1
|
Patel T, Jain N. Multicellular tumor spheroids: A convenient in vitro model for translational cancer research. Life Sci 2024; 358:123184. [PMID: 39490437 DOI: 10.1016/j.lfs.2024.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
In the attempts to mitigate uncertainties in the results of monolayer culture for the identification of cancer therapeutic targets and compounds, there has been a growing interest in using 3D cancer spheroid models, which include tumorospheres (TSs), tissue-derived tumor spheres (TDTSs), organotypic multicellular tumor spheroids (OMSs), and multicellular tumor spheroids (MCTSs). The MCTSs, either Mono-MCTSs or Hetero-MCTSs, with or without scaffold, in particular, offer numerous advantages over other spheroid models, including easy cultivation, high reproducibility, accessibility, high throughput, controllable size, well-rounded shape, simplicity of genetic manipulation, economical and availability of various biological methods for their development. In this review, we have attempted to discuss the role of MCTSs concerning various aspects of translational cancer research, such as drug response and penetration, cell-cell interaction, and invasion and metastasis. However, the Mono-MCTSs, either scaffold-free or scaffold-based, may not adequately represent the cellular heterogeneity and complexity of clinical tumors, limiting their utility in translational cancer research. Conversely, Hetero-MCTS models, both scaffold-free and scaffold-based, show better suitability due to the presence of a similar in vivo type tumor microenvironment. Nonetheless, scaffold-based Hetero-MCTS models show batch variability and challenges in performing quantitative assays due to difficulties extracting spheroids and cells from scaffolds. Further, incorporating stromal cells with cancer cells in a more precise ratio to develop Hetero-MCTSs can enhance the model's relevance, yielding more clinically reliable outcomes for drug candidates and improving insights into tumor biology.
Collapse
Affiliation(s)
- Tushar Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India
| | - Neeraj Jain
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India.
| |
Collapse
|
2
|
Ivanov AO, Elfimova EA. Pair correlations of the easy magnetisation axes of superparamagnetic nanoparticles in a ferrofluid/ferrocomposite. NANOSCALE 2024; 16:15730-15745. [PMID: 39104331 DOI: 10.1039/d4nr00829d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The widespread use of magnetic nanoparticles in modern technologies and medical applications highlights the need for reliable theoretical models that can predict their physical properties. The pair correlation function of two randomly selected superparamagnetic nanoparticles in a ferrofluid/ferrocomposite is studied to depict the joint probability density of the easy magnetisation axes across the planes of parameters of major importance; these are the interaction of ferroparticles with an external magnetic field, the energy of magnetic anisotropy inside the superparamagnetic nanoparticle, and the interparticle magnetic dipole-dipole interaction. Assuming the rotational symmetry of the system, we come to the conclusion that the pair correlations of interest are dependent only on the polar angles, determining the inclinations of the ferroparticle easy axes from the direction of an external magnetic field. The dimer configuration, where two ferroparticles are in close contact along a magnetic field with their easy magnetisation axes aligned, is the most probable. This configuration becomes more pronounced with increasing anisotropy energy, dipolar coupling constant, and external magnetic field.
Collapse
Affiliation(s)
- Alexey O Ivanov
- Ural Federal University, 51 Lenin Avenue, 620000 Ekaterinburg, Russian Federation.
| | - Ekaterina A Elfimova
- Ural Federal University, 51 Lenin Avenue, 620000 Ekaterinburg, Russian Federation.
| |
Collapse
|
3
|
Bhadla D, Parekh K, Jain N. Cytotoxic evaluation of pure and doped iron oxide nanoparticles on cancer cells: a magnetic fluid hyperthermia perspective. Nanotoxicology 2024; 18:464-478. [PMID: 39091195 DOI: 10.1080/17435390.2024.2386019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The need of the hour with respect to cancer treatment is a targeted approach with minimal or nil ramifications. Apropos, magnetic fluid hyperthermia (MFH) is emerging as a potential therapeutic strategy with anticipated reduced side effects for solid tumors. MFH causes cytotoxicity due to the heat generated owing to Hysteresis, Neel, and Brownian relaxation losses once magnetic nanoparticles (MNPs) carrying cancer cells are placed under an alternating magnetic field. With respect to MFH, iron oxide-based MNPs have been most extensively studied to date compared to other metal oxides with magnetic properties. The effectiveness of MFH relies on the composition, coating, size, physical and biocompatible properties of the MNPs. Pure iron oxide and doped iron oxide MNPs have been utilized to study their effects on cancer cell killing through MFH. This review evaluates the biocompatibility of pure and doped iron oxide MNPs and their subsequent hyperthermic effect for effectively killing cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Dharti Bhadla
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Kinnari Parekh
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Neeraj Jain
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa, India
| |
Collapse
|
4
|
Caizer-Gaitan IS, Watz CG, Caizer C, Dehelean CA, Bratu T, Crainiceanu Z, Coroaba A, Pinteala M, Soica CM. In Vitro Superparamagnetic Hyperthermia Employing Magnetite Gamma-Cyclodextrin Nanobioconjugates for Human Squamous Skin Carcinoma Therapy. Int J Mol Sci 2024; 25:8380. [PMID: 39125950 PMCID: PMC11313510 DOI: 10.3390/ijms25158380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In vitro alternative therapy of human epidermoid squamous carcinoma (A431) by superparamagnetic hyperthermia (SPMHT) using Fe3O4 (magnetite) superparamagnetic nanoparticles (SPIONs) with an average diameter of 15.8 nm, bioconjugated with hydroxypropyl gamma-cyclodextrins (HP-γ-CDs) by means of polyacrylic acid (PAA) biopolymer, is presented in this paper. The therapy was carried out at a temperature of 43 °C for 30 min using the concentrations of Fe3O4 ferrimagnetic nanoparticles from nanobioconjugates of 1, 5, and 10 mg/mL nanoparticles in cell suspension, which were previously found by us to be non-toxic for healthy cells (cell viabilities close to 100%), according to ISO standards (cell viability must be greater than 70%). The temperature for the in vitro therapy was obtained by the safe application (without exceeding the biological limit and cellular damage) of an alternating magnetic field with a frequency of 312.4 kHz and amplitudes of 168, 208, and 370 G, depending on the concentration of the magnetic nanoparticles. The optimal concentration of magnetic nanoparticles in suspension was found experimentally. The results obtained after the treatment show its high effectiveness in destroying the A431 tumor cells, up to 83%, with the possibility of increasing even more, which demonstrates the viability of the SPMHT method with Fe3O4-PAA-(HP-γ-CDs) nanobioconjugates for human squamous cancer therapy.
Collapse
Affiliation(s)
- Isabela-Simona Caizer-Gaitan
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (I.-S.C.-G.); (T.B.); (Z.C.)
