1
|
Rey-Campos M, Saco A, Novoa B, Figueras A. Transcriptomic and functional analysis of the antiviral response of mussels after a poly I:C stimulation. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109867. [PMID: 39214263 DOI: 10.1016/j.fsi.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The study of mussels (Mytilus galloprovincialis) has grown in importance in recent years due to their high economic value and resistance to pathogens. Because of the biological characteristics revealed by mussel genome sequencing, this species is a valuable research model. The high genomic variability and diversity, particularly in immune genes, may be responsible for their resistance to pathogens found in seawater and continuously filtered and internalized by them. These facts, combined with the lack of proven mussel susceptibility to viruses in comparison to other bivalves such as oysters, result in a lack of studies on mussel antiviral response. We used RNA-seq to examine the genomic response of mussel hemocytes after they were exposed to poly I:C, simulating immune cell contact with viral dsRNA. Apoptosis and the molecular axis IRFs/STING-IFI44/IRGC1 were identified as the two main pathways in charge of the response but we also found a modulation of lncRNAs. Finally, in order to obtain new information about the response of mussels to putative natural challenges, we used VHSV virus (Viral Hemorrhagic Septicemia Virus) to run some functional analysis and confirm poly I:C's activity as an immunomodulator in a VHSV waterborne stimulation. Both, poly I:C as well as an injury stimulus (filtered sea water injection) accelerated the viral clearance by hemocytes and altered the expression of several immune genes, including IL-17, IRF1 and viperin.
Collapse
Affiliation(s)
- Magalí Rey-Campos
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Antonio Figueras
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
2
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
3
|
Lian X, Li Y, Wang W, Zuo J, Yu T, Wang L, Song L. The Modification of H3K4me3 Enhanced the Expression of CgTLR3 in Hemocytes to Increase CgIL17-1 Production in the Immune Priming of Crassostrea gigas. Int J Mol Sci 2024; 25:1036. [PMID: 38256110 PMCID: PMC10816183 DOI: 10.3390/ijms25021036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.
Collapse
Affiliation(s)
- Xingye Lian
- School of Life Science, Liaoning Normal University, Dalian 116029, China; (X.L.); (Y.L.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yinan Li
- School of Life Science, Liaoning Normal University, Dalian 116029, China; (X.L.); (Y.L.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Jiajun Zuo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Tianqi Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
4
|
de Kantzow M, Hick PM, Whittington RJ. Immune Priming of Pacific Oysters ( Crassostrea gigas) to Induce Resistance to Ostreid herpesvirus 1: Comparison of Infectious and Inactivated OsHV-1 with Poly I:C. Viruses 2023; 15:1943. [PMID: 37766349 PMCID: PMC10536431 DOI: 10.3390/v15091943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Pacific oyster mortality syndrome (POMS), which is caused by Ostreid herpesvirus 1 (OsHV-1), causes economic losses in Pacific oyster (Crassostrea gigas) aquaculture in many countries. Reducing the mortality in disease outbreaks requires changing the host, pathogen and environment interactions to favor the host. Survivors of natural exposure to OsHV-1 are able to survive subsequent outbreaks. This has been replicated under laboratory conditions, suggesting the existence of an immune response. The aim of the present study is to compare the effects of prior exposure to infectious OsHV-1, heat-inactivated OsHV-1 and the chemical anti-viral immune stimulant poly I:C on mortality following exposure to virulent OsHV-1. All treatments were administered by intramuscular injection. Oysters were maintained at 18 °C for 14 days; then, the temperature was increased to 22 °C and the oysters were challenged with virulent OsHV-1. Heat-inactivated OsHV-1, infectious OsHV-1 and poly I:C all induced significant protection against mortality, with the hazard of death being 0.41, 0.18 and 0.02, respectively, compared to the controls, which had no immune priming. The replication of OsHV-1 on first exposure was not required to induce a protective response. While the underlying mechanisms for protection remain to be elucidated, conditioning for resistance to POMS by prior exposure to inactivated or infectious OsHV-1 may have practical applications in oyster farming but requires further development to optimize the dose and delivery mechanism and evaluate the duration of protection.
Collapse
Affiliation(s)
| | | | - Richard J. Whittington
- School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
5
|
Fallet M, Blanc M, Di Criscio M, Antczak P, Engwall M, Guerrero Bosagna C, Rüegg J, Keiter SH. Present and future challenges for the investigation of transgenerational epigenetic inheritance. ENVIRONMENT INTERNATIONAL 2023; 172:107776. [PMID: 36731188 DOI: 10.1016/j.envint.2023.107776] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic pathways are essential in different biological processes and in phenotype-environment interactions in response to different stressors and they can induce phenotypic plasticity. They encompass several processes that are mitotically and, in some cases, meiotically heritable, so they can be transferred to subsequent generations via the germline. Transgenerational Epigenetic Inheritance (TEI) describes the phenomenon that phenotypic traits, such as changes in fertility, metabolic function, or behavior, induced by environmental factors (e.g., parental care, pathogens, pollutants, climate change), can be transferred to offspring generations via epigenetic mechanisms. Investigations on TEI contribute to deciphering the role of epigenetic mechanisms in adaptation, adversity, and evolution. However, molecular mechanisms underlying the transmission of epigenetic changes between generations, and the downstream chain of events leading to persistent phenotypic changes, remain unclear. Therefore, inter-, (transmission of information between parental and offspring generation via direct exposure) and transgenerational (transmission of information through several generations with disappearance of the triggering factor) consequences of epigenetic modifications remain major issues in the field of modern biology. In this article, we review and describe the major gaps and issues still encountered in the TEI field: the general challenges faced in epigenetic research; deciphering the key epigenetic mechanisms in inheritance processes; identifying the relevant drivers for TEI and implement a collaborative and multi-disciplinary approach to study TEI. Finally, we provide suggestions on how to overcome these challenges and ultimately be able to identify the specific contribution of epigenetics in transgenerational inheritance and use the correct tools for environmental science investigation and biomarkers identification.
