1
|
Kazemi M, Sanati M, Shekari Khaniani M, Ghafouri-Fard S. A review on the lncRNA-miRNA-mRNA regulatory networks involved in inflammatory processes in Alzheimer's disease. Brain Res 2025; 1856:149595. [PMID: 40132722 DOI: 10.1016/j.brainres.2025.149595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Alzheimer's disease is a progressive neurodegenerative condition that is the most frequent reason for dementia. Due to the increasing trend of aging in societies, it will place a large social and financial burden on society. Although beta amyloid plaques and the formation of neurofibrillary tangles are mentioned as the main events in this disorder, the exact molecular pathology and inflammatory regulatory networks involved in neuroinflammatory events, as a fundamental pathogenic mechanism remain unknown. Understanding these molecular network pathways in addition to helping to understand the pathogenesis of Alzheimer's disease, can also help in the early diagnosis as well as the control of inflammatory processes that are involved in its progression. So, in this study, we intend to have an overview on the regulatory lncRNAs of Alzheimer's disease and their related miRNA and mRNAs, as well as the relationship of these regulatory pathways with inflammatory processes, so that we can provide a perspective for future studies in the field of diagnosis and possibly treatment of this disorder.
Collapse
Affiliation(s)
- Masoumeh Kazemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahla Sanati
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chen K, Yang Y, Wu Y, Cao W, Zhao Y, Wang S, Wang K. PLGA nanoparticles encapsulating TSHR-A and rapamycin enhance the induction of dendritic cell-specific immune tolerance in mice with Graves' disease. Biomed Mater 2025; 20:025045. [PMID: 40009982 DOI: 10.1088/1748-605x/adbaa3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells with multifaceted functions in controlling immune activation and tolerance. Graves' disease, particularly Graves' ophthalmopathy, is recognized as a refractory autoimmune thyroid disease. Therefore, DC-targeted therapies aimed at inducing specific immune tolerance are important for the treatment of Graves' disease. Therefore, we utilized polylactic acid glycolic acid polymer (PLGA) polymer nanoparticles (NPs) encapsulating Graves' disease auto-antigen thyrotropin receptor A (TSHR-A) peptide and the immune tolerance inducer rapamycin (Rapa) to synthesize drug-loaded NPs (NP (TSHR-A + Rapa)). We first characterized the synthesized nanodrugs using transmission electron microscopy and dynamic light scattering techniques and tested the uptake capacity of DCs for NPs after co-culturing the NPs with DCs. And the safe concentration of NPs to DCs was detected using Cell counting kit-8 (CCK-8) assay. Subsequently, we tested the targeting and safety of the NPs in mice. And the effects of NPs on the proportion and proliferation of DCs and regulatory T (Treg) cells were examinedin vivoandin vitrousing flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) method, respectively. Enzyme linked immunosorbent assay (ELISA) assays were used to detect the effect of NPs on cytokine release from DCs. Finally, we tested the preventive and therapeutic effects of the synthesized NPs on disease models. Our results showed that the synthesized NPs were well taken up by DCsin vitro, whilein vivothey were mainly targeted to the spleen of mice. The NPs were able to relatively inhibit the maturation of DCsin vivoandin vitro, while affecting the release of relevant cellular functional factors from DCs, and the NPs also promoted the proportion and proliferation of Treg cellsin vivoandin vitro. In addition, the synthesized NPs were able to prevent and improve the mouse disease model well without toxic side effects on mouse organs and other physiological indicators. Therefore, the synthesis of NP (TSHR-A + Rapa) NPs using PLGA encapsulated TSHR-A and rapamycin could be used as targeting DCs to alter immune tolerance and as a new potential approach for the treatment of Graves' disease.
Collapse
Affiliation(s)
- Kun Chen
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, 169, Hushan Road, Nanjing, Jiangsu 211100, People's Republic of China
| | - Yu Yang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, 169, Hushan Road, Nanjing, Jiangsu 211100, People's Republic of China
| | - Yang Wu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu 213000, People's Republic of China
| | - Wen Cao
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, 169, Hushan Road, Nanjing, Jiangsu 211100, People's Republic of China
| | - Yijing Zhao
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, 169, Hushan Road, Nanjing, Jiangsu 211100, People's Republic of China
| | - Su Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, 169, Hushan Road, Nanjing, Jiangsu 211100, People's Republic of China
| | - Kun Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, 169, Hushan Road, Nanjing, Jiangsu 211100, People's Republic of China
| |
Collapse
|
3
|
Alipour S, Aghebati-Maleki A, Reza Sadeghi M, Soltani-Zangbar MS, Khakpour A, Aghebati-Maleki L. Altered miR-10a gene expression in peripheral blood mononuclear cells correlates with frequency of T regulatory cells and cytokine profile in multiple sclerosis patients. Neurosci Lett 2025; 844:138036. [PMID: 39510494 DOI: 10.1016/j.neulet.2024.138036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
A critical component in triggering and progressing autoimmune multiple sclerosis (MS) is the deregulation of immune responses, including dysfunction of T regulatory cells (Tregs), critical participants in the pathogenetic context of inflammation. It has been found that miRNAs have a crucial role in the induction of MS because dysregulation of miRNAs can result in defects in immunological tolerance. In this investigation, we examined the miR-10a contribution to MS disorder by comparing the altered expression of miR-10a in peripheral blood mononuclear cells (PBMCs) of 40 MS patients to 40 healthy controls. Additionally, we examined Tregs' frequency in MS patients in compare with healthy controls. We evaluated the secreted levels of anti-inflammatory cytokines, such as IL-10 and TGF-B, in the serum of MS patients and their expression level in healthy controls' and patients' peripheral blood mononuclear cells (PBMCs). Then, we assessed the correlation between miR-10a expression with Treg frequency and levels of anti-inflammatory cytokines in serum. PBMCs from MS patients had downregulated expression of miR-10a, and a substantial correlation was found between this expression and a reduction in Treg cells' frequency and the secreted anti-inflammatory cytokines associated with Tregs' diminished functionality. In summary, our research demonstrated a strong correlation between Tregs' frequency, lower levels of cytokines linked to Treg function, and lower expression of miR-10a in PBMCs. So, the alteration of miR-10a can be utilized as a probable therapeutic target for the prevention and management of MS disorder. However, further examination is requisite before this strategy become practical for use in the clinical setting.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Khakpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Pasławska M, Grodzka A, Peczyńska J, Sawicka B, Bossowski AT. Role of miRNA in Cardiovascular Diseases in Children-Systematic Review. Int J Mol Sci 2024; 25:956. [PMID: 38256030 PMCID: PMC10816020 DOI: 10.3390/ijms25020956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The number of children suffering from cardiovascular diseases (CVDs) is rising globally. Therefore, there is an urgent need to acquire a better understanding of the genetic factors and molecular mechanisms related to the pathogenesis of CVDs in order to develop new prevention and treatment strategies for the future. MicroRNAs (miRNAs) constitute a class of small non-coding RNA fragments that range from 17 to 25 nucleotides in length and play an essential role in regulating gene expression, controlling an abundance of biological aspects of cell life, such as proliferation, differentiation, and apoptosis, thus affecting immune response, stem cell growth, ageing and haematopoiesis. In recent years, the concept of miRNAs as diagnostic markers allowing discrimination between healthy individuals and those affected by CVDs entered the purview of academic debate. In this review, we aimed to systematise available information regarding miRNAs associated with arrhythmias, cardiomyopathies, myocarditis and congenital heart diseases in children. We focused on the targeted genes and metabolic pathways influenced by those particular miRNAs, and finally, tried to determine the future of miRNAs as novel biomarkers of CVD.
Collapse
Affiliation(s)
| | | | | | | | - Artur Tadeusz Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (M.P.); (A.G.); (J.P.); (B.S.)