- Department of Clinical Practical Skills, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Claudia-Geanina Watz
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (C.-A.D.); (C.-M.S.)
| | - Costica Caizer
- Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Cristina-Adriana Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (C.-A.D.); (C.-M.S.)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Tiberiu Bratu
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (I.-S.C.-G.); (T.B.); (Z.C.)
| | - Zorin Crainiceanu
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (I.-S.C.-G.); (T.B.); (Z.C.)
| | - Adina Coroaba
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry of Iasi, Romanian Academy, 700487 Iasi, Romania; (A.C.); (M.P.)
| | - Mariana Pinteala
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry of Iasi, Romanian Academy, 700487 Iasi, Romania; (A.C.); (M.P.)
| | - Codruta-Marinela Soica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (C.-A.D.); (C.-M.S.)
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Tang Q, Xiong R, Zhang N, Zhang N, Liu X, Lv Y, Wu R. Nano-magnetothermal effect enhances the glucose oxidase activity of FVIOs-GOD in antibacterial research. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 2024; 38:1601-1611. [DOI: 10.1007/s12206-024-0250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2025]
|
6
|
Singh R, Pathak S, Jain K, Noorjahan, Kim SK. Correlating the Dipolar Interactions Induced Magneto-Viscoelasticity and Thermal Conductivity Enhancements in Nanomagnetic Fluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205741. [PMID: 37246272 DOI: 10.1002/smll.202205741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/30/2023] [Indexed: 05/30/2023]
Abstract
The effective thermal management of electronic system holds the key to maximize their performance. The recent miniaturization trends require a cooling system with high heat flux capacity, localized cooling, and active control. Nanomagnetic fluids (NMFs) based cooling systems have the ability to meet the current demand of the cooling system for the miniaturized electronic system. However, the thermal characteristics of NMFs have a long way to go before the internal mechanisms are well understood. This review mainly focuses on the three aspects to establish a correlation between the thermal and rheological properties of the NMFs. First, the background, stability, and factors affecting the properties of the NMFs are discussed. Second, the ferrohydrodynamic equations are introduced for the NMFs to explain the rheological behavior and relaxation mechanism. Finally, different theoretical and experimental models are summarized that explain the thermal characteristics of the NMFs. Thermal characteristics of the NMFs are significantly affected by the morphology and composition of the magnetic nanoparticles (MNPs) in NMFs as well as the type of carrier liquids and surface functionalization that also influences the rheological properties. Thus, understanding the correlation between the thermal characteristics of the NMFs and rheological properties helps develop cooling systems with improved performance.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Physics and Astronomical Science, School of Physical and Material Science, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Saurabh Pathak
- National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, South Korea
| | - Komal Jain
- Indian Reference Materials Division, CSIR-National Physical Laboratory, Delhi, 110012, India
| | - Noorjahan
- Department of Physics and Astronomical Science, School of Physical and Material Science, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Sang-Koog Kim
- National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, South Korea
| |
Collapse
|
7
|
Rusanov MS, Kuznetsov MA, Zverev VS, Elfimova EA. Influence of a bias dc field and an ac field amplitude on the dynamic susceptibility of a moderately concentrated ferrofluid. Phys Rev E 2023; 108:024607. [PMID: 37723702 DOI: 10.1103/physreve.108.024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/22/2023] [Indexed: 09/20/2023]
Abstract
In this paper, we study the effect of a bias dc field on the dynamic response of a moderately concentrated ferrofluid to an ac magnetic field of arbitrary amplitude. The ferrofluid is modeled by an ensemble of interacting moving magnetic particles; the reaction of particle magnetic moments to ac and dc magnetic fields occurs according to the Brownian mechanism; and the ac and dc magnetic fields are parallel. Based on a numerical solution of the Fokker-Planck equation for the probability density of the orientation of the magnetic moment of a random magnetic particle, dynamic magnetization and susceptibility are determined and analyzed for various values of the ac field amplitude, the dc field strength, and the intensity of dipole-dipole interactions. It is shown that the system's magnetic response is formed under the influence of competing interactions, such as dipole-dipole, dipole-ac field, and dipole-dc field interactions. When the energies of these interactions are comparable, unexpected effects are observed: the system's susceptibility can either increase or decrease with increasing ac field amplitude. This behavior is associated with the formation of nose-to-tail dipolar structures under the action of the dc field, which can hinder or promote the system's dynamic response to the ac field. The obtained results provide a theoretical basis for predicting the dynamic properties of ferrofluids to improve their use in biomedical applications, such as, in magnetic induction hyperthermia.
Collapse
Affiliation(s)
- Michael S Rusanov
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Michael A Kuznetsov
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Vladimir S Zverev
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Ekaterina A Elfimova
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| |
Collapse
|
8
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Pant M, Yadav M, Verma AK, Mahapatro AK, Roy I. Comparative analysis of cobalt ferrite and iron oxide nanoparticles using bimodal hyperthermia, along with physical and in silico interaction with human hemoglobin. J Mater Chem B 2023; 11:4785-4798. [PMID: 37190982 DOI: 10.1039/d2tb02447k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles (MNPs) have captivated the scientific community towards biomedical applications owing to their numerous distinctive physio-chemical properties. In this work, cobalt ferrite (CFNPs) and iron oxide nanoparticles (IONPs) were synthesized using the thermal decomposition method and then functionalized with polyacrylic acid (PAA) for aqueous dispersion. Associated techniques, namely TEM, FESEM, DLS, XRD, and VSM, were used to characterize the synthesized nanoparticles. We also investigated the light-induced and magnetic-field-induced hyperthermia properties of the PAA-functionalized MNPs. It was found that the PAA-CFNPs show a high specific absorption rate (SAR) compared with the PAA-IONPs. Since blood plasma is essential for the delivery and targeting of drugs, studying biological interactions is crucial for effective therapeutic use. Therefore, we performed physical and in silico studies to probe into the mechanistic interaction of CFNPs and IONPs with human hemoglobin. From these studies, we inferred the successful binding between the nanoparticles and protein. Preliminary in vitro cytocompatibility and photothermal toxicity studies in breast cancer (MCF-7) cells treated with the nanoparticles revealed a low dark toxicity and significant laser-induced photothermal toxicity.
Collapse
Affiliation(s)
- Megha Pant
- Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
| | - Monika Yadav
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Anita Kamra Verma
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Ajit K Mahapatro
- Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
10
|
Myrovali E, Papadopoulos K, Charalampous G, Kesapidou P, Vourlias G, Kehagias T, Angelakeris M, Wiedwald U. Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia. ACS OMEGA 2023; 8:12955-12967. [PMID: 37065034 PMCID: PMC10099415 DOI: 10.1021/acsomega.2c05962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Magnetic particle hyperthermia (MPH) is a promising method for cancer treatment using magnetic nanoparticles (MNPs), which are subjected to an alternating magnetic field for local heating to the therapeutic range of 41-45 °C. In this window, the malignant regions (i.e., cancer cells) undergo a severe thermal shock while healthy tissues sustain this thermal regime with significantly milder side effects. Since the heating efficiency is directly associated with nanoparticle size, MNPs should acquire the appropriate size to maximize heating together with minimum toxicity. Herein, we report on facile synthetic controls to synthesize MNPs by an aqueous precipitation method, whereby tuning the pH values of the solution (9.0-13.5) results in a wide range of average MNP diameters from 16 to 76 nm. With respect to their size, the structural and magnetic properties of the MNPs are evaluated by adjusting the most important parameters, i.e. the MNP surrounding medium (water/agarose), the MNP concentration (1-4 mg mL-1), and the field amplitude (20-50 mT) and frequency (103, 375, 765 kHz). Consequently, the maximum heating efficiency is determined for each MNP size and set of parameters, outlining the optimum MNPs for MPH treatment. In this way, we can address the different heat generation mechanisms (Brownian, Néel, and hysteresis losses) to different sizes and separate Brownian and hysteresis losses for optimized sizes by studying the heat generation as a function of the medium viscosity. Finally, MNPs immobilized into agarose solution are studied under low-field MPH treatment to find the optimum conditions for clinical applications.
