1
|
Park C, Park OJ, Kwon Y, Lee J, Yun CH, Han SH. Differential Regulatory Effects of Probiotics on Bone Metabolism by the Status of Bone Health and Delivery Route. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10441-x. [PMID: 39730860 DOI: 10.1007/s12602-024-10441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes. Intragastric administration of Lactiplantibacillus plantarum to ovariectomized mouse models for mimicking post-menopausal osteoporosis in humans substantially ameliorated osteoporosis by increasing bone and mineral density. In contrast, such effects did not occur in normal healthy mice under the same condition. Interestingly, however, intraperitoneal administration of L. plantarum induced bone destruction by increasing osteoclast differentiation and decreasing osteoblast differentiation. Furthermore, when L. plantarum was implanted into mouse calvarial bone, it potently augmented bone resorption. Concordantly, L. plantarum upregulated osteoclastogenesis and downregulated osteoblastogenesis in in vitro experiments. These results suggest that L. plantarum can have distinct roles in the regulation of bone metabolism depending on bone health and the delivery route.
Collapse
Affiliation(s)
- Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jueun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
3
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
4
|
Han N, Li X, Du J, Xu J, Guo L, Liu Y. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res 2023; 58:1139-1147. [PMID: 37712722 DOI: 10.1111/jre.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Periodontitis, a chronic infectious disease, primarily arises from infections and the invasion of periodontal pathogens. This condition is typified by alveolar bone loss resulting from host immune responses and inflammatory reactions. Periodontal pathogens trigger aberrant inflammatory reactions within periodontal tissues, thereby exacerbating the progression of periodontitis. Simultaneously, these pathogens and metabolites stimulate osteoclast differentiation, which leads to alveolar bone resorption. Moreover, a range of systemic diseases, including diabetes, postmenopausal osteoporosis, obesity and inflammatory bowel disease, can contribute to the development and progression of periodontitis. Many studies have underscored the pivotal role of gut microbiota in bone health through the gut-alveolar bone axis. The circulation may facilitate the transfer of gut pathogens or metabolites to distant alveolar bone, which in turn regulates bone homeostasis. Additionally, gut pathogens can elicit gut immune responses and direct immune cells to remote organs, potentially exacerbating periodontitis. This review summarizes the influence of oral microbiota on the development of periodontitis as well as the association between gut microbiota and periodontitis. By uncovering potential mechanisms of the gut-bone axis, this analysis provides novel insights for the targeted treatment of pathogenic bacteria in periodontitis.
Collapse
Affiliation(s)
- Nannan Han
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Kumari S, Samara M, Ampadi Ramachandran R, Gosh S, George H, Wang R, Pesavento RP, Mathew MT. A Review on Saliva-Based Health Diagnostics: Biomarker Selection and Future Directions. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-18. [PMID: 37363139 PMCID: PMC10243891 DOI: 10.1007/s44174-023-00090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
The human body has a unique way of saying when something is wrong with it. The molecules in the body fluids can be helpful in the early detection of diseases by enabling health and preventing disease progression. These biomarkers enabling better healthcare are becoming an extensive area of research interest. Biosensors that detect these biomarkers are becoming the future, especially Point Of Care (POC) biosensors that remove the need to be physically present in the hospital. Detection of complex and systemic diseases using biosensors has a long way to go. Saliva-based biosensors are gaining attention among body fluids due to their non-invasive collection and ability to detect periodontal disease and identify systemic diseases. The possibility of saliva-based diagnostic biosensors has gained much publicity, with companies sending home kits for ancestry prediction. Saliva-based testing for covid 19 has revealed effective clinical use and relevance of the economic collection. Based on universal biomarkers, the detection of systemic diseases is a booming research arena. Lots of research on saliva-based biosensors is available, but it still poses challenges and limitations as POC devices. This review paper talks about the relevance of saliva and its usefulness as a biosensor. Also, it has recommendations that need to be considered to enable it as a possible diagnostic tool. Graphical Abstract
Collapse
Affiliation(s)
- Swati Kumari
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mesk Samara
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | | | - Sujoy Gosh
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Haritha George
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL USA
| | - Russell P. Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
6
|
Nasir SN, Iftikhar A, Zubair F, Alshammari A, Alharbi M, Alasmari AF, Khan A, Waseem M, Ali SS, Ali L, Waheed Y, Wei DQ. Structural vaccinology-based design of multi-epitopes vaccine against Streptococcus gordonii and validation using molecular modeling and immune simulation approaches. Heliyon 2023; 9:e16148. [PMID: 37234653 PMCID: PMC10208844 DOI: 10.1016/j.heliyon.2023.e16148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Streptococcus gordonii is an oral bacterium colonizing the dental cavity and leading to plaque formation. This pervasive colonizer is also the etiologic agent of bacterial endocarditis and has a major role in infective endocarditis. The bacteria reach the heart through oral bleeding, leading to inflammation of cardiovascular valves. Over the past 50 years, it has shown a significant pathogenic role in immunocompromised and neutropenic patients. Since antibiotic resistance has created prophylaxis failure towards infective endocarditis, a potent therapeutic candidate is needed. Therefore, multi-epitopes vaccine offers advantages over the other approaches. Thus, herein, numerous molecular-omics tools were exploited to mine immunogenic peptides, i.e., T-cell and B-cell epitopes, and construct a vaccine sequence. Our findings revealed a total of 24 epitopes, including CTL, HTL, and B-cell are responsible for imparting immune responses, which were combined with the help of different linkers, and MEVC was constructed. Multifactorial validation of the candidate vaccine was performed to minimize the risk factors. The final sequence was docked with TLR2 to validate its conformation compatibility with receptor and long-term interactions stability. Our analysis revealed that the vaccine construct is immunogenic and non-allergenic. The construct also established various contacts with the immune receptor. Finally, the vaccine sequence was reverse-translated, optimized for codon usage, and analyzed for expression in the Escherichia coli K12 strain. Maximum expression was noted with a CAI score of 0.95. In silico immune simulation revealed that the antigen was neutralized on the 3rd day after injection. In conclusion, the current study warrants validation of the vaccine construct both in in vitro and in vivo models for accurate therapeutic intervention.