| |
Collapse
|
6
|
Alipour S, Kazemi T, Sadeghi MR, Heris JA, Masoumi J, Naseri B, Baghbani E, Sohrabi S, Baradaran B. Glyburide-treated human monocyte-derived dendritic cells loaded with insulin represent tolerogenic features with anti-inflammatory responses and modulate autologous T cell responses in vitro. Int Immunopharmacol 2024; 126:111230. [PMID: 37979448 DOI: 10.1016/j.intimp.2023.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Tolerogenic dendritic cells (TolDCs) are attractive therapeutic options for autoimmune disorders because they suppress autologous T-cell responses. Dendritic cells (DCs) are equipped with pattern recognition receptors (PRR), including nucleotide-binding and oligomerization domain-like receptors (NLRs) such as NLRP3. Abnormal NLRP3 activation has been reported to be correlated with the occurrence of autoimmune disorders. Accordingly, we hypothesized that glyburide treatment of DCs by blocking the ATP-sensitive K+ (kATP) channels generates TolDCs by inhibiting NLRP3. Insulin was even loaded on a group of glyburide-treated mature DCs (mDCs) to investigate the antigen (Ag) loading effects on glyburide-treated mDCs' phenotypical and functional features. Consequently, T lymphocytes' mediated responses ensuing co-culture of them with control mDCs, insulin loaded and unloaded glyburide treated mDCs were evaluated to determine generated TolDCs' capacity in inhibition of T cell responses that are inducer of destruction in insulin-producing pancreatic beta cells in Type 1 Diabetes Mellitus (T1DM). Our findings indicated that glyburide generates desirable TolDCs with decreased surface expression of maturation and Ag presentation related markers and diminished level of inflammatory but increased level of anti-inflammatory cytokines, which even insulin loading demonstrated more anti-inflammatory functions. In addition, co-cultured T cells showed regulatory or T helper 2 phenotype instead of T helper 1 features. Our findings suggested that insulin-loaded and unloaded glyburide-treated DCs are promising therapeutic approaches for autoimmune patients, specifically DCs loaded with insulin for T1DM patients. However, further research is required before this technique can be applied in clinical practice.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Xiong Y, Zhang Z, Liu S, Shen L, Zheng L, Ding L, Liu L, Wu L, Li L, Hu Z, Zhang Z, Zhou L, Yao Y. Lupeol alleviates autoimmune myocarditis by suppressing macrophage pyroptosis and polarization via PPARα/LACC1/NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155193. [PMID: 37976692 DOI: 10.1016/j.phymed.2023.155193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Autoimmune myocarditis, with increasing incidence and limited therapeutic strategies, is in urgent need to explore its underlying mechanisms and effective drugs. Pyroptosis is a programmed cell death that may contribute to the pathogenesis of myocarditis. Nonetheless, no direct evidence validated the role of pyroptosis in autoimmune myocarditis. Lupeol (Lup), a pentacyclic triterpene, possesses various biological activities such as antidiabetic properties. However, the effects of Lup on autoimmune myocarditis and pyroptosis remain unelucidated. PURPOSE This study aimed to reveal the role of pyroptosis in autoimmune myocarditis and explore the protective effects of Lup, and its engaged mechanisms. METHODS The experimental autoimmune myocarditis (EAM) mouse model was established by immunization with a fragment of cardiac myosin in Balb/c mice. Lup and MCC950 were administered after EAM induction. The protective effects were assessed by inflammation score, cardiac injury, chronic fibrosis, and cardiac function. Mechanistically, the effects of Lup on the M1 polarization and pyroptosis of macrophages were evaluated. Transcriptome sequencing and molecular docking were subsequently employed, and the underlying mechanisms of Lup were further explored in vitro with small interfering RNA and adenovirus. RESULTS Administration of Lup and MCC950 alleviated EAM progression. Western blotting and immunofluorescence staining identified macrophages as the primary cells undergoing pyroptosis. Lup inhibited the expression of pyroptosis-associated proteins in macrophages during EAM in a dose-dependent manner. Furthermore, Lup suppressed pyroptosis in both bone marrow-derived macrophages (BMDMs) and THP-1-derived macrophages in vitro. In addition, Lup inhibited the M1 polarization of macrophages both in vivo and in vitro. Mechanistically, the protective effects of Lup were demonstrated via the suppression of the nuclear factor-κΒ (NF-κB) signaling pathway. Transcriptome sequencing and molecular docking revealed the potential involvement of peroxisome proliferator-associated receptor α (PPARα). Subsequently, we demonstrated that Lup activated PPARα to reduce the expression level of LACC1, thereby inhibiting the NF-κB pathway and pyroptosis. CONCLUSION Our findings indicated the crucial role of macrophage pyroptosis in the pathogenesis of EAM. Lup ameliorated EAM by inhibiting the M1 polarization and pyroptosis of macrophages through the PPARα/LACC1/NF-κB signaling pathway. Thus, our results provided a novel therapeutic target and agent for myocarditis.
Collapse
Affiliation(s)
- Yulong Xiong
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhenhao Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Shangyu Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lishui Shen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lihui Zheng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Ligang Ding
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Limin Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Lingmin Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Le Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhao Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Zhuxin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Likun Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China
| | - Yan Yao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, PR China.
| |
Collapse
|
8
|
Lv C, Hu C, Zhu C, Wan X, Chen C, Ji X, Qin Y, Lu L, Guo X. Empagliflozin alleviates the development of autoimmune myocarditis via inhibiting NF-κB-dependent cardiomyocyte pyroptosis. Biomed Pharmacother 2024; 170:115963. [PMID: 38042114 DOI: 10.1016/j.biopha.2023.115963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Autoimmune myocarditis, which falls within the broad spectrum of myocarditis, is characterized by an excessive inflammatory response in the heart, and can progress into dilated cardiomyopathy and irreversible heart failure in all possibility. However, effective clinical therapeutics are limited due to its complex inflammatory reactions. Empagliflozin (EMPA) has been previously demonstrated to possess anti-inflammatory properties. This study aimed to determine the improvement effects of EMPA on cardiac dysfunction under the condition of autoimmune myocarditis, and to further investigate the potential mechanisms. In vivo, all male Balb/c mice were randomly divided into four groups: control, experimental autoimmune myocarditis (EAM), EAM+EMPA and EMPA. In vitro, the effects of EMPA on IL-18-stimulated H9C2 cells were explored and the underlying molecular mechanisms were further determined. EMPA treatment significantly inhibited the development of autoimmune myocarditis, and mice treated with EMPA exhibited improved cardiac function compared with that in the EAM group, potentially through modulating pyroptosis of myocardium. Specifically, the NF-κB pathway was activated in the hearts of the EAM mice, which further activated NLRP3 inflammasome-dependent pyroptosis. EMPA treatment significantly inhibited such activation, thus alleviating inflammatory reactions in the context of EAM. Moreover, in vitro, we also observed that EMPA significantly inhibited pyroptosis of IL-18-stimulated H9C2 cells, and reduced nuclear translocation of NF-κB and degradation of activated IκBα. This work provides the first direct evidence that EMPA can inhibit myocardial inflammation and improve cardiac function in EAM mice, partly attributed to the drug-induced suppression of cardiomyocyte pyroptosis via disrupting the NF-κB pathway.
Collapse
Affiliation(s)
- Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chongqing Hu
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chuanmeng Zhu
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Xinyun Ji
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
9
|
Shen L, Lu K, Chen Z, Zhu Y, Zhang C, Zhang L. Pre-treatment with galectin-1 attenuates lipopolysaccharide-induced myocarditis by regulating the Nrf2 pathway. Eur J Histochem 2023; 67:3816. [PMID: 38058290 PMCID: PMC10773196 DOI: 10.4081/ejh.2023.3816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, plays a crucial role in controlling inflammation and neovascularization. However, the potential role of Gal-1 in preventing myocarditis remains uncertain. We aimed to explore the functions and mechanisms of Gal-1 in preventing myocarditis. In vivo, C57/BL6 mice were pre-treated with or without Gal-1 and then exposed to lipopolysaccharide (LPS) to induce myocarditis. Subsequently, cardiac function, histopathology, inflammation, oxidative stress, and apoptosis of myocardial tissues were detected. Following this, qRT-PCR and Western blotting were applied to measure iNOS, COX2, TXNIP, NLRP3 and Caspase-1 p10 expressions. In vitro, H9c2 cells pre-treated with different doses of Gal-1 were stimulated by LPS to induce myocarditis models. CCK8, flow cytometry and reactive oxygen species (ROS) assay were then employed to estimate cell viability, apoptosis and oxidative stress. Furthermore, Nrf2 and HO-1 protein expressions were evaluated by Western blotting in vivo and in vitro. The results showed that in vivo, Gal-1 pre-treatment not only moderately improved cardiac function and cardiomyocyte apoptosis, but also ameliorated myocardial inflammation and oxidative damage in mice with myocarditis. Furthermore, Gal-1 inhibited TXNIP-NLRP3 inflammasome activation. In vitro, Gal-1 pre-treatment prevented LPS-induced apoptosis, cell viability decrease and ROS generation. Notably, Gal-1 elevated HO-1, total Nrf2 and nuclear Nrf2 protein expressions both in vivo and in vitro. In conclusion, pre-treatment with Gal-1 exhibited cardioprotective effects in myocarditis via anti-inflammatory and antioxidant functions, and the mechanism may relate to the Nrf2 pathway, which offered new solid evidence for the use of Gal-1 in preventing myocarditis.
Collapse
Affiliation(s)
- Liying Shen
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Kongjie Lu
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Zhenfeng Chen
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Yingwei Zhu
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Cong Zhang
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| | - Li Zhang
- Department of Cardiology, Huzhou Central Hospital, Huzhou, Zhejiang.
| |
Collapse
|
10
|
Procyk G, Grodzka O, Procyk M, Gąsecka A, Głuszek K, Wrzosek M. MicroRNAs in Myocarditis-Review of the Preclinical In Vivo Trials. Biomedicines 2023; 11:2723. [PMID: 37893097 PMCID: PMC10604573 DOI: 10.3390/biomedicines11102723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Myocarditis is an inflammatory heart disease with viruses as the most common cause. Regardless of multiple studies that have recently been conducted, the diagnostic options still need to be improved. Although endomyocardial biopsy is known as a diagnostic gold standard, it is invasive and, thus, only sometimes performed. Novel techniques of cardiac magnetic resonance are not readily available. Therapy in viral infections is based mainly on symptomatic treatment, while steroids and intravenous immunoglobulins are used in autoimmune myocarditis. The effectiveness of neither of these methods has been explicitly proven to date. Therefore, novel diagnostic and therapeutic strategies are highly needed. MiRNAs are small, non-coding molecules that regulate fundamental cell functions, including differentiation, metabolism, and apoptosis. They present altered levels in different diseases, including myocarditis. Numerous studies investigating the role of miRNAs in myocarditis have already been conducted. In this review, we discussed only the original preclinical in vivo research. We eventually included 30 studies relevant to the discussed area. The altered miRNA levels have been observed, including upregulation and downregulation of different miRNAs in the mice models of myocarditis. Furthermore, the administration of mimics or inhibitors of particular miRNAs was shown to significantly influence inflammation, morphology, and function of the heart and overall survival. Finally, some studies presented prospective advantages in vaccine development.
