1
|
Zuo M, Du J, Liu Y, Chen M, Liu B, Li G, Li M, Huang S, Yu G. Deletion of the gsk-3β (Glycogen synthase kinase-3β) in zebrafish results in decreased susceptibility to Aeromonas hydrophila. Microb Pathog 2025; 198:107129. [PMID: 39557225 DOI: 10.1016/j.micpath.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Aeromonas hydrophila is a significant pathogen in the field of fish farming, resulting in substantial financial losses for the aquaculture industry. As the pathogen's resistance to commercially available antibiotics continues to rise, the identification of novel antimicrobial strategies becomes increasingly crucial. This study aims to explore the modulatory impact of gsk-3β (Glycogen synthase kinase-3β) on the intrinsic immunity against Aeromonas hydrophila in zebrafish, with the objective of uncovering a new avenue for enhancing fish antimicrobial activity through gene editing. Our investigation involved an analysis of the evolutionary patterns and protein sequence of gsk-3β, elucidating its conserved characteristics in zebrafish and fish species of economic importance. In this research, CRISPR-Cas9 technology was employed to generate a zebrafish model with a knockout of gsk-3β, resulting in a decreased resistance of zebrafish to Aeromonas hydrophila (ATCC 7966) infection. Furthermore, we conducted preliminary investigations into the potential mechanisms through which gsk-3β governs antimicrobial immunity. Our findings revealed that knockout of gsk-3β resulted in diminished activation of innate immunity, antioxidant capacity, and autophagy. Hence, the findings of this study are highly significant in improving the economic benefits of aquaculture and in effectively preventing and controlling infection caused by Aeromonas hydrophila.
Collapse
Affiliation(s)
- Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Juan Du
- Institute of Maternal and Child Health, Wuhan Children' s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, Hubei, People's Republic of China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
2
|
Lin S, Luo Y, Mao X, He W, Xu C, Zeng M. Homeobox B4 optimizes the therapeutic effect of bone marrow mesenchymal stem cells on endotoxin-associated acute lung injury in rats. Am J Med Sci 2024; 368:242-252. [PMID: 38795966 DOI: 10.1016/j.amjms.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Alveolar capillary endothelial cell (EC) injury has a pivotal role in driving acute respiratory distress syndrome (ARDS) progression and maintaining endothelial homeostasis. A previous ex vivo study revealed that overexpression of homeobox B4 (HOXB4) in bone marrow mesenchymal stem cells (BMSCs) enhanced protection against lipopolysaccharide (LPS)-induced EC injury by activating the Wnt/β-catenin pathway. This in vivo study was performed to verify whether BMSCs overexpressing HOXB4 exert similar protective effects on LPS-induced acute lung injury (ALI) in an animal model. METHODS The ALI rat model was established by intraperitoneal injection of LPS. Wildtype BMSCs or BMSCs overexpressing HOXB4 were then injected via the tail vein. The lung characteristics of rats were visualized by computed tomography. Lung histopathological characteristics and collagen deposition were assessed by hematoxylin-eosin and Masson's staining, respectively, which were combined with the lung wet/dry ratio and proinflammatory factor levels in bronchoalveolar lavage fluid to further evaluate therapeutic effects. Expression of β-catenin and VE-cadherin was assessed by western blotting and immunofluorescence. RESULTS Compared with wildtype BMSCs, overexpression of HOXB4 optimized the therapeutic effects of BMSCs, which manifested as improvements in lung exudation and histopathological features, reduced lung collagen deposition, amelioration of lung permeability, attenuation of lung inflammation, and enhanced expression of β-catenin and VE-cadherin proteins. CONCLUSIONS HOXB4-overexpressing BMSCs optimized the protective effect against LPS-induced ALI by partially activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| |
Collapse
|
3
|
Jiang Z, Zhou W, Tian X, Zou P, Li N, Zhang C, Li Y, Liu G. A Protective Role of Canonical Wnt/ β-Catenin Pathway in Pathogenic Bacteria-Induced Inflammatory Responses. Mediators Inflamm 2024; 2024:8869510. [PMID: 38445290 PMCID: PMC10914433 DOI: 10.1155/2024/8869510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/β-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/β-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/β-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.
Collapse
Affiliation(s)
- Zhongjia Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
| | - Weiping Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Xing Tian
- Department of Physiology, Shenyang Medical College, Shenyang 110034, China
| | - Peng Zou
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Chunmeng Zhang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Yanting Li
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Guangyan Liu
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
4
|
Hu T, Xu L, Jiang M, Zhang F, Li Q, Li Z, Wu C, Ding J, Li F, Wang J. N6-methyladenosine-methylomic landscape of lung tissues of mice with chronic obstructive pulmonary disease. Front Immunol 2023; 14:1137195. [PMID: 37056763 PMCID: PMC10088907 DOI: 10.3389/fimmu.2023.1137195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a common respiratory disease, can be divided into stable phase and acute exacerbation phase (AECOPD) and is characterized by inflammation and hyper-immunity. Methylation of N6-methyladenosine (m6A) is an epigenetic modification that regulates the expression and functions of genes by influencing post-transcriptional RNA modifications. Its influence on the immune regulation mechanism has attracted great attention. Herein, we present the m6Amethylomic landscape and observe how the methylation of m6A participates in the pathological process of COPD. The m6A modification of 430 genes increased and that of 3995 genes decreased in the lung tissues of mice with stable COPD. The lung tissues of mice with AECOPD exhibited 740 genes with hypermethylated m6A peak and 1373 genes with low m6A peak. These differentially methylated genes participated in signaling pathways related to immune functions. To further clarify the expression levels of differentially methylated genes, RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-sequencing data were jointly analyzed. In the stable COPD group, 119 hypermethylated mRNAs (82 upregulated and 37 downregulated mRNAs) and 867 hypomethylated mRNAs (419 upregulated and 448 downregulated mRNAs) were differentially expressed. In the AECOPD group, 87 hypermethylated mRNAs (71 upregulated and 16 downregulated mRNAs) and 358 hypomethylated mRNAs (115 upregulated and 243 downregulated mRNAs) showed differential expression. Many mRNAs were related to immune function and inflammation. Together, this study provides important evidence on the role of RNA methylation of m6A in COPD.
Collapse
Affiliation(s)
- Tingting Hu
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Lijuan Xu
- Fourth Clinical Medical College, Xinjiang Medical University, Ürümqi, China
| | - Min Jiang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qifeng Li
- Xinjiang Institute of Pediatrics, Children’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhiwei Li
- Clinical Laboratory Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Chao Wu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Fengsen Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
- *Correspondence: Jing Wang,
| |
Collapse
|
5
|
Multifaceted Defects in Monocytes in Different Phases of Chronic Hepatitis B Virus Infection: Lack of Restoration after Antiviral Therapy. Microbiol Spectr 2022; 10:e0193922. [PMID: 36445121 PMCID: PMC9769680 DOI: 10.1128/spectrum.01939-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Monocytes play an important role in the control of microbial infection, but monocyte biology during chronic hepatitis B virus (HBV) infection (CHI) remains inadequately studied. We investigated the frequency, phenotype, and functions of monocyte subsets in different phases of CHI, namely, immune tolerance (IT), hepatitis B early antigen (HBeAg)-positive/HBeAg-negative chronic hepatitis B (EP-/EN-CHB, respectively), and inactive carrier (IC), identified factors responsible for their functional alterations, and determined the impact of antiviral therapy on these cells. Flow cytometric analysis indicated that HLA-DR+ CD14++ CD16- classical monocytes were significantly reduced while HLA-DR+ CD14++ CD16+ intermediate and HLA-DR+ CD14+ CD16++ nonclassical monocytes were expanded in IT and EP-/EN-CHB compared with those in IC and healthy controls (HC). In comparison to IC/HC, monocytes in IT and CHB exhibited diminished expression of Toll-like receptor 2 (TLR-2)/TLR-4/TLR-9 and cytokines interleukin-12 (IL-12)/tumor necrosis factor alpha (TNF-α)/IL-6 but produced higher levels of IL-10/transforming growth factor β (TGF-β). Further, monocytes in CHB/IT showed impaired phagocytosis and oxidative response relative to those in IC/HC. In vitro assays indicated that high titers of hepatitis B surface antigen (HBsAg) present in IT/CHB and of IL-4 in CHB triggered the functional defects in monocytes via induction of β-catenin. Additionally, monocyte-derived M1 macrophages of CHB/IT produced fewer proinflammatory and more anti-inflammatory cytokines than those of IC/HC, while in CHB/IT, the monocytes skewed the differentiation of CD4+ T cells more toward regulatory T cells and a Th2 phenotype. Moreover, monocytes in CHB and IT overexpressed chemokine receptor CCR2, which coincided with increased intrahepatic accumulation of β-catenin+ CD14+ cells. One year of tenofovir therapy failed to normalize monocyte functions or reduce serum HBsAg/IL-4 levels. Taken together, monocytes are functionally perturbed mostly in IT and EP-/EN-CHB phases. Targeting intramonocytic β-catenin or reducing HBsAg/IL-4 levels might restore monocyte function and facilitate viral clearance. IMPORTANCE Chronic HBV infection (CHI) is a major cause of end-stage liver disease for which pharmacological treatments currently available are inadequate. Chronically HBV-infected patients fail to mount an efficient immune response to the virus, impeding viral clearance and recovery from hepatitis. Monocytes represent a central part of innate immunity, but a comprehensive understanding on monocyte involvement in CHI is still lacking. We here report a multitude of defects in monocytes in chronically HBV-infected patients that include alteration in subset distribution, Toll-like receptor expression, cytokine production, phagocytic activity, oxidative response, migratory ability, polarization of monocyte-derived macrophages, and monocyte-T-cell interaction. We demonstrated that high levels of hepatitis B virus surface antigen and IL-4 potentiate these defects in monocytes via β-catenin induction while therapy with the nucleotide analog tenofovir fails to restore monocyte function. Our findings add to the continuing effort to devise new immunotherapeutic strategies that could reverse the immune defects in CHI.
