1
|
Khandelwal H, Mutyala S, Kim M, Kong DS, Kim JR. Whole-cell redox biosensor for triclosan detection: Integrating spectrophotometric and electrochemical detection. Bioelectrochemistry 2025; 164:108921. [PMID: 39904301 DOI: 10.1016/j.bioelechem.2025.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Organic pollutants like bisphenol, acetaminophen, and triclosan, widely used in healthcare products, pose environmental risks and act as endocrine disruptors. These pollutants can alter the intracellular redox balance, making engineered whole-cell redox biosensors valuable for their detection. This study utilized the SoxRS regulatory system in bacteria, which responds to oxidative stress through NADP+/NADPH levels by modulating gene expression of SoxS through the SoxS promoter (pSoxS). A plasmid containing SoxR-pSoxS and the LacZ reporter gene was constructed and introduced into E. coli BL21 (ΔLacZ SoxRS+). The LacZ gene enabled dual detection using O-nitrophenyl-β-galactopyranoside (ONPG) for spectrophotometric detection or p-aminophenyl β-D-galactopyranoside (PAPG) for electrochemical detection. The whole-cell pRUSL12 redox biosensor was activated by redox inducers such as pyocyanin and methyl viologen, measurable via β-galactosidase assays. Among pollutants tested, triclosan specifically repressed SoxR:pSoxS::lacZ activity in the presence of pyocyanin or methyl viologen. Optimization identified pyocyanin as the more effective inducer for triclosan detection, with the biosensor capable of detecting triclosan in the 100-400 µg/L range. These redox-based biosensors offer a powerful tool for monitoring metabolic redox changes and identifying specific organic pollutants in the environment.
Collapse
Affiliation(s)
- Himanshu Khandelwal
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da Seul Kong
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environmental Energy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Tang Y, Liu Y, Jin Y, Zhang W, Liu G, Chen Y. Effects of methoxychlor on broiler gut microbiota and liver and its residue accumulation risk to human health. Toxicology 2025; 514:154105. [PMID: 40020905 DOI: 10.1016/j.tox.2025.154105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Methoxychlor as a persistent organic pollutant poses significant risks to human health and the environment. Most toxicological studies focus on high-dose exposures, which do not reflect typical chronic and low-dose human exposure, necessitating the examination of the cumulative effects of chronic exposure to persistent organic pollutants. Our study exposed broilers to different concentrations of p,p'-methoxychlor (0.01-5 mg/kg) in feed, reflecting the doses commonly used in agricultural practices. The results show that even at low doses, methoxychlor causes liver damage, metabolic disturbances, disrupts the intestinal microbiota, and leads to significant accumulation of residues, particularly in the liver. When methoxychlor contamination in the feed exceeds 0.01 mg/kg, residue levels in the broiler liver surpass the EU-established limit, and the residue levels in the broiler muscle surpass this limit when contamination exceeds 0.2 mg/kg. In addition, methoxychlor disrupts the gut microbiota, causing significant shifts in microbial composition, including a decrease in beneficial bacteria and an increase in potentially harmful taxa. The gut dysbiosis, bioaccumulation potential of methoxychlor and changes in liver metabolic indicators may be associated with the liver pathology observed in this study, warranting further investigation. The harmful consequences significantly impact broiler production, leading to food safety concerns and risks to human health. At similar exposure levels, humans may face health risks comparable to those observed in broilers. This study provides important evidence for establishing strict regulations on methoxychlor residues in food products and assessing the potential risks of low-dose and long-term exposure to methoxychlor.
Collapse
Affiliation(s)
- Yutong Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wanjun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gaoyi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Huang L, Wang Q, He QR, Huang X, Zhang ZZ. Py-Azo-decorated covalent organic frameworks as a structure-responsive mass spectrometry probe for high-sensitivity and high-throughput screening of trace toxic chemicals in complex samples. Chem Commun (Camb) 2025. [PMID: 40237404 DOI: 10.1039/d5cc01108f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A Py-azo-decorated covalent organic framework (Py-Azo-COF) was utilized as a structure-responsive probe for SALDI-TOF MS analysis. Benefiting from its unique structure, the Py-Azo-COF probe exhibited high affinity, sensitivity (LOD: 2-200 fg mL-1), reproducibility, salt tolerance, and low background interference, enabling efficient screening of diverse trace toxic chemicals in complex samples.
Collapse
Affiliation(s)
- Li Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Qian Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiu-Rong He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiu Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Zun-Zhen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Avila BS, Pemberthy-Mendoza D, Zúñiga-Benítez H, Peñuela GA. Occurrence, distribution, and levels of Polychlorinated Biphenyls (PCB), Polychlorinated Dibenzo-p-Dioxins (PCDD), and Polychlorinated Dibenzofurans (PCDF) in fish from the Antioquia Region, Colombia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:560. [PMID: 40240727 PMCID: PMC12003534 DOI: 10.1007/s10661-025-13956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins (PCDD), and polychlorinated dibenzofurans (PCDF), are a class of chemical compounds with high persistence that can accumulate in living organisms, mainly in fatty tissues. In addition, exposure to them can cause a wide variety of health problems and adverse effects on humans and wildlife. Therefore, this work aimed to assess the occurrence, distribution, and levels of PCB, PCDD and PCDF in fish samples from the Antioquia region, Colombia. In total, 90 samples of different fish species were evaluated. The levels of the six indicator PCBs were in a range between 26.6 pg · g-1 w.w (1.33 ng · g-1 fat) and 4550 pg · g-1 w.w (236.0 ng⋅g-1 fat), the mean value was 395 pg · g-1 w.w (16.7 ng⋅g-1 fat) and the median was 186 pg · g-1 w.w (8.24 ng⋅g-1 fat). The levels of dioxin-like PCBs were between 3.09 pg · g-1 w.w (0.135 ng⋅g-1 fat) and 567 pg · g-1 w.w (33.9 ng⋅g-1 fat), the mean value was 47.2 pg · g-1 w.w (2.30 ng⋅g-1 fat) and the median was 15.5 pg · g-1 w.w (0.811 ng⋅g-1 fat). The mean and median of the PCB toxic equivalent values were 46.6 fg · TEQ · g-1 w.w and 12.0 fg · TEQ · g-1 w.w, respectively. In all cases, PCDD/PCDF were below the analytical method quantification limits. In summary, PCB and PCDD/PCDF levels in selected fish corresponded to background levels and no hot spots were observed. Finally, this study provided an overview of the current situation regarding the presence of these types of pollutants in the region, which could support future research.
Collapse
Affiliation(s)
- Boris Santiago Avila
- Facultad de Ingeniería, Grupo Diagnostico y Control de La Contaminación - GDCON, Sede de Investigación Universitaria (SIU), Universidad de Antioquia - UdeA, Calle 70 # 52 -21, 050010, Medellín, Colombia.
| | - Diana Pemberthy-Mendoza
- Facultad de Ingeniería, Grupo Diagnostico y Control de La Contaminación - GDCON, Sede de Investigación Universitaria (SIU), Universidad de Antioquia - UdeA, Calle 70 # 52 -21, 050010, Medellín, Colombia
| | - Henry Zúñiga-Benítez
- Facultad de Ingeniería, Grupo Diagnostico y Control de La Contaminación - GDCON, Sede de Investigación Universitaria (SIU), Universidad de Antioquia - UdeA, Calle 70 # 52 -21, 050010, Medellín, Colombia
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Antioquia - UdeA, Calle 70 # 52-21, 050010, Medellín, Colombia
| | - Gustavo A Peñuela
- Facultad de Ingeniería, Grupo Diagnostico y Control de La Contaminación - GDCON, Sede de Investigación Universitaria (SIU), Universidad de Antioquia - UdeA, Calle 70 # 52 -21, 050010, Medellín, Colombia
| |
Collapse
|
5
|
Patel RV, Yadav A, Shahi VK. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178749. [PMID: 40022985 DOI: 10.1016/j.scitotenv.2025.178749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Water pollution and the growing demand for zero liquid discharge solutions have driven the development of advanced wastewater treatment technologies. Membrane distillation (MD) is a promising thermal-based process capable of treating high-salinity brines and wastewater. This review provides an in-depth analysis of MD configurations, operating principles, and membrane characteristics while addressing key challenges such as fouling and pore wetting which hinder large-scale implementation. To overcome these limitations, various membrane fabrication and modification strategies, including physical and chemical approaches, have been explored. The integration of MD with other processes (hybrid MD) for wastewater treatment is also examined. A comprehensive discussion on the mechanisms of organic, inorganic, and biological fouling and their impact on MD performance is presented. Additionally, recent advancements in antifouling strategies, including surface modifications, novel materials, and operational optimizations, are reviewed. Furthermore, the review critically analyzes membrane wetting, its governing mechanisms, and mitigation techniques. By summarizing the current challenges and future prospects, this work provides valuable insights into improving MD performance for practical applications. The findings serve as a foundation for further research and technological advancements in the field of wastewater treatment using MD.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Anshul Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, 247667, India.
| | - Vinod Kumar Shahi
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
6
|
Souza-Leal BD, Martins MDF, Hernandes JC, Costa PG, Bianchini A. Tissue bioaccumulation and distribution of organic contaminants in Brazilian guitarfish Pseudobatos horkelii reveal a concerning impact of contraceptive hormones and fecal sterols. MARINE POLLUTION BULLETIN 2025; 212:117582. [PMID: 39855061 DOI: 10.1016/j.marpolbul.2025.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The critically endangered Brazilian guitarfish faces significant threats from environmental contamination. Assessing the impacts of such stressor is paramount from a conservational perspective. This study investigated the concentrations, distribution and accumulation patterns of organic contaminants in pregnant Brazilian guitarfish Pseudobatos horkelii. Blood, gill, gonad, liver, and muscle concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, fecal sterols, and synthetic hormones used as human contraceptives were assessed. Synthetic hormones, especially D-norgestrel, showed the highest concentrations, mainly in the liver. Together with the results of fecal sterols, this finding suggests that guitarfish are exposed to sewage discharge. OCPs, especially hexachlorobenzene, mirex, endosulfans, and drins, showed considerably high concentrations, indicating the relevance of agricultural inputs. PCBs presented significant concentrations in the muscle, indicating long-term exposure, in contrast with other analytes that were primarily concentrated in the liver. These results have conservational implications, since contaminants analyzed herein have endocrine disruptive effects.