Collapse
Affiliation(s)
- Syed Nouman Nasir
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Punjab, Pakistan
| | - Ayesha Iftikhar
- Government Khwaja Muhammad Safdar Medical College, Sialkot, Punjab, Pakistan
| | - Farukh Zubair
- Rashid Latif Medical College, Lahore, Punjab, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Syed Shujait Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Punjab, Pakistan
| | - Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China
| |
Collapse
|
7
|
Kim SK, Im J, Ko EB, Lee D, Seo HS, Yun CH, Han SH. Lipoteichoic acid of Streptococcus gordonii as a negative regulator of human dendritic cell activation. Front Immunol 2023; 14:1056949. [PMID: 37056772 PMCID: PMC10086370 DOI: 10.3389/fimmu.2023.1056949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Streptococcus gordonii, an opportunistic Gram-positive bacterium, causes an infective endocarditis that could be fatal to human health. Dendritic cells (DCs) are known to be involved in disease progression and immune responses in S. gordonii infection. Since lipoteichoic acid (LTA) is a representative virulence factor of S. gordonii, we here investigated its role in the activation of human DCs stimulated with LTA-deficient (ΔltaS) S. gordonii or S. gordonii LTA. DCs were differentiated from human blood-derived monocytes in the presence of GM-CSF and IL-4 for 6 days. DCs treated with heat-killed ΔltaS S. gordonii (ΔltaS HKSG) showed relatively higher binding and phagocytic activities than those treated with heat-killed wild-type S. gordonii (wild-type HKSG). Furthermore, ΔltaS HKSG was superior to wild-type HKSG in inducing phenotypic maturation markers including CD80, CD83, CD86, PD-L1, and PD-L2, antigen-presenting molecule MHC class II, and proinflammatory cytokines such as TNF-α and IL-6. Concomitantly, DCs treated with the ΔltaS HKSG induced better T cell activities, including proliferation and activation marker (CD25) expression, than those treated with the wild-type. LTA, but not lipoproteins, isolated from S. gordonii weakly activated TLR2 and barely affected the expression of phenotypic maturation markers or cytokines in DCs. Collectively, these results demonstrated that LTA is not a major immuno-stimulating agent of S. gordonii but rather it interferes with bacteria-induced DC maturation, suggesting its potential role in immune evasion.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Eun Byeol Ko
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- *Correspondence: Seung Hyun Han,
| |
Collapse
|
8
|
Effects of extracellular vesicles derived from oral bacteria on osteoclast differentiation and activation. Sci Rep 2022; 12:14239. [PMID: 35987920 PMCID: PMC9396627 DOI: 10.1038/s41598-022-18412-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the oral microbiota plays an important role in the progression of periodontitis, which is characterized by chronic inflammation and alveolar bone loss, and associated with systemic diseases. Bacterial extracellular vesicles (EVs) contain various bioactive molecules and show diverse effects on host environments depending on the bacterial species. Recently, we reported that EVs derived from Filifactor alocis, a Gram-positive periodontal pathogen, had osteoclastogenic activity. In the present study, we analysed the osteoclastogenic potency and immunostimulatory activity of EVs derived from the Gram-negative periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia, the oral commensal bacterium Streptococcus oralis, and the gut probiotic strain Lactobacillus reuteri. Bacterial EVs were purified by density gradient ultracentrifugation using OptiPrep (iodixanol) reagent. EVs from P. gingivalis, T. forsythia, and S. oralis increased osteoclast differentiation and osteoclstogenic cytokine expression in osteoclast precursors, whereas EVs from L. reuteri did not. EVs from P. gingivalis, T. forsythia, and S. oralis preferentially activated Toll-like receptor 2 (TLR2) rather than TLR4 or TLR9, and induced osteoclastogenesis mainly through TLR2. The osteoclastogenic effects of EVs from P. gingivalis and T. forsythia were reduced by both lipoprotein lipase and polymyxin B, an inhibitor of lipopolysaccharide (LPS), while the osteoclastogenic effects of EVs from S. oralis were reduced by lipoprotein lipase alone. These results demonstrate that EVs from periodontal pathogens and oral commensal have osteoclastogenic activity through TLR2 activation by lipoproteins and/or LPS.
Collapse
|
9
|
Song D, Lee HB, Kim GB, Kang SS. Whey fermented by Enterococcus faecalis M157 exhibits antiinflammatory and antibiofilm activities against oral pathogenic bacteria. J Dairy Sci 2022; 105:1900-1912. [PMID: 35086699 DOI: 10.3168/jds.2021-21233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to investigate the antiinflammatory and antibiofilm effects of whey fermented by Enterococcus faecalis M157 (M157-W) against oral pathogenic bacteria. The M157-W significantly inhibited IL-1β, IL-6, and nitric oxide induced by the lipopolysaccharide of Porphyromonas gingivalis in RAW 264.7 cells. The M157-W also inhibited the production of IL-1β and IL-8 in human periodontal ligament cells. Treatment with M157-W suppressed the phosphorylation of mitogen-activated protein kinases as well as the activation of nuclear factor-κB in RAW 264.7 cells stimulated by P. gingivalis lipopolysaccharide. Furthermore, M157-W dose-dependently inhibited Streptococcus mutans biofilm, whereas unfermented whey did not inhibit the biofilm. Treatment with M157-W significantly suppressed gtfB, gtfC, and gtfD gene expression in S. mutans compared with the control (0 μg/mL), indicating that M157-W inhibits S. mutans biofilm formation by reducing the synthesis of extracellular polymeric substances. Collectively, these results suggest that M157-W has antiinflammatory and antibiofilm activities against oral pathogenic bacteria.