Collapse
|
6
|
Ma N, Chen X, Johnston LJ, Ma X. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. IMETA 2022; 1:e54. [PMID: 38867904 PMCID: PMC10989768 DOI: 10.1002/imt2.54] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/14/2024]
Abstract
Intestinal epithelium undergoes rapid cellular turnover, relying on the local niche, to support intestinal stem cells (ISCs) function and self-renewal. Research into the association between ISCs and disease continues to expand at a rapid rate. However, the detailed interaction of ISCs and gut microbes remains to be elucidated. Thus, this review witnessed major advances in the crosstalk between ISCs and gut microbes, delivering key insights into (1) construction of ISC niche and molecular mechanism of how to jointly govern epithelial homeostasis and protect against intestinal diseases with the participation of Wnt, bone morphogenetic protein, and Notch; (2) differentiation fate of ISCs affect the gut microbiota. Meanwhile, the presence of intestinal microbes also regulates ISC function; (3) microbiota regulation on ISCs by Wnt and Notch signals through pattern recognition receptors; (4) how do specific microbiota-related postbiotics influence ISCs to maintain intestinal epithelial regeneration and homeostasis that provide insights into a promising alternative therapeutic method for intestinal diseases. Considering the detailed interaction is still unclear, it is necessary to further explore the regulatory role of gut microbiota on ISCs to utilize microbes to alleviate gut disorders. Furthermore, these major advances collectively drive us ever closer to breakthroughs in regenerative medicine and cancer treatment by microbial transplantation in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Lee J. Johnston
- West Central Research & Outreach CenterUniversity of MinnesotaMorrisMinnesotaUSA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Chen J, Liu C, Liang T, Xu G, Zhang Z, Lu Z, Jiang J, Chen T, Li H, Huang S, Chen L, Sun X, Cen J, Zhan X. Comprehensive analyses of potential key genes in active tuberculosis: A systematic review. Medicine (Baltimore) 2021; 100:e26582. [PMID: 34397688 PMCID: PMC8322549 DOI: 10.1097/md.0000000000026582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is a global health problem that brings us numerous difficulties. Diverse genetic factors play a significant role in the progress of TB disease. However, still no key genes for TB susceptibility have been reported. This study aimed to identify the key genes of TB through comprehensive bioinformatics analysis. METHODS The series microarray datasets from the gene expression omnibus (GEO) database were analyzed. We used the online tool GEO2R to filtrate differentially expressed genes (DEGs) between TB and health control. Database for annotation can complete gene ontology function analysis as well as Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Protein-protein interaction (PPI) networks of DEGs were established by STRING online tool and visualized by Cytoscape software. Molecular Complex Detection can complete the analysis of modules in the PPI networks. Finally, the significant hub genes were confirmed by plug-in Genemania of Cytoscape, and verified by the verification cohort and protein test. RESULTS There are a total of 143 genes were confirmed as DEGs, containing 48 up-regulated genes and 50 down-regulated genes. The gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis show that upregulated DEGs were associated with cancer and phylogenetic, whereas downregulated DEGs mainly concentrate on inflammatory immunity. PPI networks show that signal transducer and activator of transcription 1 (STAT1), guanylate binding protein 5 (GBP5), 2'-5'-oligoadenylate synthetase 1 (OAS1), catenin beta 1 (CTNNB1), and guanylate binding protein 1 (GBP1) were identified as significantly different hub genes. CONCLUSION We conclude that these genes, including TAT1, GBP5, OAS1, CTNNB1, GBP1 are a candidate as potential core genes in TB and treatment of TB in the future.
Collapse
Affiliation(s)
- Jiarui Chen
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chong Liu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tuo Liang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Guoyong Xu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zide Zhang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhaojun Lu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jie Jiang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tianyou Chen
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hao Li
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengsheng Huang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Liyi Chen
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xihua Sun
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiemei Cen
- Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xinli Zhan
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
8
|
Lin S, Chen Q, Zhang L, Ge S, Luo Y, He W, Xu C, Zeng M. Overexpression of HOXB4 Promotes Protection of Bone Marrow Mesenchymal Stem Cells Against Lipopolysaccharide-Induced Acute Lung Injury Partially Through the Activation of Wnt/β-Catenin Signaling. J Inflamm Res 2021; 14:3637-3649. [PMID: 34349541 PMCID: PMC8326777 DOI: 10.2147/jir.s319416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Pulmonary vascular endothelial cell (EC) injury is recognized as one of the pathological factors of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Bone marrow mesenchymal stem cell (BMSC)-based cytotherapy has attracted substantial attention over recent years as a promising therapeutic approach for ALI/ARDS; however, its use remains limited due to inconsistent efficacy. Currently, gene modification techniques are widely applied to MSCs. In the present study, we aimed to investigate the effect of BMSCs overexpressing Homeobox B4 (HOXB4) on lipopolysaccharide (LPS)-induced EC injury. METHODS We used LPS to induce EC injury and established EC-BMSC coculture system using transwell chambers. The effect of BMSCs on ECs was explored by detecting EC proliferation, apoptosis, migration, tube formation, and permeability, and determining whether the Wnt/β-catenin pathway is involved in the regulatory mechanism using XAV-939, inhibitor of Wnt/ β-catenin. RESULTS As compared to BMSCWT, BMSCHOXB4 coculture promoted EC proliferation, migration, and tube formation after LPS stimulation and attenuated LPS-induced EC apoptosis and vascular permeability. Mechanistically, BMSCHOXB4 coculture prevented LPS-induced EC injury by activating the Wnt/β-catenin pathway, which is partially reversible by XAV-939. When cocultured with BMSCHOXB4, pro-inflammatory factors were dramatically decreased and anti-inflammatory factors were greatly increased in the EC medium compared to those in the LPS group (P<0.05). Additionally, when compared to BMSCWT coculture, the BMSCHOXB4 coculture showed an enhanced modulation of IL-6, TNF-α, and IL-10, but there was no statistically significant effect on IL-1β and IL-4. CONCLUSION Coculturing of BMSCHOXB4 prevented LPS-induced EC injury by reversing the inactivation of the Wnt/β-catenin signaling pathway. An in vivo study remains warranted to ascertain whether engraftment of BMSCHOXB4 can be an attractive strategy for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lishan Zhang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Shanhui Ge
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Zhao Y, Li M, Yang Y, Wu T, Huang Q, Wu Q, Ren C. Identification of Macrophage Polarization-Related Genes as Biomarkers of Chronic Obstructive Pulmonary Disease Based on Bioinformatics Analyses. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9921012. [PMID: 34250093 PMCID: PMC8238569 DOI: 10.1155/2021/9921012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is characterized by lung inflammation and remodeling. Macrophage polarization is associated with inflammation and tissue remodeling, as well as immunity. Therefore, this study attempts to investigate the diagnostic value and regulatory mechanism of macrophage polarization-related genes for COPD by bioinformatics analysis and to provide a new theoretical basis for experimental research. METHODS The raw gene expression profile dataset (GSE124180) was collected from the Gene Expression Omnibus (GEO) database. Next, a weighted gene coexpression network analysis (WGCNA) was conducted to screen macrophage polarization-related genes. The differentially expressed genes (DEGs) between the COPD and normal samples were generated using DESeq2 v3.11 and overlapped with the macrophage polarization-related genes. Moreover, functional annotations of overlapped genes were conducted by Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resource. The immune-related genes were selected, and their correlation with the differential immune cells was analyzed by Pearson. Finally, receiver operating characteristic (ROC) curves were used to verify the diagnostic value of genes. RESULTS A total of 4922 coexpressed genes related to macrophage polarization were overlapped with the 203 DEGs between the COPD and normal samples, obtaining 25 genes related to COPD and macrophage polarization. GEM, S100B, and GZMA of them participated in the immune response, which were considered the candidate biomarkers. GEM and S100B were significantly correlated with marker genes of B cells which had a significant difference between the COPD and normal samples. Moreover, GEM was highly associated with the genes in the PI3K/Akt/GSK3β signaling pathway, regulation of actin cytoskeleton, and calcium signaling pathway based on a Pearson correlation analysis of the candidate genes and the genes in the B cell receptor signaling pathway. PPI network analysis also indicated that GEM might participate in the regulation of the PI3K/Akt/GSK3β signaling pathway. The ROC curve showed that GEM possessed an excellent accuracy in distinguishing COPD from normal samples. CONCLUSIONS The data provide a transcriptome-based evidence that GEM is related to COPD and macrophage polarization likely contributes to COPD diagnosis. At the same time, it is hoped that in-depth functional mining can provide new ideas for exploring the COPD pathogenesis.