Collapse
Affiliation(s)
- Brenda de Souza-Leal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | | | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
7
|
Masliha M, Padnekar M, De Micco J, Ponnupandian S, Mondal K, Padamati RB. Functionalized organosolv lignin grafted with 3-aminopropyltriethoxysilane: A bio-based adsorbent for phosphate recovery from dairy wastewater. Heliyon 2025; 11:e42559. [PMID: 40028525 PMCID: PMC11870260 DOI: 10.1016/j.heliyon.2025.e42559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Wastewater rich in phosphates and nitrates causes eutrophication and leads to the impairment of freshwater resources. Out of various methods used, adsorption is the immaculate and economical for removing and recovering phosphates and nitrates from wastewater streams in a single-step process. This study explores the potential of bio-based adsorbent, functionalized organosolv lignin [OL], chemically modified by grafting with 3-aminopropyltriethoxysilane [APTES], as an effective bio-based adsorbent [OL-APTES-H+] for phosphate recovery from aqueous solutions and industrial wastewater. The characterization of OL-APTES-H+ was performed using multiple analytical techniques, providing comprehensive information on the material morphology, elemental composition, functional groups, thermal stability, surface charge, and electrokinetic behavior. The adsorption efficiency of OL-APTES-H+ was assessed under varying experimental conditions, including pH, contact time, and initial phosphate concentration. The adsorption capacity of OL-APTES-H+ depended on pH, with different forms of phosphate species being preferentially adsorbed at different pH values. A maximum adsorption capacity of 21.12 mg/g was achieved at pH 5. Kinetic studies indicated that the adsorption process followed a combination of electrostatic interactions, chemisorption and surface interaction, as evidenced by SEM and EDS analyses. XPS results confirm phosphorus incorporation on the adsorbent surface, reinforcing chemisorption. Adsorption isotherm analysis revealed that the data fitted well to the Langmuir isotherm model, suggesting a monolayer adsorption mechanism. The adsorption performance of OL-APTES-H+ was enhanced in the presence of monovalent ions, while a slight reduction in efficiency was observed in the presence of divalent anions. When applied to industrial dairy wastewater, OL-APTES-H+ exhibited phosphate removal efficiencies ranging from 30 % to 58 %. Overall, OL-APTES-H+ demonstrates considerable potential as a bio-based adsorbent for phosphate recovery, effectively mitigating environmental pollution in wastewater bodies and providing an eco-friendly source of phosphates for sustainable agricultural practices.
Collapse
Affiliation(s)
- Minu Masliha
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Mukesh Padnekar
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
- School of Physics, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- Dairy Processing Technology Centre (DPTC), University of Limerick, V94 T9PX, Limerick, Ireland
| | - Jessica De Micco
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Siva Ponnupandian
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Kona Mondal
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Ramesh Babu Padamati
- School of Chemistry, CRANN, Trinity College Dublin, D02 PN40, Dublin, Ireland
- AMBER, SFI Research Centre for Advanced Materials and BioEngineering Research, Ireland SFI Research Centre, Trinity College Dublin, D02 PN40, Dublin, Ireland
- Dairy Processing Technology Centre (DPTC), University of Limerick, V94 T9PX, Limerick, Ireland
| |
Collapse
|
8
|
Chola RKV, Palliyalil S, Sivakumar V, Chelaveettil BM. Hydrothermally modified rice husk derived silica and molybdenum sulphide embedded chitosan matrix for the removal of cationic dyes. Int J Biol Macromol 2025:141465. [PMID: 40020810 DOI: 10.1016/j.ijbiomac.2025.141465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The work reports the hydrothermal fabrication of a Chitosan/Silica/MoS2 (CSM) composite, leveraging chitosan as a structural framework and silica/molybdenum sulphide as inorganic fillers. Silica is sourced from the rice husk and incorporated into the composite to enhance the adsorption behaviour and thermal properties. The formation and the adsorption behaviour of the CSM composite were confirmed with the aid of FTIR, XRD, FE-SEM, EDX, TGA, XPS, BET, and HR-TEM analyses. The prepared adsorbent was used for removing the methylene blue (MB) and malachite green (MG) dyes from the aqueous solution, achieving adsorption capacities of 34.01 mg/g for MB and 29.85 mg/g for MG. Optimal dye removal occurred within 60 min at a pH of ~11 and 125 mg of adsorbent dosage. The adsorption process followed the Freundlich isotherm and pseudo-second-order (PSO) kinetics by a regression coefficient of R2 > 0.99. Thermodynamic parameters illustrated the exothermic and spontaneous nature of adsorption. Regeneration tests confirmed the CSM composite's stability and reusability over five cycles. The adsorption mechanism involves electrostatic attraction, surface complexation, and hydrogen bonding. These findings indicate that the CSM composite is an effective adsorbent for removing dye pollutants from aqueous solutions.
Collapse
Affiliation(s)
- Resha Kasim Vellattu Chola
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tierurangadi (affiliated to the University of Calicut) Malappuram, Kerala 676306, India
| | - Sirajudheen Palliyalil
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tierurangadi (affiliated to the University of Calicut) Malappuram, Kerala 676306, India
| | - Vigneshwaran Sivakumar
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Basheer Meethale Chelaveettil
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tierurangadi (affiliated to the University of Calicut) Malappuram, Kerala 676306, India.
| |
Collapse
|
9
|
Abdul-Nabi SS, Al Karaki V, Khalil A, El Zahran T. Climate change and its environmental and health effects from 2015 to 2022: A scoping review. Heliyon 2025; 11:e42315. [PMID: 39975822 PMCID: PMC11835584 DOI: 10.1016/j.heliyon.2025.e42315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025] Open
Abstract
Background The rise in environmental pollutants has become a pressing global concern of international magnitude. Substantial evidence now demonstrates that escalating global temperatures and rising sea levels might exacerbate release of chemical pollutants into the environment which amplifies their toxicity. Existing research underscores the linkage between climate change and air pollution as driving forces, with increased mortality and morbidity. Purpose of review This review explores the reciprocal relationship between climate change and its impact on health, as well as the environment. We conducted an in-depth analysis of all relevant published studies, encompassing studies conducted across various regions worldwide, including the Eastern Mediterranean Regional Office (EMRO)1 region. Summary The environmental consequences of climate change have widespread impacts on various health systems and populations. Knowledge gaps remain in understanding the full scope of climate change effects, particularly through environmental pollution. The findings of this review highlight the need for global strategies to mitigate diverse health risks to protect from the growing threats of climate change.
Collapse
Affiliation(s)
- Sarah S. Abdul-Nabi
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Victoria Al Karaki
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Aline Khalil
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tharwat El Zahran
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
10
|
Mota WJS, de Jesus JR, Rego APJ, da Costa ASP, Tornisielo VL, Eguiluz KIB, Salazar-Banda GR, Hernández-Macedo ML, López JA. Combatting pesticide pollution: using liquid scintillation spectrometry to assess 14C-labeled hexachlorobenzene removal by mangrove Bacillus spp. Biodegradation 2025; 36:18. [PMID: 39920367 DOI: 10.1007/s10532-025-10113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
This study explored the ability of two Bacillus species isolated from mangrove sediments to degrade hexachlorobenzene (HCB), a persistent organic pollutant that affects the quality of surface water, groundwater, and soil. Hence, we analyzed bacterial growth in a medium with hexachlorobenzene as the sole carbon source. Moreover, chemical oxygen demand removal, ecotoxicity, and measured radiolabeled HCB degradation were assessed. Our results revealed that both Bacillus strains (I3 and I6) demonstrated hexachlorobenzene-degrading potential and achieved degradation rates of 11.5 ± 1.47% and 21.1 ± 0.84%. Additionally, the ability of these strains to mineralize HCB was confirmed by the production of radiolabeled carbon dioxide, assessed by liquid scintillation spectrometry and thin-layer chromatography. Ecotoxicity assays further demonstrated the effectiveness of bacteria treatment in degrading HCB. These findings underscore the potential of Bacillus strains from mangrove sediments to degrade and mineralize HCB, opening new perspectives for the bioremediation of aromatic compounds in contaminated environments.
Collapse
Affiliation(s)
- Wanessa J Santana Mota
- Institute of Technology and Research, Aracaju, SE, 49032-490, Brazil
- Industrial Biotechnology Graduation Program, Tiradentes University, Aracaju, SE, 49032-490, Brazil
| | | | - Ana P Justiniano Rego
- Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
| | | | - Valdemar L Tornisielo
- Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Katlin I Barrios Eguiluz
- Institute of Technology and Research, Aracaju, SE, 49032-490, Brazil
- Processes Engineering Graduation Program-PEP, Tiradentes University, Aracaju, SE, 49032-490, Brazil
| | - Giancarlo R Salazar-Banda
- Institute of Technology and Research, Aracaju, SE, 49032-490, Brazil.
- Processes Engineering Graduation Program-PEP, Tiradentes University, Aracaju, SE, 49032-490, Brazil.
| | - Maria L Hernández-Macedo
- Institute of Technology and Research, Aracaju, SE, 49032-490, Brazil
- Industrial Biotechnology Graduation Program, Tiradentes University, Aracaju, SE, 49032-490, Brazil
| | - Jorge A López
- Industrial Biotechnology Graduation Program, Tiradentes University, Aracaju, SE, 49032-490, Brazil
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá, Macapá, AP, 68900-070, Brazil
| |
Collapse
|
11
|
Yutilova K, Shved E, Rozantsev G, Adamski A. Russia-Ukraine war impacts on environment: warfare chemical pollution and recovery prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5685-5702. [PMID: 39964404 DOI: 10.1007/s11356-025-36098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/08/2025] [Indexed: 03/18/2025]
Abstract
As it is commonly known, the full-scale conflict between Russia and Ukraine started on February 24th, 2022. It has not only caused various geopolitical, strategic, and humanitarian challenges, shortages of basic goods, and infrastructural disruptions but also had significant consequences for the natural environment of the Ukrainian territory. This review article contains the comprehensive analysis of the multifaceted environmental challenges arising from the ongoing war, examining the instant and long-term impacts on air and water quality, soil health, biodiversity, and discusses possible measures on remediation of affected areas. The consequences of contamination of natural resources through military activities, the disruption of critical ecosystems, and the subsequent threats for human health in living and future generations, are described in this review. Through an in-depth analysis of scientific literature, governmental reports, and various international assessments, this review aims to emphasize the impact of the armed conflict in Ukraine on environmental degradation and its selected consequences.