Collapse
Affiliation(s)
- Dahyun Song
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Han Bin Lee
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
10
|
Park OJ, Kim AR, So YJ, Im J, Ji HJ, Ahn KB, Seo HS, Yun CH, Han SH. Induction of Apoptotic Cell Death by Oral Streptococci in Human Periodontal Ligament Cells. Front Microbiol 2021; 12:738047. [PMID: 34721337 PMCID: PMC8551966 DOI: 10.3389/fmicb.2021.738047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Initiation and progression of oral infectious diseases are associated with streptococcal species. Bacterial infection induces inflammatory responses together with reactive oxygen species (ROS), often causing cell death and tissue damage in the host. In the present study, we investigated the effects of oral streptococci on cytotoxicity and ROS production in human periodontal ligament (PDL) cells. Streptococcus gordonii showed cell cytotoxicity in a dose- and time-dependent manner. The cytotoxicity might be due to apoptosis since S. gordonii increased annexin V-positive cells, and the cytotoxicity was reduced by an apoptosis inhibitor, Z-VAD-FMK. Other oral streptococci such as Streptococcus mitis, Streptococcus sanguinis, and Streptococcus sobrinus also induced apoptosis, whereas Streptococcus mutans did not. All streptococci tested except S. mutans triggered ROS production in human PDL cells. Interestingly, however, streptococci-induced apoptosis appears to be ROS-independent, as the cell death induced by S. gordonii was not recovered by the ROS inhibitor, resveratrol or n-acetylcysteine. Instead, hydrogen peroxide (H2O2) appears to be important for the cytotoxic effects of streptococci since most oral streptococci except S. mutans generated H2O2, and the cytotoxicity was dramatically reduced by catalase. Furthermore, streptococcal lipoproteins are involved in cytotoxicity, as we observed that cytotoxicity induced by the lipoprotein-deficient S. gordonii mutant was less potent than that by the wild-type and was attenuated by anti-TLR2-neutralizing antibody. Indeed, lipoproteins purified from S. gordonii alone were sufficient to induce cytotoxicity. Notably, S. gordonii lipoproteins did not induce H2O2 or ROS but cooperatively induced cell death when co-treated with H2O2. Taken together, these results suggest that most oral streptococci except S. mutans efficiently induce damage to human PDL cells by inducing apoptotic cell death with bacterial H2O2 and lipoproteins, which might contribute to the progression of oral infectious diseases such as apical periodontitis.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - A Reum Kim
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Yoon Ju So
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Park OJ, Kwon Y, Park C, So YJ, Park TH, Jeong S, Im J, Yun CH, Han SH. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms 2020; 8:microorganisms8121852. [PMID: 33255499 PMCID: PMC7761167 DOI: 10.3390/microorganisms8121852] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Streptococcus gordonii, a Gram-positive bacterium, is a commensal bacterium that is commonly found in the skin, oral cavity, and intestine. It is also known as an opportunistic pathogen that can cause local or systemic diseases, such as apical periodontitis and infective endocarditis. S. gordonii, an early colonizer, easily attaches to host tissues, including tooth surfaces and heart valves, forming biofilms. S. gordonii penetrates into root canals and blood streams, subsequently interacting with various host immune and non-immune cells. The cell wall components of S. gordonii, which include lipoteichoic acids, lipoproteins, serine-rich repeat adhesins, peptidoglycans, and cell wall proteins, are recognizable by individual host receptors. They are involved in virulence and immunoregulatory processes causing host inflammatory responses. Therefore, S.gordonii cell wall components act as virulence factors that often progressively develop diseases through overwhelming host responses. This review provides an overview of S. gordonii, and how its cell wall components could contribute to the pathogenesis and development of therapeutic strategies.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yoon Ju So
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Tae Hwan Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
- Correspondence: ; Tel.: +82-2-880-2310
| |
Collapse
|
12
|
Im J, Baik JE, Lee D, Park OJ, Park DH, Yun CH, Han SH. Bacterial Lipoproteins Induce BAFF Production via TLR2/MyD88/JNK Signaling Pathways in Dendritic Cells. Front Immunol 2020; 11:564699. [PMID: 33123136 PMCID: PMC7566273 DOI: 10.3389/fimmu.2020.564699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