Collapse
Affiliation(s)
- Yalin Zhao
- Respiratory and Critical Care Medicine, Kunming First People's Hospital, Kunming, Yunnan Province, China
| | - Meihua Li
- Respiratory and Critical Care Medicine, Kunming First People's Hospital, Kunming, Yunnan Province, China
| | - Yanxia Yang
- Respiratory and Critical Care Medicine, Kunming First People's Hospital, Kunming, Yunnan Province, China
| | - Tao Wu
- Respiratory and Critical Care Medicine, Kunming First People's Hospital, Kunming, Yunnan Province, China
| | - Qingyuan Huang
- Respiratory and Critical Care Medicine, Kunming First People's Hospital, Kunming, Yunnan Province, China
| | - Qinghua Wu
- Respiratory and Critical Care Medicine, Kunming First People's Hospital, Kunming, Yunnan Province, China
| | - Chaofeng Ren
- Respiratory and Critical Care Medicine, Kunming First People's Hospital, Kunming, Yunnan Province, China
| |
Collapse
|
10
|
Cortés-Vieyra R, Silva-García O, Gómez-García A, Gutiérrez-Castellanos S, Álvarez-Aguilar C, Baizabal-Aguirre VM. Glycogen Synthase Kinase 3β Modulates the Inflammatory Response Activated by Bacteria, Viruses, and Parasites. Front Immunol 2021; 12:675751. [PMID: 34017345 PMCID: PMC8129516 DOI: 10.3389/fimmu.2021.675751] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
Knowledge of glycogen synthase kinase 3β (GSK3β) activity and the molecules identified that regulate its function in infections caused by pathogenic microorganisms is crucial to understanding how the intensity of the inflammatory response can be controlled in the course of infections. In recent years many reports have described small molecular weight synthetic and natural compounds, proteins, and interference RNA with the potential to regulate the GSK3β activity and reduce the deleterious effects of the inflammatory response. Our goal in this review is to summarize the most recent advances on the role of GSK3β in the inflammatory response caused by bacteria, bacterial virulence factors (i.e. LPS and others), viruses, and parasites and how the regulation of its activity, mainly its inhibition by different type of molecules, modulates the inflammation.
Collapse
Affiliation(s)
- Ricarda Cortés-Vieyra
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Octavio Silva-García
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Anel Gómez-García
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Sergio Gutiérrez-Castellanos
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Mexico
| | - Cleto Álvarez-Aguilar
- Coordinación Auxiliar Médica de Investigación en Salud, IMSS Michoacán, Morelia, Mexico
| | - Víctor M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
11
|
Marete A, Ariel O, Ibeagha-Awemu E, Bissonnette N. Identification of Long Non-coding RNA Isolated From Naturally Infected Macrophages and Associated With Bovine Johne's Disease in Canadian Holstein Using a Combination of Neural Networks and Logistic Regression. Front Vet Sci 2021; 8:639053. [PMID: 33969037 PMCID: PMC8100051 DOI: 10.3389/fvets.2021.639053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic enteritis in most ruminants. The pathogen MAP causes Johne's disease (JD), a chronic, incurable, wasting disease. Weight loss, diarrhea, and a gradual drop in milk production characterize the disease's clinical phase, culminating in death. Several studies have characterized long non-coding RNA (lncRNA) in bovine tissues, and a previous study characterizes (lncRNA) in macrophages infected with MAP in vitro. In this study, we aim to characterize the lncRNA in macrophages from cows naturally infected with MAP. From 15 herds, feces and blood samples were collected for each cow older than 24 months, twice yearly over 3–5 years. Paired samples were analyzed by fecal PCR and blood ELISA. We used RNA-seq data to study lncRNA in macrophages from 33 JD(+) and 33 JD(–) dairy cows. We performed RNA-seq analysis using the “new Tuxedo” suite. We characterized lncRNA using logistic regression and multilayered neural networks and used DESeq2 for differential expression analysis and Panther and Reactome classification systems for gene ontology (GO) analysis. The study identified 13,301 lncRNA, 605 of which were novel lncRNA. We found seven genes close to differentially expressed lncRNA, including CCDC174, ERI1, FZD1, TWSG1, ZBTB38, ZNF814, and ZSCAN4. None of the genes associated with susceptibility to JD have been cited in the literature. LncRNA target genes were significantly enriched for biological process GO terms involved in immunity and nucleic acid regulation. These include the MyD88 pathway (TLR5), GO:0043312 (neutrophil degranulation), GO:0002446 (neutrophil-mediated immunity), and GO:0042119 (neutrophil activation). These results identified lncRNA with potential roles in host immunity and potential candidate genes and pathways through which lncRNA might function in response to MAP infection.
Collapse
Affiliation(s)
- Andrew Marete
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Olivier Ariel
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada.,Faculty of Science, Sherbrooke University, Sherbrooke, QC, Canada
| | - Eveline Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Hu Y, Ciminieri C, Hu Q, Lehmann M, Königshoff M, Gosens R. WNT Signalling in Lung Physiology and Pathology. Handb Exp Pharmacol 2021; 269:305-336. [PMID: 34463851 DOI: 10.1007/164_2021_521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The main physiological function of the lung is gas exchange, mediated at the interface between the alveoli and the pulmonary microcapillary network and facilitated by conducting airway structures that regulate the transport of these gases from and to the alveoli. Exposure to microbial and environmental factors such as allergens, viruses, air pollution, and smoke contributes to the development of chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. Respiratory diseases as a cluster are the commonest cause of chronic disease and of hospitalization in children and are among the three most common causes of morbidity and mortality in the adult population worldwide. Many of these chronic respiratory diseases are associated with inflammation and structural remodelling of the airways and/or alveolar tissues. They can often only be treated symptomatically with no disease-modifying therapies that normalize the pathological tissue destruction driven by inflammation and remodelling. In search for novel therapeutic strategies for these diseases, several lines of evidence revealed the WNT pathway as an emerging target for regenerative strategies in the lung. WNT proteins, their receptors, and signalling effectors have central regulatory roles under (patho)physiological conditions underpinning lung function and (chronic) lung diseases and we summarize these roles and discuss how pharmacological targeting of the WNT pathway may be utilized for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Lü L, Yakoumatos L, Ren J, Duan X, Zhou H, Gu Z, Mohammed M, Uriarte SM, Liang S, Scott DA, Lamont RJ, Wang H. JAK3 restrains inflammatory responses and protects against periodontal disease through Wnt3a signaling. FASEB J 2020; 34:9120-9140. [PMID: 32433819 DOI: 10.1096/fj.201902697rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Homeostasis between pro- and anti- inflammatory responses induced by bacteria is critical for the maintenance of health. In the oral cavity, pro-inflammatory mechanisms induced by pathogenic bacteria are well-established; however, the anti-inflammatory responses that act to restrain innate responses remain poorly characterized. Here, we demonstrate that infection with the periodontal pathogen Porphyromonas gingivalis enhances the activity of Janus kinase 3 (JAK3) in innate immune cells, and subsequently phospho-inactivates Nedd4-2, an ubiquitin E3 ligase. In turn, Wingless-INT (Wnt) 3 (Wnt3) ubiquitination is decreased, while total protein levels are enhanced, leading to a reduction in pro-inflammatory cytokine levels. In contrast, JAK3 or Wnt3a inhibition robustly enhances nuclear factor kappa-light-chain-enhancer of activated B cells activity and the production of pro-inflammatory cytokines in P. gingivalis-stimulated innate immune cells. Moreover, using gain- and loss-of-function approaches, we demonstrate that downstream molecules of Wnt3a signaling, including Dvl3 and β-catenin, are responsible for the negative regulatory role of Wnt3a. In addition, using an in vivo P. gingivalis-mediated periodontal disease model, we show that JAK3 inhibition enhances infiltration of inflammatory cells, reduces expression of Wnt3a and Dvl3 in P. gingivalis-infected gingival tissues, and increases disease severity. Together, our results reveal a new anti-inflammatory role for JAK3 in innate immune cells and show that the underlying signaling pathway involves Nedd4-2-mediated Wnt3a ubiquitination.
