1
|
Tomaszewska A, Gonciarz W, Rechcinski T, Chmiela M, Kurdowska AK, Krupa A. Helicobacter pylori components increase the severity of metabolic syndrome and its hepatic manifestations induced by a high fat diet. Sci Rep 2024; 14:5764. [PMID: 38459219 PMCID: PMC10923818 DOI: 10.1038/s41598-024-56308-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
The metabolic syndrome, often accompanied by hepatic manifestations, is a high-risk factor for developing cardiovascular disease. Patients with metabolic dysfunction associated with steatohepatic disease (MASDL) are at significant risk of developing coronary artery disease. Atherosclerosis is a systemic inflammatory disorder in which several factors, including dietary or infectious factors, can cause an inflammatory response. Helicobacter pylori (HP) bacteria have been implicated in the progression of proatherogenic vascular endothelial lesions, moreover, our previous study in an experimental in vivo model of Cavia porcellus showed that HP components and high-fat substances acted synergistically in promoting vascular endothelial inflammation, leading to an early onset of a proatherogenic environment. In the present study, our goal was to determine the contribution of HP components to the development of hepatic manifestations of metabolic syndrome in an experimental model. Our results showed that HP infection in animals exposed to a high-fat diet increased oxidative stress and lipid peroxidation, followed by endothelial lipid deposition, impaired endothelial apoptosis, cell lysis, and increased vascular stiffness. Finally, histopathological analysis of liver tissue showed signs of MASLD development in HP-infected animals fed a high-fat diet.
Collapse
Affiliation(s)
- Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Lodz, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Rechcinski
- 1st Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Anna K Kurdowska
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Yang XF, Shang DJ. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis. Cell Biol Int 2023; 47:1469-1487. [PMID: 37369936 DOI: 10.1002/cbin.12065] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease events are the result of functional and structural abnormalities in the arteries and heart. Atherosclerosis is the main cause and pathological basis of cardiovascular diseases. Atherosclerosis is a multifactorial disease associated with dyslipidemia, inflammation, and oxidative stress, among which dyslipidemia and chronic inflammation occur in all processes. Under the influence of lipoproteins, the arterial intima causes inflammation, necrosis, fibrosis, and calcification, leading to plaque formation in specific parts of the artery, which further develops into plaque rupture and secondary thrombosis. Foam cell formation from macrophages is an early event in the development of atherosclerosis. Lipid uptake causes a vascular inflammatory response, and persistent inflammatory infiltration in the lesion area further promotes the development of the disease. Inhibition of macrophage differentiation into foam cell and reduction of the level of proinflammatory factors in macrophages can effectively alleviate the occurrence and development of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that plays an important antiatherosclerotic role by regulating triglyceride metabolism, lipid uptake, cholesterol efflux, macrophage polarity, and inhibiting inflammatory signaling pathways. In addition, PPARγ shifts its binding to ligands and co-activators or co-repressors of transcription of target genes through posttranslational modification, thereby affecting the regulation of its downstream target genes. Many ligand agonists have also been developed targeting PPARγ. In this review, we summarized the role of PPARγ in lipid metabolism and inflammation in development of atherosclerosis, the posttranslational regulatory mechanism of PPARγ, and further discusses the value of PPARγ as an antiatherosclerosis target.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
3
|
Wen Y, Wang Y, Zhao C, Zhao B, Wang J. The Pharmacological Efficacy of Baicalin in Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24119317. [PMID: 37298268 DOI: 10.3390/ijms24119317] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Baicalin is one of the most abundant flavonoids found in the dried roots of Scutellaria baicalensis Georgi (SBG) belonging to the genus Scutellaria. While baicalin is demonstrated to have anti-inflammatory, antiviral, antitumor, antibacterial, anticonvulsant, antioxidant, hepatoprotective, and neuroprotective effects, its low hydrophilicity and lipophilicity limit the bioavailability and pharmacological functions. Therefore, an in-depth study of baicalin's bioavailability and pharmacokinetics contributes to laying the theoretical foundation for applied research in disease treatment. In this view, the physicochemical properties and anti-inflammatory activity of baicalin are summarized in terms of bioavailability, drug interaction, and inflammatory conditions.