B-cell activating factor (BAFF) plays a crucial role in survival, differentiation, and antibody secretion of B cells. Microbial products with B-cell mitogenic properties can indirectly promote expansion and activation of B cells by stimulating accessory cells, such as dendritic cells (DCs), to induce BAFF. Although bacterial lipoproteins are potent B-cell mitogen like lipopolysaccharides (LPSs), it is uncertain whether they can stimulate DCs to induce BAFF expression. Here, we evaluated the effect of bacterial lipoproteins on BAFF expression in mouse bone marrow-derived DCs. Lipoprotein-deficient Staphylococcus aureus mutant induced relatively low expression level of membrane-bound BAFF (mBAFF) and the mRNA compared with its wild-type strain, implying that bacterial lipoproteins can positively regulate BAFF induction. The synthetic lipopeptides Pam2CSK4 and Pam3CSK4, which mimic bacterial lipoproteins, dose-dependently induced BAFF expression, and their BAFF-inducing capacities were comparable to those of LPS in DCs. Induction of BAFF by the lipopeptide was higher than the induction by other microbe-associated molecular patterns, including peptidoglycan, flagellin, zymosan, lipoteichoic acid, and poly(I:C). Pam3CSK4 induced both mBAFF and soluble BAFF expression in a dose- and time-dependent manner. BAFF expression by Pam3CSK4 was completely absent in DCs from TLR2- or MyD88-deficient mice. Among various MAP kinase inhibitors, only JNK inhibitors blocked Pam3CSK4-induced BAFF mRNA expression, while inhibitors blocking ERK or p38 kinase had no such effect. Furthermore, Pam3CSK4 increased the DNA-binding activities of NF-κB and Sp1, but not that of C/EBP. Pam3CSK4-induced BAFF promoter activity via TLR2/1 was blocked by NF-κB or Sp1 inhibitor. Collectively, these results suggest that bacterial lipoproteins induce expression of BAFF through TLR2/MyD88/JNK signaling pathways leading to NF-κB and Sp1 activation in DCs, and BAFF derived from bacterial lipoprotein-stimulated DCs induces B-cell proliferation.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Rangel TP, Reis AA, Caponi L, Pena LCS, Ruiz KGS, Santamaria MP, Mathias-Santamaria IF, Casati MZ, Casarin RCV. Subgingival endotoxin and lipoteichoic acid modulate cytokine production in diabetic subjects: A Case-control Study. Oral Dis 2020; 27:1325-1333. [PMID: 33012042 DOI: 10.1111/odi.13661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Periodontal disease and diabetes mellitus (DM) are highly prevalent and interrelated diseases, resulting in altered host response microbiota. Thus, this study aimed to evaluate the impact of DM on local levels of lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and their relationship with cytokines and matrix metalloproteinases' (MMPs) profile. METHODS This case-control study included diabetic (n = 15) and non-diabetic (n = 15) subjects presenting Stage 3-4, Grade C, Periodontitis. Gingival crevicular fluid (GCF) was collected, and LPS and LTA levels were analyzed by enzyme-linked immunosorbent assay (ELISA), while IFN-γ, IL-10, IL-17, IL-1β, IL-4, MMP-2, and MMP-9 were measured by LUMINEX/MAGpix. Mann-Whitney and Spearman's correlation tests were used to compared and to correlate variables (p < 0.05). RESULTS Higher levels of LTA, LPS, IL-10, IL-1β, and MMP-2 (p < 0.05) and lower levels of IL-17 were found in the DM group (p < 0.05). Non-diabetic subjects presented higher LPS, IFN-γ, IL-17, and MMP-2 levels and lower IL-10 concentration (p < 0.05). No significant correlation was seen between LPS and cytokine profile in non-diabetic. Local levels of LTA were positively correlated with IL-17 and MMP-2 and negatively with IL-10. CONCLUSION LTA and LPS drove the inflammatory profile through the modulation of cytokines and MMPs in a different manner in DM and non-diabetic subjects.
Collapse
Affiliation(s)
- Thiago P Rangel
- Department of Prosthodontics and Periodontics, Dental School of Piracicaba, Campinas State University, Campinas, Brazil
| | - Aurelio A Reis
- Department of Prosthodontics and Periodontics, Dental School of Piracicaba, Campinas State University, Campinas, Brazil
| | - Lara Caponi
- Department of Prosthodontics and Periodontics, Dental School of Piracicaba, Campinas State University, Campinas, Brazil
| | - Larissa C S Pena
- Department of Prosthodontics and Periodontics, Dental School of Piracicaba, Campinas State University, Campinas, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontics, Dental School of Piracicaba, Campinas State University, Campinas, Brazil
| | - Mauro P Santamaria
- Division of Periodontology, FOSJC, College of Dentistry, São Paulo State University, São Paulo, Brazil
| | | | - Marcio Z Casati
- Department of Prosthodontics and Periodontics, Dental School of Piracicaba, Campinas State University, Campinas, Brazil
| | - Renato C V Casarin
- Department of Prosthodontics and Periodontics, Dental School of Piracicaba, Campinas State University, Campinas, Brazil
| |
Collapse
|
14
|
Im J, Baik JE, Lee D, Kum KY, Yun CH, Park OJ, Han SH. Lipoteichoic acid of Enterococcus faecalis interferes with Porphyromonas gingivalis lipopolysaccharide signaling via IRAK-M upregulation in human periodontal ligament cells. Mol Oral Microbiol 2020; 35:146-157. [PMID: 32311229 DOI: 10.1111/omi.12287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 01/09/2023]
Abstract
Periodontitis is a chronic inflammatory disease of the gum caused by infection with multispecies oral bacteria. Since the periodontopathic bacteria, Porphyromonas gingivalis together with Enterococcus faecalis are frequently detected in patients with a severe form of periodontitis, interactions between their virulence factors might play an important role in progression of the disease. P. gingivalis and E. faecalis possess lipopolysaccharide (Pg.LPS) and lipoteichoic acid (Ef.LTA), respectively, as the major virulence factors inducing inflammatory responses. However, the combinatorial effect of these virulence factors on chemokine expression was poorly understood. Here, we examined the interaction between Ef.LTA and Pg.LPS on IL-8 induction in human periodontal ligament (PDL) cells. Pg.LPS, but not Ef.LTA, induced IL-8 expression at both mRNA and protein levels, which was suppressed in the presence of Ef.LTA. Although Ef.LTA and Pg.LPS could stimulate Toll-like receptor 2 (TLR2), Ef.LTA did not interfere with Pg.LPS induced-TLR2 activation. However, Ef.LTA decreased Pg.LPS-induced phosphorylation of ERK, JNK, and p38 kinase. Furthermore, Ef.LTA suppressed Pg.LPS-induced IL-8 promoter activity as well as AP-1, NF-IL6 and NF-κB transcription factors, which are indispensable for IL-8 expression. Interestingly, Ef.LTA enhanced only IL-1 receptor-associated kinase-M (IRAK-M) expression among the tested negative regulators of TLR intracellular signaling cascades in the presence of Pg.LPS. In addition, silencing IRAK-M restored the decreased IL-8 expression by Ef.LTA in the presence of Pg.LPS. Collectively, these results suggest that Ef.LTA inhibits Pg.LPS-induced IL-8 expression in human PDL cells via inducing the expression of a negative regulator of TLR signaling cascades, IRAK-M.