Collapse
Affiliation(s)
- Eirini Myrovali
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Kyrillos Papadopoulos
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Georgia Charalampous
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Paraskevi Kesapidou
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - George Vourlias
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Thomas Kehagias
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Makis Angelakeris
- School
of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- MagnaCharta,
Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Ulf Wiedwald
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany)
| |
Collapse
|
11
|
Caizer C, Caizer-Gaitan IS, Watz CG, Dehelean CA, Bratu T, Soica C. High Efficacy on the Death of Breast Cancer Cells Using SPMHT with Magnetite Cyclodextrins Nanobioconjugates. Pharmaceutics 2023; 15:pharmaceutics15041145. [PMID: 37111631 PMCID: PMC10143435 DOI: 10.3390/pharmaceutics15041145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
In this study, we present the experimental results obtained in vitro on the human breast adenocarcinoma cell line (MCF-7) by applying superparamagnetic hyperthermia (SPMHT) using novel Fe3O4-PAA–(HP-γ-CDs) (PAA is polyacrylic acid and HP-γ-CDs is hydroxypropyl gamma-cyclodextrins) nanobioconjugates previously obtained by us. In the in vitro SPMHT experiments, we used concentrations of 1, 5 and 10 mg/mL of Fe3O4 ferrimagnetic nanoparticles from Fe3O4-PAA–(HP-γ-CDs) nanobioconjugates suspended in culture media containing 1 × 105 MCF-7 human breast adenocarcinoma cells. The harmonic alternating magnetic field used in the in vitro experiments that did not affect cell viability was found to be optimal in the range of 160–378 Gs and at a frequency of 312.2 kHz. The appropriate duration of the therapy was 30 min. After applying SPMHT with these nanobioconjugates under the above conditions, MCF-7 cancer cells died out in a very high percentage, of until 95.11%. Moreover, we studied the field up to which magnetic hyperthermia can be safely applied without cellular toxicity, and found a new upper biological limit H × f ~9.5 × 109 A/m⋅Hz (H is the amplitude and f is the frequency of the alternating magnetic field) to safely apply the magnetic field in vitro in the case of MCF-7 cells; the value was twice as high compared to the currently known value. This is a major advantage for magnetic hyperthermia in vitro and in vivo, because it allows one to achieve a therapy temperature of 43 °C safely in a much shorter time without affecting healthy cells. At the same time, using the new biological limit for a magnetic field, the concentration of magnetic nanoparticles in magnetic hyperthermia can be greatly reduced, obtaining the same hyperthermic effect, while at the same time, reducing cellular toxicity. This new limit of the magnetic field was tested by us in vitro with very good results, without the cell viability decreasing below ~90%.
Collapse
Affiliation(s)
- Costica Caizer
- Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Isabela Simona Caizer-Gaitan
- Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Claudia Geanina Watz
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Tiberiu Bratu
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Codruța Soica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Bhardwaj A, Parekh K, Jain N. Optimization of magnetic fluid hyperthermia protocols for the elimination of breast cancer cells MCF7 using Mn-Zn ferrite ferrofluid. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:11. [PMID: 36917271 PMCID: PMC10014775 DOI: 10.1007/s10856-023-06715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The present study aimed to optimize magnetic fluid hyperthermia (MFH) protocols by standardizing MF incubation time, hyperthermic duration, magnetic field, and MFH sessions to achieve a better hyperthermic response for the profuse killing of human breast cancer cell cells MCF7. Magnetic nanoparticles and MF were characterized using XRD, VSM, and DLS. Induction heating was performed for 30 min at field strengths of 12.5 and 13.3 kA/m at a fixed frequency of 330 kHz with varying concentrations and incubation duration on MCF7 cells. Single and multiple sessions hyperthermia protocols were used to kill MCF7 cells and the cytotoxicity effect was analyzed using MTT assay. Single and multiple sessions MFH protocols were established to kill breast cancer cells utilizing 0.2 mg/mL MF at 13.3 kA/m field and 330 kHz frequency and maintaining the hyperthermic temperature of 43-45 °C for 30 min. The single session MFH revealed severe toxicity of MF leading to more than 75% of cell death after 24 h of MF incubation. Multiple sessions hyperthermia resulted in more than 90% killing of MCF7 cells after two consequent 3 h MF incubation with 3 h gap. Each 3 h of MF incubation was followed by 30 min of induction heating. Multiple sessions hyperthermia was effective in killing a larger cell population compared to the single session protocol. The results may help in optimizing protocols for the profuse killing of cancer cells of multiple origins, and aid in deciding futuristic in vivo MFH-based therapeutic strategies against breast cancer. Variation in MCF7 cells' viability due to HT, MF, and MF + HT in multiple sessions.
Collapse
Affiliation(s)
- Anand Bhardwaj
- Dr. K C Patel R & D Centre, Charotar University of Science & Technology, CHARUSAT Campus, Changa- 388 421, Anand, India
| | - Kinnari Parekh
- Dr. K C Patel R & D Centre, Charotar University of Science & Technology, CHARUSAT Campus, Changa- 388 421, Anand, India.
| | - Neeraj Jain
- P D Patel Institute of Applied Sciences, Charotar University of Science & Technology CHARUSAT Campus, Changa- 388 421, Anand, India.
| |
Collapse
|
13
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
14
|
Scialla S, Genicio N, Brito B, Florek-Wojciechowska M, Stasiuk GJ, Kruk D, Bañobre-López M, Gallo J. Insights into the Effect of Magnetic Confinement on the Performance of Magnetic Nanocomposites in Magnetic Hyperthermia and Magnetic Resonance Imaging. ACS APPLIED NANO MATERIALS 2022; 5:16462-16474. [PMID: 36569339 PMCID: PMC9778729 DOI: 10.1021/acsanm.2c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
The combination of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid matrices enables the integration of imaging, drug delivery, and therapy functionalities into smart theranostic nanocomposites. SPION confinement creates new interactions primarily among the embedded SPIONs and then between the nanocomposites and the surroundings. Understanding the parameters that rule these interactions in real interacting (nano)systems still represents a challenge, making it difficult to predict or even explain the final (magnetic) behavior of such systems. Herein, a systematic study focused on the performance of a magnetic nanocomposite as a magnetic resonance imaging (MRI) contrast agent and magnetic hyperthermia (MH) effector is presented. The effect of stabilizing agents and magnetic loading on the final physicochemical and, more importantly, functional properties (i.e., blocking temperature, specific absorption rate, relaxivity) was studied in detail.