Collapse
Affiliation(s)
- Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
4
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
5
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, Yang G, Zhang Z. The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med 2023; 10:1088575. [PMID: 37063954 PMCID: PMC10090687 DOI: 10.3389/fcvm.2023.1088575] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic proteins and organelles, which realizes the metabolic needs of cells and the renewal of organelles. Autophagy-related genes (ATGs) are the main molecular mechanisms controlling autophagy, and their functions can coordinate the whole autophagic process. Autophagy can also play a role in cardiovascular disease through several key signaling pathways, including PI3K/Akt/mTOR, IGF/EGF, AMPK/mTOR, MAPKs, p53, Nrf2/p62, Wnt/β-catenin and NF-κB pathways. In this paper, we reviewed the signaling pathway of cross-interference between autophagy and cardiovascular diseases, and analyzed the development status of novel cardiovascular disease treatment by targeting the core molecular mechanism of autophagy as well as the critical signaling pathway. Induction or inhibition of autophagy through molecular mechanisms and signaling pathways can provide therapeutic benefits for patients. Meanwhile, we hope to provide a unique insight into cardiovascular treatment strategies by understanding the molecular mechanism and signaling pathway of crosstalk between autophagy and cardiovascular diseases.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Yang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linlin Wang
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Longfei Feng
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng Wang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jin Xu
- Department of First Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Wang
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Haixiang Su
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - GuoWei Yang
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Yu P, Deng S, Yuan X, Pan J, Xu J. Extracellular Vesicles and Vascular Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:105-117. [PMID: 37603275 DOI: 10.1007/978-981-99-1443-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Vascular inflammation is the most common pathological feature in the pathogenesis of human disease. It is a complex immune process involved with many different types of cells including platelet, monocytes, macrophages, endothelial cells, and others. It is widely accepted that both innate and adaptive immune responses are important for the initiation and progression of vascular inflammation. The cell-cell interaction constitutes an important aspect of those immune responses in the vascular inflammation. Extracellular vesicles (EVs) are nanometer-sized double-layer lipid membrane vesicles released from most types of cells. They have been proved to play critical roles in intercellular communication in the occurrence and development of multisystem diseases. With the advancement of basal medical science, the biological roles of EVs in vascular inflammation have been clearer today. In this chapter, we will summarize the advance progress of extracellular vesicles in regulating vascular inflammation and its potential application in the clinical.
Collapse
Affiliation(s)
- Pujiao Yu
- Department of Cardiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China
| | - Shengqiong Deng
- Department of Cardiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China
| | - Xiaofei Yuan
- Department of Cardiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China
| | - Jiangqi Pan
- Department of Cardiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China
| | - Jiahong Xu
- Department of Cardiology, Gongli Hospital, School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Huang ZQ, Luo W, Li WX, Chen P, Wang Z, Chen RJ, Wang Y, Huang WJ, Liang G. Costunolide alleviates atherosclerosis in high-fat diet-fed ApoE -/- mice through covalently binding to IKKβ and inhibiting NF-κB-mediated inflammation. Acta Pharmacol Sin 2023; 44:58-70. [PMID: 35710877 PMCID: PMC9813247 DOI: 10.1038/s41401-022-00928-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 01/18/2023]
Abstract
Costunolide (CTD) is a sesquiterpene lactone isolated from costus root and exhibits various biological activities including anti-inflammation. Since atherosclerosis is a chronic inflammatory disease, we herein investigated the anti-atherosclerotic effects of CTD and the underlying mechanism. Atherosclerosis was induced in ApoE-/- mice by feeding them with a high-fat diet (HFD) for 8 weeks, followed by administration of CTD (10, 20 mg ·kg-1·d-1, i.g.) for 8 weeks. We showed that CTD administration dose-dependently alleviated atherosclerosis in HFD-fed ApoE-/- mice. Furthermore, we found that CTD dose-dependently reduced inflammatory responses in aortas of the mice, as CTD prevented infiltration of inflammatory cells in aortas and attenuated oxLDL uptake in macrophages, leading to reduced expression of pro-inflammatory and pro-fibrotic molecules in aortas. Similar results were observed in oxLDL-stimulated mouse primary peritoneal macrophages (MPMs) in vitro. We showed that pretreatment with CTD (2.5, 5. 10 μM) restrained oxLDL-induced inflammatory responses in MPMs by blocking pro-inflammatory NF-κB/p65 signaling pathway. We further demonstrated that CTD inactivated NF-κB via covalent binding to cysteine 179 on IKKβ, a canonical upstream regulator of NF-κB, reducing its phosphorylation and leading to conformational change in the active loop of IKKβ. Our results discover IKKβ as the target of CTD for its anti-inflammatory activity and elucidate a molecular mechanism underlying the anti-atherosclerosis effect of CTD. CTD is a potentially therapeutic candidate for retarding inflammatory atherosclerotic diseases.