Collapse
Affiliation(s)
- Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809 Warsaw, Poland
| | - Marcelina Procyk
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Katarzyna Głuszek
- Collegium Medicum, Jan Kochanowski University of Kielce, 25-406 Kielce, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
11
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
12
|
Chimenti C, Magnocavallo M, Vetta G, Alfarano M, Manguso G, Ajmone F, Ballatore F, Costantino J, Ciaramella P, Severino P, Miraldi F, Lavalle C, Vizza CD. The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role. Curr Cardiol Rep 2023:10.1007/s11886-023-01888-5. [PMID: 37269474 DOI: 10.1007/s11886-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Myocarditis is an inflammation of the myocardium secondary to a variety of agents such as infectious pathogens, toxins, drugs, and autoimmune disorders. In our review, we provide an overview of miRNA biogenesis and their role in the etiology and pathogenesis of myocarditis, evaluating future directions for myocarditis management. RECENT FINDINGS Advances in genetic manipulation techniques allowed to demonstrate the important role of RNA fragments, especially microRNAs (miRNAs), in cardiovascular pathogenesis. miRNAs are small non-coding RNA molecules that regulate the post-transcriptional gene expression. Advances in molecular techniques allowed to identify miRNA's role in pathogenesis of myocarditis. miRNAs are related to viral infection, inflammation, fibrosis, and apoptosis of cardiomyocytes, making them not only promising diagnostic markers but also prognostics and therapeutic targets in myocarditis. Of course, further real-world studies will be needed to assess the diagnostic accuracy and applicability of miRNA in the myocarditis diagnosis.
Collapse
Affiliation(s)
- Cristina Chimenti
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy.
| | - Michele Magnocavallo
- Cardiology Division, Arrhythmology Unit, S. Giovanni Calibita Hospital, Isola Tiberina, Rome, Italy
| | - Giampaolo Vetta
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, Mesina, Italy
| | - Maria Alfarano
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Giulia Manguso
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Ajmone
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Jacopo Costantino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Piera Ciaramella
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Paolo Severino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Fabio Miraldi
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carlo Lavalle
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carmine Dario Vizza
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
MiR-223-3p regulates the eosinophil degranulation and enhances the inflammation in allergic rhinitis by targeting FBXW7. Int Immunopharmacol 2023; 118:110007. [PMID: 36924565 DOI: 10.1016/j.intimp.2023.110007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVES MiR-223-3p is a multifunctional microRNA regulated by multiple transcription factors and plays a critical role in inflammation. This paper was designed to investigate the regulatory role and mechanism of miR-223-3p in eosinophils degranulation and allergic rhinitis (AR) inflammation. METHODS OVA sensitized AR mouse model and EOL-1 cells model were established. RT-qPCR and FISH were performed to detect the miR-223-3p expression. ELISA and WB were utilized to evaluate mRNA and protein expression. HE staining and transmission electron microscopy were applied to observe the morphological changes in nasal mucosa. Flow cytometry and immunofluorescence staining were performed to measure the proportion of eosinophils and eosinophilic major basic protein expression. The targeting relationship between miR-223-3p and FBXW7 was verified by bioinformatic analysis and dual-luciferase reporter gene assay. The expression of FBXW7 was detected by immunohistochemistry. RESULTS The level of miR-223-3p in nasal mucosa was significantly up-regulated in AR group. The expression of miR-223-3p, ECP, MBP, and EPO were increased in EOL-1 cells, further increasing the miR-223-3p level could promote the ECP and EPO mRNA expression. Upregulation of miR-223-3p increased eosinophils granule protein expression, aggravated mucosal destruction and enhanced AR inflammation. Luciferase assay verified miR-223-3p directly target the 3'-UTR of FBXW7. In vitro, overexpression of FBXW7 could reverse the increase in MBP expression caused by the up-regulation of miR-223-3p. In vivo, knockdown of FBXW7 could reverse the down-regulation in granule protein level caused by the down-regulation of miR-223-3p, thereby aggravating AR inflammation. CONCLUSION Collected evidence elucidated that miR-223-3p could regulate the eosinophil degranulation and enhances the inflammation in AR by targeting FBXW7. The miR-223-3p/FBXW7 axis may provide a novel approach for AR treatment.
Collapse
|
14
|
Pedersen OB, Grove EL, Nissen PH, Larsen SB, Pasalic L, Kristensen SD, Hvas AM. Expression of microRNA Predicts Cardiovascular Events in Patients with Stable Coronary Artery Disease. Thromb Haemost 2023; 123:307-316. [PMID: 36603835 DOI: 10.1055/s-0042-1760258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND New biomarkers are warranted to identify patients with coronary artery disease (CAD) at high risk of recurrent cardiovascular events. It has been reported that the expression of microRNAs (miRs) may influence the development of CAD. OBJECTIVES We aimed to investigate whether the expression of selected candidate miRs is a predictor of cardiovascular events in a cohort of stable CAD patients. METHODS We performed a single-center prospective study of 749 stable CAD patients with a median follow-up of 2.8 years. We investigated the expression of nine candidate miRs and their relation to cardiovascular events in this cohort. The primary endpoint was the composite of nonfatal myocardial infarction (MI), stent thrombosis (ST), ischemic stroke, and cardiovascular death. The composite of nonfatal MI and ST was analyzed as a secondary endpoint. Furthermore, nonfatal MI, ST, ischemic stroke, and all-cause mortality were analyzed as individual endpoints. RESULTS Employing receiver operating characteristic curves, it was shown that compared with traditional cardiovascular risk factors alone, combining the expression of miR-223-3p with existing traditional cardiovascular risk factors increased the predictive value of ST (area under the curve: 0.88 vs. 0.77, p = 0.04), the primary composite endpoint (0.65 vs. 0.61, p = 0.049), and the secondary endpoint of the composite of nonfatal MI and ST (0.68 vs. 0.62, p = 0.04). CONCLUSION Among patients with CAD, adding miR-223-3p expression to traditional cardiovascular risk factors may improve prediction of cardiovascular events, particularly ST. Clinical trials confirming these findings are warranted.
Collapse
Affiliation(s)
- Oliver Buchhave Pedersen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter H Nissen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | - Leonardo Pasalic
- Department of Clinical and Laboratory Haematology, Institute of Clinical Pathology and Medical Research, Westmead University Hospital, Sydney, Australia.,Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Steen Dalby Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Wang X, Zhou H, Liu Q, Cheng P, Zhao T, Yang T, Zhao Y, Sha W, Zhao Y, Qu H. Targeting regulatory T cells for cardiovascular diseases. Front Immunol 2023; 14:1126761. [PMID: 36911741 PMCID: PMC9995594 DOI: 10.3389/fimmu.2023.1126761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. The CVDs are accompanied by inflammatory progression, resulting in innate and adaptive immune responses. Regulatory T cells (Tregs) have an immunosuppressive function and are one of the subsets of CD4+T cells that play a crucial role in inflammatory diseases. Whether using Tregs as a biomarker for CVDs or targeting Tregs to exert cardioprotective functions by regulating immune balance, suppressing inflammation, suppressing cardiac and vascular remodeling, mediating immune tolerance, and promoting cardiac regeneration in the treatment of CVDs has become an emerging research focus. However, Tregs have plasticity, and this plastic Tregs lose immunosuppressive function and produce toxic effects on target organs in some diseases. This review aims to provide an overview of Tregs' role and related mechanisms in CVDs, and reports on the research of plasticity Tregs in CVDs, to lay a foundation for further studies targeting Tregs in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Alonso-Villa E, Bonet F, Hernandez-Torres F, Campuzano Ó, Sarquella-Brugada G, Quezada-Feijoo M, Ramos M, Mangas A, Toro R. The Role of MicroRNAs in Dilated Cardiomyopathy: New Insights for an Old Entity. Int J Mol Sci 2022; 23:13573. [PMID: 36362356 PMCID: PMC9659086 DOI: 10.3390/ijms232113573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and systolic dysfunction. In most cases, DCM is progressive, leading to heart failure (HF) and death. This cardiomyopathy has been considered a common and final phenotype of several entities. DCM occurs when cellular pathways fail to maintain the pumping function. The etiology of this disease encompasses several factors, such as ischemia, infection, autoimmunity, drugs or genetic susceptibility. Although the prognosis has improved in the last few years due to red flag clinical follow-up, early familial diagnosis and ongoing optimization of treatment, due to its heterogeneity, there are no targeted therapies available for DCM based on each etiology. Therefore, a better understanding of the mechanisms underlying the pathophysiology of DCM will provide novel therapeutic strategies against this cardiac disease and their different triggers. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play key roles in post-transcriptional gene silencing by targeting mRNAs for translational repression or, to a lesser extent, degradation. A growing number of studies have demonstrated critical functions of miRNAs in cardiovascular diseases (CVDs), including DCM, by regulating mechanisms that contribute to the progression of the disease. Herein, we summarize the role of miRNAs in inflammation, endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction, autophagy, cardiomyocyte apoptosis and fibrosis, exclusively in the context of DCM.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Óscar Campuzano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, 11009 Cadiz, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| |
Collapse
|
17
|
Xie J, He C, Su Y, Ding Y, Zhu X, Xu Y, Ding J, Zhou H, Wang H. Research progress on microRNA in gout. Front Pharmacol 2022; 13:981799. [PMID: 36339582 PMCID: PMC9631428 DOI: 10.3389/fphar.2022.981799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 07/30/2023] Open
Abstract
Gout is a common form of arthritis caused by the deposition of sodium urate crystals in the joints and tissues around them. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to be involved in regulating the pathogenesis of gout through multiple cellular signaling pathways, which may be potential targets for the treatment of gout. In this review, we systematically discuss the regulatory roles of related miRNAs in gout, which will provide help for the treatment of gout and miRNAs is expected to become a potential biomarker for gout diagnosis.