Collapse
Affiliation(s)
- Stefania Scialla
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Nuria Genicio
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Beatriz Brito
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, Strand, LondonSE1 7EH, U.K.
- School
of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, HullHU6 7RX, U.K.
| | - Malgorzata Florek-Wojciechowska
- Department
of Physics and Biophysics, Faculty of Food Science, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719Olsztyn, Poland
| | - Graeme J. Stasiuk
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, Strand, LondonSE1 7EH, U.K.
| | - Danuta Kruk
- Department
of Physics and Biophysics, Faculty of Food Science, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719Olsztyn, Poland
| | - Manuel Bañobre-López
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Juan Gallo
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| |
Collapse
|
15
|
Abdelaziz M, Hefnawy A, Anter A, Abdellatif MM, Khalil MAF, Khalil IA. Silica-Coated Magnetic Nanoparticles for Vancomycin Conjugation. ACS OMEGA 2022; 7:30161-30170. [PMID: 36061717 PMCID: PMC9434613 DOI: 10.1021/acsomega.2c03226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Drug resistance is a global health challenge with thousands of deaths annually caused by bacterial multidrug resistance (MDR). Efforts to develop new antibacterial molecules do not meet the mounting needs imposed by the evolution of MDR. An alternative approach to overcome this challenge is developing targeted formulations that can enhance the therapeutic efficiency and limit side effects. In this aspect, vancomycin is a potent antibacterial agent that has inherent bacterial targeting properties by binding to the D-Ala-D-Ala moiety of the bacterial peptidoglycan. However, the use of vancomycin is associated with serious side effects that limit its clinical use. Herein, we report the development of vancomycin-conjugated magnetic nanoparticles using a simple conjugation method for targeted antibacterial activity. The nanoparticles were synthesized using a multistep process that starts by coating the nanoparticles with a silica layer, followed by binding an amide linker and then binding the vancomycin glycopeptide. The developed vancomycin-conjugated magnetic nanoparticles were observed to exhibit a spherical morphology and a particle size of 16.3 ± 2.6 nm, with a silica coating thickness of 5 nm and a total coating thickness of 8 nm. The vancomycin conjugation efficiency on the nanoparticles was measured spectrophotometrically to be 25.1%. Additionally, the developed formulation retained the magnetic activity of the nanoparticles, where it showed a saturation magnetization value of 51 emu/g, compared to 60 emu/g for bare magnetic nanoparticles. The in vitro cell biocompatibility demonstrated improved safety where vancomycin-conjugated nanoparticles showed IC50 of 183.43 μg/mL, compared to a much lower value of 54.11 μg/mL for free vancomycin. While the antibacterial studies showed a comparable activity of the developed formulation, the minimum inhibitory concentration was 25 μg/mL, compared to 20 μg/mL for free vancomycin. Accordingly, the reported formulation can be used as a platform for the targeted and efficient delivery of other drugs.
Collapse
Affiliation(s)
- Moustafa
M. Abdelaziz
- Department
of Bioengineering, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Amr Hefnawy
- Smyth
Laboratory, College of Pharmacy, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Asem Anter
- Microbiology
Unit, Drug Factory, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST),
6th of October, Giza 12582, Egypt
| | - Menna M. Abdellatif
- Department
of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug
Manufacturing, Misr University for Science
and Technology, Giza 12582, Egypt
| | - Mahmoud A. F. Khalil
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Islam A. Khalil
- Department
of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| |
Collapse
|
16
|
Kohzadi S, Najmoddin N, Baharifar H, Shabani M. Functionalized SPION immobilized on graphene-oxide: Anticancer and antiviral study. DIAMOND AND RELATED MATERIALS 2022; 127:109149. [PMID: 35677893 PMCID: PMC9163046 DOI: 10.1016/j.diamond.2022.109149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 05/14/2023]
Abstract
The progressive and fatal outbreak of some diseases such as cancer and coronavirus necessitates using advanced materials to bring such devastating illnesses under control. In this study, graphene oxide (GO) is decorated by superparamagnetic iron oxide nanoparticles (SPION) (GO/SPION) as well as polyethylene glycol functionalized SPION (GO/SPION@PEG), and chitosan functionalized SPION (GO/SPION@CS). Field emission scanning electron microscopic (FESEM) images show the formation of high density uniformly distributed SPION nanoparticles on the surface of GO sheets. The structural and chemical composition of nanostructures is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The saturation magnetization of GO/SPION, GO/SPION@PEG and GO- SPION@CS are found to be 20, 19 and 8 emu/g using vibrating sample magnetometer. Specific absorption rate (SAR) values of 305, 283, and 199 W/g and corresponding intrinsic loss power (ILP) values of 9.4, 8.7, and 6.2 nHm2kg-1 are achieved for GO/SPION, GO/SPION@PEG and GO/SPION@CS, respectively. The In vitro cytotoxicity assay indicates higher than 70% cell viability for all nanostructures at 100, 300, and 500 ppm after 24 and 72 h. Additionally, cancerous cell (EJ138 human bladder carcinoma) ablation is observed using functionalized GO/SPION under applied magnetic field. More than 50% cancerous cell death has been achieved for GO/SPION@PEG at 300 ppm concentration. Furthermore, Surrogate virus neutralization test is applied to investigate neutralizing property of the synthesized nanostructures through analysis of SARS-CoV-2 receptor-binding domain and human angiotensin-converting enzyme 2 binding. The highest level of SARS-CoV-2 virus inhibition is related to GO/SPION@CS (86%) due to the synergistic exploitation of GO and chitosan. Thus, GO/SPION and GO/SPION@PEG with higher SAR and ILP values could be beneficial for cancer treatment, while GO/SPION@CS with higher virus suppression has potential to use against coronaviruses. Thus, the developed nanocomposites have a potential in the efficient treatment of cancer and coronavirus.
Collapse
Affiliation(s)
- Shaghayegh Kohzadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Caizer IS, Caizer C. Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy. Int J Mol Sci 2022; 23:4350. [PMID: 35457167 PMCID: PMC9029492 DOI: 10.3390/ijms23084350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we present a study by computer simulation on superparamagnetic hyperthermia with CoFe2O4 ferrimagnetic nanoparticles coated with biocompatible gamma-cyclodextrins (γ-CDs) to be used in alternative cancer therapy with increased efficacy and non-toxicity. The specific loss power that leads to the heating of nanoparticles in superparamagnetic hyperthermia using CoFe2O4-γ-CDs was analyzed in detail depending on the size of the nanoparticles, the thickness of the γ-CDs layer on the nanoparticle surface, the amplitude and frequency of the alternating magnetic field, and the packing fraction of nanoparticles, in order to find the proper conditions in which the specific loss power is maximal. We found that the maximum specific loss power was determined by the Brown magnetic relaxation processes, and the maximum power obtained was significantly higher than that which would be obtained by the Néel relaxation processes under the same conditions. Moreover, increasing the amplitude of the magnetic field led to a significant decrease in the optimal diameter at which the maximum specific loss power is obtained (e.g., for 500 kHz frequency the optimal diameter decreased from 13.6 nm to 9.8 nm when the field increased from 10 kA/m to 50 kA/m), constituting a major advantage in magnetic hyperthermia for its optimization, in contrast to the known results in the absence of cyclodextrins from the surface of immobilized nanoparticles of CoFe2O4, where the optimal diameter remained practically unchanged at ~6.2 nm.