Collapse
Affiliation(s)
- Zhu-Qi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Xin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhe Wang
- Department of Pharmacy, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rui-Jie Chen
- Department of Pharmacy, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Jian Huang
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Gonciarz W, Lechowicz Ł, Urbaniak M, Rechciński T, Chałubiński M, Broncel M, Kaca W, Chmiela M. Searching for serum biomarkers linking coronary heart disease and Helicobacter pylori infection using infrared spectroscopy and artificial neural networks. Sci Rep 2022; 12:18284. [PMID: 36316430 PMCID: PMC9622908 DOI: 10.1038/s41598-022-23191-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
Abstract
Helicobacter pylori (Hp) Gram-negative bacteria cause gastritis or gastric ulcers. They may be involved in the development of systemic diseases i.e. coronary heart disease (CHD). Both Hp infection and CHD are related to inflammation accompanied by C-reactive protein (CRP), tumor necrosis factor alfa (TNF-α) and homocysteine. Low density lipoprotein (LDL) and triglicerides are a classic risk factors of CHD. Infrared spectroscopy has been introduced for monitoring chronic infections or endogenous disorders using specific absorption bands for biocomponents typed as diagnostic markers. In this study we selected specific motives of infrared radiation (IR) spectra for the sera from CHD patients infected with Hp. In total 141 sera were used: 90 from patients with CHD, all Hp positive, and 51 from healthy donors, 32 Hp negative and 21 Hp positive. Hp status was evaluated by anti-Hp IgG antibodies and/or 13C urea breath testing. IR spectra were measured using FT-IR/FT-NIR Spectrum 400 spectrometer (PerkinElmer) chemometrically analyzed using artificial neural networks and they showed differences in absorption bands corresponding to triglicerides, CRP, homocysteine, LDL and TNF-α, and selected component groups between CHD patients infected with Hp vs healthy uninfected donors (96.15% accuracy). Triglicerides and CRP were the best biomarkers linking Hp infection with CHD.
Collapse
Affiliation(s)
- Weronika Gonciarz
- grid.10789.370000 0000 9730 2769Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland ,grid.411821.f0000 0001 2292 9126Department of Synthesis and Structural Research, Faculty of Natural Sciences, Jan Kochanowski University, Świętokrzyska 11, 25-406 Kielce, Poland
| | - Łukasz Lechowicz
- grid.411821.f0000 0001 2292 9126Departament of Microbiology, Faculty of Natural Sciences, Jan Kochanowski University, Świętokrzyska 11, 25-406 Kielce, Poland
| | - Mariusz Urbaniak
- grid.411821.f0000 0001 2292 9126Department of Synthesis and Structural Research, Faculty of Natural Sciences, Jan Kochanowski University, Świętokrzyska 11, 25-406 Kielce, Poland
| | - Tomasz Rechciński
- grid.8267.b0000 0001 2165 3025Clinic and Department of Cardiology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Maciej Chałubiński
- grid.8267.b0000 0001 2165 3025Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 91-347 Lodz, Poland
| | - Marlena Broncel
- grid.8267.b0000 0001 2165 3025Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Wiesław Kaca
- grid.411821.f0000 0001 2292 9126Departament of Microbiology, Faculty of Natural Sciences, Jan Kochanowski University, Świętokrzyska 11, 25-406 Kielce, Poland
| | - Magdalena Chmiela
- grid.10789.370000 0000 9730 2769Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
9
|
Vidović T, Ewald CY. Longevity-Promoting Pathways and Transcription Factors Respond to and Control Extracellular Matrix Dynamics During Aging and Disease. FRONTIERS IN AGING 2022; 3:935220. [PMID: 35874275 PMCID: PMC9301135 DOI: 10.3389/fragi.2022.935220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 05/28/2023]
Abstract
Aging is one of the largest risk factors for cancer, type 2 diabetes, osteoarthritis, cardiovascular diseases, and other age-related pathologies. Here, we give a detailed description of the interplay of chronic age-related pathologies with the remodeling of the extracellular matrix during disease development and progression. Longevity-promoting signaling pathways slow or prevent age-related diseases. In particular, we focus on the mTOR signaling pathway, sirtuins, and canonical longevity-promoting transcription factors, such as FOXO, NF-κB, and Nrf2. We extend our analysis using chromatin immunoprecipitation (ChIP) sequencing and transcriptomic data and report that many established and emerging longevity-promoting transcription factors, such as CREB1, FOXO1,3, GATA1,2,3,4, HIF1A, JUN, KLF4, MYC, NFE2L2/Nrf2, RELA/NF-κB, REST, STAT3,5A, and TP53/p53, directly regulate many extracellular matrix genes and remodelers. We propose that modulation of these pathways increases lifespan and protects from age-related diseases in part due to their effects on extracellular matrix remodeling. Therefore, to successfully treat age-related diseases, it is necessary to better understand the connection between extracellular matrix components and longevity pathways.