Collapse
Affiliation(s)
- Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden; Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford OX1 3QU, United Kingdom.
| | - Mélanie Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Michela Di Criscio
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Philipp Antczak
- University of Cologne, Faculty of Medicine and Cologne University Hospital, Center for Molecular Medicine Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| |
Collapse
|
6
|
Valero Y, Mercado L, Arizcun M, Cuesta A, Chaves-Pozo E. Priming European Sea Bass Female Broodstock Improves the Antimicrobial Immunity of Their Offspring. Animals (Basel) 2023; 13:ani13030415. [PMID: 36766303 PMCID: PMC9913748 DOI: 10.3390/ani13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Acquiring immunocompetence is essential in the development of fish embryos, as they are exposed to environmental pathogens even before they are fertilized. Despite the importance of the antimicrobial function as the first line of defense against foreign microorganisms, little knowledge is available about its role in larval development. In vertebrates, transgenerational immune priming influences the acquisition of immunocompetence of specimens, regulating the selective allocation of nongenetic resources to their progeny and modulating their development. In this work, we primed teleost European sea bass broodstock females with a viral protein expression vector in order to evaluate the innate immunity development of their offspring. Several antimicrobial functions, the pattern of expression of gene coding for different antimicrobial peptides (AMPs), and their protein levels, were evaluated in eggs and larvae during development. Our data determined the presence of antimicrobial proteins of maternal origin in eggs, and that female vaccination increases antimicrobial activities and the transcription and synthesis of AMPs during larval development.
Collapse
Affiliation(s)
- Yulema Valero
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
| | - Marta Arizcun
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Elena Chaves-Pozo
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
- Correspondence: ; Tel.: +34-968153339; Fax: +34-968153934
| |
Collapse
|
7
|
Delisle L, Rolton A, Vignier J. Inactivated ostreid herpesvirus-1 induces an innate immune response in the Pacific oyster, Crassostrea gigas, hemocytes. Front Immunol 2023; 14:1161145. [PMID: 37187746 PMCID: PMC10175643 DOI: 10.3389/fimmu.2023.1161145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.
Collapse
Affiliation(s)
- Lizenn Delisle
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Anne Rolton
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Julien Vignier
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
8
|
Impacts of Seawater pH Buffering on the Larval Microbiome and Carry-Over Effects on Later-Life Disease Susceptibility in Pacific Oysters. Appl Environ Microbiol 2022; 88:e0165422. [DOI: 10.1128/aem.01654-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shellfish industries are threatened worldwide by recurrent summer mortality events. Such incidences are often associated with
Vibrio
disease outbreaks, and thus, it is critical that animals are able to mount sufficient immune responses.
Collapse
|
9
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
10
|
Yao T, Lu J, Bai C, Xie Z, Ye L. The Enhanced Immune Protection in Small Abalone Haliotis diversicolor Against a Secondary Infection With Vibrio harveyi. Front Immunol 2021; 12:685896. [PMID: 34295333 PMCID: PMC8290317 DOI: 10.3389/fimmu.2021.685896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, more and more studies have shown that early pathogenic bacterial infection in invertebrates can enhance immunity and significantly reduce mortality when reinfected with the same pathogen. There are mechanisms to explain this phenomenon, but they are relatively few. In addition, dose-dependent primary infection is also associated with increased immunity. In the present study, the initial infection dose and mortality of abalone Haliotis diversicolor after reinfection with Vibrio harveyi were recorded, and the mechanism of immune enhancement was investigated by the transcriptomic response of abalone after two successive stimuli with V. harveyi. Priming with different concentrations of pathogen can enhance immunity; however, higher concentration is not always better. Compared with the first exposure, more genes were up-regulated after the second exposure. Among the commonly expressed genes, the immune related genes were significantly or persistently highly expressed after two infections and included pattern recognition receptors as well as immune effectors, such as toll-like receptors, perlucin 4, scavenger receptor class B-like protein, cytochrome P450 1B1-like, glutathione S-transferase 6, lysozyme and so on; in addition, these immune-related genes were mainly distributed in the pathways related to phagocytosis and calcium signaling. Among the specifically expressed genes, compared with the first infection, more genes were involved in the immune, metabolic and digestive pathways after the second infection, which would be more conducive to preventing the invasion of pathogens. This study outlined the mechanism of immune enhancement in abalone after secondary infection at the global molecular level, which is helpful for a comprehensive understanding of the mechanism of immune priming in invertebrates.