Collapse
Affiliation(s)
- Lanhai Lü
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Junling Ren
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaoxian Duan
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Huaxin Zhou
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhen Gu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Muddasir Mohammed
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.,Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
14
|
Ren Z, Wang X, Xu M, Frank JA, Luo J. Minocycline attenuates ethanol-induced cell death and microglial activation in the developing spinal cord. Alcohol 2019; 79:25-35. [PMID: 30529756 DOI: 10.1016/j.alcohol.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Developmental exposure to ethanol may cause fetal alcohol spectrum disorders (FASD), and the immature central nervous system (CNS) is particularly vulnerable to ethanol. In addition to vulnerability in the developing brain, we previously showed that ethanol also caused neuroapoptosis, microglial activation, and neuroinflammation in the spinal cord. Minocycline is an antibiotic that inhibits microglial activation and alleviates neuroinflammation. We sought to determine whether minocycline could protect spinal cord neurons against ethanol-induced damage. In this study, we showed that minocycline significantly inhibited ethanol-induced caspase-3 activation, microglial activation, and the expression of pro-inflammatory cytokines in the developing spinal cord. Moreover, minocycline blocked ethanol-induced activation of glycogen synthase kinase 3 beta (GSK3β), a key regulator of microglial activation. Meanwhile, minocycline significantly restored ethanol-induced inhibition of protein kinase B (AKT), mammalian target of the rapamycin (mTOR), and ERK1/2 signaling pathways, which were important pro-survival signaling pathways for neurons. Together, minocycline may attenuate ethanol-induced damage to the developing spinal cord by inhibiting microglial activation/neuroinflammation and by restoring the pro-survival signaling.
Collapse
|
15
|
Qu J, Yue L, Gao J, Yao H. Perspectives on Wnt Signal Pathway in the Pathogenesis and Therapeutics of Chronic Obstructive Pulmonary Disease. J Pharmacol Exp Ther 2019; 369:473-480. [PMID: 30952680 PMCID: PMC6538889 DOI: 10.1124/jpet.118.256222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease with progressive airflow limitation and functional decline. The pathogenic mechanisms for this disease include oxidative stress, inflammatory responses, disturbed protease/antiprotease equilibrium, apoptosis/proliferation imbalance, senescence, autophagy, metabolic reprogramming, and mitochondrial dysfunction. The Wnt signaling pathway is an evolutionarily conserved signaling pathway that is abnormal in COPD, including chronic bronchitis and pulmonary emphysema. Furthermore, Wnt signaling has been shown to modulate aforementioned cellular processes involved in COPD. From this perspective, we provide an updated understanding of the crosstalk between Wnt signal and these cellular processes, and highlight the crucial role of the Wnt signal during the development of COPD. We also discuss the potential for targeting the Wnt signal in future translational and pharmacological therapeutics aimed at prevention and treatment of this disease.
Collapse
Affiliation(s)
- Jiao Qu
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Li Yue
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Jian Gao
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Hongwei Yao
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| |
Collapse
|
16
|
Cuesta-Astroz Y, Santos A, Oliveira G, Jensen LJ. Analysis of Predicted Host-Parasite Interactomes Reveals Commonalities and Specificities Related to Parasitic Lifestyle and Tissues Tropism. Front Immunol 2019; 10:212. [PMID: 30815000 PMCID: PMC6381214 DOI: 10.3389/fimmu.2019.00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
The study of molecular host–parasite interactions is essential to understand parasitic infection and adaptation within the host system. As well, prevention and treatment of infectious diseases require a clear understanding of the molecular crosstalk between parasites and their hosts. Yet, large-scale experimental identification of host–parasite molecular interactions remains challenging, and the use of computational predictions becomes then necessary. Here, we propose a computational integrative approach to predict host—parasite protein—protein interaction (PPI) networks resulting from the human infection by 15 different eukaryotic parasites. We used an orthology-based approach to transfer high-confidence intraspecies interactions obtained from the STRING database to the corresponding interspecies homolog protein pairs in the host–parasite system. Our approach uses either the parasites predicted secretome and membrane proteins, or only the secretome, depending on whether they are uni- or multi-cellular, respectively, to reduce the number of false predictions. Moreover, the host proteome is filtered for proteins expressed in selected cellular localizations and tissues supporting the parasite growth. We evaluated the inferred interactions by analyzing the enriched biological processes and pathways in the predicted networks and their association with known parasitic invasion and evasion mechanisms. The resulting PPI networks were compared across parasites to identify common mechanisms that may define a global pathogenic hallmark. We also provided a study case focusing on a closer examination of the human–S. mansoni predicted interactome, detecting central proteins that have relevant roles in the human–S. mansoni network, and identifying tissue-specific interactions with key roles in the life cycle of the parasite. The predicted PPI networks can be visualized and downloaded at http://orthohpi.jensenlab.org.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars J Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Epithelial Cells Attenuate Toll-Like Receptor-Mediated Inflammatory Responses in Monocyte-Derived Macrophage-Like Cells to Mycobacterium tuberculosis by Modulating the PI3K/Akt/mTOR Signaling Pathway. Mediators Inflamm 2018; 2018:3685948. [PMID: 30356420 PMCID: PMC6178170 DOI: 10.1155/2018/3685948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Both alveolar macrophages (AMs) and alveolar epithelial cells (AECs) are main targets of Mycobacterium tuberculosis (M. tuberculosis (Mtb)). Intercellular communications between mucosal AECs and AMs have important implications in cellular responses to exogenous insults. However, molecular mechanisms underpinning interactions responding to Mtb remain largely unknown. In this study, impacts of AECs on Toll-like receptor- (TLR-) mediated inflammatory responses of AMs to Mtb virulent strain H37Rv were interrogated using an air-liquid interface (ALI) coculture model of epithelial A549 cells and U937 monocyte-derived macrophage-like cells. Results showed that Mtb-activated TLR-mediated inflammatory responses in U937 cells were significantly alleviated when A549 cells were coinfected with H37Rv, in comparison with the infection of U937 cells alone. Mechanistically, PI3K/Akt/mTOR signaling was involved in the epithelial cell-modulated Mtb-activated TLR signaling. The epithelial cell-attenuated TLR signaling in U937s could be reversed by PI3K inhibitor LY294002 and mTOR inhibitor rapamycin, but not glycogen synthase kinase 3β inhibitor LiCl, suggesting that the epithelially modulated-TLR signaling in macrophages was in part caused by inhibiting the TLR-triggered PI3K/Akt/mTOR signaling pathway. Together, this study demonstrates that mucosal AEC-derived signals play an important role in modulating inflammatory responses of AMs to Mtb, which thus also offers an insight into cellular communications between AECs and AMs to Mtb infections.