Collapse
Affiliation(s)
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Gajewski AŁ, Gawrysiak M, Krupa A, Rechciński T, Chałubiński M, Gonciarz W, Chmiela M. Accumulation of Deleterious Effects in Gastric Epithelial Cells and Vascular Endothelial Cells In Vitro in the Milieu of Helicobacter pylori Components, 7-Ketocholesterol and Acetylsalicylic Acid. Int J Mol Sci 2022; 23:ijms23116355. [PMID: 35683034 PMCID: PMC9181086 DOI: 10.3390/ijms23116355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The Gastric pathogen Helicobacter pylori (HP) may influence the development of coronary heart disease (CHD). H. pylori induce reactive oxygen species (ROS), which transform cholesterol to 7-ketocholesterol (7-kCh), a CHD risk factor. Acetylsalicylic acid (ASA)—an Anti-aggregation drug used in CHD patients—may increase gastric bleeding and inflammation. We examined whether H. pylori driven ROS effects in the cell cultures of gastric epithelial cells (AGS) and vascular endothelial cells (HUVEC) progress in the milieu of 7-kCh and ASA. Cell cultures, exposed to 7-kCh or ASA alone or pulsed with the H. pylori antigenic complex—Glycine acid extract (GE), urease (UreA), cytotoxin associated gene A (CagA) protein or lipopolysaccharide (LPS), alone or with 7-kCh and ASA—were examined for ROS, apoptosis, cell integrity, interleukin (IL)-8, the activation of signal transducer, the activator of transcription 3 (STAT3), and wound healing. ASA and 7-kCh alone, and particularly in conjunction with H. pylori components, increased the ROS level and the rate of apoptosis, which was followed by cell disintegration, the activation of STAT3, and IL-8 elevation. AGS cells were unable to undergo wound healing. The cell ROS response to H. pylori components may be elevated by 7-kCh and ASA.
Collapse
Affiliation(s)
- Adrian Ł. Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (M.G.); (M.C.)
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.K.); (W.G.)
- Correspondence: (A.Ł.G.); (M.C.); Tel.: +48-42-675-7309 (A.Ł.G.); +48-42-635-4525 (M.C.)
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (M.G.); (M.C.)
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.K.); (W.G.)
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.K.); (W.G.)
| | - Tomasz Rechciński
- Department and Chair of Cardiology, Medical University of Łodz, Kniaziewicza 1/5, 91-347 Lodz, Poland;
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (M.G.); (M.C.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.K.); (W.G.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.K.); (W.G.)