Collapse
Affiliation(s)
- Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhilv Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
11
|
Abstract
The innate immune system acts rapidly in an identical and nonspecific way every time the body is exposed to pathogens. As such, it cannot build and maintain immunological memory to help prevent reinfection. Researchers contend that trained immunity is influenced by intracellular metabolic pathways and epigenetic remodeling. The purpose of this review was to explore the topic of trained innate immunity based on the results of relevant previous studies. This systematic review entailed identifying articles related to trained innate immunity. The sources were obtained from PubMed using different search terms that included "trained innate immunity," "trained immunity," "trained," "innate," "immunity," and "immune system." Boolean operators were used to combine terms and phrases. A review of previous study results revealed that little is currently known about the molecular and cellular processes that mediate or induce a trained immune response in animals. However, it is believed that alterations in the phenotypes of cell populations and the numbers of specific cells may play a critical role in mediating the trained immune response. Increasing evidence shows that the protective processes and actions that occur during a secondary infection are not entirely linked to the adaptive immune system. Instead, these events also involve heightened activation of innate immune cells. While trained innate immune cells may have a shorter memory, they assist in the fight against pathogens and provide cross-protection. Identification of the mechanisms and molecules that underlie trained innate immunity has highlighted important features of the human immune response. Such advances continue to open doors for future research on how the body responds to disease-causing pathogens.
Collapse
Affiliation(s)
- Borros Arneth
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Hospital of the Universities of Giessen and Marburg, UKGM, Feulgenstr 12, 35339, Giessen, Germany.
| |
Collapse
|
12
|
Moreira R, Romero A, Rey-Campos M, Pereiro P, Rosani U, Novoa B, Figueras A. Stimulation of Mytilus galloprovincialis Hemocytes With Different Immune Challenges Induces Differential Transcriptomic, miRNomic, and Functional Responses. Front Immunol 2020; 11:606102. [PMID: 33391272 PMCID: PMC7773633 DOI: 10.3389/fimmu.2020.606102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mediterranean mussels (Mytilus galloprovincialis) are marine bivalve molluscs with high resilience to biotic and abiotic stress. This resilience is one of the reasons why this species is such an interesting model for studying processes such as the immune response. In this work, we stimulated mussel hemocytes with poly I:C, β-glucans, and LPS and then sequenced hemocyte mRNAs (transcriptome) and microRNAs (miRNome) to investigate the molecular basis of the innate immune responses against these pathogen-associated molecular patterns (PAMPs). An immune transcriptome comprising 219,765 transcripts and an overview of the mussel miRNome based on 5,175,567 non-redundant miRNA reads were obtained. The expression analyses showed opposite results in the transcriptome and miRNome; LPS was the stimulus that triggered the highest transcriptomic response, with 648 differentially expressed genes (DEGs), while poly I:C was the stimulus that triggered the highest miRNA response, with 240 DE miRNAs. Our results reveal a powerful immune response to LPS as well as activation of certain immunometabolism- and ageing/senescence-related processes in response to all the immune challenges. Poly I:C exhibited powerful stimulating properties in mussels, since it triggered the highest miRNomic response and modulated important genes related to energy demand; these effects could be related to the stronger activation of these hemocytes (increased phagocytosis, increased NO synthesis, and increased velocity and accumulated distance). The transcriptome results suggest that after LPS stimulation, pathogen recognition, homeostasis and cell survival processes were activated, and phagocytosis was induced by LPS. β-glucans elicited a response related to cholesterol metabolism, which is important during the immune response, and it was the only stimulus that induced the synthesis of ROS. These results suggest a specific and distinct response of hemocytes to each stimulus from a transcriptomic, miRNomic, and functional point of view.
Collapse
Affiliation(s)
- Rebeca Moreira
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Alejandro Romero
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy.,Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), List auf Sylt, Germany
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
13
|
Tetreau G, Dhinaut J, Galinier R, Audant-Lacour P, Voisin SN, Arafah K, Chogne M, Hilliou F, Bordes A, Sabarly C, Chan P, Walet-Balieu ML, Vaudry D, Duval D, Bulet P, Coustau C, Moret Y, Gourbal B. Deciphering the molecular mechanisms of mother-to-egg immune protection in the mealworm beetle Tenebrio molitor. PLoS Pathog 2020; 16:e1008935. [PMID: 33057453 PMCID: PMC7591081 DOI: 10.1371/journal.ppat.1008935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.
Collapse
Affiliation(s)
- Guillaume Tetreau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Julien Dhinaut
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Richard Galinier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Pascaline Audant-Lacour
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | - Karim Arafah
- Plateforme BioPark d'Archamps, ArchParc, Saint Julien en Genevois, France
| | - Manon Chogne
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Frédérique Hilliou
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Anaïs Bordes
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Camille Sabarly
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Philippe Chan
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Marie-Laure Walet-Balieu
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - David Vaudry
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - David Duval
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Philippe Bulet
- Plateforme BioPark d'Archamps, ArchParc, Saint Julien en Genevois, France
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, La Tronche, France
| | - Christine Coustau
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Yannick Moret
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
14
|
Abalone Viral Ganglioneuritis. Pathogens 2020; 9:pathogens9090720. [PMID: 32882932 PMCID: PMC7558354 DOI: 10.3390/pathogens9090720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
Abalone viral ganglioneuritis (AVG), caused by Haliotid herpesvirus-1 (HaHV-1; previously called abalone herpesvirus), is a disease that has been responsible for extensive mortalities in wild and farmed abalone and has caused significant economic losses in Asia and Australia since outbreaks occurred in the early 2000s. Researchers from Taiwan, China, and Australia have conducted numerous studies encompassing HaHV-1 genome sequencing, development of molecular diagnostic tests, and evaluation of the susceptibility of various abalone species to AVG as well as studies of gene expression in abalone upon virus infection. This review presents a timeline of the most significant research findings on AVG and HaHV-1 as well as potential future research avenues to further understand this disease in order to develop better management strategies.