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Kee-Yeon Kum
- Department of Conservative Dentistry, DRI, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,National Dental Care Center for Persons with Special Needs, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Synthetic Human β Defensin-3-C15 Peptide in Endodontics: Potential Therapeutic Agent in Streptococcus gordonii Lipoprotein-Stimulated Human Dental Pulp-Derived Cells. Int J Mol Sci 2019; 21:ijms21010071. [PMID: 31861863 PMCID: PMC6982004 DOI: 10.3390/ijms21010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/14/2023] Open
Abstract
Human β defensin-3-C15, an epithelium-derived cationic peptide that has antibacterial/antifungal and immuno-regulatory properties, is getting attention as potential therapeutic agent in endodontics. This study aimed to investigate if synthetic human β defensin-3-C15 (HBD3-C15) peptides could inhibit inflammatory responses in human dental pulp cells (hDPCs), which had been induced by gram-positive endodontic pathogen. hDPC explant cultures were stimulated with Streptococcus gordonii lipoprotein extracts for 24 h to induce expression of pro-inflammatory mediators. The cells were then treated with either HBD3-C15 (50 μg/mL) or calcium hydroxide (CH, 100 μg/mL) as control for seven days, to assess their anti-inflammatory effects. Quantitative RT-PCR analyses and multiplex assays showed that S. gordonii lipoprotein induced the inflammatory reaction in hDPCs. There was a significant reduction of IL-8 and MCP-1 within 24 h of treatment with either CH or HBD3-C15 (p < 0.05), which was sustained over 1 week of treatment. Alleviation of inflammation in both medications was related to COX-2 expression and PGE2 secretion (p < 0.05), rather than TLR2 changes (p > 0.05). These findings demonstrate comparable effects of CH and HDB3-C15 as therapeutic agents for inflamed hDPCs.
Collapse
|
16
|
Lima BP, Kho K, Nairn BL, Davies JR, Svensäter G, Chen R, Steffes A, Vreeman GW, Meredith TC, Herzberg MC. Streptococcus gordonii Type I Lipoteichoic Acid Contributes to Surface Protein Biogenesis. mSphere 2019; 4:e00814-19. [PMID: 31801844 PMCID: PMC6893214 DOI: 10.1128/msphere.00814-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Lipoteichoic acid (LTA) is an abundant polymer of the Gram-positive bacterial cell envelope and is essential for many species. Whereas the exact function of LTA has not been elucidated, loss of LTA in some species affects hydrophobicity, biofilm formation, and cell division. Using a viable LTA-deficient strain of the human oral commensal Streptococcus gordonii, we demonstrated that LTA plays an important role in surface protein presentation. Cell wall fractions derived from the wild-type and LTA-deficient strains of S. gordonii were analyzed using label-free mass spectroscopy. Comparisons showed that the abundances of many proteins differed, including (i) SspA, SspB, and S. gordonii 0707 (SGO_0707) (biofilm formation); (ii) FtsE (cell division); (iii) Pbp1a and Pbp2a (cell wall biosynthesis and remodeling); and (iv) DegP (envelope stress response). These changes in cell surface protein presentation appear to explain our observations of altered cell envelope homeostasis, biofilm formation, and adhesion to eukaryotic cells, without affecting binding and coaggregation with other bacterial species, and provide insight into the phenotypes revealed by the loss of LTA in other species of Gram-positive bacteria. We also characterized the chemical structure of the LTA expressed by S. gordonii Similarly to Streptococcus suis, S. gordonii produced a complex type I LTA, decorated with multiple d-alanylations and glycosylations. Hence, the S. gordonii LTA appears to orchestrate expression and presentation of cell surface-associated proteins and functions.IMPORTANCE Discovered over a half-century ago, lipoteichoic acid (LTA) is an abundant polymer found on the surface of Gram-positive bacteria. Although LTA is essential for the survival of many Gram-positive species, knowledge of how LTA contributes to bacterial physiology has remained elusive. Recently, LTA-deficient strains have been generated in some Gram-positive species, including the human oral commensal Streptococcus gordonii The significance of our research is that we utilized an LTA-deficient strain of S. gordonii to address why LTA is physiologically important to Gram-positive bacteria. We demonstrate that in S. gordonii, LTA plays an important role in the presentation of many cell surface-associated proteins, contributing to cell envelope homeostasis, cell-to-cell interactions in biofilms, and adhesion to eukaryotic cells. These data may broadly reflect a physiological role of LTA in Gram-positive bacteria.