Collapse
Affiliation(s)
- Isabela Simona Caizer
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Costica Caizer
- Department of Physics, Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| |
Collapse
|
18
|
Oehlsen O, Cervantes-Ramírez SI, Cervantes-Avilés P, Medina-Velo IA. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS OMEGA 2022; 7:3134-3150. [PMID: 35128226 PMCID: PMC8811916 DOI: 10.1021/acsomega.1c05631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
Ferrofluids are colloidal suspensions of iron oxide nanoparticles (IONPs) within aqueous or nonaqueous liquids that exhibit strong magnetic properties. These magnetic properties allow ferrofluids to be manipulated and controlled when exposed to magnetic fields. This review aims to provide the current scope and research opportunities regarding the methods of synthesis of nanoparticles, surfactants, and carrier liquids for ferrofluid production, along with the rheology and applications of ferrofluids within the fields of medicine, water treatment, and mechanical engineering. A ferrofluid is composed of IONPs, a surfactant that coats the magnetic IONPs to prevent agglomeration, and a carrier liquid that suspends the IONPs. Coprecipitation and thermal decomposition are the main methods used for the synthesis of IONPs. Despite the fact that thermal decomposition provides precise control on the nanoparticle size, coprecipitation is the most used method, even when the oxidation of iron can occur. This oxidation alters the ratio of maghemite/magnetite, influencing the magnetic properties of ferrofluids. Strategies to overcome iron oxidation have been proposed, such as the use of an inert atmosphere, adjusting the Fe(II) and Fe(III) ratio to 1:2, and the exploration of other metals with the oxidation state +2. Surfactants and carrier liquids are chosen according to the ferrofluid application to ensure stability. Hence, a compatible carrier liquid (polar or nonpolar) is selected, and then, a surfactant, mainly a polymer, is embedded in the IONPs, providing a steric barrier. Due to the variety of surfactants and carrier liquids, the rheological properties of ferrofluids are an important response variable evaluated when synthesizing ferrofluids. There are many reported applications of ferrofluids, including biosensing, medical imaging, medicinal therapy, magnetic nanoemulsions, and magnetic impedance. Other applications include water treatment, energy harvesting and transfer, and vibration control. To progress from synthesis to applications, research is still ongoing to ensure control of the ferrofluids' properties.
Collapse
Affiliation(s)
- Oscar Oehlsen
- Department
of Natural Sciences, Western New Mexico
University, 1000 W College Avenue, Silver City, New Mexico 88062, United States
| | - Sussy I. Cervantes-Ramírez
- Escuela
de Ingeniería y Ciencias, Reserva Territorial Atlixcáyotl, Tecnologico de Monterrey, Puebla, Pue 72453, Mexico
| | - Pabel Cervantes-Avilés
- Escuela
de Ingeniería y Ciencias, Reserva Territorial Atlixcáyotl, Tecnologico de Monterrey, Puebla, Pue 72453, Mexico
| | - Illya A. Medina-Velo
- Department
of Natural Sciences, Western New Mexico
University, 1000 W College Avenue, Silver City, New Mexico 88062, United States
- Department
of Chemistry, Mathematics, and Physics, Houston Baptist University, 7502 Fondren Road, Houston, Texas 77074, United States
| |
Collapse
|
19
|
García-Hevia L, Casafont Í, Oliveira J, Terán N, Fanarraga ML, Gallo J, Bañobre-López M. Magnetic lipid nanovehicles synergize the controlled thermal release of chemotherapeutics with magnetic ablation while enabling non-invasive monitoring by MRI for melanoma theranostics. Bioact Mater 2022; 8:153-164. [PMID: 34541393 PMCID: PMC8424388 DOI: 10.1016/j.bioactmat.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 01/13/2023] Open
Abstract
Nowadays, a number of promising strategies are being developed that aim at combining diagnostic and therapeutic capabilities into clinically effective formulations. Thus, the combination of a modified release provided by an organic encapsulation and the intrinsic physico-chemical properties from an inorganic counterpart opens new perspectives in biomedical applications. Herein, a biocompatible magnetic lipid nanocomposite vehicle was developed through an efficient, green and simple method to simultaneously incorporate magnetic nanoparticles and an anticancer drug (doxorubicin) into a natural nano-matrix. The theranostic performance of the final magnetic formulation was validated in vitro and in vivo, in melanoma tumors. The systemic administration of the proposed magnetic hybrid nanocomposite carrier enhanced anti-tumoral activity through a synergistic combination of magnetic hyperthermia effects and antimitotic therapy, together with MRI reporting capability. The application of an alternating magnetic field was found to play a dual role, (i) acting as an extra layer of control (remote, on-demand) over the chemotherapy release and (ii) inducing a local thermal ablation of tumor cells. This combination of chemotherapy with thermotherapy establishes a synergistic platform for the treatment of solid malignant tumors under lower drug dosing schemes, which may realize the dual goal of reduced systemic toxicity and enhanced anti-tumoral efficacy.
Collapse
Affiliation(s)
- Lorena García-Hevia
- Advanced (Magnetic) Theranostic Nanostructures Lab. International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Íñigo Casafont
- Grupo de Nanomedicina. Universidad de Cantabria-IDIVAL, Herrera Oria s/n, 39011, Santander, Spain
| | - Jessica Oliveira
- Advanced (Magnetic) Theranostic Nanostructures Lab. International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Nuria Terán
- Grupo de Nanomedicina. Universidad de Cantabria-IDIVAL, Herrera Oria s/n, 39011, Santander, Spain
| | - Mónica L. Fanarraga
- Grupo de Nanomedicina. Universidad de Cantabria-IDIVAL, Herrera Oria s/n, 39011, Santander, Spain
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab. International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab. International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
20
|
Caizer C. Computational Study Regarding Co xFe 3-xO 4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy. NANOMATERIALS 2021; 11:nano11123294. [PMID: 34947642 PMCID: PMC8708362 DOI: 10.3390/nano11123294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
The efficacy in superparamagnetic hyperthermia (SPMHT) and its effectiveness in destroying tumors without affecting healthy tissues depend very much on the nanoparticles used. Considering the results previously obtained in SPMHT using magnetite and cobalt ferrite nanoparticles, in this paper we extend our study on CoxFe3−xO4 nanoparticles for x = 0–1 in order to be used in SPMHT due to the multiple benefits in alternative cancer therapy. Due to the possibility of tuning the basic observables/parameters in SPMHT in a wide range of values by changing the concentration of Co2+ ions in the range 0–1, the issue explored by us is a very good strategy for increasing the efficiency and effectiveness of magnetic hyperthermia of tumors and reducing the toxicity levels. In this paper we studied by computational simulation the influence of Co2+ ion concentration in a very wide range of values (x = 0–1) on the specific loss power (Ps) in SPMHT and the nanoparticle diameter (DM) which leads to the maximum specific loss power (PsM). We also determined the maximum specific loss power for the allowable biological limit (PsM)l which doesn’t affect healthy tissues, and how it influences the change in the concentration of Co2+ ions. Based on the results obtained, we established the values for concentrations (x), nanoparticle diameter (DM), amplitude (H) and frequency (f) of the magnetic field for which SPMHT with CoxFe3−xO4 nanoparticles can be applied under optimal conditions within the allowable biological range. The obtained results allow the obtaining a maximum efficacy in alternative and non-invasive tumor therapy for the practical implementation of SPMHT with CoxFe3−xO4 nanoparticles.