Collapse
Affiliation(s)
- Jing Xie
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Cuixia He
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuzhou Ding
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xingyu Zhu
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Xu
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiaxiang Ding
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Zhou
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongju Wang
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
18
|
Integrated Single-Cell and RNA Sequencing Analysis Identifies Key Immune Cell and Dendritic Cells Associated Genes Participated in Myocarditis. J Immunol Res 2022; 2022:8655343. [PMID: 36226312 PMCID: PMC9550476 DOI: 10.1155/2022/8655343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022] Open
Abstract
Myocarditis is a complex disease characterized by myocardial inflammatory cell infiltration. The purpose of our study was to investigate the gene and single-cell signature to explore the involvement of immune cells in myocarditis. Gene expressions merged from GSE35182 and GSE35182 datasets were subjected to differential expression gene (DEG) analysis and PPI network construction. The correlation analysis of DEGs with immune cell infiltration was performed. Single-cell RNA sequencing (scRNA-seq) was downloaded from GSE174458. A total of 58 DEGs were identified, including 51 DEGs upregulated and 7 DEGs downregulated in the myocarditis group compared with the control group. GO and KEGG enrichment analyses revealed that myocarditis triggered DEGs mainly involved in immune-related processes and pathways. PPI network analysis identified 20 central hub genes. Occurrence of myocarditis induced significant enrichment of conventional dendritic cell 2 (cDC2), plasmacytoid DC, and plasma cell in myocardial tissue. Mmp12, Gpnmb, and Atp6v0d2 expressions were positively correlated with cDC abundance, of which only Mmp1 and Gpnmb were shared with hub gene list. A total of 20972 cells in scRNA-seq yielded 26 cell clusters and annotated 9 cell types, including fibroblasts, neutrophils, stromal cells, monocytes, basophils, B cells, natural killer T cells, innate lymphoid cells, and T cells, and only proportion of natural killer T cells and monocytes were higher in the myocarditis than in control. Monocytes annotated 3 subclusters including DC, macrophage, and monocytes. Hub genes of Ctss, Mpeg1, Cybb, H2-Ab1, Ly86, CD74, and Lgals3 were highly expressed in monocytes cluster. Among DC-correlated DEGs, Mmp12 was mainly expressed in monocyte cluster, and Gpnmb was mainly expressed in fibroblast cluster, whereas Atp6v0d2 expression has a weaker signal and weaker cell preference. In conclusion, DC infiltration and its associated pivotal genes may be responsible for progression of myocarditis. Our study expands and provides novel information on the immune cell engagement of myocarditis.
Collapse
|
19
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
20
|
Xu W, Qian L, Yuan X, Lu Y. MicroRNA-223-3p inhibits oxidized low-density lipoprotein-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3. Clin Hemorheol Microcirc 2022; 81:241-253. [PMID: 35275525 DOI: 10.3233/ch-211232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have emerged as crucial players in the initiation and development of atherosclerosis (AS), and the low miR-223-3p level is observed in AS patients. However, the function and mechanism behind miR-223-3p in AS progression have not been fully elucidated. METHOD In the present study, THP-1 cells treated with oxidized low-density lipoprotein (ox-LDL) were employed as the cell model of AS. The expression levels of miR-223-3p, NLR family pyrin domain containing 3 (NLRP3), caspase-1, pro-caspase-1, cleaved interleukin 18 (IL-18), cleaved IL-1β, and forkhead box O3 (FOXO3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot (WB) analyses. The relationship between miR-223-3p and FOXO3 or NLRP3 was determined using a dual-luciferase reporter assay. The production of IL-1β, IL-18, IL-6, and TNF-α was examined by Enzyme-linked immunosorbent assay (ELISA). RESULTS MiR-223-3p was decreased in AS patients and ox-LDL-induced THP-1 cells, and its upregulation downregulated the abundance of NLRP3, caspase-1, cleaved IL-18, cleaved IL-1β, IL-1β, IL-6, and TNF-α in THP-1 cells treated with ox-LDL or not, and the depletion of miR-223-3p revealed an opposite phenomenon. NLPR3 and FOXO3 were identified as two authentic targets of miR-223-3p. Knockdown of NLRP3 or FOXO3 reversed the stimulatory effect of the miR-223-3p inhibitor on the inflammatory responses of THP-1 cells. CONCLUSIONS Our data indicate that miR-223-3p inhibited ox-LDL-mediated NLRP3 inflammasome activation via directly targeting NLRP3 and FOXO3 in THP-1 cells, which offered a prospective therapeutic target for AS therapy.
Collapse
Affiliation(s)
- Wei Xu
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Lei Qian
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Xiaoyan Yuan
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Yong Lu
- Heart Rehabilitation Center, Department of Cardiology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Zhang DM, Deng JJ, Wu YG, Tang T, Xiong L, Zheng YF, Xu XM. MicroRNA-223-3p Protect Against Radiation-Induced Cardiac Toxicity by Alleviating Myocardial Oxidative Stress and Programmed Cell Death via Targeting the AMPK Pathway. Front Cell Dev Biol 2022; 9:801661. [PMID: 35111759 PMCID: PMC8801819 DOI: 10.3389/fcell.2021.801661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: Radiotherapy improves the survival rate of cancer patients, yet it also involves some inevitable complications. Radiation-induced heart disease (RIHD) is one of the most serious complications, especially the radiotherapy of thoracic tumors, which is characterized by cardiac oxidative stress disorder and programmed cell death. At present, there is no effective treatment strategy for RIHD; in addition, it cannot be reversed when it progresses. This study aims to explore the role and potential mechanism of microRNA-223-3p (miR-223-3p) in RIHD.Methods: Mice were injected with miR-223-3p mimic, inhibitor, or their respective controls in the tail vein and received a single dose of 20 Gy whole-heart irradiation (WHI) for 16 weeks after 3 days to construct a RIHD mouse model. To inhibit adenosine monophosphate activated protein kinase (AMPK) or phosphodiesterase 4D (PDE4D), compound C (CompC) and AAV9-shPDE4D were used.Results: WHI treatment significantly inhibited the expression of miR-223-3p in the hearts; furthermore, the levels of miR-223-3p decreased in a radiation time-dependent manner. miR-223-3p mimic significantly relieved, while miR-223-3p inhibitor aggravated apoptosis, oxidative damage, and cardiac dysfunction in RIHD mice. In addition, we found that miR-223-3p mimic improves WHI-induced myocardial injury by activating AMPK and that the inhibition of AMPK by CompC completely blocks these protective effects of miR-223-3p mimic. Further studies found that miR-223-3p lowers the protein levels of PDE4D and inhibiting PDE4D by AAV9-shPDE4D blocks the WHI-induced myocardial injury mediated by miR-223-3p inhibitor.Conclusion: miR-223-3p ameliorates WHI-induced RIHD through anti-oxidant and anti-programmed cell death mechanisms via activating AMPK by PDE4D regulation. miR-223-3p mimic exhibits potential value in the treatment of RIHD.