Collapse
|
15
|
Robinson AN, Green TJ. Fitness costs associated with maternal immune priming in the oyster. FISH & SHELLFISH IMMUNOLOGY 2020; 103:32-36. [PMID: 32334127 DOI: 10.1016/j.fsi.2020.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Maternal immune priming is the transfer of immunity from mother to offspring, which may reduce the offspring's risk of disease from a pathogen that previously infected its mother. Maternal immune priming has been described in at least 25 invertebrate taxa, including Crassostrea gigas. Larvae of C. gigas have improved survival to Ostreid herpesvirus (OsHV-1) if their mothers are either infected with OsHV-1 or were injected with a virus mimic called poly(I:C). However, fitness costs associated with maternal immune priming in C. gigas are unknown. Here, we show C. gigas larvae produced from poly(I:C)-treated mothers are smaller, and have higher total bacteria and Vibrio loads compared to control larvae. These results suggest that the improved offspring survival of C. gigas to OsHV-1 due to maternal immune priming with poly(I:C) is potentially traded off with other important life history traits, such as larval growth rate and destabilisation of the microbiome.
Collapse
Affiliation(s)
- Andrew N Robinson
- Vancouver Island University, Centre for Shellfish Research, Nanaimo, British Columbia, Canada
| | - Timothy J Green
- Vancouver Island University, Centre for Shellfish Research, Nanaimo, British Columbia, Canada.
| |
Collapse
|
16
|
Immune Control of Herpesvirus Infection in Molluscs. Pathogens 2020; 9:pathogens9080618. [PMID: 32751093 PMCID: PMC7460283 DOI: 10.3390/pathogens9080618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Molluscan herpesviruses that are capable of infecting economically important species of abalone and oysters have caused significant losses in production due to the high mortality rate of infected animals. Current methods in preventing and controlling herpesviruses in the aquacultural industry are based around biosecurity measures which are impractical and do not contain the virus as farms source their water from oceans. Due to the lack of an adaptive immune system in molluscs, vaccine related therapies are not a viable option; therefore, a novel preventative strategy known as immune priming was recently explored. Immune priming has been shown to provide direct protection in oysters from Ostreid herpesvirus-1, as well as to their progeny through trans-generational immune priming. The mechanisms of these processes are not completely understood, however advancements in the characterisation of the oyster immune response has assisted in formulating potential hypotheses. Limited literature has explored the immune response of abalone infected with Haliotid herpesvirus as well as the potential for immune priming in these species, therefore, more research is required in this area to determine whether this is a practical solution for control of molluscan herpesviruses in an aquaculture setting.
Collapse
|
17
|
Fallet M, Luquet E, David P, Cosseau C. Epigenetic inheritance and intergenerational effects in mollusks. Gene 2019; 729:144166. [PMID: 31678264 DOI: 10.1016/j.gene.2019.144166] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
Recent insights in evolutionary biology have shed light on epigenetic variation that interacts with genetic variation to convey heritable information. An important characteristic of epigenetic changes is that they can be produced in response to environmental cues and passed on to later generations, potentially facilitating later genetic adaptation. While our understanding of epigenetic mechanisms in vertebrates is rapidly growing, our knowledge about invertebrates remains lower, or is restricted to model organisms. Mollusks in particular, are a large group of invertebrates, with several species important for ecosystem function, human economy and health. In this review, we attempt to summarize the literature on epigenetic and intergenerational studies in mollusk species, with potential importance for adaptive evolution. Our review highlights that two molecular bearers of epigenetic information, DNA methylation and histone modifications, are key features for development in mollusk species, and both are sensitive to environmental conditions to which developing individuals are exposed. Further, although studies are still scarce, various environmental factors (e.g. predator cues, chemicals, parasites) can induce intergenerational effects on the phenotype (life-history traits, morphology, behaviour) of several mollusk taxa. More work is needed to better understand whether environmentally-induced changes in DNA methylation and histone modifications have phenotypic impacts, whether they can be inherited through generations and their role in intergenerational effects on phenotype. Such work may bring insights into the potential role of epigenetic in adaptation and evolution in mollusks.