Collapse
Affiliation(s)
- Kseniia Yutilova
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia, 21021, Ukraine.
| | - Elena Shved
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia, 21021, Ukraine
| | - Georgiy Rozantsev
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia, 21021, Ukraine
| | - Andrzej Adamski
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| |
Collapse
|
12
|
Sanli B, Gedik K, Birgul A, Akcetin MO, Kurt-Karakus PB. Atmospheric aggravation potential of a wastewater treatment plant concerning organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ether emissions. CHEMOSPHERE 2025; 371:144038. [PMID: 39733951 DOI: 10.1016/j.chemosphere.2024.144038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (Σ22OCPs), polychlorinated biphenyls (Σ46PCBs), and polybrominated diphenyl ethers (Σ14PBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.3 times higher than at the AT site. PCBs concentration levels are listed as SC > BA > AT from high to low. The highest OCPs concentration levels were detected at the BA site while the lowest concentration levels were obtained for the SC site. Compared to organochlorine pollutants (PCBs and OCPs), PBDEs levels were higher by two orders of magnitude ranging from 0.2 to 54.3 ng/g. While the presence of OCPs was not significant, an unusual abundance of mirex was observed. HCB, HCHs (excluding β-HCH), and p,p'-DDE resulting mainly from the settling tank indicate enhanced mass transfer from wastewater to air. Regarding PCBs, the level and detection frequency of dioxin-like PCBs (118, 123) in the aeration tank and the settling chamber were remarkable. The upper levels of PBDEs congeners 17, 85, 138, 153, and 154 resulting from the settling tank suggest an enhanced mass transfer from water to air as the source medium. Although the primary fate of trace organics in WWTPs is expected to be sorption to sludge, the present study has shown that WWTPs can be a non-negligible source of local atmospheric PCB and PBDE pollution. However, this study provides a snapshot of the levels of persistent organic pollutants and emissions, and there is no doubt that more detailed and long-term studies are needed.
Collapse
Affiliation(s)
- Busra Sanli
- Bursa Technical University, Department of Environmental Engineering, Bursa, Turkiye
| | - Kadir Gedik
- Eskişehir Technical University, Department of Environmental Engineering, Eskişehir, Turkiye; Eskişehir Technical University, Environmental Research Center (ÇEVMER), Eskişehir, Turkiye
| | - Askin Birgul
- Bursa Technical University, Department of Environmental Engineering, Bursa, Turkiye
| | | | | |
Collapse
|
13
|
Liu J, Shan Q, Yang Y, He W. Uncovering the Potential Link Between Polychlorinated Biphenyls and Cardiovascular Diseases: A Comprehensive Analysis. TOXICS 2025; 13:71. [PMID: 39997889 PMCID: PMC11860408 DOI: 10.3390/toxics13020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND A family of persistent organic pollutants, known as polychlorinated biphenyls (PCBs), are extensively found in the environment and may be harmful to the cardiovascular system. Systematic reviews and meta-analyses are required to thoroughly evaluate the association between PCB exposure and cardiovascular disease (CVDs), despite the fact that studies on the subject have produced inconsistent results. OBJECTIVE The purpose of this study was to investigate the relationship between PCBs exposure and cardiovascular disease risk in order to provide more conclusive data to promote public health actions. METHODS The studies that met the inclusion criteria were screened out using the databases PubMed, Web of Science, ScienceDirect, and Cochrane Library. The comprehensive effect size (OR) was calculated using the random-effects model; the study's heterogeneity was analyzed using I2 statistics; the major reasons of heterogeneity were identified using subgroup analysis; and publication bias graphically was measured using the Egger's test. RESULTS A meta-analysis of 11 studies revealed that total PCBs (OR = 1.56, 95% CI: 1.20-1.75), non-dioxin-like PCBs (NDL-PCBs) (OR = 1.33, 95% CI: 1.15-1.53), and dioxin-like PCBs (DL-PCBs) (OR = 1.31, 95% CI: 1.10-1.57) were all found to be positively associated with the risk of cardiovascular disease. Subgroup analysis revealed that study type, biomaterials, and literature quality were the most significant drivers of variation. Furthermore, certain PCB homologues, such as non-dioxin-like (NDL)-PCB153 and dioxin-like (DL)-PCB118, are highly related with cardiovascular disease. CONCLUSIONS According to this meta-analysis, exposure to PCBs may increase the risk of cardiovascular disease. Notwithstanding major drawbacks, our results emphasize the significance of lowering exposure to PCBs and offering a solid theoretical basis for public health initiatives.
Collapse
Affiliation(s)
- Jingyu Liu
- College of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Yang Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
| | - Wenxing He
- College of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
14
|
Chen G, Huang T, Dai Y, Huo X, Xu X. Effects of POPs-induced SIRT6 alteration on intestinal mucosal barrier function: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117705. [PMID: 39805197 DOI: 10.1016/j.ecoenv.2025.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Persistent organic pollutants (POPs) are pervasive organic chemicals with significant environmental and ecological ramifications, extending to adverse human health effects due to their toxicity and persistence. The intestinal mucosal barrier, a sophisticated defense mechanism comprising the epithelial layer, mucosal chemistry, and cellular immunity, shields the host from external threats and fosters a symbiotic relationship with intestinal bacteria. Sirtuin 6 (SIRT6), a sirtuin family member, is pivotal in genome and telomere stability, inflammation regulation, and metabolic processes. Result shows POPs have been implicated in the intestinal diseases, particularly in intestinal barrier dysfunction, through mechanisms such as cellular damage, epigenetic alterations, inflammation, microbiota changes, and metabolic disruptions. While the impact of SIRT6 expression changes on intestinal barrier functions has been reviewed, the mechanisms linking POPs to SIRT6 remain elusive. This review summarized the latest research results on the effects of POPs on intestinal barrier, discussed the role of SIRT6 from multiple mechanism perspectives, proposed new research directions on POPs, SIRT6 and intestinal health, and explored the therapeutic potential of SIRT6.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Tengyang Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 511443, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
15
|
Nermo KR, Bakken KS, Lyche JL, Polder A, Jansen A, Kaldenbach S, Haddad-Weiser G, Strand TA, Eggesbø MÅ. Trend analyses of persistent organic pollutants in human milk from first-time mothers in Norway between 2002 and 2021. Int J Hyg Environ Health 2025; 263:114458. [PMID: 39303365 DOI: 10.1016/j.ijheh.2024.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Persistent organic pollutants (POPs) are stable compounds characterized by their resistance to degradation. From the 1960-70's organochlorine pesticides (OCPs), such as DDTs and polychlorinated biphenyls (PCBs) raised concerns regarding health and environmental impacts. This has led to the banning of POPs in the USA and Europe including Norway in 1980 and worldwide under the 2004 Stockholm Convention. The exposure of nursing infants to POPs has been a significant focus, prompting extensive research into the presence of these substances in human breast milk. In this study, we explored the temporal trends of POPs concentrations in breast milk sampled between 2002 and 2021 by comparing the concentration across the mother's year of birth. METHOD Two Norwegian cohorts of lactating women were utilized (the HUMIS study and the "Iodine in Early Life"-Study). Concentrations of 15 different POPs, including PCBs, OCPs, and brominated diphenyl ethers (BDEs) were measured in 513 breast milk samples that had been collected over two decades in a subset of first-time mothers. RESULTS Time trend analysis indicated a steady decrease in concentration levels when adjusted for maternal age. The largest reduction was observed in β-HCH, age-adjusted (-17.1%, 95% CI -18.7, -15.4), followed by ∑6BDE (-9.1%, 95% CI -10.5, -7.7), ∑6PCBs (-7.1%, 95% CI -7.7, -6.5), and ∑2DDTs (-7.0%, 95% CI -8.0, -6.0). In contrast, an increasing trend was noted in the median concentrations of β-HCH, ∑2DDTs, and ∑6BDE in the mothers born in 1990-1994 to 1995-2002. CONCLUSION Our study demonstrates a decline of most POPs in breast milk, likely attributed to international regulatory efforts like the Stockholm Convention. Notably, an increase in the 95th percentile concentrations of β-HCH, ∑2DDTs, and ∑6BDEs was noted in mothers born in 1990-1994 compared to those born in 1995-2002 suggests demographic shifts that may influence exposure levels. Further research is needed to explore and understand the underlying factors for the rise in median concentrations of ∑6BDEs.
Collapse
Affiliation(s)
- Kristina R Nermo
- Department of Microbiology, Innlandet Hospital Trust, PO.Box 990, 2629 Lillehammer, Norway; Center for International Health, University of Bergen, N-5020, Bergen, Norway.
| | - Kjersti S Bakken
- Center for International Health, University of Bergen, N-5020, Bergen, Norway; Women's Clinic, Innlandet Hospital Trust, PO.Box 990, 2629 Lillehammer, Norway
| | - Jan L Lyche
- Faculty of Veterinary Medicine, Norwegian University Life Sciences (NMBU), Ås, Norway
| | - Anuschka Polder
- Faculty of Veterinary Medicine, Norwegian University Life Sciences (NMBU), Ås, Norway
| | - Aina Jansen
- Department of Research, Innlandet Hospital Trust, PO.Box 990, 2629 Lillehammer, Norway
| | - Siri Kaldenbach
- University of Oslo, Faculty of Medicine, Department of Clinical Medicine, Klaus Torgårds Vei 3, 0372 Oslo, Norway; Department of Pediatrics, Lillehammer Hospital, Innlandet Hospital Trust, PO.Box 990, 2609 Lillehammer, Norway.
| | | | - Tor A Strand
- Center for International Health, University of Bergen, N-5020, Bergen, Norway; Department of Research, Innlandet Hospital Trust, PO.Box 990, 2629 Lillehammer, Norway.
| | - Merete Å Eggesbø
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
16
|
Ou SP, Liao XL, Huang ZT, Hu YC, Cai Z, Chen ZF. Bioaccessibility and health risk assessment of hydrophobic organic pollutants in soils from four typical industrial contaminated sites in China. J Environ Sci (China) 2025; 147:282-293. [PMID: 39003047 DOI: 10.1016/j.jes.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 07/15/2024]
Abstract
There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.