Collapse
Affiliation(s)
- Dao-ming Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun-jian Deng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao-gui Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tian Tang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Xiong
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-fa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yong-fa Zheng, ; Xi-ming Xu,
| | - Xi-ming Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yong-fa Zheng, ; Xi-ming Xu,
| |
Collapse
|
22
|
Yuan S, Wu Q, Wang Z, Che Y, Zheng S, Chen Y, Zhong X, Shi F. miR-223: An Immune Regulator in Infectious Disorders. Front Immunol 2021; 12:781815. [PMID: 34956210 PMCID: PMC8702553 DOI: 10.3389/fimmu.2021.781815] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are diminutive noncoding RNAs that can influence disease development and progression by post-transcriptionally regulating gene expression. The anti-inflammatory miRNA, miR-223, was first identified as a regulator of myelopoietic differentiation in 2003. This miR-223 exhibits multiple regulatory functions in the immune response, and abnormal expression of miR-223 is shown to be associated with multiple infectious diseases, including viral hepatitis, human immunodeficiency virus type 1 (HIV-1), and tuberculosis (TB) by influencing neutrophil infiltration, macrophage function, dendritic cell (DC) maturation and inflammasome activation. This review summarizes the current understanding of miR-223 physiopathology and highlights the molecular mechanism by which miR-223 regulates immune responses to infectious diseases and how it may be targeted for diagnosis and treatment.
Collapse
Affiliation(s)
- Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Duan R, Wang SY, Wei B, Deng Y, Fu XX, Gong PY, E Y, Sun XJ, Cao HM, Shi JQ, Jiang T, Zhang YD. Angiotensin-(1-7) Analogue AVE0991 Modulates Astrocyte-Mediated Neuroinflammation via lncRNA SNHG14/miR-223-3p/NLRP3 Pathway and Offers Neuroprotection in a Transgenic Mouse Model of Alzheimer's Disease. J Inflamm Res 2021; 14:7007-7019. [PMID: 34955647 PMCID: PMC8694579 DOI: 10.2147/jir.s343575] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Emerging evidence suggests that brain angiotensin-(1–7) (Ang-(1–7)) deficiency contributes to the pathogenesis of Alzheimer’s disease (AD). Meanwhile, our previous studies revealed that restoration of brain Ang-(1–7) levels provided neuroprotection by inhibition of inflammatory responses during AD progress. However, the potential molecular mechanisms by which Ang-(1–7) modulates neuroinflammation remain unclear. Materials and Methods APP/PS1 mice were injected intraperitoneally with AVE0991 (a nonpeptide analogue of Ang-(1–7)) once a day for 30 consecutive days. Cognitive functions, neuronal and synaptic integrity, and inflammation-related markers were assessed. Since astrocytes played a crucial role in AD-related neuroinflammation whilst long noncoding RNAs (lncRNAs) were reported to participate in modulating inflammatory responses, astrocytes of APP/PS1 mice were isolated for high-throughput lncRNA sequencing to identify the most differentially expressed lncRNA following AVE0991 treatment. Afterward, the downstream pathways of this lncRNA in the anti-inflammatory action of AVE0991 were investigated using primary astrocytes. Results AVE0991 rescued spatial cognitive impairments and alleviated neuronal and synaptic damage in APP/PS1 mice. The levels of Aβ1-42 in the brain of APP/PS1 mice were not affected by AVE0991. By employing high-throughput lncRNA sequencing, our in vitro study demonstrated for the first time that AVE0991 suppressed astrocytic NLRP3 inflammasome-mediated neuroinflammation via a lncRNA SNHG14-dependent manner. SNHG14 acted as a sponge of miR-223-3p while NLRP3 represented a direct target of miR-223-3p in astrocytes. In addition, miR-223-3p participated in the AVE0991-induced suppression of astrocytic NLRP3 inflammasome. Conclusion Our results suggest that Ang-(1–7) analogue AVE0991 inhibits astrocyte-mediated neuroinflammation via SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in APP/PS1 mice. These findings reveal the underlying mechanisms by which Ang-(1–7) inhibits neuroinflammation under AD condition and uncover the potential of its nonpeptide analogue AVE0991 in AD treatment.
Collapse
Affiliation(s)
- Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Si-Yu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Bin Wei
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yang Deng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xin-Xin Fu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Peng-Yu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Xiao-Jin Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Hai-Ming Cao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| |
Collapse
|
24
|
Roberts LB, Kapoor P, Howard JK, Shah AM, Lord GM. An update on the roles of immune system-derived microRNAs in cardiovascular diseases. Cardiovasc Res 2021; 117:2434-2449. [PMID: 33483751 PMCID: PMC8562329 DOI: 10.1093/cvr/cvab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) are a leading cause of human death worldwide. Over the past two decades, the emerging field of cardioimmunology has demonstrated how cells of the immune system play vital roles in the pathogenesis of CVD. MicroRNAs (miRNAs) are critical regulators of cellular identity and function. Cell-intrinsic, as well as cell-extrinsic, roles of immune and inflammatory cell-derived miRNAs have been, and continue to be, extensively studied. Several 'immuno-miRNAs' appear to be specifically expressed or demonstrate greatly enriched expression within leucocytes. Identification of miRNAs as critical regulators of immune system signalling pathways has posed the question of whether and how targeting these molecules therapeutically, may afford opportunities for disease treatment and/or management. As the field of cardioimmunology rapidly continues to advance, this review discusses findings from recent human and murine studies which contribute to our understanding of how leucocytes of innate and adaptive immunity are regulated-and may also regulate other cell types, via the actions of the miRNAs they express, in the context of CVD. Finally, we focus on available information regarding miRNA regulation of regulatory T cells and argue that targeted manipulation of miRNA regulated pathways in these cells may hold therapeutic promise for the treatment of CVD and associated risk factors.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Puja Kapoor
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- School of Cardiovascular Medicine and Sciences, King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jane K Howard
- School of Life Course Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
25
|
Zhang MW, Wang XH, Shi J, Yu JG. Sinomenine in Cardio-Cerebrovascular Diseases: Potential Therapeutic Effects and Pharmacological Evidences. Front Cardiovasc Med 2021; 8:749113. [PMID: 34660748 PMCID: PMC8517137 DOI: 10.3389/fcvm.2021.749113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardio-cerebrovascular diseases, as a major cause of health loss all over the world, contribute to an important part of the global burden of disease. A large number of traditional Chinese medicines have been proved effective both clinically and in pharmacological investigations, with the acceleration of the modernization of Chinese medicine. Sinomenine is the main active constituent of sinomenium acutum and has been generally used in therapies of rheumatoid arthritis and neuralgia. Varieties of pharmacological effects of sinomenine in cardio-cerebrovascular system have been discovered recently, suggesting an inspiring application prospect of sinomenine in cardio-cerebrovascular diseases. Sinomenine may retard the progression of atherosclerosis by attenuating endothelial inflammation, regulating immune cells function, and inhibiting the proliferation of vascular smooth muscle cells. Sinomenine also alleviates chronic cardiac allograft rejection relying on its anti-inflammatory and anti-hyperplastic activities and suppresses autoimmune myocarditis by immunosuppression. Prevention of myocardial or cerebral ischemia-reperfusion injury by sinomenine is associated with its modulation of cardiomyocyte death, inflammation, calcium overload, and oxidative stress. The regulatory effects on vasodilation and electrophysiology make sinomenine a promising drug to treat hypertension and arrhythmia. Here, in this review, we will illustrate the pharmacological activities of sinomenine in cardio-cerebrovascular system and elaborate the underlying mechanisms, as well as give an overview of the potential therapeutic roles of sinomenine in cardio-cerebrovascular diseases, trying to provide clues and bases for its clinical usage.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Hui Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Wang W, Yang N, Yang YH, Wen R, Liu CF, Zhang TN. Non-Coding RNAs: Master Regulators of Inflammasomes in Inflammatory Diseases. J Inflamm Res 2021; 14:5023-5050. [PMID: 34616171 PMCID: PMC8490125 DOI: 10.2147/jir.s332840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging data indicates that non-coding RNAs (ncRNAs) represent more than just “junk sequences” of the genome and have been found to be involved in multiple diseases by regulating various biological process, including the activation of inflammasomes. As an important aspect of innate immunity, inflammasomes are large immune multiprotein complexes that tightly regulate the production of pro-inflammatory cytokines and mediate pyroptosis; the activation of the inflammasomes is a vital biological process in inflammatory diseases. Recent studies have emphasized the function of ncRNAs in the fine control of inflammasomes activation either by directly targeting components of the inflammasomes or by controlling the activity of various factors that control the activation of inflammasomes; consequently, ncRNAs may represent potential therapeutic targets for inflammatory diseases. Understanding the precise role of ncRNAs in controlling the activation of inflammasomes will help us to design targeted therapies for multiple inflammatory diseases. In this review, we summarize the regulatory role and therapeutic potential of ncRNAs in the activation of inflammasomes by focusing on a range of inflammatory diseases, including microbial infection, sterile inflammatory diseases, and fibrosis-related diseases. Our goal is to provide new ideas and perspectives for future research.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
27
|
Liang W, Xie BK, Ding PW, Wang M, Yuan J, Cheng X, Liao YH, Yu M. Sacubitril/Valsartan Alleviates Experimental Autoimmune Myocarditis by Inhibiting Th17 Cell Differentiation Independently of the NLRP3 Inflammasome Pathway. Front Pharmacol 2021; 12:727838. [PMID: 34603042 PMCID: PMC8479108 DOI: 10.3389/fphar.2021.727838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Sacubitril/valsartan (Sac/Val) is a recently approved drug that is commonly used for treatment of heart failure. Several studies indicated that Sac/Val also regulated the secretion of inflammatory factors. However, the effect and mechanism of this drug modulation of inflammatory immune responses are uncertain. In this study, an experimental autoimmune myocarditis (EAM) mouse model was established by injection of α-myosin-heavy chain peptides. The effect of oral Sac/Val on EAM was evaluated by histological staining of heart tissues, measurements of cardiac troponin T and inflammatory markers (IL-6 and hsCRP). The effects of Sac/Val on NLRP3 inflammasome activation and Th1/Th17 cell differentiation were also determined. To further explore the signaling pathways, the expressions of cardiac soluble guanylyl cyclase (sGC) and NF-κB p65 were investigated. The results showed that Sac/Val downregulated the inflammatory response and attenuated the severity of EAM, but did not influence NLRP3 inflammasomes activation. Moreover, Sac/Val treatment inhibited cardiac Th17 cell differentiation, and this might be associated with sGC/NF-κB p65 signaling pathway. These findings indicate the potential use of Sac/Val for treatment of myocarditis.