Collapse
|
18
|
Guo X, Fan Y, Cui J, Hao B, Zhu L, Sun X, He J, Yang J, Dong J, Wang Y, Liu X, Chen J. NOX4 expression and distal arteriolar remodeling correlate with pulmonary hypertension in COPD. BMC Pulm Med 2018; 18:111. [PMID: 29986678 PMCID: PMC6038356 DOI: 10.1186/s12890-018-0680-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
Background Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is suggested as the consequence of emphysematous destruction of vascular bed and hypoxia of pulmonary microenvironment, mechanisms underpinning its pathogenesis however remain elusive. The dysregulated expression of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases and superoxide generation by pulmonary vasculatures have significant implications in the hypoxia-induced PH. Methods In this study, the involvement of NADPH oxidase subunit 4 (NOX4) in pulmonary arteriolar remodeling of PH in COPD was investigated by ascertaining the morphological alteration of pulmonary arteries and pulmonary blood flow using cardiac magnetic resonance imaging (cMRI), and the expression and correlation of NOX4 with pulmonary vascular remodeling and pulmonary functions in COPD lungs. Results Results demonstrated that an augmented expression of NOX4 was correlated with the increased volume of pulmonary vascular wall in COPD lung. While the volume of distal pulmonary arteries was inversely correlated with pulmonary functions, despite it was positively associated with the main pulmonary artery distensibility, right ventricular myocardial mass end-systolic and right ventricular myocardial mass end-diastolic in COPD. In addition, an increased malondialdehyde and a decreased superoxide dismutase were observed in sera of COPD patients. Mechanistically, the abundance of NOX4 and production of reactive oxygen species (ROS) in pulmonary artery smooth muscle cells could be dynamically induced by transforming growth factor-beta (TGF-β), which in turn led pulmonary arteriolar remodeling in COPD lungs. Conclusion These results suggest that the NOX4-derived ROS production may play a key role in the development of PH in COPD by promoting distal pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Yuchun Fan
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jieda Cui
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China.,Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Binwei Hao
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiao Sun
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinxi He
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jiali Yang
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianda Dong
- Department of Pathology, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yanyang Wang
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China. .,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
19
|
Liu X, Zhang Z, Pan S, Shang S, Li C. Interaction between the Wnt/β-catenin signaling pathway and the EMMPRIN/MMP-2, 9 route in periodontitis. J Periodontal Res 2018; 53:842-852. [PMID: 29900539 DOI: 10.1111/jre.12574] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- X. Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Z. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - S. Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - S. Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
- Department of Periodontology; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - C. Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST); Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
- Department of Periodontology; School and Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| |
Collapse
|
20
|
Tan X, Huang D, Zhou W, Yan L, Yue J, Lu W, Song D, Zhou X, Ye L, Zhang L. Dickkopf-1 may regulate bone coupling by attenuating wnt/β-catenin signaling in chronic apical periodontitis. Arch Oral Biol 2017; 86:94-100. [PMID: 29216526 DOI: 10.1016/j.archoralbio.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Alveolar bone loss is a common outcome of chronic apical periodontitis. In this study, we investigated the involvement of the Dickkopf-1-Wnt/β-catenin signaling pathway in the attenuation of osteogenic differentiation induced by Escherichia coli lipopolysaccharide, and we evaluated the use of Dickkopf-1 inhibitor and Dickkopf-1 recombinant protein to reverse bone loss in different phases of osteogenic differentiation. METHODS MC3T3-E1 cells grown in osteogenic medium were treated with Escherichia coli lipopolysaccharide for 24h during osteogenic induction on days 0, 1, 7, 14 and 21. Dickkopf-1 siRNA was added on days 0 and 1, and Dickkopf-1 recombinant was added on days 7, 14, and 21. Quantitative real-time PCR, Western blotting and alkaline phosphatase activity assays were performed to measure osteogenic marker expression and Wnt/β-catenin signaling. A rat apical periodontitis model was used to further evaluate the function of Dickkopf-1 in relation to bone loss. RESULTS MC3T3-E1 cells treated with Escherichia coli lipopolysaccharide showed decreased mRNA expression of osteogenic markers. Wnt/β-catenin signaling was also inhibited, and Dickkopf-1 showed corresponding variations as quantified by Western blotting. Using Dickkopf-1 inhibitor or Dickkopf-1 recombinant protein at different phases of osteogenic differentiation in vitro partially reversed the decrease in osteogenic marker expression. The rat apical periodontitis model indicated that the Dickkopf-1 inhibitor could restore bone loss in the periapical area in vivo. CONCLUSIONS Dickkopf-1 may play a key regulatory role in determining the outcome for bone in inflammatory environments, and modulating the Wnt/β-catenin signaling pathway via Dickkopf-1 inhibitor or recombinant protein may provide a potential therapeutic option to prevent bone destruction in endodontic disease.
Collapse
Affiliation(s)
- Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
| | - Wei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Li Yan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Junli Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - WanLu Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
21
|
Koopmans T, Eilers R, Menzen M, Halayko A, Gosens R. β-Catenin Directs Nuclear Factor-κB p65 Output via CREB-Binding Protein/p300 in Human Airway Smooth Muscle. Front Immunol 2017; 8:1086. [PMID: 28943877 PMCID: PMC5596077 DOI: 10.3389/fimmu.2017.01086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023] Open
Abstract
β-Catenin is a multifunctional protein that apart from its role in proliferative and differentiation events, also acts upon inflammatory processes, mainly via interaction with nuclear factor-κB (NF-κB). However, there is still controversy as to whether β-catenin facilitates or represses NF-κB output. Insights into the molecular mechanisms underlying the interaction between β-catenin and NF-κB have highlighted the cofactors CREB-binding protein (CBP) and p300 as important candidates. Here, we hypothesized that the interaction of β-catenin with CBP/p300 directs NF-κB output. Using human airway smooth muscle (ASM) cells, we found that β-catenin is essential in interleukin -1β (IL-1β)-mediated expression of interleukin-6 (IL-6) by promoting nuclear translocation of the p65 subunit of NF-κB. These effects were independent from WNT pathway activation or other factors that promote β-catenin signaling. In the nucleus, inhibition of either the CBP- or p300-β-catenin interaction could regulate NF-κB output, by enhancing (CBP inhibition) or inhibiting (p300 inhibition) IL-1β-induced expression of IL-6, respectively. Acetylation of p65 by p300 likely underlies these events, as inhibition of the p300-β-catenin interaction diminished levels of acetylated p65 at lysine 310, thereby reducing p65 transcriptional activity. In conclusion, β-catenin is a critical component of NF-κB-mediated inflammation in human ASM, affecting transcriptional output by interacting with the nuclear cofactors CBP and p300. Targeting β-catenin may be an alternative strategy to treat airway inflammation in patients with airway disease, such as asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Roos Eilers
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Mark Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Andrew Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
23
|
Hou Q, Ye L, Huang L, Yu Q. The Research Progress on Intestinal Stem Cells and Its Relationship with Intestinal Microbiota. Front Immunol 2017; 8:599. [PMID: 28588586 PMCID: PMC5440531 DOI: 10.3389/fimmu.2017.00599] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The intestine is home to trillions of microorganisms, and the vast diversity within this gut microbiota exists in a balanced state to protect the intestinal mucosal barrier. Research into the association of the intestinal microbiota with health and disease (including diet, nutrition, obesity, inflammatory bowel disease, and cancer) continues to expand, with the field advancing at a rapid rate. Intestinal stem cells (ISCs) are the fundamental component of the mucosal barrier; they undergo continuous proliferation to replace the epithelium, which is also intimately involved in intestinal diseases. The intestinal microbiota, such as Lactobacillus, communicates with ISCs both directly and indirectly to regulate the proliferation and differentiation of ISCs. Moreover, Salmonella infection significantly decreased the expression of intestinal stem cell markers Lgr5 and Bmi1. However, the detailed interaction of intestinal microbiota and ISCs are still unclear. This review considers the progress of research on the model and niches of ISCs, as well as the complex interplay between the gut microbiota and ISCs, which will be crucial for explaining the mechanisms of intestinal diseases related to imbalances in the intestinal microbiota and ISCs.
Collapse
Affiliation(s)
- Qihang Hou
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Lulu Ye
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Lulu Huang
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghua Yu
- College of veterinary medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Distinct Roles of Wnt/ β-Catenin Signaling in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Mediators Inflamm 2017; 2017:3520581. [PMID: 28588349 PMCID: PMC5447271 DOI: 10.1155/2017/3520581] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling pathways are tightly controlled under a physiological condition, under which they play key roles in many biological functions, including cell fate specification and tissue regeneration. Increasing lines of evidence recently demonstrated that a dysregulated activation of Wnt signaling, particularly the Wnt/β-catenin signaling, was involved in the pathogenesis of chronic pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). In this respect, Wnt signaling interacts with other cellular signaling pathways to regulate the initiation and pathogenic procedures of airway inflammation and remodeling, pulmonary myofibroblast proliferation, epithelial-to-mesenchymal transition (EMT), and development of emphysema. Intriguingly, Wnt/β-catenin signaling is activated in IPF; an inhibition of this signaling leads to an alleviation of pulmonary inflammation and fibrosis in experimental models. Conversely, Wnt/β-catenin signaling is inactivated in COPD tissues, and its reactivation results in an amelioration of airspace enlargement with a restored alveolar epithelial structure and function in emphysema models. These studies thus imply distinct mechanisms of Wnt/β-catenin signaling in the pathogenesis of these two chronic pulmonary diseases, indicating potential targets for COPD and IPF treatments. This review article aims to summarize the involvement and pathogenic roles of Wnt signaling pathways in the COPD and IPF, with a focus on the implication of Wnt/β-catenin signaling as underlying mechanisms and therapeutic targets in these two incurable diseases.