Collapse
Affiliation(s)
- Shi-Ping Ou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zi-Tao Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan-Cong Hu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
17
|
Nermo KR, Lyche JL, Haddad-Weiser G, Aarsland TE, Kaldenbach S, Solvik B, Polder A, Strand TA, Bakken KS. Quantification of persistent organic pollutants in breastmilk and estimated infant intake, Norway. MATERNAL & CHILD NUTRITION 2025; 21:e13759. [PMID: 39501670 DOI: 10.1111/mcn.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/02/2024] [Accepted: 10/14/2024] [Indexed: 12/18/2024]
Abstract
Persistent organic pollutants (POPs) are environmental contaminants that can accumulate in human tissues and pose potential health risks. Despite global efforts to reduce their prevalence, follow-up studies are needed to see if the measures are successful. Since most infants in Norway are breastfed for the first 6 months of life, monitoring POP contamination in breastmilk is important for children's health and development. This study aims to evaluate the current levels of various POPs in women's breastmilk in Innlandet County, Norway. A cross-sectional study was conducted measuring concentrations of 35 different POPs, including polychlorinated biphenyls (PCBs), chlordanes (ChlDs), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), Mirex, and brominated flame retardants in 120 breastmilk samples. The study analysed the impact of maternal age, parity, pre-pregnancy BMI, and infant age on POPs levels and compared the estimated daily intake per body weight of infants to existing health guidelines. The detected percentages for PCBs were 100%, for DDTs 98.3%, and for ChlDs 98.3%. The highest median concentration was found for ΣPCBs (26.9 ng/g lw). Maternal age, parity, and infant age were significant determinants of POP concentrations. Most infants exceeded the health-based guidance values for ΣPCB, and 6.4% percent did so for ΣHCHs. Despite lower POPs concentrations in breastmilk than in earlier studies, many breastfed infants are still exposed to levels exceeding health-based guidance values. Although the study's design had limitations, the study provides updated population-based data on POPs in breastmilk. Continued monitoring and research are necessary to understand and mitigate potential health risks associated with POPs.
Collapse
Affiliation(s)
- Kristina R Nermo
- Department of Microbiology, Innlandet Hospital Trust, Lillehammer, Norway
- Center for International Health, University of Bergen, Bergen, Norway
| | - Jan L Lyche
- Faculty of Veterinary Medicine, Norwegian University Life Sciences (NMB), Ås, Norway
| | | | - Tonje E Aarsland
- Center for International Health, University of Bergen, Bergen, Norway
- Women's Clinic, Innlandet Hospital Trust, Lillehammer, Norway
| | - Siri Kaldenbach
- Department of Clinical Medicine, University of Oslo, Faculty of Medicine, Oslo, Norway
- Department of Pediatrics, Lillehammer Hospital, Innlandet Hospital Trust, Lillehammer, Norway
| | - Beate Solvik
- Center for International Health, University of Bergen, Bergen, Norway
- Women's Clinic, Innlandet Hospital Trust, Lillehammer, Norway
| | - Anuschka Polder
- Faculty of Veterinary Medicine, Norwegian University Life Sciences (NMB), Ås, Norway
| | - Tor A Strand
- Center for International Health, University of Bergen, Bergen, Norway
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| | - Kjersti S Bakken
- Center for International Health, University of Bergen, Bergen, Norway
- Women's Clinic, Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
18
|
You T, Feng X, Xu H. The whole life journey and destination of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125165. [PMID: 39427952 DOI: 10.1016/j.envpol.2024.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Recent reports indicate that ubiquitous microplastics (MPs) in the environment can infiltrate the human body, posing significant health risks and garnering widespread attention. However, public understanding of the intricate processes through which microplastics are transferred to humans remains limited. Consequently, developing effective strategies to mitigate the escalating issue of MPs pollution and safeguard human health is still challenging. In this review, we elucidated the sources and dynamic migration pathways of MPs, examined its complex interactions with other pollutants, and identified primary routes of human exposure. Subsequently, the events and alterations of gut microbiota, gut microbiota metabolism, and intestinal barrier after MPs enter the gut of organisms are unclosed. Additionally, it highlighted the ease with which MPs translocate from the intestine to other organs along with their biological toxicities. Finally, we also emphasized the knowledge gaps in the current research field and proposes future research directions. This review aims to enhance public awareness regarding microplastic pollution and provide valuable references for forthcoming research endeavors as well as policy formulation related to this pressing issue.
Collapse
Affiliation(s)
- Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
19
|
Xie Y, Sun Q, Li Z, Liu F, Xie Z, Wu Y, Zhang X. Establishment of the first dermal fibroblast cell line derived from the Indo-Pacific Bottlenose Dolphin (Tursiops aduncus) and its response to pollutant exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136092. [PMID: 39405721 DOI: 10.1016/j.jhazmat.2024.136092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
The Indo-Pacific bottlenose dolphin (Tursiops aduncus), classified as a new species since 1998, is underexplored in ecotoxicology owing to ethical constraints and the lack of specific in vitro models. Herein, we established the first skin fibroblast cell line (TaSF) from an Indo-Pacific bottlenose dolphin stranded along the Pearl River Estuary, China. TaSF cells exhibited strong proliferation in early passages but ceased mitosis at passage 19, likely owing to reaching the Hayflick limit. Morphology and immunofluorescence tests confirmed the fibroblastic nature of these cells. Karyotyping revealed 21 pairs of autosomes and 1 pair of sex chromosomes (XY), consistent with many cetaceans. To facilitate long-term future studies, TaSF cells were immortalized with exogenous simian virus 40 T antigen, creating the TaSFT cell line. The cytotoxic effects of 27 contaminants, including 6 organotins (OTs), 10 per- and polyfluoroalkyl substances (PFASs), and 11 phthalates (PAEs), on TaSFT cells were evaluated after 24-h exposure. Among these chemicals, OTs exhibited the strongest cytotoxicity, and both OTs and PFASs showed structure-related toxicity. These findings confirm the feasibility of TaSFT cells as a novel tool for ecotoxicity research on the Indo-Pacific bottlenose dolphin and highlight the need for further investigation into the environmental contaminant pressures on this species.
Collapse
Affiliation(s)
- Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Qinzhe Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhicheng Li
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
20
|
de Oliveira R, Sant'Ana AC. Surface control in the adsorption of tebuthiuron on modified silver surfaces tracked by surface-enhanced Raman scattering spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124832. [PMID: 39029201 DOI: 10.1016/j.saa.2024.124832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The vibrational assignment of the Raman and surface-enhanced Raman scattering (SERS) spectra of the herbicide tebuthiuron (TBH) was accomplished, which allowed unprecedented propositions for adsorption geometries on the surface of silver nanoparticles (AgNP). Ascribed SERS features allowed suggesting that the adsorption occurred through nitrogen atoms of thiadiazole group, since intense band shift assigned to ring mode was marking of the coordination with the metallic surface. AgNP were treated with different surface modifiers that leaded to substantial changes in TBH adsorption geometries. Spectral changes, as the enhancement of out-of-plane ring modes, were indicative of the presence of tilted thiadiazole geometries in relation to the silver surface. Density Functional Theory (DFT) calculations from TBH molecules, in isolation and in interaction with ten-atom cluster of silver leaded to obtain theoretical spectra that gave support to interpret experimental Raman and SERS spectra.
Collapse
Affiliation(s)
- Rafael de Oliveira
- Laboratório de Nanoestruturas Plasmônicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Antonio Carlos Sant'Ana
- Laboratório de Nanoestruturas Plasmônicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Wardiani FE, Dong CD, Chen CW, Liu TK, Hsu ZP, Lam SS, Wang LC. Characterizing persistent organic pollutants in seawater at a multifunctional international harbor influenced by industrial riverbank activities. MARINE POLLUTION BULLETIN 2024; 209:117213. [PMID: 39489051 DOI: 10.1016/j.marpolbul.2024.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The objective of this study is to comprehensively characterize persistent organic pollutants (POPs) in seawater at Kaohsiung Harbor, focusing on their concentrations, partitioning behaviors, and profiles in both particle and liquid phases. We analyzed 100 L seawater for each sample, finding total dioxin-like toxicity (PCDD/Fs + PCBs + PBDD/Fs) ranging from 0.00936 to 0.167 pg WHO-TEQ/L, with PCDD/Fs accounting for 68 % of total toxicity. POPs predominantly appeared in the particle phase, observed in over 80 % of samples, except for PCBs. The observed correlations between particulate matter (PM) and chlorinated POPs at sites receiving river effluents suggest shared pollution sources. The liquid partition of PCDD/Fs, PCBs, and PBDEs in the seawater shows an inverse relationship with log Kow and a direct proportionality with solubility, particularly above 0.1 μg/L. Furthermore, PBDEs in seawater can transform into PBDD/Fs upon UV light exposure, highlighting another potential pathway for the persistence and spread of these harmful contaminants in the environment. These findings emphasize the need for field-based investigations to assess PBDF formation in aquatic environments and underscore the importance of stronger mitigation strategies, including better wastewater treatment and stricter discharge regulations to reduce POPs in marine ecosystems.
Collapse
Affiliation(s)
- Fefi Eka Wardiani
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ta-Kang Liu
- Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, Tainan, Taiwan
| | - Zhi-Ping Hsu
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Lin-Chi Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Ghourichay SA, Agbolaghi S, Corpino R, Ricci PC. Carbon Nanotube-Phenyl Modified g-C 3N 4: A Visible Light Driven Efficient Charge Transfer System for Photocatalytic Degradation of Rhodamine B. Molecules 2024; 29:5439. [PMID: 39598827 PMCID: PMC11597868 DOI: 10.3390/molecules29225439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
In this study, we report the synthesis and characterization of a novel photocatalyst composite composed of functionalized carbon nanotubes (f-CNT) and phenyl-modified graphitic carbon nitride (PhCN). The incorporation of the phenyl group extends the absorption range into the visible spectrum compared to pure g-C3N4. Additionally, the formation of the heterostructure in the f-CNT/PhCN composite exhibits improved charge transfer efficiency, facilitating the separation and transfer of photogenerated electron-hole pairs and reducing recombination rates. The photocatalytic performance of this composite was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation. The f-CNT/PhCN composite exhibits remarkable efficiency in degrading RhB, achieving 60% degradation after 4 h, and 100% after 24 h under low-power white LED excitation. This represents a substantial improvement over the non-functionalized CNT/PhCN composite, which shows much lower performance. In contrast, pure PhCN demonstrates very little activity. Structural and optical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, and UV-Vis spectroscopy. Time-resolved photoluminescence measurements were used to study the behavior of photoexcited carriers, confirming that the composite improves charge transfer efficiency for photogenerated carriers by approximately 30%. The results indicate that the functionalization of CNTs significantly enhances the photocatalytic properties of the composite, making f-CNT/PhCN a promising candidate for environmental remediation applications, particularly in the degradation of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Sahar Aghapour Ghourichay
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; (S.A.G.); (R.C.)