Collapse
Affiliation(s)
- Manon Fallet
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Emilien Luquet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Patrice David
- CEFE, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, IRD, EPHE, Montpellier, France
| | - Céline Cosseau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France.
| |
Collapse
|
18
|
Tetreau G, Dhinaut J, Gourbal B, Moret Y. Trans-generational Immune Priming in Invertebrates: Current Knowledge and Future Prospects. Front Immunol 2019; 10:1938. [PMID: 31475001 PMCID: PMC6703094 DOI: 10.3389/fimmu.2019.01938] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023] Open
Abstract
Trans-generational immune priming (TGIP) refers to the transfer of the parental immunological experience to its progeny. This may result in offspring protection from repeated encounters with pathogens that persist across generations. Although extensively studied in vertebrates for over a century, this phenomenon has only been identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the focus of an increasing interest, with half of studies published during the last few years. TGIP has now been tested in several invertebrate systems using various experimental approaches and measures to study it at both functional and evolutionary levels. However, drawing an overall picture of TGIP from available studies still appears to be a difficult task. Here, we provide a comprehensive review of TGIP in invertebrates with the objective of confronting all the data generated to date to highlight the main features and mechanisms identified in the context of its ecology and evolution. To this purpose, we describe all the articles reporting experimental investigation of TGIP in invertebrates and propose a critical analysis of the experimental procedures performed to study this phenomenon. We then investigate the outcome of TGIP in the offspring and its ecological and evolutionary relevance before reviewing the potential molecular mechanisms identified to date. In the light of this review, we build hypothetical scenarios of the mechanisms through which TGIP might be achieved and propose guidelines for future investigations.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
19
|
Rey-Campos M, Moreira R, Gerdol M, Pallavicini A, Novoa B, Figueras A. Immune Tolerance in Mytilus galloprovincialis Hemocytes After Repeated Contact With Vibrio splendidus. Front Immunol 2019; 10:1894. [PMID: 31447861 PMCID: PMC6697025 DOI: 10.3389/fimmu.2019.01894] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Mediterranean mussels (Mytilus galloprovincialis) are sessile filter feeders that live in close contact with numerous marine microorganisms. As is the case in all invertebrates, mussels lack an adaptive immune system, but they respond to pathogens, injuries or environmental stress in a very efficient manner. However, it is not known if they are able to modify their immune response when they reencounter the same pathogen. In this work, we studied the transcriptomic response of mussel hemocytes before and after two consecutive sublethal challenges with Vibrio splendidus. The first exposure significantly regulated genes related to inflammation, migration and response to bacteria. However, after the second exposure, the differentially expressed genes were related to the control and inhibition of ROS production and the resolution of the inflammatory response. Our results also show that the second injection with V. splendidus led to changes at the transcriptional (control of the expression of pro-inflammatory transcripts), cellular (shift in the hemocyte population distribution), and functional levels (inhibition of ROS production). These results suggest that a modified immune response after the second challenge allowed the mussels to tolerate rather than fight the infection, which minimized tissue damage.
Collapse
Affiliation(s)
| | | | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Trieste, Italy.,Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Beatriz Novoa
- Institute of Marine Research (IIM), CSIC, Vigo, Spain
| | | |
Collapse
|
20
|
Figueras A, Moreira R, Sendra M, Novoa B. Genomics and immunity of the Mediterranean mussel Mytilus galloprovincialis in a changing environment. FISH & SHELLFISH IMMUNOLOGY 2019; 90:440-445. [PMID: 31048040 DOI: 10.1016/j.fsi.2019.04.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Mediterranean mussel (Mytilus galloprovincialis) is a marine invasive species cultured all over the world. Mussels are an appreciated resource in local aquaculture enterprises because of their robust production and resilience that translates into a reliable economic value. So far, no massive mortalities have been reported in natural or cultured populations of this species. In the last years, the knowledge about its immune system has greatly improved but there are still many questions to be answered. One of them is why mussels, with their high filtering activity, are able to be exposed to a high number of potential pathogens without getting infected and without developing an elevated inflammatory response. The sequencing of the mussel genome has revealed a very complex organization with high heterozygosity, abundance of repetitive sequences and extreme intraspecific sequence diversity among individuals, mainly in immune related genes. Among those genes, antimicrobial peptides are the most expressed gene families in mussels, highly polymorphic and with antimicrobial effect against molluscs pathogens, but also against pathogens of lower vertebrates and humans. The combination of a complex genome with the adaptation of mussel immune system to a changing environment could explain this high variability, not only in immune-related genes, but also in the functional response among individuals sampled in the same location and date.