- Correspondence: (A.Ł.G.); (M.C.); Tel.: +48-42-675-7309 (A.Ł.G.); +48-42-635-4525 (M.C.)
| |
Collapse
|
11
|
Antibodies towards TVLLPVIFF Amino Acid Sequence of TNF Receptor Induced by Helicobacter pylori in Patients with Coronary Heart Disease. J Clin Med 2022; 11:jcm11092545. [PMID: 35566671 PMCID: PMC9103578 DOI: 10.3390/jcm11092545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Molecular mimicry between Helicobacter pylori (Hp) and the host components resulting in induction of cross-reacting antibodies has been suggested as accessory mechanism in the development of coronary heart disease (CHD). A potential target for antibodies induced during Hp infection by the components of these bacteria might be amino acid sequence TVLLPVIFF (P1) of tumor necrosis factor receptor (TNFR), which is exposed on vascular endothelium and immunocompetent cells, driving inflammation. Aim: To examine whether anti-P1 IgG are induced during Hp infection in CHD patients. Methods: Sera from CHD patients infected with Hp (54) vs. sera of uninfected healthy donors (22) were tested by the ELISA for anti-H. pylori antibodies, anti-P1 IgG, and for antibodies towards control sequence IAKEGFEKIS (P2). Sera of Caviae porcellus infected experimentally with Hp (30) or uninfected (10) were included into this study. The same serum samples, which were positive for anti-P1 IgG, were adsorbed with Hp and then subjected to the ELISA. The biological activity of anti-P1 IgG was assessed in complement (C1q) binding assay. Results: Sera of 43 CHD patients seropositive for anti-Hp IgG contained anti-P1 IgG binding C1q. Additionally, 10 serum samples of animals seropositive for anti-Hp IgG contained anti-P1 IgG. Anti-P1 IgG in tested sera were neutralized by their adsorption with Hp. Conclusion: In CHD patients infected with Hp, antibodies cross-reacting with TNFR common sequence are produced. Further studies are necessary to define immunogenic Hp determinants and to confirm possible cellular effects of cross-reacting antibodies.
Collapse
|
12
|
Baicalin Alleviates Thrombin-Induced Inflammation in Vascular Smooth Muscle Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5799308. [PMID: 35097121 PMCID: PMC8799346 DOI: 10.1155/2022/5799308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of the arterial intima. As AS represents the most common type of vascular disease, it affects millions of individuals and is a source of high morbidity and mortality rates worldwide. Overwhelming evidence indicates that AS-related inflammation is mediated by proinflammatory cytokines, chemokines, adhesion molecules and inflammatory signaling pathways, with each of these factors being shown to play critical roles during the entire progression of AS. While a number of drugs have been approved for use in the treatment of AS, their benefits are modest, which underscores the urgency for the development of new drug therapies. In part, these deficits in effective drugs can be attributable to the lack of a clear understanding of the molecular mechanisms of AS. In this study, we investigate the capacity for thrombin to trigger inflammation and induce cell proliferation in vascular smooth muscle cells (VSMCs). We then assessed the effects of baicalin and its potential mechanisms on VSMC inflammation as induced by thrombin. Baicalin, which is a natural bioactive compound of S. baicalensis Georgi (SBG), exerted a protective effect against thrombin-induced VSMC inflammation as resulting from the upregulation of PAR-1. This protection as exerted by baicalin appears to reside in its capacity to produce an inhibitory effect on the thrombin-induced activation of the ERK1/2 pathway. These findings suggest that baicalin may be a promising candidate for the treatment of atherosclerosis.
Collapse
|
13
|
Huang X, He D, Pan Z, Luo G, Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio 2021; 11:100124. [PMID: 34458716 PMCID: PMC8379340 DOI: 10.1016/j.mtbio.2021.100124] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) mediate multiple physiological functions; however, the over-accumulation of ROS causes premature aging and/or death and is associated with various inflammatory conditions. Nevertheless, there are limited clinical treatment options that are currently available. The good news is that owing to the considerable advances in nanoscience, multiple types of nanomaterials with unique ROS-scavenging abilities that influence the temporospatial dynamic behaviors of ROS in biological systems have been developed. This has led to the emergence of next-generation nanomaterial-controlled strategies aimed at ameliorating ROS-related inflammatory conditions. Accordingly, herein we reviewed recent progress in research on nanotherapy based on ROS scavenging. The underlying mechanisms of the employed nanomaterials are emphasized. Furthermore, important issues in developing cross-disciplinary nanomedicine-based strategies for ROS-based inflammatory conditions are discussed. Our review of this increasing interdisciplinary field will benefit ongoing studies and clinical applications of nanomedicine based on ROS scavenging.