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran;
| | - Riccardo Corpino
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; (S.A.G.); (R.C.)
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; (S.A.G.); (R.C.)
| |
Collapse
|
23
|
Ortiz M, Gómez E, Serrà A. Recyclable Biomimetic Sunflower Pollen-based Photocatalyst for Enhanced Degradation of Pharmaceuticals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405204. [PMID: 39109570 DOI: 10.1002/smll.202405204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Recent trends in addressing the impending water crisis focus on the development of innovative water treatment methods. This work utilizes pollen as a core template to synthesize highly efficient onion-like photocatalysts for pollutant mineralization. The study showcases a novel electrochemical synthesis method that maintains the structural integrity of pollen, resulting in increased surface area and enhanced photocatalytic activity. After 90-min of visible light irradiation, over 99% mineralization is achieved. These hybrid photocatalysts demonstrate exceptional stability and efficacy in degrading pollutants. The used photocatalysts can be recycled into biopellets with an ash content of less than 7% (weight), moisture content of less than 8% (weight), and a calorific value of ≈22.1 ± 0.3 MJ kg-1. Additionally, the resulting ashes serve as effective peroxymonosulphate activators for pollutant mineralization. This process offers sustainable waste management while minimizing waste production, providing a practical solution for water purification. The efficacy of this approach in pollutant removal is underscored by mineralization rates exceeding 99%.
Collapse
Affiliation(s)
- Miquel Ortiz
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1, Barcelona, Catalonia, E-08028, Spain
| | - Elvira Gómez
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1, Barcelona, Catalonia, E-08028, Spain
| | - Albert Serrà
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1, Barcelona, Catalonia, E-08028, Spain
| |
Collapse
|
24
|
Zheng Y, Ran L, Zhang X, Zhu L, Zhang H, Xu J, Zhao Q, Zhou L, Ye Z. Enhanced Fenton catalytic degradation of methylene blue by the synergistic effect of Fe and Ce in chitosan-supported mixed-metal MOFs (Fe/Ce-BDC@CS). Int J Biol Macromol 2024; 279:134872. [PMID: 39173787 DOI: 10.1016/j.ijbiomac.2024.134872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/28/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Methylene blue (MB) is a refractory organic pollutant that poses a potential threat to the aquatic environment. Fenton reaction is considered a primrose strategy to treat MB. However, the traditional Fenton process is plagued by narrow pH application range, poor stability, and secondary pollution. To solve these problems, many Fenton-like catalysts including metal-organic frameworks (MOFs) have been prepared. Herein, a novel bimetallic MOF (Fe/Ce-BDC@CS) was prepared through simple adsorption for the effective removal of MB, where chitosan (CS) was used as the carrier. The degradation performance of Fe/Ce-BDC@CS (100 % within 20 min) was better than that of most reported monometallic MOFs. Moreover, Fe/Ce-BDC@CS exhibited good repeatability and its anti-interference performance of some inorganic ions was also remarkable. Column loading experiments showed that the removal efficiency of MB was still about 50 % over 155 h with a flowing speed of 0.30 L/h. Comparative analysis indicated that such excellent performances could be attributed to the synergistic effect between Fe and Ce. Furthermore, the results of quenching tests indicate that OH, O2-, and 1O2 contributed to MB degradation. In brief, Fe/Ce-BDC@CS has promising prospects in MB treatment, which can provide scientific references for the design and application of bimetallic MOFs.
Collapse
Affiliation(s)
- Yajuan Zheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Lang Ran
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Xu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Lingxiao Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Heng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Jiaming Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| | - Lincheng Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| |
Collapse
|
25
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
26
|
Zhan F, Li Y, Shunthirasingham C, Oh J, Lei YD, Lu Z, Ben Chaaben A, Lee K, Gobas FAPC, Hung H, Breivik K, Wania F. Archetypes of Spatial Concentration Variability of Organic Contaminants in the Atmosphere: Implications for Identifying Sources and Mapping the Gaseous Outdoor Inhalation Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18273-18283. [PMID: 39359192 PMCID: PMC11485095 DOI: 10.1021/acs.est.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Whereas inhalation exposure to organic contaminants can negatively impact human health, knowledge of their spatial variability in the ambient atmosphere remains limited. We analyzed the extracts of passive air samplers deployed at 119 unique sites in Southern Canada between 2019 and 2022 for 353 organic vapors. Hierarchical clustering of the obtained data set revealed four archetypes of spatial concentration variability in the outdoor atmosphere, which are indicative of common sources and similar atmospheric dispersion behavior. "Point Source" signatures are characterized by elevated concentration in the vicinity of major release locations. A "Population" signature applies to compounds whose air concentrations are highly correlated with population density, and is associated with emissions from consumer products. The "Water Source" signature applies to substances with elevated levels in the vicinity of water bodies from which they evaporate. Another group of compounds displays a "Uniform" signature, indicative of a lack of major sources within the study area. We illustrate how such a data set, and the derived spatial patterns, can be applied to support the identification of sources, the quantification of atmospheric emissions, the modeling of air quality, and the investigation of potential inequities in inhalation exposure.
Collapse
Affiliation(s)
- Faqiang Zhan
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Yuening Li
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | | | - Jenny Oh
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Ying Duan Lei
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Amina Ben Chaaben
- Institut
des Sciences de la Mer, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Kelsey Lee
- School
of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Frank A. P. C. Gobas
- School
of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Hayley Hung
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto, ON M3H 5T4, Canada
| | - Knut Breivik
- Norwegian
Institute for Air Research, P.O. Box
100, Kjeller NO-2027, Norway
| | - Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| |
Collapse
|
27
|
Williams WA, Aravamudhan S. Micro-Nanoparticle Characterization: Establishing Underpinnings for Proper Identification and Nanotechnology-Enabled Remediation. Polymers (Basel) 2024; 16:2837. [PMID: 39408547 PMCID: PMC11479023 DOI: 10.3390/polym16192837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Microplastics (MPLs) and nanoplastics (NPLs) are smaller particles derived from larger plastic material, polymerization, or refuse. In context to environmental health, they are separated into the industrially-created "primary" category or the degradation derivative "secondary" category where the particles exhibit different physiochemical characteristics that attenuate their toxicities. However, some particle types are more well documented in terms of their fate in the environment and potential toxicological effects (secondary) versus their industrial fabrication and chemical characterization (primary). Fourier Transform Infrared Spectroscopy (FTIR/µ-FTIR), Raman/µ-Raman, Proton Nuclear Magnetic Resonance (H-NMR), Curie Point-Gas Chromatography-Mass Spectrometry (CP-gc-MS), Induced Coupled Plasma-Mass Spectrometry (ICP-MS), Nanoparticle Tracking Analysis (NTA), Field Flow Fractionation-Multiple Angle Light Scattering (FFF-MALS), Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Differential Mobility Particle [Sizing] (DMPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microspectroscopy (STXM) are reviewed as part of a suite of characterization methods for physiochemical ascertainment and distinguishment. In addition, Optical-Photothermal Infrared Microspectroscopy (O-PTIR), Z-Stack Confocal Microscopy, Mueller Matrix Polarimetry, and Digital Holography (DH) are touched upon as a suite of cutting-edge modes of characterization. Organizations, like the water treatment or waste management industry, and those in groups that bring awareness to this issue, which are in direct contact with the hydrosphere, can utilize these techniques in order to sense and remediate this plastic polymer pollution. The primary goal of this review paper is to highlight the extent of plastic pollution in the environment as well as introduce its effect on the biodiversity of the planet while underscoring current characterization techniques in this field of research. The secondary goal involves illustrating current and theoretical avenues in which future research needs to address and optimize MPL/NPL remediation, utilizing nanotechnology, before this sleeping giant of a problem awakens.
Collapse
Affiliation(s)
- Wesley Allen Williams
- Aravamudhan Lab, Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | | |
Collapse
|
28
|
Peter M, Müller C. Systematic Comparison of Extract Clean-Up with Currently Used Sorbents for Dispersive Solid-Phase Extraction. Molecules 2024; 29:4656. [PMID: 39407587 PMCID: PMC11478316 DOI: 10.3390/molecules29194656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Dispersive solid-phase extraction (dSPE) is a crucial step for multiresidue analysis used to remove matrix components from extracts. This purification prevents contamination of instrumental equipment and improves method selectivity, sensitivity, and reproducibility. Therefore, a clean-up step is recommended, but an over-purified extract can lead to analyte loss due to adsorption to the sorbent. This study provides a systematic comparison of the advantages and disadvantages of the well-established dSPE sorbents PSA, GCB, and C18 and the novel dSPE sorbents chitin, chitosan, multi-walled carbon nanotube (MWCNT), and Z-Sep® (zirconium-based sorbent). They were tested regarding their clean-up capacity by visual inspection, UV, and GC-MS measurements. The recovery rates of 98 analytes, including pesticides, active pharmaceutical ingredients, and emerging environmental pollutants with a broad range of physicochemical properties, were determined by GC-MS/MS. Experiments were performed with five different matrices, commonly used in food analysis (spinach, orange, avocado, salmon, and bovine liver). Overall, Z-Sep® was the best sorbent regarding clean-up capacity, reducing matrix components to the greatest extent with a median of 50% in UV and GC-MS measurements, while MWCNTs had the largest impact on analyte recovery, with 14 analytes showing recoveries below 70%. PSA showed the best performance overall.
Collapse
Affiliation(s)
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
| |
Collapse
|
29
|
Soni S, W. AJ, Kurian C, Chakraborty P, Paari KA. Food additives and contaminants in infant foods: a critical review of their health risk, trends and recent developments. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:63. [DOI: 10.1186/s43014-024-00238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe infant food market has expanded rapidly over the past two decades. However, the industry faces significant challenges, including concerns over the health effects of infant food additives and issues with food safety. However, new evidences suggest that certain food additives, such as those used to preserve and transport infant formula to keep it fresh for longer, should be avoided. Science into the effects of additives on human behavior makes up a sizable sector of the additives market. Problems such as hypernatremic dehydration, malnutrition, and obesity in infants are directly linked to faulty formula production. The Food and Drug Administration (FDA) has established the toxicity types and chemical tests necessary for evaluating the safety of food additives and GRAS (Generally Recognized as Safe) compounds. These tests are crucial in understanding the food safety aspects of food additives. The health effects of different types of food additives on infants are discussed in this context. The article gives an outline of various national and global agencies that provides recommendations and standards to gauge the quality of baby food. The immunological responses, allergic reaction pathways and other related health hazards among the infants and young children caused by the food additive are discussed in this article.