Collapse
|
25
|
He J, Shi J, Zhang K, Xue J, Li J, Yang J, Chen J, Wei J, Ren H, Liu X. Sox2 inhibits Wnt-β-catenin signaling and metastatic potency of cisplatin-resistant lung adenocarcinoma cells. Mol Med Rep 2017; 15:1693-1701. [PMID: 28259951 PMCID: PMC5365002 DOI: 10.3892/mmr.2017.6170] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer remains one of the most common cancer-associated mortalities worldwide, and platinum-based doublet chemotherapies are recommended as the first-line treatment for advanced non-small cell lung cancer (NSCLC). However, the frequent development of multidrug resistance, to cisplatin regimens in particular, is a major cause of chemotherapy failure in patients with aggressive NSCLC. Wnt/β-catenin signaling and sex-determining region Y box 2 (Sox2) have been implicated in the development and progression and resistance to epidermal growth factor receptor-targeting therapy in lung cancer. The present study aimed to explore the effects of Wnt/β-catenin and Sox2 signaling on the chemoresistance of cisplatin-resistant lung cancer cells by assessing the effects of Sox2 on Wnt/β-catenin signaling activity, cell migration, invasion and clonogenicity, and susceptibility to cisplatin in lung adenocarcinoma A549 cells and cisplatin-resistant A549/DDP cells. The results demonstrated that an enforced expression of Sox2 led to inhibition of Wnt/β-catenin signaling activity, potentially by upregulating glycogen synthase kinase 3 β in A549 and A549/DDP cells. An overexpression of Sox2 promoted cell migration and invasion, in addition to enhancing the clonogenic capacity in A549 cells. Notably, knockdown Sox2 using short hairpin RNA led to an enhanced susceptibility of A549 and A549/DDP cells to cisplatin, along with increased cell apoptosis. The present study thus suggests that Sox2 may be an important regulator in development of chemoresistance of lung cancer cells and may be a novel therapeutic target for treatment chemoresistant lung cancer.
Collapse
Affiliation(s)
- Jinxi He
- The Second Division of Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Juan Shi
- The Center of Laboratory Medicine, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Kangjian Zhang
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jing Xue
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Jing Li
- Department of Thoracic Surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiali Yang
- The Center of Laboratory Medicine, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jun Wei
- The Center of Laboratory Medicine, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hong Ren
- The Second Division of Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Xiaoming Liu
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| |
Collapse
|
26
|
Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond. Front Immunol 2016; 7:635. [PMID: 28082976 PMCID: PMC5183615 DOI: 10.3389/fimmu.2016.00635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022] Open
Abstract
In recent years, it has become apparent that the Wnt signaling pathway, known for its essential functions in embryonic development and tissue homeostasis, exerts immunomodulatory functions during inflammation and infection. Most functional studies indicate that Wnt5a exerts pro-inflammatory functions on its cellular targets, which include various types of immune and non-immune cells. Wnt5a expression has also been linked to the pathogenesis of chronic inflammatory diseases. Activation of beta-catenin-dependent Wnt signaling, e.g., by Wnt3a, has however been shown to limit inflammation by interfering with the nuclear factor kappa-light chain-enhancer of activated B-cells (NF-kappaB) pathway. This review focuses on the regulation of Wnt5a, Wnt3a, and the recently identified Wnt6 and their functional role in bacterial infections with a primary focus on pulmonary tuberculosis, a leading infectious cause of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
27
|
Jayashankar L, Hafner R. Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination. Front Immunol 2016; 7:577. [PMID: 28018344 PMCID: PMC5159487 DOI: 10.3389/fimmu.2016.00577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell “immunometabolism” signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms, studies to improve TB vaccine responses using interventions based on “immuno-oncology” are needed to guide possible repurposing. Understanding the regulation of immune cell functions appropriated by Mtb to promote the imbalance between protective and pathogenic immune responses may guide the development of innovative drug-based adjunct approaches to substantially enhance the clinical efficacy of TB vaccines.
Collapse
Affiliation(s)
- Lakshmi Jayashankar
- Columbus Technologies, Inc., Contractor to the National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
28
|
Wnt5a Increases Properties of Lung Cancer Stem Cells and Resistance to Cisplatin through Activation of Wnt5a/PKC Signaling Pathway. Stem Cells Int 2016; 2016:1690896. [PMID: 27895670 PMCID: PMC5118537 DOI: 10.1155/2016/1690896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resistant A549 cells treated with Wnt5a conditional medium or protein kinase C (PKC) inhibitor GF109203X. Results showed that the noncanonical Wnt signaling ligand, Wnt5a, could promote the proliferation, migration, invasion, and colony formation in A549 lung adenocarcinoma cells and cisplatin-resistant A549/DDP cells and increase the fraction of ALDH-positive cell in A549/DDP cells. An exposure of cells to Wnt5a led to a significant reduction of A549/DDP cell apoptosis but not A549 cells. An addition of GF109203X could both strikingly increase the baseline apoptosis and resensitize the Wnt5a-inhibited cell apoptosis. Interestingly, an inhibition of Wnt/PKC signaling pathway could reduce properties of lung cancer stem cells, promote cell apoptosis, and resensitize cisplatin-resistant cells to cisplatin via a caspase/AIF-dependent pathway. These data thus suggested that the Wnt5a could promote lung cancer cell mobility and cisplatin-resistance through a Wnt/PKC signaling pathway and a blockage of this signaling may be an alternative therapeutic strategy for NSCLC patients with resistance to chemotherapies.
Collapse
|
29
|
Gonzalez P, Rodríguez FJ. Analysis of the expression of the Wnt family of proteins and its modulatory role on cytokine expression in non activated and activated astroglial cells. Neurosci Res 2016; 114:16-29. [PMID: 27562517 DOI: 10.1016/j.neures.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022]
Abstract
Despite the essential functions of astrocytes and the emerging relevance of the Wnt family of proteins in the CNS under physiological and pathological conditions, the astroglial expression of this family of proteins and its potential modulatory role on astroglial activation is almost unknown. Thus, we have evaluated the expression of all Wnt ligands, receptors and regulators, and the activation state of Wnt-related signaling pathways in non-activated and differentially activated astroglial cultures. We found that numerous Wnt ligands, receptors and regulators were expressed in non-activated astrocytes, while the Wnt-dependent pathways were constitutively active. Moreover, the expression of most detectable Wnt-related molecules and the activity of the Wnt-dependent pathways suffered post-activation variations which frequently depended on the activation system. Finally, the analysis of the effects exerted by Wnt1 and 5a on the astroglial expression of prototypical genes related to astroglial activation showed that both Wnt ligands increased the astroglial expression of interleukin 1β depending on the experimental context, while did not modulate tumor necrosis factor α, interleukin 6, transforming growth factor β1 and glial fibrillary acidic protein expression. These results strongly suggest that the Wnt family of proteins is involved in how astrocytes modulate and respond to the physiological and pathological CNS.
Collapse
Affiliation(s)
- Pau Gonzalez
- Laboratory of Molecular Neurology, National Hospital for Paraplegics, Finca la Peraleda s/n, 45071 Toledo, Spain.