Collapse
Affiliation(s)
- Bruno P Lima
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kelvin Kho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Brittany L Nairn
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia R Davies
- Department of Oral Biology, Faculty of Odontology, Malmo University, Malmo, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Faculty of Odontology, Malmo University, Malmo, Sweden
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amanda Steffes
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerrit W Vreeman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Fan C, Ji Q, Zhang C, Xu S, Sun H, Li Z. TGF‑β induces periodontal ligament stem cell senescence through increase of ROS production. Mol Med Rep 2019; 20:3123-3130. [PMID: 31432132 PMCID: PMC6755147 DOI: 10.3892/mmr.2019.10580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are vital for the regeneration of periodontal tissue. Transforming growth factor (TGF) β1, a potent stimulator of tissue regeneration, is extensive and abundant in the bone matrix. However, the effect of TGF‑β1 in periodontal differentiation remains to be elucidated. The present study aimed to evaluate the effect of TGF‑β1 on human PDLSCs. PDLSCs were isolated using CD146 microbeads, and characterized by flow cytometry. The present study demonstrated that treatment with TGF‑β1 induced PDLSC senescence, characterized by increases in senescence‑associated beta‑galactosidase activity and elevation of both p16 and p21 expression. Furthermore, TGF‑β1 treatment demonstrated the capacity to induce the production of reactive oxygen species (ROS). Of note, addition of a ROS scavenger successfully rescued the TGF‑β1‑induced PDLSC senescence. Thus, the present results indicated that TGF‑β1 may serve a vital role in PDLSC senescence, and thus represent a potential target involved in the fabrication and formation of hard tissue for clinical treatment.
Collapse
Affiliation(s)
- Chun Fan
- Department of Periodontology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Qiuxia Ji
- Department of Periodontology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Chunyang Zhang
- Department of Periodontology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Shuo Xu
- Department of Periodontology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Hui Sun
- Department of Periodontology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| | - Zhiyuan Li
- Key Laboratory, Department of Otolaryngology‑Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266555, P.R. China
| |
Collapse
|
18
|
Bercier P, Gottschalk M, Grenier D. Effects of Actinobacillus pleuropneumoniae on barrier function and inflammatory response of pig tracheal epithelial cells. Pathog Dis 2019; 77:5159464. [PMID: 30395241 DOI: 10.1093/femspd/fty079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a respiratory pathogen that causes porcine pleuropneumonia, a fatal respiratory disease responsible for high economic losses in the swine industry worldwide. With the objective to better understand the interactions between A. pleuropneumoniae and the porcine respiratory epithelium, we investigated the capacity of this pathogen to damage the epithelial barrier and induce an inflammatory response. We showed that A. pleuropneumoniae, even at a multiplicity of infection of 10, is able to break the tracheal epithelial barrier integrity as determined by monitoring the transepithelial electrical resistance and fluorescein-isothiocyanate-dextran transport. Immunofluorescence staining analysis suggested that A. pleuropneumoniae is affecting two important tight junction proteins (occludin, zonula occludens-1). As a consequence of the breakdown of the epithelial barrier integrity, A. pleuropneumoniae can translocate across a cell monolayer. We also showed that tracheal epithelial cells secrete pro-inflammatory cytokines (IL-8, IL-6, TNF-α) in response to a stimulation with this pathogen. In summary, A. pleuropneumoniae is able to induce damage to the porcine respiratory epithelial barrier. Challenging the epithelial cells with A. pleuropneumoniae was also associated with the secretion of pro-inflammatory cytokines. This better knowledge of the interactions between A. pleuropneumoniae and the epithelial cells may help to design novel strategies to prevent epithelium invasion by this bacterium along with other swine respiratory pathogens.
Collapse
Affiliation(s)
- Philippe Bercier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, Quebec, GIV 0A6, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, J2S 2M2, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec - Nature et Technologies (FRQNT), Saint-Hyacinthe, Quebec, J2S 2M2, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, Quebec, GIV 0A6, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec - Nature et Technologies (FRQNT), Saint-Hyacinthe, Quebec, J2S 2M2, Canada
| |
Collapse
|
19
|
Park JW, Kim HY, Kim MG, Jeong S, Yun CH, Han SH. Short-chain Fatty Acids Inhibit Staphylococcal Lipoprotein-induced Nitric Oxide Production in Murine Macrophages. Immune Netw 2019; 19:e9. [PMID: 31089436 PMCID: PMC6494764 DOI: 10.4110/in.2019.19.e9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus, a Gram-positive pathogen, can cause severe inflammation in humans, leading to various life-threatening diseases. The lipoprotein is a major virulence factor in S. aureus-induced infectious diseases and is responsible for excessive inflammatory mediators such as nitric oxide (NO). Short-chain fatty acids (SCFAs) including butyrate, propionate, and acetate are microbial metabolites in the gut that are known to have anti-inflammatory effects in the host. In this study, we investigated the effects of SCFAs on S. aureus lipoprotein (Sa.LPP)-induced NO production in mouse macrophages. Butyrate and propionate, but not acetate, inhibited Sa.LPP-induced production of NO in RAW 264.7 cells and bone marrow-derived macrophages. Butyrate and propionate inhibited Sa.LPP-induced expression of inducible NO synthase (iNOS). However, acetate did not show such effects under the same conditions. Furthermore, butyrate and propionate, but not acetate, inhibited Sa.LPP-induced activation of NF-κB, expression of IFN-β, and phosphorylation of STAT1, which are essential for inducing transcription of iNOS in macrophages. In addition, butyrate and propionate induced histone acetylation at lysine residues in the presence of Sa.LPP in RAW 264.7 cells. Moreover, Sa.LPP-induced NO production was decreased by histone deacetylase (HDAC) inhibitors. Collectively, these results suggest that butyrate and propionate ameliorate the inflammatory responses caused by S. aureus through the inhibition of NF-κB, IFN-β/STAT1, and HDAC, resulting in attenuated NO production in macrophages.