Graphical Abstract
Collapse
|
30
|
Cruz de Carvalho R, Cardoso J, Carreiras JA, Santos P, Palma C, Duarte B. Persistent Organic Pollutants in Tagus Estuary Salt Marshes: Patterns of Contamination and Plant Uptake. J Xenobiot 2024; 14:1165-1186. [PMID: 39311145 PMCID: PMC11417836 DOI: 10.3390/jox14030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The presence of anthropogenic compounds, including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), was studied in three salt marshes within the Tagus estuary, Portugal, along an anthropogenic pressure gradient. Results revealed differences in OCPs and PCBs among the marshes, with differing concentration levels. Specifically, one marsh, with surrounding agricultural activity, showed the highest OCP concentrations, while another, with a historical industrial past, exhibited elevated PCB levels. In contrast, a third marsh, part of a natural reserve, displayed comparatively lower concentrations of both substances. Sediment concentrations, likely influenced by agricultural practices, were found to be comparable to or higher than those observed in other Portuguese estuaries. The halophyte Spartina maritima was found to absorb OCPs, particularly in its aboveground tissues, suggesting bioaccumulation within the plant. Additionally, PCB levels appeared to be influenced by industrial history, with one marsh displaying notably higher concentrations. In conclusion, the persistence of organochlorine compounds in the salt marsh ecosystems notwithstanding the regulatory prohibitions implemented in the 1990s highlights the need for continuous monitoring and study of such sites and the necessity of remediation practices, which are imperative to mitigate ecological and health risks in these polluted salt marshes.
Collapse
Affiliation(s)
- Ricardo Cruz de Carvalho
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.C.); (J.A.C.); (B.D.)
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - João Cardoso
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.C.); (J.A.C.); (B.D.)
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal; (P.S.); (C.P.)
| | - João Albuquerque Carreiras
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.C.); (J.A.C.); (B.D.)
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paula Santos
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal; (P.S.); (C.P.)
| | - Carla Palma
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal; (P.S.); (C.P.)
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.C.); (J.A.C.); (B.D.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
31
|
Végh R, Csóka M, Sörös C, Sipos L. Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research. Compr Rev Food Sci Food Saf 2024; 23:e13404. [PMID: 39136999 DOI: 10.1111/1541-4337.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 08/15/2024]
Abstract
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
Collapse
Affiliation(s)
- Rita Végh
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mariann Csóka
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analysis Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Sipos
- Department of Postharvest, Institute of Food Science and Technology, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Institute of Economics, Centre of Economic and Regional Studies, Hungarian Research Network (HUN-REN), Budapest, Hungary
| |
Collapse
|
32
|
Mello LC, Costa AB, de Moraes ASB, Lima ADF, Santos RP, Silva VAD, Abessa DMS, Cavalcante RM. Assessment of cancer and dietary risks in commercially valuable marine organisms in coast of a region of future exploration (Equatorial South Atlantic). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121991. [PMID: 39094409 DOI: 10.1016/j.jenvman.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The Equatorial South Atlantic region, spanning over 1700 km, is currently undergoing extensive exploitation through various activities such as oil extraction, desalination plants, marine mineral explorations, and wind power for green hydrogen production. This undoubtedly also contributes to the exacerbation of pre-existing chronic environmental impacts. This study aims to investigate the concentrations of 60 substances, categorized as Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs) from various classes including: polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), as well as Pyrethroids (PPs), Triazines (TPs) and Organophosphates (OPPs) pesticides in consumable fish, shellfish, and crabs. The bivalve (Mytella charruana), crab (Ucides cordatus), and catfish (Sciades herzbergii) samples were collected in areas of ecological, environmental and economic importance. This data was used to estimate concentrations in the organisms, and to calculate cancer and human health risk. The most prevalent pollutant classes in the organisms were OCPs, followed by TPs and PPs. Shellfish and fish samples had more compounds indicating health risks, when compared to crabs. The substances causing cancer risks varied across organisms and study areas. The heightened cancer risks linked to specific compounds in various species highlight the urgent need to address persistent pollutants to prevent long-term health impacts on both humans and wildlife. Compounds such as PPs, TPs, and OPPs pose significant risks of neurotoxicity and endocrine disruption. This study underscores the interconnectedness of environmental and human health in coastal ecosystems, calling for continuous monitoring and adaptive management strategies to protect these fragile environments and the communities that rely on them.
Collapse
Affiliation(s)
- Luiza C Mello
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; UNESP, Universidade Estadual Júlio de Mesquita Filho, IB-CLP, São Vicente, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900, São Paulo, Brazil
| | - Ana B Costa
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil
| | - Alessandra S B de Moraes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil
| | - Antonia D F Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil
| | - Rafael P Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil
| | - Viviane A da Silva
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; National Institute of Science and Technology in Tropical Marine Environments (INCT-AmbTropic, Phase II - Oil Spill), Brazil
| | - Denis M S Abessa
- Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; UNESP, Universidade Estadual Júlio de Mesquita Filho, IB-CLP, São Vicente, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900, São Paulo, Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; National Institute of Science and Technology in Tropical Marine Environments (INCT-AmbTropic, Phase II - Oil Spill), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil.
| |
Collapse
|
33
|
Yang X, He Z, Jin L, Chen H, Li Q, Wu L, Huang Z, Wang M. Highly Efficient Electrospun Silver Decorated Graphene Oxide Nanocomposites on Poly(vinylidene fluoride) (PVDF@GO-Ag) Hybrid Membrane for Reduction of 4-Nitrophenol. Molecules 2024; 29:3930. [PMID: 39203008 PMCID: PMC11357165 DOI: 10.3390/molecules29163930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Graphene oxide-silver poly(vinylidene fluoride) membranes (PVDF@GO-Ag) were successfully synthesized by the electrospinning method, which exhibited a high catalytic activity using the hydrogenation of 4-nitrophenol (4-NP) as a model reaction in a batch reaction study. The hybrid membranes doped with 1 wt% GO and 2 wt% Ag (PVDF-1-2) exhibited the most desired performance for the catalytic reduction of 4-NP. Importantly, PVDF-1-2 exhibited excellent cycling stability in 10 catalytic cycle tests and was highly amenable to separation. This property effectively addresses the significant challenges associated with the practical application of nanocatalysts. Furthermore, density-functional theory (DFT) calculations have demonstrated that the GO-Ag nanocomposites exhibit the strongest adsorption capacity for 4-NP- when a specific ratio of GO and Ag is achieved, accompanied by the loading of Ag nanoclusters onto GO. Additionally, the study demonstrated that an increase in temperature significantly accelerated the reaction rate, in line with the van't Hoff rule. This study provides an effective and environmentally friendly solution for the treatment of 4-NP in wastewater.
Collapse
Affiliation(s)
- Xiaoben Yang
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| | - Zhen He
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| | - Lei Jin
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| | - Huiyang Chen
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| | - Qianglin Li
- Department of Material and Environmental Engineering, Chengdu Technological University, Chengdu 611730, China
| | - Ling Wu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Zhenghong Huang
- Key Laboratory of Advanced Materials Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
| | - Mingxi Wang
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| |
Collapse
|
34
|
Díaz-González BV, Ramos-Luzardo Á, Henríquez-Hernández LA, Serra-Majem L, Bautista-Castaño I, Acosta-Dacal A, Luzardo OP, Hernández-García E, Cornejo-Torre J, Hernández-Hernández JR, Fernández-Valerón P. Effect of bariatric surgery in the body burden of persistent and non-persistent pollutants: longitudinal study in a cohort of morbidly obese patients. Front Endocrinol (Lausanne) 2024; 15:1412261. [PMID: 39104810 PMCID: PMC11298429 DOI: 10.3389/fendo.2024.1412261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Obesity is a pathological state that involves the dysregulation of different metabolic pathways and adipose tissue cells, constituting a risk factor for the development of other diseases. Bariatric surgery is the most effective treatment. The study of the behavior of pollutants in situations of extreme weight loss can provide biomonitoring information and tools to manage diseases of environmental etiology. Aim To determine the prevalence of serum persistent and non-persistent pollutants in obese patients subjected to bariatric surgery and analyze the impact of sociodemographic variables on these changes. Methods GC-MS/MS and UHPLC-MS/MS were utilized to determine the detection rates and concentrations of 353 compounds, including persistent organic pollutants (POPs), pesticides, pharmaceuticals, and rodenticide, in serum samples of 59 obese patients before and after undergoing bariatric surgery. Results Detection rates of p,p'-DDE, HCB, β-HCH, naphthalene, phenanthrene and PCB congeners 138, 153 and 180 significantly increased due to surgery-induced weight loss. Serum levels of p,p'-DDE, PCB-138, PCB-153 and PCB-180 also increased after surgery. Correlations between naphthalene levels, weight loss, variation of total lipids and time after surgery were found. Additionally, correlations were observed between concentrations of PCB-138 and weight loss, and between phenanthrene levels and reduction of total lipids. No statistically significant differences were observed for other groups of contaminants, pharmaceuticals and other chemicals included in the quantification methods. Conclusions Increment of POPs was observed after bariatric surgery. Serum concentrations of POPs after surgery were influenced by adiposity-related variables. Although biomonitoring studies show a decreasing tendency of exposure, rapid weight loss leads to an increase of circulating POPs. Further research on the interplay between adipose tissue, POPs and peripheral organs is required.
Collapse
Affiliation(s)
- B. Vanessa Díaz-González
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Álvaro Ramos-Luzardo
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Inmaculada Bautista-Castaño
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Acosta-Dacal
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Octavio P. Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth Hernández-García
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Judith Cornejo-Torre
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Ramón Hernández-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Pilar Fernández-Valerón
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
35
|
Chaos Z, Fernández JA, Balseiro-Romero M, Celeiro M, García-Jares C, Méndez A, Pérez-Alonso P, Estébanez B, Kaal J, Nierop KGJ, Aboal JR, Monterroso C. What potential do mosses have as biomonitors of POPs? A comparative study of hexachlorocyclohexane sorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173021. [PMID: 38740203 DOI: 10.1016/j.scitotenv.2024.173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Persistent organic pollutants (POPs) pose a significant global threat to human health and the environment, and require continuous monitoring due to their ability to migrate long distances. Active biomonitoring using cloned mosses is an inexpensive but underexplored method to assess POPs, mainly due to the poor understanding of the loading mechanisms of these pollutants in mosses. In this work, Fontinalis antipyretica (aquatic moss) and Sphagnum palustre (terrestrial moss) were evaluated as potential biomonitors of hexachlorocyclohexanes (HCHs: α-, β-, γ-, δ-HCH), crucial POPs. Moss clones, grown in photobioreactors and subsequently oven-dried, were used. Their lipid composition and distribution were characterized through molecular and histochemical studies. Adsorption experiments were carried out in the aqueous phase using the repeated additions method and in the gas phase using an active air sampling technique based on solid-phase extraction, a pioneering approach in moss research. F. antipyretica exhibited greater lipid content in the walls of most cells and higher adsorption capacity for all HCH isomers in both gaseous and liquid environments. These findings highlight the need for further investigation of POP loading mechanisms in mosses and open the door to explore other species based on their lipid content.