Collapse
Affiliation(s)
- X. Huang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - D. He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - Z. Pan
- Department of Endocrinology and Nephrology, The Seventh People's Hospital of Chongqing
| | - G. Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - J. Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| |
Collapse
|
14
|
Helicobacter pylori Infection Acts Synergistically with a High-Fat Diet in the Development of a Proinflammatory and Potentially Proatherogenic Endothelial Cell Environment in an Experimental Model. Int J Mol Sci 2021; 22:ijms22073394. [PMID: 33806236 PMCID: PMC8037564 DOI: 10.3390/ijms22073394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Classic atherosclerosis risk factors do not explain all cases of chronic heart disease. There is significant evidence that gut microbiota may influence the development of atherosclerosis. The widespread prevalence of chronic Helicobacter pylori (H. pylori, HP) infections suggests that HP can be the source of components that stimulate local and systemic inflammatory responses. Elevated production of reactive oxygen species during HP infection leads to cholesterol oxidation, which drives atherogenesis. The aim of this study is to explore the link between persistent HP infection and a high-fat diet in the development of proinflammatory conditions that are potentially proatherogenic. An in vivo model of Caviae porcellus infected with HP and exposed to an experimental diet was investigated for the occurrence of a proinflammatory and proatherogenic endothelial environment. Vascular endothelial primary cells exposed to HP components were tested in vitro for oxidative stress, cell activation and apoptosis. The infiltration of inflammatory cells into the vascular endothelium of animals infected with HP and exposed to a high-fat diet was observed in conjunction with an increased level of inflammatory markers systemically. The arteries of such animals were the least elastic, suggesting the role of HP in arterial stiffness. Soluble HP components induced transformation of macrophages to foam cells in vitro and influenced the endothelial life span, which was correlated with Collagen I upregulation. These preliminary results support the hypothesis that HP antigens act synergistically with a high-fat diet in the development of proatherogenic conditions.
Collapse
|
15
|
Paszek E, Zajdel W, Rajs T, Żmudka K, Legutko J, Kleczyński P. Profilin 1 and Mitochondria-Partners in the Pathogenesis of Coronary Artery Disease? Int J Mol Sci 2021; 22:1100. [PMID: 33499277 PMCID: PMC7865810 DOI: 10.3390/ijms22031100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis remains a large health and economic burden. Even though it has been studied for more than a century, its complex pathophysiology has not been elucidated. The relatively well-established contributors include: chronic inflammation in response to oxidized cholesterol, reactive oxygen species-induced damage and apoptosis. Recently, profilin 1, a regulator of actin dynamics emerged as a potential new player in the field. Profilin is abundant in stable atherosclerotic plaques and in thrombi extracted from infarct-related arteries in patients with acute myocardial infarction. The exact role of profilin in atherosclerosis and its complications, as well as its mechanisms of action, remain unknown. Here, we summarize several pathways in which profilin may act through mitochondria in a number of processes implicated in atherosclerosis.
Collapse
Affiliation(s)
- Elżbieta Paszek
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
| | - Wojciech Zajdel
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
| | - Tomasz Rajs
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
| | - Krzysztof Żmudka
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Jacek Legutko
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Paweł Kleczyński
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland; (E.P.); (W.Z.); (T.R.); (K.Ż.); (J.L.)
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland
| |
Collapse
|
16
|
Xin L, Gao J, Lin H, Qu Y, Shang C, Wang Y, Lu Y, Cui X. Regulatory Mechanisms of Baicalin in Cardiovascular Diseases: A Review. Front Pharmacol 2020; 11:583200. [PMID: 33224035 PMCID: PMC7667240 DOI: 10.3389/fphar.2020.583200] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) is the leading cause of high morbidity and mortality worldwide, which emphasizes the urgent necessity to develop new pharmacotherapies. In eastern countries, traditional Chinese medicine Scutellaria baicalensis Georgi has been used clinically for thousands of years. Baicalin is one of the main active ingredients extracted from Chinese herbal medicine S. baicalensis. Emerging evidence has established that baicalin improves chronic inflammation, immune imbalance, disturbances in lipid metabolism, apoptosis and oxidative stress. Thereby it offers beneficial roles against the initiation and progression of CVDs such as atherosclerosis, hypertension, myocardial infarction and reperfusion, and heart failure. In this review, we summarize the pharmacological features and relevant mechanisms by which baicalin regulates CVDs in the hope to reveal its application for CVDs prevention and/or therapy.