Collapse
Affiliation(s)
- Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bai-Kang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Wu Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Hua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Jiao P, Wang XP, Luoreng ZM, Yang J, Jia L, Ma Y, Wei DW. miR-223: An Effective Regulator of Immune Cell Differentiation and Inflammation. Int J Biol Sci 2021; 17:2308-2322. [PMID: 34239357 PMCID: PMC8241730 DOI: 10.7150/ijbs.59876] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in regulating various biological processes, such as cell differentiation and immune modulation by binding to their target genes. miR-223 is a miRNA with important functions and has been widely investigated in recent years. Under certain physiological conditions, miR-223 is regulated by different transcription factors, including sirtuin1 (Sirt1), PU.1 and Mef2c, and its biological functions are mediated through changes in its cellular or tissue expression. This review paper summarizes miR-223 biosynthesis and its regulatory role in the differentiation of granulocytes, dendritic cells (DCs) and lymphocytes, macrophage polarization, and endothelial and epithelial inflammation. In addition, it describes the molecular mechanisms of miR-223 in regulating lung inflammation, rheumatoid arthritis, enteritis, neuroinflammation and mastitis to provide insights into the existing molecular regulatory networks and therapies for inflammatory diseases in humans and animals.
Collapse
Affiliation(s)
- Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Li Jia
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
30
|
Vega-Tapia F, Bustamante M, Valenzuela RA, Urzua CA, Cuitino L. miRNA Landscape in Pathogenesis and Treatment of Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:658514. [PMID: 34041239 PMCID: PMC8141569 DOI: 10.3389/fcell.2021.658514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs, one of the members of the noncoding RNA family, are regulators of gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool expression have been associated with differentiation of CD4+ T cells toward an inflammatory phenotype and with loss of self-tolerance in autoimmune diseases. Vogt–Koyanagi–Harada (VKH) disease is a chronic multisystemic pathology, affecting the uvea, inner ear, central nervous system, and skin. Several lines of evidence support an autoimmune etiology for VKH, with loss of tolerance against retinal pigmented epithelium-related self-antigens. This deleterious reaction is characterized by exacerbated inflammation, due to an aberrant TH1 and TH17 polarization and secretion of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and tumor necrosis factor α, and an impaired CD4+ CD25high FoxP3+ regulatory T cell function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids and immunosuppressive drugs as first and second line of therapy, respectively. Changes in the expression of miRNAs related to immunoregulatory pathways have been associated with VKH development, whereas some genetic variants of miRNAs have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used in VKH treatment have great influence on miRNA expression, including those miRNAs associated to VKH disease. This relationship between response to therapy and miRNA regulation suggests that these small noncoding molecules might be therapeutic targets for the development of more effective and specific pharmacological therapy for VKH. In this review, we discuss the latest evidence regarding regulation and alteration of miRNA associated with VKH disease and its treatment.
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mario Bustamante
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Núcleo de Ciencias Biológicas, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Rodrigo A Valenzuela
- Department de Health Science, Universidad de Aysén, Coyhaique, Chile.,Department of Chemical and Biological Sciences, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cristhian A Urzua
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Ophthalmology, University of Chile, Santiago, Chile.,Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Loreto Cuitino
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
31
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
32
|
Wang X, Chi J, Dong B, Xu L, Zhou Y, Huang Y, Sun S, Wei F, Liu Y, Liu C, Che K, Lv W, Chen Y, Wang Y. MiR-223-3p and miR-22-3p inhibit monosodium urate-induced gouty inflammation by targeting NLRP3. Int J Rheum Dis 2021; 24:599-607. [PMID: 33650318 DOI: 10.1111/1756-185x.14089] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been shown to play a crucial role in inflammation regulation; however, their relationship with inflammation in acute gouty arthritis has not been fully elucidated. Herein, we conducted a study to explore the regulatory roles of miR-223-3p and miR-22-3p in gouty-associated inflammation. METHODS In vitro and in vivo experiments were conducted to examine the molecular mechanisms of miRNA regulation in gouty inflammation. Dual-luciferase reporter assay was used to verify the direct target of miR-223-3p and miR-22-3p. RESULTS We found that miR-223-3p and miR-22-3p interacted with the 3' untranslated region segment of NLRP3 (nucleotide-binding domain leucine-rich repeat [NLR] and pyrin domain containing receptor 3) and inhibited its expression. A decreased expression of miR-223-3p and miR-22-3p was observed in both mice air pouch synovium and phorbol myristrate acetate-treated THP-1 cells stimulated with monosodium urate (P < .05). Compared with the negative control group, NLRP3 expression at the transcript and protein level in miR-223-3p and miR-22-3p overexpression group significantly decreased after 6 hours of monosodium urate treatment in vivo and in vitro (P < .05). The results of the dual-luciferase reporter assay demonstrated that miR-223-3p and miR-22-3p directly targeted NLRP3. CONCLUSION The findings of the present study show that miR-223-3p and miR-22-3p can reduce the inflammatory effects of gout by inhibiting the expression of NLRP3.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
- Transfusion Section, Chongqing University Three Gorges Hospital, Qingdao, China
| | - Jingwei Chi
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Bingzi Dong
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yue Zhou
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yajing Huang
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Shengnan Sun
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Fanxiang Wei
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yuzhao Liu
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Chuanfeng Liu
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Kui Che
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Wenshan Lv
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Ying Chen
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Myc is involved in Genistein protecting against LPS-induced myocarditis in vitro through mediating MAPK/JNK signaling pathway. Biosci Rep 2021; 40:225215. [PMID: 32515469 PMCID: PMC7303346 DOI: 10.1042/bsr20194472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/12/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Genistein is widely used as a pharmacological compound as well as a food additive. However, the pharmaceutical effects of Genistein on myocarditis and its potential mechanisms have not been studied in detail. METHODS H9c2 cells were continuously stimulated by lipopolysaccharide (LPS) for 12 h to simulate the in vitro model of myocarditis injury. DrugBank, String, and GEO dataset were used to investigate specific genes that interacting with Genistein. KEGG and GO enrichment analysis were employed to explore Myc-related signaling pathways. Biological behaviors of H9c2 cells were observed with the support of cell counting kit-8, MTT and flow cytometry. Expression levels of cytokines including TNF-α and ILs were evaluated by enzyme-linked immunosorbent assay. Western blot was applied to detect the expression of Myc and MAPK pathway related proteins. RESULTS Genistein alleviated the damage of H9c2 cells subjected to LPS from the perspective of elevating cells growth ability, and inhibiting cells apoptosis and inflammatory response. Through bioinformatics analysis, we identified Myc as the potential target of Genistein in myocarditis, and MAPK as the signaling pathway. Significantly, Myc was highly up-regulated in myocarditis samples. More importantly, by performing biological experiments, we discovered that Genistein relieved H9c2 cells apoptosis and inflammatory reaction which caused by LPS stimulation through inhibiting Myc expression. Additionally, the marked augmentation of p-P38 MAPK and p-JNK expression in LPS-induced cardiomyocyte model were blocked by Genistein and si-Myc. CONCLUSIONS Our research revealed that Myc mediated the protective effects of Genistein on H9c2 cells damage caused by LPS partly through modulation of MAPK/JNK signaling pathway.
Collapse
|
34
|
Moiseev IS, Tcvetkov NY, Barkhatov IM, Barabanshikova MV, Bug DS, Petuhova NV, Tishkov AV, Bakin EA, Izmailova EA, Shakirova AI, Kulagin AD, Morozova EV. High mutation burden in the checkpoint and micro-RNA processing genes in myelodysplastic syndrome. PLoS One 2021; 16:e0248430. [PMID: 33730109 PMCID: PMC7968630 DOI: 10.1371/journal.pone.0248430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
A number of sequencing studies identified the prognostic impact of somatic mutations in myelodysplastic syndrome (MDS). However the majority of them focused on methylation regulation, apoptosis and proliferation genes. Despite the number of experimental studies published on the role of micro-RNA processing and checkpoint genes in the development of MDS, the clinical data about mutational landscape in these genes is limited. We performed a pilot study which evaluated mutational burden in these genes and their association with common MDS mutations. High prevalence of mutations was observed in the genes studied: 54% had mutations in DICER1, 46% had mutations in LAG3, 20% in CTLA4, 23% in B7-H3, 17% in DROSHA, 14% in PD-1 and 3% in PD-1L. Cluster analysis that included these mutations along with mutations in ASXL1, DNMT3A, EZH2, IDH1, RUNX1, SF3B1, SRSF2, TET2 and TP53 effectively predicted overall survival in the study group (HR 4.2, 95%CI 1.3-13.6, p = 0.016). The study results create the rational for incorporating micro-RNA processing and checkpoint genes in the sequencing panels for MDS and evaluate their role in the multicenter studies.