Collapse
Affiliation(s)
- Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Rebeca Moreira
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Marta Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
21
|
Eslamloo K, Ghorbani A, Xue X, Inkpen SM, Larijani M, Rise ML. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol 2019; 10:311. [PMID: 30894853 PMCID: PMC6414715 DOI: 10.3389/fimmu.2019.00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
Viperin is a key antiviral effector in immune responses of vertebrates including the Atlantic cod (Gadus morhua). Using cloning, sequencing and gene expression analyses, we characterized the Atlantic cod viperin at the nucleotide and hypothetical amino acid levels, and its regulating factors were investigated. Atlantic cod viperin cDNA is 1,342 bp long, and its predicted protein contains 347 amino acids. Using in silico analyses, we showed that Atlantic cod viperin is composed of 5 exons, as in other vertebrate orthologs. In addition, the radical SAM domain and C-terminal sequences of the predicted Viperin protein are highly conserved among various species. As expected, Atlantic cod Viperin was most closely related to other teleost orthologs. Using computational modeling, we show that the Atlantic cod Viperin forms similar overall protein architecture compared to mammalian Viperins. qPCR revealed that viperin is a weakly expressed transcript during embryonic development of Atlantic cod. In adults, the highest constitutive expression of viperin transcript was found in blood compared with 18 other tissues. Using isolated macrophages and synthetic dsRNA (pIC) stimulation, we tested various immune inhibitors to determine the possible regulating pathways of Atlantic cod viperin. Atlantic cod viperin showed a comparable pIC induction to other well-known antiviral genes (e.g., interferon gamma and interferon-stimulated gene 15-1) in response to various immune inhibitors. The pIC induction of Atlantic cod viperin was significantly inhibited with 2-Aminopurine, Chloroquine, SB202190, and Ruxolitinib. Therefore, endosomal-TLR-mediated pIC recognition and signal transducers (i.e., PKR and p38 MAPK) downstream of the TLR-dependent pathway may activate the gene expression response of Atlantic cod viperin. Also, these results suggest that antiviral responses of Atlantic cod viperin may be transcriptionally regulated through the interferon-activated pathway.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
22
|
Rosani U, Young T, Bai CM, Alfaro AC, Venier P. Dual Analysis of Virus-Host Interactions: The Case of Ostreid herpesvirus 1 and the Cupped Oyster Crassostrea gigas. Evol Bioinform Online 2019; 15:1176934319831305. [PMID: 30828244 PMCID: PMC6388457 DOI: 10.1177/1176934319831305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Dual analyses of the interactions between Ostreid herpesvirus 1 (OsHV-1) and the bivalve Crassostrea gigas during infection can unveil events critical to the onset and progression of this viral disease and can provide novel strategies for mitigating and preventing oyster mortality. Among the currently used “omics” technologies, dual transcriptomics (dual RNA-seq) coupled with the analysis of viral DNA in the host tissues has greatly advanced the knowledge of genes and pathways mostly contributing to host defense responses, expression profiles of annotated and unknown OsHV-1 open reading frames (ORFs), and viral genome variability. In addition to dual RNA-seq, proteomics and metabolomics analyses have the potential to add complementary information, needed to understand how a malacoherpesvirus can redirect and exploit the vital processes of its host. This review explores our current knowledge of “omics” technologies in the study of host-pathogen interactions and highlights relevant applications of these fields of expertise to the complex case of C gigas infections by OsHV-1, which currently threaten the mollusk production sector worldwide.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Pinaud S, Portet A, Allienne JF, Belmudes L, Saint-Beat C, Arancibia N, Galinier R, Du Pasquier L, Duval D, Gourbal B. Molecular characterisation of immunological memory following homologous or heterologous challenges in the schistosomiasis vector snail, Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:238-252. [PMID: 30529491 DOI: 10.1016/j.dci.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 05/16/2023]
Abstract
Invertebrate immune response may be primed by a current infection in a sustained manner, leading to the failure of a secondary infection with the same pathogen. The present study focuses on the Schistosomiasis vector snail Biomphalaria glabrata, in which a specific genotype-dependent immunological memory was demonstrated as a shift from a cellular to a humoral immune response. Herein, we investigate the complex molecular bases associated with this genotype-dependant immunological memory response. We demonstrate that Biomphalaria regulates a polymorphic set of immune recognition molecules and immune effector repertoires to respond to different strains of Schistosoma parasites. These results suggest a combinatorial usage of pathogen recognition receptors (PRRs) that distinguish different strains of parasites during the acquisition of immunological memory. Immunizations also show that snails become resistant after exposure to parasite extracts. Hemolymph transfer and a label-free proteomic analysis proved that circulating hemolymph compounds can be produced and released to more efficiently kill the newly encountered parasite of the same genetic lineage.
Collapse
Affiliation(s)
- Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Lucid Belmudes
- CEA-Grenoble, Exploring the Dynamics of Proteomes (EDyP), F-38054, Grenoble, Cedex 9, France.
| | - Cécile Saint-Beat
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Louis Du Pasquier
- University of Basel, Zoological Institute, Department of Zoology and Evolutionary Biology Vesalgasse 1, Basel, Switzerland.
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
24
|
Lafont M, Goncalves P, Guo X, Montagnani C, Raftos D, Green T. Transgenerational plasticity and antiviral immunity in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus 1 (OsHV-1). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:17-25. [PMID: 30278186 DOI: 10.1016/j.dci.2018.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/03/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The oyster's immune system is capable of adapting upon exposure to a pathogen-associated molecular pattern (PAMP) to have an enhanced secondary response against the same type of pathogen. This has been demonstrated using poly(I:C) to elicit an antiviral response in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus (OsHV-1). Improved survival following exposure to poly(I:C) has been found in later life stages (within-generational immune priming) and in the next generation (transgenerational immune priming). The mechanism that the oyster uses to transfer immunity to the next generation is unknown. Here we show that oyster larvae have higher survival to OsHV-1 when their mothers, but not their fathers, are exposed to poly(I:C) prior to spawning. RNA-seq provided no evidence to suggest that parental exposure to poly(I:C) reconfigures antiviral gene expression in unchallenged larvae. We conclude that the improved survival of larvae might occur via maternal provisioning of antiviral compounds in the eggs.