Collapse
Affiliation(s)
- Jeong Woo Park
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Min Geun Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Soyoung Jeong
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Yang LX, Yang LK, Zhu J, Chen JH, Wang YH, Xiong K. Expression signatures of long non-coding RNA and mRNA in human traumatic brain injury. Neural Regen Res 2019; 14:632-641. [PMID: 30632503 PMCID: PMC6352599 DOI: 10.4103/1673-5374.247467] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/20/2018] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a key role in craniocerebral disease, although their expression profiles in human traumatic brain injury are still unclear. In this regard, in this study, we examined brain injury tissue from three patients of the 101st Hospital of the People's Liberation Army, China (specifically, a 36-year-old male, a 52-year-old female, and a 49-year-old female), who were diagnosed with traumatic brain injury and underwent brain contusion removal surgery. Tissue surrounding the brain contusion in the three patients was used as control tissue to observe expression characteristics of lncRNAs and mRNAs in human traumatic brain injury tissue. Volcano plot filtering identified 99 lncRNAs and 63 mRNAs differentially expressed in frontotemporal tissue of the two groups (P < 0.05, fold change > 1.2). Microarray analysis showed that 43 lncRNAs were up-regulated and 56 lncRNAs were down-regulated. Meanwhile, 59 mRNAs were up-regulated and 4 mRNAs were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed 27 signaling pathways associated with target genes and, in particular, legionellosis and influenza A signaling pathways. Subsequently, a lncRNA-gene network was generated, which showed an absolute correlation coefficient value > 0.99 for 12 lncRNA-mRNA pairs. Finally, quantitative real-time polymerase chain reaction confirmed different expression of the five most up-regulated mRNAs within the two groups, which was consistent with the microarray results. In summary, our results show that expression profiles of mRNAs and lncRNAs are significantly different between human traumatic brain injury tissue and surrounding tissue, providing novel insight regarding lncRNAs' involvement in human traumatic brain injury. All participants provided informed consent. This research was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-TCC-13004002) and the protocol version number is 1.0.
Collapse
Affiliation(s)
- Li-Xiang Yang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Li-Kun Yang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Jun-Hui Chen
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Yu-Hai Wang
- Department of Neurosurgery, 101 Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
21
|
Li T, Mao W, Liu B, Gao R, Zhang S, Wu J, Fu C, Deng Y, Liu K, Shen Y, Cao J. LP induced/mediated PGE 2 synthesis through activation of the ERK/NF-κB pathway contributes to inflammatory damage triggered by Escherichia coli-infection in bovine endometrial tissue. Vet Microbiol 2019; 232:96-104. [PMID: 31030852 DOI: 10.1016/j.vetmic.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/31/2023]
Abstract
The bovine endometrium is constantly challenged with pathogenic bacteria, especially with Escherichia coli. In previous studies, we showed that prostaglandin E2 (PGE2) synthesis was increased in E. coli-infected bovine endometrial tissue, which promoted the development of inflammatory damage. However, the molecular mechanism underlying this accumulation of PGE2 remained undefined. Lipoprotein (LP) is one of critical outer membrane protein in E. coli, which regulates inflammatory response. In this study, we determined the role of LP in PGE2 accumulation in bovine endometrial tissue by infecting the tissue with wild endometrial pathogenic E. coli and E. coli LP deletion mutant (JE5505) strains. We demonstrate that JE5505 was less effective than pathogenic E. coli in inducing the production of PGE2,IL-6, TNF-α, HMGB-1, and HABP1 and that the induction of cytokines was dependent on the activation of MAPKs, as revealed by rapid phosphorylation of ERK1/2/NF-κB in the endometrial tissues, furthermore, LP also induced PGE2 synthessis and cytokine secretion. Additionally, ERK and NF-κB inhibitors significantly inhibited PGE2 production and cytokine secretion and reduced or attenuated tissue damage in JE5505-infected and LP induced endometrial tissues. What is more important, we reported PGE2 introduction increased the expression of pro-inflammatory factors and DAMPs in E. coli-infected bovine endometrial tissue. Taken together, these results indicate that LP is involved in the accumulation of PGE2 through the activation of the ERK/NF-κB pathway that induces the production of pro-inflammatory factors and damage-associated molecular patterns (DAMPs) in E. coli-infected bovine endometrial tissue. These results should help in better understanding and management of postpartum inflammatory diseases in dairy cows.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Ruifeng Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Shuangyi Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jindi Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Changqi Fu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yang Deng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yuan Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China.