Collapse
Affiliation(s)
- Ivan Sergeevich Moiseev
- RM Gorbacheva Research Institute, Pavlov University, Saint-Petersburg, Russian Federation
- * E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang MW, Shen YJ, Shi J, Yu JG. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front Cardiovasc Med 2021; 7:610561. [PMID: 33553260 PMCID: PMC7854547 DOI: 10.3389/fcvm.2020.610561] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, involving vasculopathy, cardiac dysfunction, or circulatory disturbance, have become the major cause of death globally and brought heavy social burdens. The complexity and diversity of the pathogenic factors add difficulties to diagnosis and treatment, as well as lead to poor prognosis of these diseases. MicroRNAs are short non-coding RNAs to modulate gene expression through directly binding to the 3′-untranslated regions of mRNAs of target genes and thereby to downregulate the protein levels post-transcriptionally. The multiple regulatory effects of microRNAs have been investigated extensively in cardiovascular diseases. MiR-223-3p, expressed in multiple cells such as macrophages, platelets, hepatocytes, and cardiomyocytes to modulate their cellular activities through targeting a variety of genes, is involved in the pathological progression of many cardiovascular diseases. It participates in regulation of several crucial signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B, insulin-like growth factor 1, nuclear factor kappa B, mitogen-activated protein kinase, NOD-like receptor family pyrin domain containing 3 inflammasome, and ribosomal protein S6 kinase B1/hypoxia inducible factor 1 α pathways to affect cell proliferation, migration, apoptosis, hypertrophy, and polarization, as well as electrophysiology, resulting in dysfunction of cardiovascular system. Here, in this review, we will discuss the role of miR-223-3p in cardiovascular diseases, involving its verified targets, influenced signaling pathways, and regulation of cell function. In addition, the potential of miR-223-3p as therapeutic target and biomarker for diagnosis and prediction of cardiovascular diseases will be further discussed, providing clues for clinicians.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Hua TR, Zhang SY. Cardiomyopathies in China: A 2018-2019 state-of-the-art review. Chronic Dis Transl Med 2020; 6:224-238. [PMID: 33336168 PMCID: PMC7729112 DOI: 10.1016/j.cdtm.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 11/02/2022] Open
Abstract
Cardiomyopathies are diseases of the cardiac muscle and are often characterized by ventricular dilation, hypertrophy, and cardiac arrhythmia. Patients with cardiomyopathies often experience sudden death and cardiac failure and require cardiac transplantation during the course of disease progression. Early diagnosis, differential diagnosis, and genetic consultation depend on imaging techniques, genetic testing, and new emerging diagnostic tools such as serum biomarkers. The molecular genetics of cardiomyopathies has been widely studied recently. The discovery of mechanisms underlying heterogeneity and overlapping of the phenotypes of cardiomyopathies has revealed the existence of disease modifiers, and this has led to the emergence of novel disease-modifying therapy. This 2018-2019 state-of-the-art review outlines the pathogenesis, diagnosis, and treatment of cardiomyopathies in China.
Collapse
Affiliation(s)
- Tian-Rui Hua
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
37
|
Xue YL, Zhang SX, Zheng CF, Li YF, Zhang LH, Su QY, Hao YF, Wang S, Li XW. Long non-coding RNA MEG3 inhibits M2 macrophage polarization by activating TRAF6 via microRNA-223 down-regulation in viral myocarditis. J Cell Mol Med 2020; 24:12341-12354. [PMID: 33047847 PMCID: PMC7686963 DOI: 10.1111/jcmm.15720] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/24/2020] [Accepted: 07/18/2020] [Indexed: 12/01/2022] Open
Abstract
Viral myocarditis (VMC) commonly triggers heart failure, for which no specific treatments are available. This study aims to explore the specific role of long non‐coding RNA (lncRNA) maternally expressed 3 (MEG3) in VMC. A VMC mouse model was induced by Coxsackievirus B3 (CVB3). Then, MEG3 and TNF receptor‐associated factor 6 (TRAF6) were silenced and microRNA‐223 (miR‐223) was over‐expressed in the VMC mice, followed by determination of ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS). Dual‐luciferase reporter assay was introduced to test the interaction among MEG3, TRAF6 and miR‐223. Macrophages were isolated from cardiac tissues and bone marrow, and polarization of M1 or M2 macrophages was induced. Then, the expressions of components of NLRP3 inflammatory body (NLRP3, ASC, Caspase‐1), M1 markers (CD86, iNOS and TNF‐α) and M2 markers (CD206, Arginase‐1 and Fizz‐1) were measured following MEG3 silencing. In the VMC mouse model, MEG3 and TRAF6 levels were obviously increased, while miR‐223 expression was significantly reduced. Down‐regulation of MEG3 resulted in the inhibition of TRAF6 by promoting miR‐223. TRAF6 was negatively correlated with miR‐223, but positively correlated with MEG3 expression. Down‐regulations of MEG3 or TRAF6 or up‐regulation of miR‐223 was observed to increase mouse weight, survival rate, LVEF and LVFS, while inhibiting myocarditis and inflammation via the NF‐κB pathway inactivation in VMC mice. Down‐regulation of MEG3 decreased M1 macrophage polarization and elevated M2 macrophage polarization by up‐regulating miR‐223. Collectively, down‐regulation of MEG3 leads to the inhibition of inflammation and induces M2 macrophage polarization via miR‐223/TRAF6/NF‐κB axis, thus alleviating VMC.
Collapse
Affiliation(s)
- Yu-Long Xue
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chao-Feng Zheng
- Department of Genetics Laboratory, Linfen Maternity & Child Healthcare Hospital, Linfen, China
| | - Yu-Feng Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li-Hui Zhang
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qin-Yi Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu-Fei Hao
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shu Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xue-Wen Li
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
38
|
Integrated Analysis of Hub Genes and miRNAs in Dilated Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8925420. [PMID: 33015184 PMCID: PMC7512046 DOI: 10.1155/2020/8925420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
Purpose The aim of this study is to identify hub genes and miRNAs by the miRNA-mRNA interaction network in dilated cardiomyopathy (DCM) disease. Methods The differentially expressed miRNAs (DEMis) and mRNAs (DEMs) were selected using data of DCM patients downloaded from the GEO database (GSE112556 and GSE3585). Gene Ontology (GO) pathway analysis and transcription factor enrichment analysis were used for selecting DEMis, and the target mRNAs of DEMis were filtered by using miRDB, miRTarBase, and TargetScan. Cytoscape software was used to visualize the network between miRNAs and mRNAs and calculate the hub genes. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to analyze the mRNAs in the regulatory network. Results A total of 9 DEMis and 281 DEMs were selected, from which we reconstructed the miRNA-mRNA network consisting of 7 miRNAs and 51 mRNAs. The top 10 nodes, miR-144-3p, miR-363-3p, miR-9-3p, miR-21-3p, miR-144-5p, miR-338-3p, ID4 (inhibitor of DNA binding/differentiation 4), miR-770-5p, PIK3R1 (p85α regulatory subunit of phosphoinositide 3-kinase (PI3K)), and FN1 (fibronectin 1), were identified as important regulators. Conclusions The study uncovered several important hub genes and miRNAs involved in the pathogenesis of DCM, among which, the miR-144-3p/FN1 and miR-9-3p/FN1 pathways may play an important role in myocardial fibrosis, which can help identify the etiology of DCM, and provide potential therapeutic targets.