Collapse
Affiliation(s)
- Costica Caizer
- Department of Physics, West University of Timisoara, Bv. V. Pârvan No. 4, 300223 Timisoara, Romania
| |
Collapse
|
21
|
Ferrofluid droplet breakup process and neck evolution under steady and pulse-width modulated magnetic fields. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Development of a Magnetic Fluid Heating FEM Simulation Model with Coupled Steady State Magnetic and Transient Thermal Calculation. MATHEMATICS 2021. [DOI: 10.3390/math9202561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic fluid hyperthermia has gained much attention in recent years due to its potential in cancer treatment. Magnetic fluid is a colloidal liquid made of nanoscale magnetic particles suspended in a carrier fluid. The properties of a commercial magnetic fluid consisting of maghemite (γ-Fe2O3) particles suspended in mineral oil were used in the scope of our research. The paper deals with a novel approach to the development of a magnetic fluid FEM model of a laboratory setup, with consideration of the electromagnetic steady state and thermal transient calculation soft coupling. Also, adjustment of the mathematical model was added in such a way that it enables a link between the magnetic and thermal calculations in commercial software. The effective anisotropy’s influence on the calculations is considered. The simulation was done for different magnetic field parameters. The initial temperature was also varied so that a direct comparison could be made between the simulation and the measurements. A good indicator of the accuracy of the simulation are the SAR values. The relative differences in SAR values were in the range from 4.2–24.9%. Such a model can be used for assessing the heating performance of a magnetic fluid with selected parameters. It can also be used to search for the optimal parameters required to design an optimal magnetic fluid.
Collapse
|
23
|
Caizer C, Caizer IS. Study on Maximum Specific Loss Power in Fe 3O 4 Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia. Int J Mol Sci 2021; 22:ijms221810071. [PMID: 34576233 PMCID: PMC8470897 DOI: 10.3390/ijms221810071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Different chemical agents are used for the biocompatibility and/or functionality of the nanoparticles used in magnetic hyperthermia to reduce or even eliminate cellular toxicity and to limit the interaction between them (van der Waals and magnetic dipolar interactions), with highly beneficial effects on the efficiency of magnetic hyperthermia in cancer therapy. In this paper we propose an innovative strategy for the biocompatibility of these nanoparticles using gamma-cyclodextrins (γ-CDs) to decorate the surface of magnetite (Fe3O4) nanoparticles. The influence of the biocompatible organic layer of cyclodextrins, from the surface of Fe3O4 ferrimagnetic nanoparticles, on the maximum specific loss power in superparamagnetic hyperthermia, is presented and analyzed in detail in this paper. Furthermore, our study shows the optimum conditions in which the magnetic nanoparticles covered with gamma-cyclodextrin (Fe3O4–γ-CDs) can be utilized in superparamagnetic hyperthermia for an alternative cancer therapy with higher efficiency in destroying tumoral cells and eliminating cellular toxicity.
Collapse
Affiliation(s)
- Costica Caizer
- Department of Physics, Faculty of Physics, West University of Timişoara, 300223 Timişoara, Romania;
- Correspondence:
| | - Isabela Simona Caizer
- Department of Physics, Faculty of Physics, West University of Timişoara, 300223 Timişoara, Romania;
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timişoara, 300041 Timişoara, Romania
- Department of Clinical Practical Skills, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timişoara, 300041 Timişoara, Romania
| |
Collapse
|
24
|
Imran M, Affandi AM, Alam MM, Khan A, Khan AI. Advanced biomedical applications of iron oxide nanostructures based ferrofluids. NANOTECHNOLOGY 2021; 32. [PMID: 34252891 DOI: 10.1088/1361-6528/ac137a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Ferrofluids or magnetic nanofluids are highly stable colloidal suspensions of magnetic nanoparticles (NPs) dispersed into various base fluids. These stable ferrofluids possess high thermal conductivity, improved thermo-physical properties, higher colloidal stability, good magnetic properties, and biocompatibility, which are the primary driving forces behind their excellent performance, and thus enable them to be used for a wide range of practical applications. The most studied and advanced ferrofluids are based on iron oxide nanostructures especially NPs, because of their easy and large-scale synthesis at low costs. Although in the last decade, several review articles are available on ferrofluids but mainly focused on preparations, properties, and a specific application. Hence, a collective and comprehensive review article on the recent progress of iron oxide nanostructures based ferrofluids for advanced biomedical applications is undeniably required. In this review, the state of the art of biomedical applications is presented and critically analyzed with a special focus on hyperthermia, drug delivery/nanomedicine, magnetic resonance imaging, and magnetic separation of cells. This review article provides up-to-date information related to the technological advancements and emerging trends in iron oxide nanostructures based ferrofluids research focused on advanced biomedical applications. Finally, conclusions and outlook of iron oxide nanostructures based ferrofluids research for biomedical applications are presented.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box. 706, Jazan 45142, Saudi Arabia
| | - Adnan Mohammed Affandi
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, PO Box 80204, Jeddah 21589, Saudi Arabia
| | - Md Mottahir Alam
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, PO Box 80204, Jeddah 21589, Saudi Arabia
| | - Afzal Khan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou-310027, People's Republic of China
| | - Asif Irshad Khan
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper, we present a theoretical study on the maximum specific loss power in the admissible biological limit (PsM)l for CoFe2O4 ferrimagnetic nanoparticles, as a possible candidate in alternative and non-invasive cancer therapy by superparamagnetic hyperthermia. The heating time of the nanoparticles (Δto) at the optimum temperature of approx. 43 °C for the efficient destruction of tumor cells in a short period of time, was also studied. We found the maximum specific loss power PsM (as a result of superparamegnetic relaxation in CoFe2O4 nanoparticles) for very small diameters of the nanoparticles (Do), situated in the range of 5.88–6.67 nm, and with the limit frequencies (fl) in the very wide range of values of 83–1000 kHz, respectively. Additionally, the optimal heating temperature (To) of 43 °C was obtained for a very wide range of values of the magnetic field H, of 5–60 kA/m, and the corresponding optimal heating times (Δto) were found in very short time intervals in the range of ~0.3–44 s, depending on the volume packing fraction (ε) of the nanoparticles. The obtained results, as well as the very wide range of values for the amplitude H and the frequency f of the external alternating magnetic field for which superparamagnetic hyperthermia can be obtained, which are great practical benefits in the case of hyperthermia, demonstrate that CoFe2O4 nanoparticles can be successfully used in the therapy of cancer by superaparamagnetic hyperthermia. In addition, the very small size of magnetic nanoparticles (only a few nm) will lead to two major benefits in cancer therapy via superparamagnetic hyperthermia, namely: (i) the possibility of intracellular therapy which is much more effective due to the ability to destroy tumor cells from within and (ii) the reduced cell toxicity.