Collapse
Affiliation(s)
- Z Chaos
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - J A Fernández
- CRETUS, Ecology Unit, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Balseiro-Romero
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Celeiro
- CRETUS, Dept. Química Analítica, Nutrición e Bromatoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - C García-Jares
- CRETUS, Dept. Química Analítica, Nutrición e Bromatoloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Méndez
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - P Pérez-Alonso
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - B Estébanez
- Dept. Biología, Unidad de Botánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - J Kaal
- Pyrolyscience, 15707 Santiago de Compostela, Spain
| | - K G J Nierop
- Geolab, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, the Netherlands
| | - J R Aboal
- CRETUS, Ecology Unit, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - C Monterroso
- CRETUS, Dept. Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
36
|
Nomiyama K, Sato R, Sato F, Eguchi A. Accumulation of persistent organic pollutants in the kidneys of pet cats (Felis silvestris catus) and the potential implications for their health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173212. [PMID: 38759481 DOI: 10.1016/j.scitotenv.2024.173212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Persistent organic pollutants (POPs), such as polychlorinated diphenyls (PCBs) and brominated diphenyl ethers (PBDEs), are ubiquitous in the pet cat's living environment and are ingested through dietary intake and environmental exposure such as house dust. Cats are known to be susceptible to chronic kidney disease (CKD) and exposure to POPs may be associated with CKD. However, no studies have been conducted on the renal accumulation and health effects of POPs in cats. The objective of this study was to elucidate the accumulation of PCBs, PBDEs, and organochlorine pesticides (OCPs) in the kidneys of domestic cats and discuss their potential impact on feline health. We report here that cats specifically accumulate POPs in their kidneys. Tissue samples were collected from the kidneys, livers, and muscles of cats and the concentrations of POPs in these tissues were analyzed in this study. The results showed that these compounds accumulated significantly higher in the kidney compared to other tissues. In addition, the ability to accumulate in the kidney was higher in cats than in other animals, suggesting that cats have a unique pattern of POPs accumulation in their kidneys, which is thought to occur because cats store a significant number of lipid droplets in the proximal tubules of the kidneys. This unique feature suggests that lipophilic POPs may accumulate in these lipid droplets during the excretory process. Accumulation of certain POPs in the kidneys causes necrosis and sloughing of renal tubular epithelial cells, which may be associated with CKD, a common disease in cats. This study provides valuable insight into understanding the renal accumulation and risk of POPs in cats and provides essential knowledge for developing strategies to protect the health and welfare of domestic cats.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Rina Sato
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Fuka Sato
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba-city 263-8522, Japan
| |
Collapse
|
37
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
38
|
Al-Saidi HM, Khan S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit Rev Anal Chem 2024; 54:93-109. [PMID: 35417281 DOI: 10.1080/10408347.2022.2063017] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thioureas and their derivatives are organosulfur compounds having excellent biological and non-biological applications. These compounds contain S- and N-, which are nucleophilic and allow for establishing inter-and intramolecular hydrogen bonding. These characteristics make thiourea moiety a very important chemosensor to detect various environmental pollutants. This article covers a broad range of thioureas and their derivatives that are used for highly sensitive, selective, and simple fluorimetric (turn-off and turn-on), and colorimetric chemosensors for the detection and determination of different types of anions, such as CN-, AcO-, F-, ClO- and citrate ions, etc., and neutral analytes such as ATP, DCP, and Amlodipine, etc., in biological, environmental, and agriculture samples. Further, the sensing performances of thioureas-based chemosensors have been compared and discussed, which could help the readers for the future design of organic fluorescent and colorimetric sensors to detect anions and neutral analytes. We hope this study will support the new thoughts to design highly efficient, selective, and sensitive chemosensors to detect different analytes in biological, environmental, and agricultural samples.
Collapse
Affiliation(s)
- Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
39
|
Liu D, Chen T, Gong Y, Chen X, Zhang W, Xiao R, Yang Y, Zhang T. Deciphering the key factors affecting pesticide residue risk in vegetable ecosystem. ENVIRONMENTAL RESEARCH 2024; 258:119452. [PMID: 38909947 DOI: 10.1016/j.envres.2024.119452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Soil contamination, particularly from pesticide residues, presents a significant challenge to the sustainable development of agricultural ecosystems. Identifying the key factors influencing soil pesticide residue risk and implementing effective measures to mitigate their risks at the source are essential. Here, we collected soil samples and conducted a comprehensive survey among local farmers in the Three Gorges Reserve Area, a major agricultural production region in Southwest China. Subsequently, employing a dual analytical approach combining structural equation modeling (SEM) and random forest modeling (RFM), we examined the effects of various factors on pesticide residue accumulation in vegetable ecosystems. Our SEM analysis revealed that soil characteristics (path coefficient 0.85) and cultivation factor (path coefficient 0.84) had the most significant effect on pesticide residue risk, while the farmer factors indirectly influenced pesticide residues by impacting both cultivation factors and soil characteristics. Further exploration using RFM identified the three most influential factors contributing to pesticide residue risk as cation exchange capacity (CEC) (account for 18.84%), cultivation area (account for 14.12%), and clay content (account for 13.01%). Based on these findings, we carried out experimental trials utilizing Integrated Pest Management (IPM) technology, resulting in a significant reduction in soil pesticide residues and notable improvements in crop yields. Therefore, it is recommended that governmental efforts should prioritize enhanced training for vegetable farmers, promotion of eco-friendly plant protection methods, and regulation of agricultural environments to ensure sustainable development.
Collapse
Affiliation(s)
- Daiwei Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Tongtong Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yahui Gong
- College of Economics and Management, Southwest University, Chongqing, 400715, China
| | - Xuanjing Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China; College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Wei Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Ran Xiao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yuheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China; College of Plant Protection, Southwest University, Chongqing, 400715, China.
| | - Tong Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
40
|
Ruan Z, Chen K, Cao W, Meng L, Yang B, Xu M, Xing Y, Li P, Freilich S, Chen C, Gao Y, Jiang J, Xu X. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat Commun 2024; 15:4694. [PMID: 38824157 PMCID: PMC11144243 DOI: 10.1038/s41467-024-49098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.
Collapse
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Weimiao Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Lei Meng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Bingang Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Chen Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
41
|
Cseresznye A, Hardy EM, Ait Bamai Y, Cleys P, Poma G, Malarvannan G, Scheepers PTJ, Viegas S, Martins C, Porras SP, Santonen T, Godderis L, Verdonck J, Poels K, João Silva M, Louro H, Martinsone I, Akūlova L, van Dael M, van Nieuwenhuyse A, Mahiout S, Duca RC, Covaci A. HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in Europe. ENVIRONMENTAL RESEARCH 2024; 250:118537. [PMID: 38408627 DOI: 10.1016/j.envres.2024.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
Collapse
Affiliation(s)
- Adam Cseresznye
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie M Hardy
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg
| | - Yu Ait Bamai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Paulien Cleys
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Susana Viegas
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Martins
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jelle Verdonck
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Poels
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maria João Silva
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Henriqueta Louro
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Inese Martinsone
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Lāsma Akūlova
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Maurice van Dael
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - An van Nieuwenhuyse
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Selma Mahiout
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Radu Corneliu Duca
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
42
|
Farajollahi A, Poursattar Marjani A. Preparation of MWCNT/CoMn 2O 4 nanocomposite for effectual degradation of picric acid via peroxymonosulfate activation. Sci Rep 2024; 14:11475. [PMID: 38769448 PMCID: PMC11636912 DOI: 10.1038/s41598-024-62351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
In recent years, using nanomaterials based on multi-wall carbon nanotubes (MWCNT) through the activation of peroxymonosulfate (PMS) has attracted more attention to the degradation of organic pollutants. This research presented a new route for the synthesis of MWCNT/CoMn2O4 nanocomposite for the degradation of picric acid using advanced oxidation processes (AOPs). Firstly, CoMn2O4 nanoparticles were prepared and then loaded on MWCNT using ultrasonic waves. The results of various analyzes confirmed the successful loading of nanoparticles on carbon nanotubes. As the degradation process proceeds through oxidation processes, the high electronic conductivity of MWCNT and the active sites of Mn and Co in the nanocomposite play an essential role in activating PMS to generate reactive oxygen species (ROS). An investigation of the reaction mechanism in different conditions showed that the highest speed of picric acid decomposition in the presence of nanocomposite (98%) was in 47 min. However, the scavenger test showed that HO· and SO4·- radicals are more important in the degradation process. Meanwhile, the results showed that removing picric acid using MWCNT/CoMn2O4 was more effective than CoMn2O4 alone and confirmed the interaction effect of MWCNT nanotubes with AB2O4 nanocatalyst.
Collapse
Affiliation(s)
- Ayda Farajollahi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | |
Collapse
|
43
|
Qiao F, Wang J, Chen Z, Zheng S, Kwaw AK, Zhao Y, Huang J. Experimental research on the transport-transformation of organic contaminants under the influence of multi-field coupling at a site scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134222. [PMID: 38583199 DOI: 10.1016/j.jhazmat.2024.134222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Organic-contaminated shallow aquifers have become a global concern of groundwater contamination, yet little is known about the coupled effects of hydrodynamic-thermal-chemical-microbial (HTCM) multi-field on organic contaminant transport and transformation over a short time in aquifers. Therefore, this study proposed a quick and efficient field experimental method for the transport-transformation of contaminants under multi-field coupling to explore the relationship between organic contaminants (total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbons (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX) and phthalates acid esters (PAEs)) and multi-field factors. The results showed that hydrodynamics (affecting pH, p < 0.001) and temperature (affecting dissolved oxygen, pH and HCO3-, p < 0.05) mainly affected the organic contaminants indirectly by influencing the hydrochemistry to regulate redox conditions in the aquifer. The main degradation reactions of the petroleum hydrocarbons (TPH, PAHs and BTEX) and PAEs in the aquifer were sulfate reduction and nitrate reduction, respectively. Furthermore, the organic contamination was directly influenced by microbial communities, whose spatial patterns were shaped by the combined effects of the spatial pattern of hydrochemistry (induced by the organic contamination pressure) and other multi-field factors. Overall, our findings imply that the spatiotemporal patterns of organic contaminants are synergistically regulated by HTCM, with distinct mechanisms for petroleum hydrocarbons and PAEs.