| |
Collapse
|
22
|
Park OJ, Kim J, Kim HY, Kwon Y, Yun CH, Han SH. Streptococcus gordonii induces bone resorption by increasing osteoclast differentiation and reducing osteoblast differentiation. Microb Pathog 2018; 126:218-223. [PMID: 30414445 DOI: 10.1016/j.micpath.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 01/18/2023]
Abstract
Streptococcus gordonii is commonly found in the periapical endodontic lesions of patients with apical periodontitis, a condition characterized by inflammation and periapical bone loss. Since bone metabolism is controlled by osteoclastic bone resorption and osteoblastic bone formation, we investigated the effects of S. gordonii on the differentiation and function of osteoclasts and osteoblasts. For the determination of bone resorption activity in vivo, collagen sheets soaked with heat-killed S. gordonii were implanted on mouse calvaria, and the calvarial bones were scanned by micro-computed tomography. Mouse bone marrow-derived macrophages (BMMs) were stimulated with M-CSF and RANKL for 2 days and then differentiated into osteoclasts in the presence or absence of heat-killed S. gordonii. Tartrate-resistant acid phosphatase staining was performed to determine osteoclast differentiation. Primary osteoblast precursors were differentiated into osteoblasts with ascorbic acid and β-glycerophosphate in the presence or absence of heat-killed S. gordonii. Alkaline phosphatase staining and alizarin red S staining were conducted to determine osteoblast differentiation. Western blotting was performed to examine the expression of transcription factors including c-Fos, NFATc1, and Runx2. Heat-killed S. gordonii induced bone destruction in a mouse calvarial implantation model. The differentiation of RANKL-primed BMMs into osteoclasts was enhanced in the presence of heat-killed S. gordonii. Heat-killed S. gordonii increased the expression of c-Fos and NFATc1, which are essential transcription factors for osteoclast differentiation. On the other hand, heat-killed S. gordonii inhibited osteoblast differentiation and reduced the expression of Runx2, an essential transcription factor for osteoblast differentiation. S. gordonii exerts bone resorptive activity by increasing osteoclast differentiation and reducing osteoblast differentiation, which may be involved in periapical bone resorption.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiseon Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
23
|
Kang SS, Kim AR, Yun CH, Han SH. Staphylococcus aureus lipoproteins augment inflammatory responses in poly I:C-primed macrophages. Cytokine 2018; 111:154-161. [PMID: 30153621 DOI: 10.1016/j.cyto.2018.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023]
Abstract
Secondary bacterial infection contributes to severe inflammation following viral infection. Among foodborne pathogenic bacteria, Staphylococcus aureus is known to exacerbate severe inflammatory responses after infection with single-stranded RNA viruses such as influenza viruses. However, it has not been determined if S. aureus infection enhances inflammatory responses after infection with RNA enteric viruses, including rotavirus, which is a double-stranded RNA virus. We therefore investigated the molecular mechanisms by which a cell wall component of S. aureus enhanced inflammatory responses during enteric viral infection using poly I:C-primed macrophages, which is a well-established model for double-stranded RNA virus infection. S. aureus lipoproteins enhanced IL-6 as well as TNF-α production in poly I:C-primed macrophages. Pam2CSK4, a mimic of Gram-positive bacterial lipoproteins and S. aureus lipoproteins, also significantly enhanced IL-6 production in poly I:C-primed macrophages. While IFN-β expression was increased in poly I:C-primed macrophages treated with Pam2CSK4 or S. aureus lipoproteins, the level of IL-6 enhancement in poly I:C-primed macrophages was decreased in the presence of anti-IFN-α/β receptor antibody, suggesting that IFN-β plays an important role in enhanced IL-6 production. Phosphatidylinositol-3-kinase, Akt, ERK and NF-κB were also involved in the enhanced IL-6 production. Collectively, these results suggest that S. aureus lipoproteins induce excessive inflammatory responses in the presence of poly I:C.
Collapse
Affiliation(s)
- Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - A Reum Kim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Sun J, Li Y, Li M, Liu Y, Qu C, Wang L, Song L. A novel JNK is involved in immune response by regulating IL expression in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 79:93-101. [PMID: 29751034 DOI: 10.1016/j.fsi.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The c-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPK) highly conserved from yeast to mammals and participates in regulating many physiological and pathological processes. In the present study, a novel JNK was identified from oyster Crassostrea gigas (designated as CgJNK) and its biological functions were investigated in response against lipopolysaccharide (LPS) stimulation. The CgJNK consists of 415 amino acids, which includes a serine/threonine protein kinase (S_TKc) domain with a conserved Thr-Pro-Tyr (TPY) motif. Phylogenetic analysis revealed that CgJNK shared high similarity with other members of the JNK subfamily. CgJNK mRNA was detected in all the tested tissues and CgJNK mRNA expression levels in hemocytes were significantly up-regulated from 6 to 72 h after LPS stimulation and reached the highest level (16.1-fold, p < 0.01) at 24 h. The phosphorylation level of CgJNK in C. gigas hemocytes was increased at 2 h after LPS stimulation. The subcellular localization of CgJNK phosphorylation in hemocytes was analyzed after LPS stimulation, and CgJNK phosphorylation could be detected in both cytoplasm and nucleus of oyster hemocytes at 2 h post LPS stimulation. Additionally, the interleukins (CgILs) were detected in hemocytes of CgJNK-knockdown oysters. CgIL17-1, CgIL17-2, CgIL17-4 and CgIL17-6 transcripts were decreased significantly in CgJNK-knockdown oysters at 24 h post LPS stimulation. In summary, these results suggested that CgJNK played an important role in the immune response of oysters by regulating IL expression.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
25
|
Abstract
A biofilm is an aggregate of microorganisms in which cells adhere to biological or non-biological surfaces and is responsible for various infectious diseases. Infections caused by Staphylococcus aureus, including pneumonia, endocarditis, and osteomyelitis, are often associated with colonization and biofilm formation. Although lipoteichoic acid (LTA) is involved in biofilm formation, the specific role of LTA is not clearly understood. In this study, we demonstrated that LTA released from Lactobacillus plantarum could inhibit S. aureus biofilm formation and aggregation without affecting the growth of S. aureus in various in vitro and in vivo models. L. plantarum LTA (Lp.LTA) also inhibited biofilm formation of S. aureus clinical isolates, including a methicillin-resistant strain. Remarkably, Lp.LTA not only interfered with S. aureus biofilm formation, but it also disrupted a pre-formed biofilm. Mechanism studies demonstrated that Lp.LTA inhibited expression of the ica-operon, which is responsible for the production of poly-N-acetylglucosamine, a key molecule required for S. aureus biofilm development. Lp.LTA increased the release of autoinducer-2 from S. aureus, which contributed to the inhibition of S. aureus biofilm formation. Moreover, Lp.LTA treatment enhanced susceptibility of the biofilm to various antibiotics and to macrophages. Interestingly, Lp.LTA without D-alanine moieties was not able to inhibit biofilm formation by S. aureus. In conclusion, the present study suggests that LTA can inhibit S. aureus biofilm formation, and therefore could be applied for preventing and/or treating infectious diseases caused by S. aureus biofilms.
Collapse
Affiliation(s)
- Ki Bum Ahn
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea.,Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|