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, National Hospital for Paraplegics, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
30
|
Jiang Z, Lao T, Qiu W, Polverino F, Gupta K, Guo F, Mancini JD, Naing ZZC, Cho MH, Castaldi PJ, Sun Y, Yu J, Laucho-Contreras ME, Kobzik L, Raby BA, Choi AMK, Perrella MA, Owen CA, Silverman EK, Zhou X. A Chronic Obstructive Pulmonary Disease Susceptibility Gene, FAM13A, Regulates Protein Stability of β-Catenin. Am J Respir Crit Care Med 2016; 194:185-97. [PMID: 26862784 PMCID: PMC5003213 DOI: 10.1164/rccm.201505-0999oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 01/21/2016] [Indexed: 12/28/2022] Open
Abstract
RATIONALE A genetic locus within the FAM13A gene has been consistently associated with chronic obstructive pulmonary disease (COPD) in genome-wide association studies. However, the mechanisms by which FAM13A contributes to COPD susceptibility are unknown. OBJECTIVES To determine the biologic function of FAM13A in human COPD and murine COPD models and discover the molecular mechanism by which FAM13A influences COPD susceptibility. METHODS Fam13a null mice (Fam13a(-/-)) were generated and exposed to cigarette smoke. The lung inflammatory response and airspace size were assessed in Fam13a(-/-) and Fam13a(+/+) littermate control mice. Cellular localization of FAM13A protein and mRNA levels of FAM13A in COPD lungs were assessed using immunofluorescence, Western blotting, and reverse transcriptase-polymerase chain reaction, respectively. Immunoprecipitation followed by mass spectrometry identified cellular proteins that interact with FAM13A to reveal insights on FAM13A's function. MEASUREMENTS AND MAIN RESULTS In murine and human lungs, FAM13A is expressed in airway and alveolar type II epithelial cells and macrophages. Fam13a null mice (Fam13a(-/-)) were resistant to chronic cigarette smoke-induced emphysema compared with Fam13a(+/+) mice. In vitro, FAM13A interacts with protein phosphatase 2A and recruits protein phosphatase 2A with glycogen synthase kinase 3β and β-catenin, inducing β-catenin degradation. Fam13a(-/-) mice were also resistant to elastase-induced emphysema, and this resistance was reversed by coadministration of a β-catenin inhibitor, suggesting that FAM13A could increase the susceptibility of mice to emphysema development by inhibiting β-catenin signaling. Moreover, human COPD lungs had decreased protein levels of β-catenin and increased protein levels of FAM13A. CONCLUSIONS We show that FAM13A may influence COPD susceptibility by promoting β-catenin degradation.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Channing Division of Network Medicine, Department of Medicine
| | - Taotao Lao
- Channing Division of Network Medicine, Department of Medicine
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Feng Guo
- Channing Division of Network Medicine, Department of Medicine
| | - John D. Mancini
- Channing Division of Network Medicine, Department of Medicine
| | | | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Department of Medicine
- Division of General Internal Medicine, Department of Medicine, and
| | - Yang Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Jane Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Lester Kobzik
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Pediatric Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
31
|
Hu X, Zhou J, Chen X, Zhou Y, Song X, Cai B, Zhang J, Lu X, Ying B. Pathway Analyses Identify Novel Variants in the WNT Signaling Pathway Associated with Tuberculosis in Chinese Population. Sci Rep 2016; 6:28530. [PMID: 27334567 PMCID: PMC4917881 DOI: 10.1038/srep28530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/06/2016] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis remains a global public health problem, and its immunopathogenesis is still poorly understood. In this study, 25 single nucleotide polymorphisms (SNPs) in the WNT pathway were evaluated in relation to tuberculosis risk in a Chinese Han discovery set, and 6 candidate susceptible SNPs were further validated in a Chinese Tibetan cohort. Luciferase reporter assay, RT-qPCR and Western blot were used to assess the functionality of the important WNT polymorphisms. Five polymorphisms were associated with tuberculosis susceptibility after Bonferroni correction: SFRP1 rs4736958, CTNNB1 rs9859392, rs9870255 and rs3864004 showed decreased tuberculosis risk; SFRP1 rs7832767 was related to an increased risk (OR = 1.81, 95% CI = 1.30–2.52, p = 0.010). Patients with TT genotype of rs4736958 and rs7832767 correlated with higher CRP concentrations (p = 0.003, <0.001, respectively). Functional assays revealed that mutant alleles of rs9859392 (G), rs9870255 (C) and rs3864004 (A) were associated with significantly decreased transcriptional activity, lower CTNNB1 mRNA expression and p-β-catenin level, which were consistent with their effects of decreasing TB risk. Our results provide evidences that WNT pathway polymorphisms influence tuberculosis susceptibility and host immune response to Mycobacterium tuberculosis, suggesting that these variations may serve as novel markers for identifying the risk of developing tuberculosis.
Collapse
Affiliation(s)
- Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xuerong Chen
- Division of Pulmonary Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingya Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
32
|
Ma Y, Han F, Liang J, Yang J, Shi J, Xue J, Yang L, Li Y, Luo M, Wang Y, Wei J, Liu X. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections. Mol Immunol 2016; 71:23-33. [DOI: 10.1016/j.molimm.2016.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/29/2023]
|
33
|
SFRP1 variations influence susceptibility and immune response to Mycobacterium tuberculosis in a Chinese Han population. INFECTION GENETICS AND EVOLUTION 2015; 37:259-65. [PMID: 26643984 DOI: 10.1016/j.meegid.2015.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/15/2015] [Accepted: 11/27/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVES SFRP1 acts as a well-established inhibitory regulator of the Wnt signaling pathway, whose polymorphisms have been demonstrated to be associated with the risk of inflammation, infection as well as cancer. We verified the hypothesis that single nucleotide polymorphisms (SNPs) within SFRP1 gene are associated with susceptibility and clinical characteristics of tuberculosis disease in a Chinese Han population. METHODS Six candidate SNPs were genotyped using MassARRAY method in a case-control design (260 tuberculosis patients and 252 healthy controls). A comprehensive analysis of single locus including the genotypic, allelic frequencies and the genetic models, haplotypic construction as well as gene-gene interaction was conducted to investigate the relationships between SNPs and TB. Significant SNPs were further interrogated in relation to TB clinical features and host inflammatory status. RESULTS Genotype frequencies of rs4736958 and rs7832767 within SFRP1 gene were significantly different (p=0.011, p=0.008, respectively) between tuberculosis group and control group. Subjects carrying C allele for rs4736958 showed a decreased tuberculosis risk (OR=0.66, 95% CI=0.51-0.87, p=0.003), whereas individuals carrying rs7832767 T allele had a significant increased risk in tuberculosis susceptibility (OR=1.32, 95% CI=1.01-1.74, p=0.046). Genetic model analysis revealed that dominant, co-dominant and recessive models of rs4736958 were associated with decreased susceptibility to tuberculosis (p all <0.05), while the recessive and co-dominant models of rs7832767 were related to significantly increased risk for tuberculosis (p all <0.05). There was a reduced tuberculosis risk in association with the haplotype CC (representing rs3242 and rs4736958) of SFRP1 (OR=0.73, 95% CI=0.56-0.96, p=0.026). Further stratification analysis indicated that TB patients with genotype CT for rs4736958 were associated with higher CRP concentrations, and heterozygous patients (CT genotype) of rs7832767 trended towards greater ESR levels. CONCLUSION SNPs rs4736958 and rs7832767 of SFRP1 gene were significantly associated with tuberculosis susceptibility and might influence the expression levels of inflammatory markers of tuberculosis patients in a Chinese Han population.
Collapse
|
34
|
Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, Raymond AA, Dargahi L, Ghasemi R, Ahmadiani A. Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson's disease. Pharmacol Res 2015; 97:16-26. [PMID: 25829335 DOI: 10.1016/j.phrs.2015.03.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 01/02/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Fatemeh Hemmati
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Behrouz Rahmani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azman Ali Raymond
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
Wu X, Deng G, Li M, Li Y, Ma C, Wang Y, Liu X. Wnt/β-catenin signaling reduces Bacillus Calmette-Guerin-induced macrophage necrosis through a ROS -mediated PARP/AIF-dependent pathway. BMC Immunol 2015; 16:16. [PMID: 25887795 PMCID: PMC4394565 DOI: 10.1186/s12865-015-0080-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/25/2015] [Indexed: 01/12/2023] Open
Abstract
Background Necrosis of alveolar macrophages following Mycobacterium tuberculosis infection has been demonstrated to play a vital role in the pathogenesis of tuberculosis. Our previous study demonstrated that Wnt/β-catenin signaling was able to promote mycobacteria-infected cell apoptosis by a caspase-dependent pathway. However, the functionality of this signaling in the necrosis of macrophage following mycobacterial infection remains largely unknown. Methods Murine macrophage RAW264.7 cells were infected with Bacillus Calmette-Guerin (BCG) in the presence of Wnt/β-catenin signaling. The necrotic cell death was determined by cytometric assay and electronic microscopy; the productions of reactive oxygen species (ROS) and reduced glutathione (GSH) were measured by a cytometric analysis and an enzyme-linked immunosorbent assay, respectively; and the activity of poly (ADP-ribose) polymerase 1 (PARP-1)/apoptosis inhibition factor (AIF) signaling was examined by an immunoblotting assay. Results The BCG can induce RAW264.7 macrophage cells necrosis in a dose- and time-dependent manner along with an accumulation of reactive oxygen species (ROS). Intriguingly, an enhancement of Wnt/β-catenin signaling shows an ability to reduce the mycobacteria-induced macrophage necrosis. Mechanistically, the activation of Wnt/β-catenin signaling is capable of inhibiting the necrotic cell death in BCG-infected RAW264.7 cells through a mechanism by which the Wnt signaling scavenges intracellular ROS accumulation and increases cellular GSH concentration. In addition, immunoblotting analysis further reveals that Wnt/β-catenin signaling is capable of inhibiting the ROS-mediated cell necrosis in part through a PARP-1/AIF- dependent pathway. Conclusions An activation of Wnt/β-catenin signaling can inhibit BCG-induced macrophage necrosis by increasing the production of GSH and scavenging ROS in part through a mechanism of repression of PARP-1/AIF signaling pathway. This finding may thus provide an insight into the underlying mechanism of alveolar macrophage cell death in response to mycobacterial infection.
