acids. Sequence and structural analysis indicated that PcFBN1 contains an FBG domain in C-terminal and a putative signal peptide of 19 amino acids in N-terminal. Semi-quantitative PCR revealed that the main expression of PcFBN1 was observed in hepatopancreas and hemocyte. Temporal expression analysis exhibited that PcFBN1 expression could be significantly induced by heat-killed Aeromonas hydrophila. Tissue distribution and temporal change of PcFBN1 suggested that PcFBN1 may be involved in immune responses of red swamp crayfish. Recombinant PcFBN1 protein binds and agglutinates both gram-negative bacteria Escherichia coli and gram-positive bacteria Micrococcus lysodeikticus. Moreover, binding and agglutination is Ca(2+) dependent. Further analysis indicated that PcFBN1 recognizes some acetyl group-containing substance LPS and PGN. RNAi experiment revealed that PcFBN1 is required for bacterial clearance and survival from A. hydrophila infection. Reduction of PcFBN1 expression significantly decreased the survival and enhanced the number of A. hydrophila in the hemolymph. These results indicated that PcFBN1 plays an important role in the innate immunity of red swamp crayfish as a potential pattern recognition receptor.
Collapse
Affiliation(s)
- Qiming Chen
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Suhua Bai
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Chaohua Dong
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Early responses of silkworm midgut to microsporidium infection – A Digital Gene Expression analysis. J Invertebr Pathol 2015; 124:6-14. [DOI: 10.1016/j.jip.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023]
|
12
|
Hein E, Garred P. The Lectin Pathway of Complement and Biocompatibility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:77-92. [PMID: 26306444 DOI: 10.1007/978-3-319-18603-0_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In modern health technologies the use of biomaterials in the form of stents, haemodialysis tubes, artificial implants, bypass circuits etc. is rapidly expanding. The exposure of synthetic, foreign surfaces to the blood and tissue of the host, calls for strict biocompatibility in respect to contact activation, the coagulation system and the complement system. The complement system is an important part of the initial immune response and consists of fluid phase molecules in the blood stream. Three different activation pathways can initiate the complement system, the lectin, the classical and the alternative pathway, all converging in an amplification loop of the cascade system and downstream reactions. Thus, when exposed to foreign substances complement components will be activated and lead to a powerful inflammatory response. Biosurface induced complement activation is a recognised issue that has been broadly documented. However, the specific role of lectin pathway and the pattern recognition molecules initiating the pathway has only been transiently investigated. Here we review the current data on the field.
Collapse
Affiliation(s)
- Estrid Hein
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen O, Denmark
| | | |
Collapse
|