Collapse
Affiliation(s)
- Fei Qiao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China.
| | - Zhou Chen
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Shiyu Zheng
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China.
| | - Albert Kwame Kwaw
- Department of Geological Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yongsheng Zhao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Jintao Huang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| |
Collapse
|
44
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
45
|
Derrar S, Lo Turco V, Albergamo A, Sgrò B, Ayad MA, Litrenta F, Saim MS, Potortì AG, Aggad H, Rando R, Di Bella G. Study of Physicochemical Quality and Organic Contamination in Algerian Honey. Foods 2024; 13:1413. [PMID: 38731784 PMCID: PMC11083514 DOI: 10.3390/foods13091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Honey is a natural product extensively consumed in the world for its nutritional and healthy properties. However, residues of pesticides and environmental contaminants can compromise its quality. For this reason, the physicochemical parameters, and the organic contamination of monofloral and multifloral honey from three regions of Algeria (Tiaret, Laghouat, and Tindouf) were monitored to evaluate the quality of the honey and its safety for consumers. In general, the results obtained from the physicochemical analyses were in line with the EU standards. In terms of contamination, pesticides authorised and used in Algerian agriculture (metalaxyl-M and cyromazine), as well as a banned pesticide (carbaryl), were found in almost all the samples. However, only the concentration of cyromazine was higher than the relative EU maximum residue levels. PCB 180, PCB 189, anthracene, fluorene, and phenanthrene were mainly detected. All the honey shows traces of DiBP, DBP, DEHP, and DEHT, but no traces of bisphenols were found. Moreover, according to the dietary exposure assessment, a small amount of Algerian honey can be safely consumed. Overall, the data from this study should motivate the Algerian government to enhance their monitoring activities in beekeeping and to find solutions for implementing more sustainable agricultural practices harmonising with international legislation.
Collapse
Affiliation(s)
- Sofiane Derrar
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Benedetta Sgrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Mohamed Amine Ayad
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Federica Litrenta
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Mohamed Said Saim
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Hebib Aggad
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Rossana Rando
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| |
Collapse
|
46
|
Guo W, Ren H, Jin Y, Chai Z, Liu B. The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review. CHEMOSPHERE 2024; 355:141852. [PMID: 38556179 DOI: 10.1016/j.chemosphere.2024.141852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
With industrialisation and the rapidly growing agricultural demand, many organic compounds have been leaked into the environment, causing serious damage to the biosphere. Persistent organic pollutants (POPs) are a type of toxic chemicals that are resistant to degradation through normal chemical, biological or photolytic approaches. With their stable chemical structures, POPs can be accumulated in the environment, and transported through wind and water, causing global environmental issues. Many researches have been conducted to remediate POPs contamination using various kinds of biological methods, and significant results have been seen. Microalgae-bacteria consortium is a newly developed concept for biological technology in contamination treatment, with the synergetic effects between microalgae and bacteria, their potential for pollutants degradation can be further released. In this review, two types of POPs (polychlorinated biphenyls and polycyclic aromatic hydrocarbons) are selected as the targeted pollutants to give a systematic analysis of the biodegradation through microalgae and bacteria, including the species selection, the identification of dominant enzymes, as well as the real application performance of the consortia. In the end, some outlooks and suggestions are given to further guide the development of applying microalgae-bacteria consortia in remediating POPs contamination. In general, the coculturing of microalgae and bacteria is a novel and efficient way to fulfil the advanced treatment of POPs in soil or liquid phase, and both monooxygenase and dioxygenase belonging to oxygenase play a vital role in the biodegradation of PCBs and PAHs. This review provides a general guide in the future investigation of biological treatment of POPs.
Collapse
Affiliation(s)
- Wenbo Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongyu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yinzhu Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zetang Chai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
47
|
Costopoulou D, Kedikoglou K, Vafeiadi M, Roumeliotaki T, Margetaki K, Stephanou EG, Myridakis A, Leondiadis L. Systematic investigation of organochlorine pesticides and polychlorinated biphenyls blood levels in Greek children from the Rhea birth cohort suggests historical exposure to DDT and through diet to DDE. ENVIRONMENT INTERNATIONAL 2024; 187:108686. [PMID: 38669722 DOI: 10.1016/j.envint.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The blood levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been thoroughly investigated in Greek children from the Rhea birth cohort study. This investigation aimed to assess exposure levels, explore their possible relationship with children's age and sex, and indicate potential sources of exposure. Exposure patterns and common sources of PCBs and OCPs were analyzed using bivariate and multivariate statistics. A total of 947 blood samples from study participants were analyzed for OCP and PCB exposure, with 375 samples collected at 4 years old, 239 at 6.5 years old, and 333 at 11 years old. Elevated levels of DDE were observed in 6.5-year-old children compared to corresponding levels in other European countries. Higher levels of DDE were found in 4-year-old children, with the lowest concentrations in the 11-year-old group. The DDT/DDE ratio was consistently less than 1 among all the examined subjects. These results indicate exposure to DDT and DDE both in utero and through breastfeeding and dietary intake. For the entire cohort population, the highest concentration was determined for PCB 28, followed by PCBs 138, 153, and 180. The sum of the six indicator PCBs implied low exposure levels for the majority of the cohort population. Spearman correlations revealed strong associations between PCBs and OCPs, while principal component analysis identified two different groupings of exposure. DDE exhibited a correlation with a series of PCBs (153, 156, 163, 180), indicating a combined OCP-PCB source, and an anticorrelation with others (52, 28, 101), implying a separate and competing source.
Collapse
Affiliation(s)
- Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece.
| | - Kleopatra Kedikoglou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Euripides G Stephanou
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Antonis Myridakis
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, UB8 3PH, United Kingdom
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| |
Collapse
|
48
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
49
|
Faly L, Brygadyrenko V, Paulauskas A. Repellent and Attractant Activities of Organic Compounds on Female and Male Philonthus decorus (Coleoptera, Staphylinidae). BIOLOGY 2024; 13:294. [PMID: 38785775 PMCID: PMC11117517 DOI: 10.3390/biology13050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
The use of organic compounds in different spheres of human activity is accompanied by their influx to and accumulation in the environment. The negative impact of those compounds can be one of the reasons for a decline in populations and biodiversity of aboveground invertebrates. Chemical compounds can potentially cause a variety of effects (attractant or repellent) on insects, including species of the Staphylinidae family. In a laboratory experiment, we identified repellent and attractant influence of 40 organic compounds and mixtures of compounds (acids, alcohols, ketones, phenols, aldehydes, aromatic carbohydrates solvents, and vehicle fuels) on Philonthus decorus Gravenhorst, 1802. The ambulatory responses of the males and females to the same chemical compounds most often varied. A strong repellent activity against both sexes of Ph. decorus was caused by oleic acid, while hexane repelled the males. Acetic acid, 1-butanol, and ammonia solution were found to be strongly repellent against females. A moderate (average) repellent activity towards male Ph. decorus was displayed by organic solvents and fuels, some alcohols (isopropanol, isoamyl alcohol, methanol, ethanol), acids (acetic, formic acid), aromatic carbohydrates (toluene, xylene), and formaldehyde. Female Ph. decorus in general were less sensitive to the odors. The list of repellents with moderate activity against the females was much shorter: solvent 646, white spirit, toluene, isopropanol, isoamyl alcohol, citric and oxalic acids, and glycerol. Moderate attractant activity for Ph. decorus was exhibited by some amino acids, alcohols, and fuel mixes: glycine and L-cysteine (for the males), and phenylalanine, methanol, and diesel fuel (for the females). The rest of the 40 chemical compounds we studied caused no ambulatory responses in Ph. decorus. The difficulties we encountered in the interpretation of the results suggest a need for further experimental studies that would expand the knowledge of the chemoecology of insects.
Collapse
Affiliation(s)
- Liudmyla Faly
- Research Institute of Natural and Technological Sciences, Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, 44248 Kaunas, Lithuania
| | - Viktor Brygadyrenko
- Department of Zoology and Ecology, Faculty of Biology and Ecology, Oles Honchar Dnipro National University, 49010 Dnipro, Ukraine;
- Department of Parasitology, Veterinary and Sanitary Expertise, Faculty of Veterinary Medicine, Dnipro State Agrarian and Economic University, 49600 Dnipro, Ukraine
| | - Algimantas Paulauskas
- Research Institute of Natural and Technological Sciences, Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, 44248 Kaunas, Lithuania
| |
Collapse
|
50
|
Mao X, Liu Y, Wei Y, Li X, Liu Y, Su G, Wang X, Jia J, Yan B. Threats of per- and poly-fluoroalkyl pollutants to susceptible populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171188. [PMID: 38395163 DOI: 10.1016/j.scitotenv.2024.171188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Environmental exposure to per- and poly-fluoroalkyl substances (PFAS) has raised significant global health concerns due to potential hazards in healthy adults. However, the impact of PFAS on susceptible populations, including pregnant individuals, newborns, the older people, and those with underlying health conditions, has been overlooked. These susceptible groups often have physiological changes that make them less resilient to the same exposures. Consequently, there is an urgent need for a comprehensive understanding of the health risks posed by PFAS exposure to these populations. In this review, we delve into the potential health risks of PFAS exposure in these susceptible populations. Equally important, we also examine and discuss the molecular mechanisms that underlie this susceptibility. These mechanisms include the induction of oxidative stress, disruption of the immune system, impairment of cellular metabolism, and alterations in gut microbiota, all of which contribute to the enhanced toxicity of PFAS in susceptible populations. Finally, we address the primary research challenges and unresolved issues that require further investigation. This discussion aims to foster research for a better understanding of how PFAS affect susceptible populations and to pave the way for strategies to minimize their adverse effects.
Collapse
Affiliation(s)
- Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yujiao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yongyi Wei
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaodi Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|