Collapse
|
26
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
27
|
Chouhan RS, Horvat M, Ahmed J, Alhokbany N, Alshehri SM, Gandhi S. Magnetic Nanoparticles-A Multifunctional Potential Agent for Diagnosis and Therapy. Cancers (Basel) 2021; 13:2213. [PMID: 34062991 PMCID: PMC8124749 DOI: 10.3390/cancers13092213] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Magnetic nanoparticles gained considerable attention in last few years due to their remarkable properties. Superparamaganetism, non-toxicity, biocompatibility, chemical inertness, and environmental friendliness are some of the properties that make iron oxide nanoparticles (IONPs) an ideal choice for biomedical applications. Along with being easily tuneable and a tailored surface for conjugation of IONPs, their physio-chemical and biological properties can also be varied by modifying the basic parameters for synthesis that enhances the additional possibilities for designing novel magnetic nanomaterial for theranostic applications. This review highlights the synthesis, surface modification, and different applications of IONPs for diagnosis, imaging, and therapy. Furthermore, it also represents the recent report on the application of IONPs as enzyme mimetic compounds and a contrasting agent, and its significance in the field as an anticancer and antimicrobial agent.
Collapse
Affiliation(s)
- Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.); (N.A.)
| | - Sonu Gandhi
- Amity Institute of Biotechnology, Amity University, Noida 201301, India
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, India
| |
Collapse
|
28
|
Moacă EA, Watz CG, Socoliuc V, Racoviceanu R, Păcurariu C, Ianoş R, Cîntă-Pînzaru S, Tudoran LB, Nekvapil F, Iurciuc S, Șoica C, Dehelean CA. Biocompatible Magnetic Colloidal Suspension Used as a Tool for Localized Hyperthermia in Human Breast Adenocarcinoma Cells: Physicochemical Analysis and Complex In Vitro Biological Profile. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1189. [PMID: 33946316 PMCID: PMC8145112 DOI: 10.3390/nano11051189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/13/2023]
Abstract
Magnetic iron oxide nanoparticles are the most desired nanomaterials for biomedical applications due to their unique physiochemical properties. A facile single-step process for the preparation of a highly stable and biocompatible magnetic colloidal suspension based on citric-acid-coated magnetic iron oxide nanoparticles used as an effective heating source for the hyperthermia treatment of cancer cells is presented. The physicochemical analysis revealed that the magnetic colloidal suspension had a z-average diameter of 72.7 nm at 25 °C with a polydispersity index of 0.179 and a zeta potential of -45.0 mV, superparamagnetic features, and a heating capacity that was quantified by an intrinsic loss power analysis. Raman spectroscopy showed the presence of magnetite and confirmed the presence of citric acid on the surfaces of the magnetic iron oxide nanoparticles. The biological results showed that breast adenocarcinoma cells (MDA-MB-231) were significantly affected after exposure to the magnetic colloidal suspension with a concentration of 30 µg/mL 24 h post-treatment under hyperthermic conditions, while the nontumorigenic (MCF-10A) cells exhibited a viability above 90% under the same thermal setup. Thus, the biological data obtained in the present study clearly endorse the need for further investigations to establish the clinical biological potential of synthesized magnetic colloidal suspension for magnetically triggered hyperthermia.
Collapse
Affiliation(s)
- Elena-Alina Moacă
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Claudia-Geanina Watz
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Vlad Socoliuc
- Romanian Academy—Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, 24 M. Viteazu Ave., RO-300223 Timisoara, Romania
- Research Center for Complex Fluids Systems Engineering, Politehnica University of Timisoara, 1 M. Viteazu Ave., RO-300222 Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Cornelia Păcurariu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2nd Victoriei Square, RO-300223 Timisoara, Romania; (C.P.); (R.I.)
| | - Robert Ianoş
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2nd Victoriei Square, RO-300223 Timisoara, Romania; (C.P.); (R.I.)
| | - Simona Cîntă-Pînzaru
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.-P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, RO-400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Fran Nekvapil
- Biomolecular Physics Department, Babes-Bolyai University, 1 Kogalniceanu Street, RO-400084 Cluj-Napoca, Romania; (S.C.-P.); (F.N.)
- RDI Laboratory of Applied Raman Spectroscopy, RDI Institute of Applied Natural Sciences (IRDI-ANS), Babeş-Bolyai University, 42 Fântânele Street, RO-400293 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Stela Iurciuc
- Department of Cardiology, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Codruța Șoica
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| | - Cristina-Adriana Dehelean
- Faculty of Pharmacy, Victor Babeș University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (E.-A.M.); (C.-G.W.); (C.Ș.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timișoara, Romania
| |
Collapse
|
29
|
Kumar R, Chauhan A, Kuanr BK. A robust in vitro anticancer activity via magnetic hyperthermia mediated by colloidally stabilized mesoporous silica encapsulated La0.7Sr0.3MnO3 core- shell structure. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
31
|
Khan A, Sahu NK. Hydrazone conjugated and DOX loaded PEGylated-Fe 3O 4 mesoporous magnetic nanoclusters (MNCs): hyperthermia and in vitro chemotherapy. NEW J CHEM 2021. [DOI: 10.1039/d1nj03968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of the functionalization of MNCs and DOX loading.