Collapse
Affiliation(s)
- Xiaoling Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China.
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China.
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China.
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China.
| | - Chunyan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China.
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia, 750021, China. .,Ningxia key laboratory of clinical and pathogenic microbiology, the General Hospital of Ningxia Medical University, 804 S. Shengli Street, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
36
|
Zhao Y, Zhang C, Huang Y, Yu Y, Li R, Li M, Liu N, Liu P, Qiao J. Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients. J Clin Endocrinol Metab 2015; 100:201-11. [PMID: 25303486 DOI: 10.1210/jc.2014-2419] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder accompanied by chronic low-grade inflammation, but the molecular mechanism remains unclear. OBJECTIVE We investigated the action of WNT5a in the development of chronic inflammation in PCOS and the related molecular signaling pathways. DESIGN AND SETTING This was a prospective study conducted at the Division of Reproduction Center, Peking University Third Hospital. PATIENTS A total of 35 PCOS patients and 87 control women who reported to the clinic for the in vitro procedure and the cause of marital infertility was male azoospermia were included. MAIN OUTCOME MEASURES Mural granulosa cells (GCs) of 35 PCOS patients and 37 controls were collected during oocyte retrieval and gene expression was analyzed. The human KGN cells and mural GCs from 50 control subjects (six to eight samples were pooled together for each experiment) were cultured in vitro. The regulation of inflammation and oxidative stress was confirmed by quantitative PCR, flow-cytometric assay, and dual-luciferase reporter assay after inflammatory stimuli or WNT5a overexpression. Relevant signaling pathways were identified using specific inhibitors. RESULTS Our data demonstrate significantly elevated WNT5a expression in the mural GCs of PCOS patients compared with the controls. Lipopolysaccharide stimulation increased WNT5a expression in KGN cells and mural GCs, and BAY-117082 and pyrrolidinedithiocarbamic acid [nuclear factor-κB (NF-κB) inhibitor] treatments suppressed WNT5a mRNA below the control level. WNT5a overexpression also enhanced the expression of inflammation-related genes and increased intracellular reactive oxygen species, whereas both BAY-117082 and LY-294002 (phosphatidylinositol 3-kinase inhibitor) significantly inhibited WNT5a-induced inflammation and oxidative stress. CONCLUSIONS WNT5a acts as a proinflammatory factor in human ovarian GCs. The up-regulated expression of WNT5a in PCOS increases inflammation and oxidative stress predominantly via the phosphatidylinositol 3-kinase/AKT/NF-κB signaling pathway. The proinflammatory cytokines induced might further enhance WNT5a expression via NF-κB-dependent regulation, indicating a novel regulatory system for chronic inflammation in PCOS.
Collapse
Affiliation(s)
- Yue Zhao
- Reproductive Medical Center (Y.Z., C.Z., Y.H., Y.Y., R.L., M.L., N.L., P.L., J.Q.), Department of Obstetrics and Gynecology, Peking University Third Hospital, and Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Y.Z., Y.H., M.L., P.L., J.Q.), Beijing, China 100191; and Key Laboratory of Assisted Reproduction (Y.Z., C.Z., Y.Y., R.L., N.L., J.Q.), Ministry of Education, Beijing, China 100191
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xue D, Ma Y, Li M, Li Y, Luo H, Liu X, Wang Y. Mycoplasma ovipneumoniae induces inflammatory response in sheep airway epithelial cells via a MyD88-dependent TLR signaling pathway. Vet Immunol Immunopathol 2014; 163:57-66. [PMID: 25440083 DOI: 10.1016/j.vetimm.2014.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is a bacterium that specifically infects sheep and goat and causes ovine infectious pleuropneumonia. In an effort to understand the pathogen-host interaction between the M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory response using a primary air-liquid interface (ALI) epithelial culture model generated from bronchial epithelial cells of Ningxia Tan sheep (Ovis aries). The ALI culture of sheep bronchial epithelial cells showed a fully differentiated epithelium comprising distinct epithelial types, including the basal, ciliated and goblet cells. Exposure of ALI cultures to M. ovipneumoniae led to increased expression of Toll-like receptors (TLRs), and components of the myeloid differentiation factor 88 (MyD88)-dependent TLR signaling pathway, including the MyD88, TNF receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinases (IRAKs) and nuclear factor-kappa B (NF-κB), as well as subsequent pro-inflammatory cytokines in the epithelial cells. Of interest, infection with M. ovipneumoniae failed to induce the expression of TANK-binding kinase 1 (TBK1), TRAF3 and interferon regulatory factor 3 (IRF3), key components of the MyD88-independent signaling pathway. These results suggest that the MyD88-dependent TLR pathway may play a crucial role in sheep airway epithelial cells in response to M. ovipneumoniae infection, which also indicate that the ALI culture system may be a reliable model for investigating pathogen-host interactions between M. ovipneumoniae and airway epithelial cells.
Collapse
Affiliation(s)
- Di Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yanan Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haixia Luo
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
38
|
Ma C, Li Y, Li M, Deng G, Wu X, Zeng J, Hao X, Wang X, Liu J, Cho WCS, Liu X, Wang Y. microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection. Mol Immunol 2014; 62:150-158. [PMID: 24995397 DOI: 10.1016/j.molimm.2014.06.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/01/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
The emerging roles of microRNAs (miRNAs) in regulating immune responses have attracted increasing attention in recent years; and the alveolar macrophages (AMs) are the main targets of mycobacterial infection, which play a pivotal role in the pathogenesis of Mycobacterium tuberculosis infection. However, the immunoregulatory role of miRNAs in AMs has not been fully demonstrated. In this study, we find that miR-124 is up-regulated in the peripheral leukocytes of patients with pulmonary tuberculosis; furthermore, the expression miR-124 can be induced upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection in both RAW264.7 AM cells in vitro and murine AMs in vivo. Mechanistically, miR-124 is able to modulate toll-like receptor (TLR) signaling activity in RAW264.7 cells in response to BCG infection. In this regard, multiple components of TLR signaling cascade, including the TLR6, myeloid differentiation factor 88 (MyD88), TNFR-associated factor 6 and tumor necrosis factor-α are directly targeted by miR-124. In addition, both overexpression of TLR signaling adaptor MyD88 and BCG infection are able to augment miR-124 transcription, while MyD88 expression silenced by small interfering RNA dramatically suppresses miR-124 expression in AMs in vitro. Moreover, the abundance of miR-124 transcript in murine AMs of MyD88 deficient mice is significantly less than that of their wild-type or heterozygous littermates; and the BCG infection fails to induce miR-124 expression in the lung of MyD88 deficient mouse. These results indicate a negative regulatory role of miR-124 in fine-tuning inflammatory response in AMs upon mycobacterial infection, in part through a mechanism by directly targeting TLR signaling.
Collapse
Affiliation(s)
- Chunyan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaoling Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Jin Zeng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiujing Hao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaoping Wang
- Tuberculosis Hospital of Ningxia, Yinchuan 750021, Ningxia, China
| | - Jing Liu
- Tuberculosis Hospital of Ningxia, Yinchuan 750021, Ningxia, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China and College of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China.
| |
Collapse
|