Collapse
Affiliation(s)
- Maxime Lafont
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - Priscila Goncalves
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ, USA
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - David Raftos
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Timothy Green
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia.
| |
Collapse
|
25
|
Zhang Z, Chi H, Dalmo RA. Trained Innate Immunity of Fish Is a Viable Approach in Larval Aquaculture. Front Immunol 2019; 10:42. [PMID: 30740103 PMCID: PMC6355669 DOI: 10.3389/fimmu.2019.00042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
The general understanding has been that only adaptive immunity is capable of immunological memory, but this concept has been challenged in recent years by studies showing that innate immune systems can mount resistance to reinfection-as the innate immune system can adapt its function following an insult. Innate immune training offers an attractive approach in intensive fish larval rearing, especially since the adaptive immune system is not fully developed. Trained innate immunity will potentially favor robust fish in terms of resistance to viral and bacterial diseases. So-called immunostimulants such as ß-glucans have for decades been used both in laboratories and in intensive fish aquaculture. Treatment of fish by ß-glucans (and by other substances with pathogen-associated molecular patterns) often induces activation of non-specific/innate immune mechanisms and induces higher disease resistance. The reported effects of e.g., ß-glucans fit nicely into the concept "trained innate immunity," but the research on fish does not yet include analysis of epigenetic changes that may be a prerequisite for long-lasting trained innate immunity. In this "perspective," we will discuss how in practical terms and based on prior knowledge one can introduce innate immune training in brood stock fish, and their offspring, and whether innate immune training by ß-glucans is a viable approach in larval aquaculture.
Collapse
Affiliation(s)
- Zuobing Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Research Group Aquaculture and Environment, Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economy, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Roy A Dalmo
- Research Group Aquaculture and Environment, Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economy, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Induction of Trained Innate Immunity in Human Monocytes by Bovine Milk and Milk-Derived Immunoglobulin G. Nutrients 2018; 10:nu10101378. [PMID: 30262772 PMCID: PMC6213000 DOI: 10.3390/nu10101378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Innate immune memory, also termed “trained immunity” in vertebrates, has been recently described in a large variety of plants and animals. In most cases, trained innate immunity is induced by pathogens or pathogen-associated molecular patterns (PAMPs), and is associated with long-term epigenetic, metabolic, and functional reprogramming. Interestingly, recent findings indicate that food components can mimic PAMPs effects and induce trained immunity. The aim of this study was to investigate whether bovine milk or its components can induce trained immunity in human monocytes. To this aim, monocytes were exposed for 24 h to β-glucan, Toll-like receptor (TLR)-ligands, bovine milk, milk fractions, bovine lactoferrin (bLF), and bovine Immunoglobulin G (bIgG). After washing away the stimulus and a resting period of five days, the cells were re-stimulated with TLR ligands and Tumor necrosis factor (TNF-) and interleukin (IL)-6 production was measured. Training with β-glucan resulted in higher cytokine production after TLR1/2, TLR4, and TLR7/8 stimulation. When monocytes trained with raw milk were re-stimulated with TLR1/2 ligand Pam3CSK4, trained cells produced more IL-6 compared to non-trained cells. Training with bIgG resulted in higher cytokine production after TLR4 and TLR7/8 stimulation. These results show that bovine milk and bIgG can induce trained immunity in human monocytes. This confirms the hypothesis that diet components can influence the long-term responsiveness of the innate immune system.
Collapse
|
27
|
Moreira R, Pereiro P, Balseiro P, Milan M, Pauletto M, Bargelloni L, Novoa B, Figueras A. Revealing Mytilus galloprovincialis transcriptomic profiles during ontogeny. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:292-306. [PMID: 29481906 DOI: 10.1016/j.dci.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Mediterranean mussels are a worldwide spread bivalve species with extraordinary biological success. One of the reasons of this success could be the reproduction strategy of bivalves, characterized by the presence of trochophore larvae. Larval development in bivalves has been a topic of raising interest in the scientific community but it deserves much more attention. The principal objective of this work was to study the transcriptomic profile of the ontogeny of Mytilus galloprovincialis analyzing the gene expression in different developmental stages, from oocytes to juveniles. For this purpose, after conducting a 454 sequencing of the transcriptomes of mussel hemocytes, adult tissues and larvae, a new DNA microarray was designed and developed. The studied developmental stages: unfertilized oocytes, veliger, pediveliger, settled larvae and juveniles, showed very different transcriptomic profiles and clustered in groups defining their characteristic gene expression along ontogeny. Our results show that oocytes present a distinct and characteristic transcriptome. After metamorphosis, both settled larvae and juveniles showed a very similar transcriptome, with no enriched GO terms found between these two stages. This suggests: 1.- the progressive loss of RNA of maternal origin through larval development and 2.- the stabilization of the gene expression after settlement. On the other hand during metamorphosis a specific profile of differentially expressed genes was found. These genes were related to processes such as differentiation and biosynthesis. Processes related to the immune response were strongly down regulated. These suggest a development commitment at the expense of other non-essential functions, which are temporary set aside. Immune genes such as antimicrobial peptides suffer a decreased expression during metamorphosis. In fact, we found that the oocytes which express a higher quantity of genes such as myticins are more likely to reach success of the offspring, compared to oocytes poor in such mRNAs, whose progeny died before reaching metamorphosis.
Collapse
Affiliation(s)
- Rebeca Moreira
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain; Uni Research Environment, Uni Research AS, Nygårdsgaten 112, 5008 Bergen, Norway.