Collapse
|
39
|
Salminen A, Kaarniranta K, Kauppinen A. Exosomal vesicles enhance immunosuppression in chronic inflammation: Impact in cellular senescence and the aging process. Cell Signal 2020; 75:109771. [PMID: 32896608 DOI: 10.1016/j.cellsig.2020.109771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Exosomes represent an evolutionarily conserved signaling pathway which can act as an alarming mechanism in responses to diverse stresses, e.g. chronic inflammation activates the budding of exosomal vesicles in both immune and non-immune cells. Exosomes can contain both pro- and anti-inflammatory cargos but in chronic inflammation, exosomes mostly carry immunosuppressive cargos, e.g. enzymes and miRNAs. The aging process is associated with chronic low-grade inflammation and the accumulation of pro-inflammatory senescent cells into tissues. There is clear evidence that aging increases the number of exosomes in both the circulation and tissues. Especially, the secretion of immunosuppressive exosomes robustly increases from senescent cells. There are observations that the exosomes from senescent cells are involved in the expansion of senescence into neighbouring cells. Interestingly, the age-related exosomes contain immune suppressive cargos which enhance the immunosuppression within recipient immune cells, i.e. tissue-resident and recruited immune cells including M2 macrophages, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). It seems that increased immunosuppression with aging impairs the clearance of senescent cells and their accumulation within tissues augments the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
40
|
Gao R, Shen Y, Shu W, Jin W, Bai F, Wang J, Zhang Y, El-Seedi H, Sun Q, Yuan L. Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition. Food Funct 2020; 11:6987-6999. [PMID: 32701080 DOI: 10.1039/c9fo02772f] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sturgeon muscle byproduct collected after caviar production is usually not fully utilized, and sometimes may be discarded, thus causing a lot of waste. Yet dietary protein hydrolysates, which may be derived from sturgeon muscle, have been reported to have versatile beneficial biological activities. Studying the biological activities of sturgeon muscle-derived hydrolysates holds much promise for adding value to sturgeon. The current study aimed to study the therapeutic anti-inflammatory effects of sturgeon muscle-derived hydrolysates and the underlying mechanisms. The administration of sturgeon hydrolysates (SH) significantly decreased the severity of DSS-induced damage, evidenced by increased body weight, colon length, and decreased disease activity index (DAI) and histological scores. SH also inhibited myeloperoxidase (MPO) activity and reduced the serum levels of IL-6, IL-1β, and TNF-α. Western blotting results revealed that SH suppressed DSS-induced activation of the NF-κB and MAPK pathways in the colon. Furthermore, SH partially restored the alteration of the gut microbiota in colitic mice. SH increased the Bacteroidetes/Firmicutes ratio and the relative abundance of Ruminococcaceae, Porphyromonadaceae, and Bacteroidetes S24-7, while decreased the abundance of potentially harmful bacteria Erysipelotrichaceae and Enterococcaceae. These results suggest that SH inhibited DSS-induced colitis by regulating the NF-κB and MAPK pathways and modulating microbiota composition.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ren N, Jiang T, Wang C, Xie S, Xing Y, Piao D, Zhang T, Zhu Y. LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging (Albany NY) 2020; 12:11025-11041. [PMID: 32516127 PMCID: PMC7346038 DOI: 10.18632/aging.103314] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
The role of LncRNA ADAMTS9-AS2 in the regulation of chemoresistance of gastric cancer (GC) is largely unknown. Here we found that LncRNA ADAMTS9-AS2 was low-expressed in GC tissues and cells compared to their normal counterparts. In addition, LncRNA ADAMTS9-AS2 inhibited miR-223-3p expressions in GC cells by acting as competing endogenous RNA, and the levels of LncRNA ADAMTS9-AS2 and miR-223-3p showed negative correlations in GC tissues. Of note, overexpression of LncRNA ADAMTS9-AS2 inhibited GC cell viability and motility by sponging miR-223-3p. In addition, the levels of LncRNA ADAMTS9-AS2 were lower, and miR-223-3p was higher in cisplatin-resistant GC (CR-GC) cells than their parental cisplatin-sensitive GC (CS-GC) cells. LncRNA ADAMTS9-AS2 overexpression enhanced the cytotoxic effects of cisplatin on CR-GC cells, which were reversed by overexpressing miR-223-3p. Furthermore, LncRNA ADAMTS9-AS2 increased NLRP3 expressions by targeting miR-223-3p, and upregulation of LncRNA ADAMTS9-AS2 triggered pyroptotic cell death in cisplatin treated CR-GC cells by activating NLRP3 inflammasome through downregulating miR-223-3p. Finally, the promoting effects of LncRNA ADAMTS9-AS2 overexpression on CR-GC cell death were abrogated by pyroptosis inhibitor Necrosulfonamide (NSA). Collectively, LncRNA ADAMTS9-AS2 acted as a tumor suppressor and enhanced cisplatin sensitivity in GC cells by activating NLRP3 mediated pyroptotic cell death through sponging miR-223-3p.
Collapse
Affiliation(s)
- Niansheng Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Tao Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Chengbo Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shilin Xie
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yanwei Xing
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Daxun Piao
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Tiemin Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
42
|
Xu W, Zhang L, Geng Y, Liu Y, Zhang N. Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson's disease by regulating NLRP3 pathway through sponging miR-223-3p. Int Immunopharmacol 2020; 85:106614. [PMID: 32470877 DOI: 10.1016/j.intimp.2020.106614] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Neuroinflammation induced by microglia plays an important role in the pathogenesis of PD. Long noncoding RNA GAS5 was showed to have significant effects on regulating inflammatory response. Here, we aim to investigate the effects of GAS5 on the inflammatory response of PD, and the underlying mechanism. An in vivo model of PD was established in C57BL/6 mice by rotenone and an in vitro cell model was conducted on microglia by lipopolysaccharide (LPS). Our results indicated that GAS5 was upregulated in tissues in a mice model of PD and microglia activated by LPS. Gain- and loss- of functional experiments demonstrated that GAS5 promoted the inflammation of microglia in vitro. Besides, the knockdown of GAS5 repressed the PD progression in vivo. Mechanistically, GAS5 positively regulated the NLRP3 expression via competitively sponging miR-223-3p. Overall, our finding illuminates that GAS5 accelerates PD progression through targeting miR-223-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Ling Zhang
- College of Health Management, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu Geng
- College of Health Management, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ye Liu
- Electrocardial Center, the First Affiliated Hospital of Jinzhou Medical University. Jinzhou, Liaoning, China
| | - Ning Zhang
- Department of Hematology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
43
|
Roffel MP, Bracke KR, Heijink IH, Maes T. miR-223: A Key Regulator in the Innate Immune Response in Asthma and COPD. Front Med (Lausanne) 2020; 7:196. [PMID: 32509795 PMCID: PMC7249736 DOI: 10.3389/fmed.2020.00196] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Asthma and Chronic Obstructive Pulmonary Disease (COPD) are chronic obstructive respiratory diseases characterized by airway obstruction, inflammation, and remodeling. Recent findings indicate the importance of microRNAs (miRNAs) in the regulation of pathological processes involved in both diseases. MiRNAs have been implicated in a wide array of biological processes, such as inflammation, cell proliferation, differentiation, and death. MiR-223 is one of the miRNAs that is thought to play a role in obstructive lung disease as altered expression levels have been observed in both asthma and COPD. MiR-223 is a hematopoietic cell–derived miRNA that plays a role in regulation of monocyte-macrophage differentiation, neutrophil recruitment, and pro-inflammatory responses and that can be transferred to non-myeloid cells via extracellular vesicles or lipoproteins. In this translational review, we highlight the role of miR-223 in obstructive respiratory diseases, focusing on expression data in clinical samples of asthma and COPD, in vivo experiments in mouse models and in vitro functional studies. Furthermore, we provide an overview of the mechanisms by which miR-223 regulates gene expression. We specifically focus on immune cell development and activation and involvement in immune responses, which are important in asthma and COPD. Collectively, this review demonstrates the importance of miR-223 in obstructive respiratory diseases and explores its therapeutic potential in the pathogenesis of asthma and COPD.
Collapse
Affiliation(s)
- Mirjam P Roffel
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium.,Departments of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Irene H Heijink
- Departments of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Wang L, Zhang Y, Zhu G, Ma Y, Zuo H, Tian X. miR-16 exhibits protective function in LPS-treated cardiomyocytes by targeting DOCK2 to repress cell apoptosis and exert anti-inflammatory effect. Cell Biol Int 2020; 44:1760-1768. [PMID: 32369253 DOI: 10.1002/cbin.11371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
Abstract
This study aims to investigate the effects of microRNA (miR)-16/dedicator of cytokinesis 2 (DOCK2) on myocarditis. The differences in the expression of genes in acute myocarditis were filtered out across Gene Expression Omnibus (GEO) database. Myocarditis cell model was established by lipopolysaccharide (LPS) stimulation in cardiomyocytes. The association between miR-16 and DOCK2 was predicted by bioinformatics software and confirmed by dual-luciferase assay. Polymerase chain reaction and western blot analysis were employed to assess the expression levels of miR-16 and DOCK2 under different conditions. Cells viability, apoptosis, and inflammatory reaction were evaluated by Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. miR-16, as an upstream regulator of DOCK2, exhibited lower expression in LPS-induced myocarditis model. More importantly, we revealed that a marked augmentation of miR-16 promoted the growth of LPS-stimulated cardiomyocytes, and attenuated cell apoptosis and inflammatory response. However, an increasing expression of DOCK2 inhibited the remission of LPS-induced myocardial injury caused by miR-16 mimic. Herein, our results highlighted that upregulation of miR-16 resulted in the protective effects on LPS-induced myocardial injury by reducing DOCK2 expression, affording a pair of novel target molecules for ameliorating the symptoms of myocarditis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| | - Yangyang Zhang
- Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| | - Guangfu Zhu
- Intervention Room, Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| | - Yuncong Ma
- Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| | - Huan Zuo
- Department of Neurology, Tengzhou Traditional Chinese Medicine Hospital, Tengzhou, Shandong, China
| | - Xia Tian
- Intervention Room, Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| |
Collapse
|
45
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|