Collapse
Affiliation(s)
- Ahmaduddin Khan
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore-632014, TN, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore-632014, TN, India
| |
Collapse
|
32
|
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. NANOMATERIALS 2020; 11:nano11010040. [PMID: 33375292 PMCID: PMC7823308 DOI: 10.3390/nano11010040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
The cancer therapy with the lowest possible toxicity is today an issue that raises major difficulties in treating malignant tumors because chemo- and radiotherapy currently used in this field have a high degree of toxicity and in many cases are ineffective. Therefore, alternative solutions are rapidly being sought in cancer therapy, in order to increase efficacy and a reduce or even eliminate toxicity to the body. One of the alternative methods that researchers believe may be the method of the future in cancer therapy is superparamagnetic hyperthermia (SPMHT), because it can be effective in completely destroying tumors while maintaining low toxicity or even without toxicity on the healthy tissues. Superparamagnetic hyperthermia uses the natural thermal effect in the destruction of cancer cells, obtained as a result of the phenomenon of superparamagnetic relaxation of the magnetic nanoparticles (SPMNPs) introduced into the tumor; SPMNPs can heat the cancer cells to 42-43 °C under the action of an external alternating magnetic field with frequency in the range of hundreds of kHz. However, the effectiveness of this alternative method depends very much on finding the optimal conditions in which this method must be applied during the treatment of cancer. In addition to the type of magnetic nanoparticles and the biocompatibility with the biological tissue or nanoparticles biofunctionalization that must be appropriate for the intended purpose a key parameter is the size of the nanoparticles. Also, establishing the appropriate parameters for the external alternating magnetic field (AMF), respectively the amplitude and frequency of the magnetic field are very important in the efficiency and effectiveness of the magnetic hyperthermia method. This paper presents a 3D computational study on specific loss power (Ps) and heating temperature (ΔT) which allows establishing the optimal conditions that lead to efficient heating of Fe3O4 nanoparticles, which were found to be the most suitable for use in superparamagnetic hyperthermia (SPMHT), as a non-invasive and alternative technique to chemo- and radiotherapy. The size (diameter) of the nanoparticles (D), the amplitude of the magnetic field (H) and the frequency (f) of AMF were established in order to obtain maximum efficiency in SPMHT and rapid heating of magnetic nanoparticles at the required temperature of 42-43 °C for irreversible destruction of tumors, without affecting healthy tissues. Also, an analysis on the amplitude of the AMF is presented, and how its amplitude influences the power loss and, implicitly, the heating temperature, observables necessary in SPMHT for the efficient destruction of tumor cells. Following our 3D study, we found for Fe3O4 nanoparticles the optimal diameter of ~16 nm, the optimal range for the amplitude of the magnetic field of 10-25 kA/m and the optimal frequency within the biologically permissible limit in the range of 200-500 kHz. Under the optimal conditions determined for the nanoparticle diameter of 16.3 nm, the magnetic field of 15 kA/m and the frequency of 334 kHz, the magnetite nanoparticles can be quickly heated to obtain the maximum hyperthermic effect on the tumor cells: in only 4.1-4.3 s the temperature reaches 42-43 °C, required in magnetic hyperthermia, with major benefits in practical application in vitro and in vivo, and later in clinical trials.
Collapse
|
33
|
Symbiotic thermo-chemotherapy for enhanced HepG2 cancer treatment via magneto-drugs encapsulated polymeric nanocarriers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
|
35
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|
36
|
Chauhan A, Kumar R, Singh P, Jha SK, Kuanr BK. RF hyperthermia by encapsulated Fe3O4 nanoparticles induces cancer cell death via time-dependent caspase-3 activation. Nanomedicine (Lond) 2020; 15:355-379. [DOI: 10.2217/nnm-2019-0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To explore the optimum temperature for cancer cell death using magnetic hyperthermia (MH), which in turn will affect the mode of cell death. Method: The focus of this study is to improve upon the existing methodology for the synthesis of chitosan encapsulated Fe3O4. MH was done at different temperatures. The cell death pathway was explored using flow cytometry and western blot. Results: Coated Fe3O4 exhibited low cytotoxicity, high stability and heating efficiency. MH at 43°C was the optimum temperature for robust cell death. Cell death pathway suggested that during the initial stages of recovery, apoptosis was the main mode of cell death. While at later stages, major apoptosis and minor necrosis were observed. Conclusion: It is important to find out the long-term effect of hyperthermia treatment on cancer cells and their consequences on surrounding healthy cells.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Bijoy Kumar Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
37
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|
38
|
Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040067] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperthermia is a noninvasive method that uses heat for cancer therapy where high temperatures have a damaging effect on tumor cells. However, large amounts of heat need to be delivered, which could have negative effects on healthy tissues. Thus, to minimize the negative side effects on healthy cells, a large amount of heat must be delivered only to the tumor cells. Magnetic hyperthermia (MH) uses magnetic nanoparticles particles (MNPs) that are exposed to alternating magnetic field (AMF) to generate heat in local regions (tissues or cells). This cancer therapy method has several advantages, such as (a) it is noninvasive, thus requiring surgery, and (b) it is local, and thus does not damage health cells. However, there are several issues that need to achieved: (a) the MNPs should be biocompatible, biodegradable, with good colloidal stability (b) the MNPs should be successfully delivered to the tumor cells, (c) the MNPs should be used with small amounts and thus MNPs with large heat generation capabilities are required, (d) the AMF used to heat the MNPs should meet safety conditions with limited frequency and amplitude ranges, (e) the changes of temperature should be traced at the cellular level with accurate and noninvasive techniques, (f) factors affecting heat transport from the MNPs to the cells must be understood, and (g) the effect of temperature on the biological mechanisms of cells should be clearly understood. Thus, in this multidisciplinary field, research is needed to investigate these issues. In this report, we shed some light on the principles of heat generation by MNPs in AMF, the limitations and challenges of MH, and the applications of MH using multifunctional hybrid MNPs.
Collapse
|
39
|
Multifunctional magnetic-polymeric nanoparticles based ferrofluids for multi-modal in vitro cancer treatment using thermotherapy and chemotherapy. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Size-controlled synthesis of superparamagnetic magnetite nanoclusters for heat generation in an alternating magnetic field. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Naghavi F, Morsali A, Bozorgmehr MR. Molecular mechanism study of surface functionalization of silica nanoparticle as an anticancer drug nanocarrier in aqueous solution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
One-pot synthesis of hydrophilic flower-shaped iron oxide nanoclusters (IONCs) based ferrofluids for magnetic fluid hyperthermia applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.161] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Maity D, Kandasamy G, Sudame A. Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Vallabani NVS, Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 2018; 8:279. [PMID: 29881657 PMCID: PMC5984604 DOI: 10.1007/s13205-018-1286-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as chemically inert materials and, therefore, being extensively applied in the areas of imaging, targeting, drug delivery and biosensors. Their unique properties such as low toxicity, biocompatibility, potent magnetic and catalytic behavior and superior role in multifunctional modalities have epitomized them as an appropriate candidate for biomedical applications. Recent developments in the area of materials science have enabled the facile synthesis of Iron oxide nanoparticles (IONPs) offering easy tuning of surface properties and surface functionalization with desired biomolecules. Such developments have enabled IONPs to be easily accommodated in nanocomposite platform or devices. Additionally, the tag of biocompatible material has realized their potential in myriad applications of nanomedicines including imaging modalities, sensing, and therapeutics. Further, IONPs enzyme mimetic activity pronounced their role as nanozymes in detecting biomolecules like glucose, and cholesterol etc. Hence, based on their versatile applications in biomedicine, the present review article focusses on the current trends, developments and future prospects of IONPs in MRI, hyperthermia, photothermal therapy, biomolecules detection, chemotherapy, antimicrobial activity and also their role as the multifunctional agent in diagnosis and nanomedicines.
Collapse
Affiliation(s)
- N. V. Srikanth Vallabani
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University Central Campus, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University Central Campus, Navrangpura, Ahmedabad, Gujarat 380009 India
| |
Collapse
|