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| |
Collapse
|
28
|
Freyne B, Donath S, Germano S, Gardiner K, Casalaz D, Robins-Browne RM, Amenyogbe N, Messina NL, Netea MG, Flanagan KL, Kollmann T, Curtis N. Neonatal BCG Vaccination Influences Cytokine Responses to Toll-like Receptor Ligands and Heterologous Antigens. J Infect Dis 2018; 217:1798-1808. [PMID: 29415180 PMCID: PMC11491830 DOI: 10.1093/infdis/jiy069] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 04/13/2024] Open
Abstract
Background BCG vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain, but long-term modulation of the innate immune response (trained immunity) may be involved. Methods Whole-blood specimens, collected 7 days after randomization from 212 neonates enrolled in a randomized trial of neonatal BCG vaccination, were stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. Results BCG-vaccinated infants had increased production of interleukin 6 (IL-6) in unstimulated samples and decreased production of interleukin 1 receptor antagonist, IL-6, and IL-10 and the chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and monocyte chemoattractant protein 1 (MCP-1) following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Conclusions Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterized by decreased antiinflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine whether there is an association between these findings and the beneficial nonspecific (heterologous) effects of BCG vaccine on all-cause mortality.
Collapse
Affiliation(s)
- Bridget Freyne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Germano
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Kaya Gardiner
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Dan Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Australia
| | - Roy M Robins-Browne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nicole L Messina
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katie L Flanagan
- School of Medicine, University of Tasmania, Launceston Australia
- Department of Immunology and Pathology, Monash University, Clayton, Australia
| | - Tobias Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nigel Curtis
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
29
|
Green TJ, Speck P. Antiviral Defense and Innate Immune Memory in the Oyster. Viruses 2018; 10:v10030133. [PMID: 29547519 PMCID: PMC5869526 DOI: 10.3390/v10030133] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster's antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture.
Collapse
Affiliation(s)
- Timothy J Green
- Centre for Shellfish Research & Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada.
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Peter Speck
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| |
Collapse
|
30
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
31
|
Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ 2017; 5:e4147. [PMID: 29230373 PMCID: PMC5723431 DOI: 10.7717/peerj.4147] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Lafont M, Petton B, Vergnes A, Pauletto M, Segarra A, Gourbal B, Montagnani C. Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas. Sci Rep 2017; 7:13143. [PMID: 29030632 PMCID: PMC5640609 DOI: 10.1038/s41598-017-13564-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
In the last decade, a paradigm shift has emerged in comparative immunology. Invertebrates can no longer be considered to be devoid of specific recognition and immune memory. However, we still lack a comprehensive view of these phenomena and their molecular mechanisms across phyla, especially in terms of duration, specificity, and efficiency in a natural context. In this study, we focused on a Lophotrochozoan/virus interaction, as antiviral priming is mostly overlooked in molluscs. Juvenile Crassostrea gigas oysters experience reoccurring mass mortalities events from Ostreid herpes virus 1 with no existing therapeutic treatment. Our results showed that various nucleic acid injections can prime oysters to trigger an antiviral state ultimately protecting them against a subsequent viral infection. Focusing on poly(I:C) as elicitor, we evidenced that it protected from an environmental infection, by mitigating viral replication. That protection seemed to induce a specific antiviral response as poly(I:C) fails to protect against a pathogenic bacteria. Finally, we showed that this phenomenon was long-lasting, persisting for at least 5 months thus suggesting for the first time the existence of innate immune memory in this invertebrate species. This study strengthens the emerging hypotheses about the broad conservation of innate immune priming and memory mechanisms in Lophotrochozoans.
Collapse
Affiliation(s)
- Maxime Lafont
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France.,Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Bruno Petton
- Ifremer, LEMAR UMR6539, F-29840, Argenton-en-Landunvez, France
| | - Agnès Vergnes
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Amélie Segarra
- Univ. Brest Occidentale, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, F-29280, Plouzané, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Caroline Montagnani
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France.
| |
Collapse
|
33
|
Luna-Acosta A, Breitwieser M, Renault T, Thomas-Guyon H. Recent findings on phenoloxidases in bivalves. MARINE POLLUTION BULLETIN 2017; 122:5-16. [PMID: 28673617 DOI: 10.1016/j.marpolbul.2017.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The production of melanin is a complex process involving biochemical cascades, such as the pro-phenoloxidase (proPO) system, and enzymes, such as phenoloxidases (POs). Different studies have shown a strong correlation between the decrease in PO activities and the occurrence of diseases in bivalve invertebrates, leading to mortalities in the host. Results of these studies suggest that POs could play a fundamental role in defense mechanisms in bivalves. This article reviews the fundamental knowledge on the proPO system in bivalves and the methods used to assess PO activities. Finally, this is the first report on the major findings of laboratory and field studies that indicate that a type of PO in bivalves, the laccase enzyme, is inducible and involved in the 1) immune 2) antioxidant and 3) detoxification roles in bivalves, and might be an ecological potential biomarker of environmental stress.
Collapse
Affiliation(s)
- A Luna-Acosta
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France; Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales (FEAR), Pontificia Universidad Javeriana, Transv. 4 No. 42-00, Bogota, Colombia.
| | - Marine Breitwieser
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France.
| | - T Renault
- Ifremer, Département Ressources biologiques et environnement (RBE), 44311 Nantes Cedex 03, France
| | - H Thomas-Guyon
- Littoral Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges - F-17042, La Rochelle Cedex 01, France
| |
Collapse
|