Collapse
Affiliation(s)
- Laiyun Xin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongchen Lin
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Qu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Su Z, Zong P, Chen J, Yang S, Shen Y, Lu Y, Yang C, Kong X, Sheng Y, Sun W. Celastrol attenuates arterial and valvular calcification via inhibiting BMP2/Smad1/5 signalling. J Cell Mol Med 2020; 24:12476-12490. [PMID: 32954678 PMCID: PMC7686965 DOI: 10.1111/jcmm.15779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 11/26/2022] Open
Abstract
Vascular calcification is an important risk factor for the mortality and morbidity in chronic kidney disease (CKD). Unfortunately, until now there is no certain medication targeting vascular calcification in CKD. In this study, we explored the inhibitory effect of celastrol on high calcium–induced vascular calcification and the underlying molecular mechanisms. Cell proliferation assay showed that celastrol inhibited aortic valve interstitial cell (VIC) and vascular smooth muscle cell (VSMC) proliferation when its concentration was higher than 0.6 μmol/L. 0.8 μmol/L celastrol inhibited the expression of osteogenic genes and calcium deposition induced by high‐calcium medium in both AVICs and VSMCs. In mouse vascular calcification model induced by adenine combined with vitamin D, alizarin red and immunostaining showed that celastrol inhibited pro‐calcification gene expression and calcium deposition in aortic wall and aortic valve tissues. At the molecular level, celastrol inhibited the increase of BMP2, phosphorylated Smad1/5 (p‐Smad1/5) and non‐phosphorylated β‐catenin (n‐p‐β‐catenin) induced by high‐calcium medium both in vitro and in vivo. Also, BMP2 overexpression reversed the anti‐calcification effects of celastrol by recovering the decrease of p‐Smad1/5 and n‐p‐β‐catenin. Furthermore, celastrol prevented the up‐regulation of BMPRII and down‐regulation of Smad6 induced by high calcium, and this protectory effect can be abolished by BMP2 overexpression. In conclusion, our data for the first time demonstrate that celastrol attenuates high calcium–induced arterial and valvular calcification by inhibiting BMP2/Smad1/5 signalling, which may provide a novel therapeutic strategy for arterial and valvular calcification in patients with CKD.
Collapse
Affiliation(s)
- Zhongping Su
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengyu Zong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ji Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuo Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihui Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of translational medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yanhui Sheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of translational medicine, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Zhang CJ, Zhu N, Liu Z, Shi Z, Long J, Zu XY, Tang ZW, Hu ZY, Liao DF, Qin L. Wnt5a/Ror2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158547. [PMID: 31678514 DOI: 10.1016/j.bbalip.2019.158547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 01/26/2023]
Abstract
Atherosclerosis (AS) is characterized by lipids metabolism disorder and inflammatory response. Accumulating evidence has demonstrated that Wingless type 5a (Wnt5a) is implicated in cardiovascular diseases through non-canonical Wnt cascades. However, its precise role during the pathogenesis of AS is still unclear. Therefore, the present study aims to investigate the role and the underlying mechanism of Wnt5a/receptor tyrosine kinase-like orphan receptor 2 (Ror2) pathways in the promotion of AS process through affecting lipid accumulation and inflammation. In atherosclerotic clinical samples, Wnt5a levels were measured by using enzyme-linked immunosorbent assay (ELISA) assay. In vivo experiments were conducted by using apolipoprotein E knockout (apoE-/-) mice model. Vascular smooth muscle cells (VSMCs) were applied for in vitro studies. Wnt5a was highly expressed in both of atherosclerotic clinical samples and apoE-/- mice. The knockdown of Wnt5a significantly inhibited cholesterol accumulation and inflammatory response. Additionally, the lipopolysaccharide (LPS)-induced inflammation aggravated the cholesterol accumulation and decreased adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) expression in VSMCs. Depletion of intracellular cholesterol by β-cyclodextrin (β-CD) led to the upregulation of ABCA1 and the inhibition of inflammation. Conversely, the overexpression of Wnt5a inhibited ABCA1 expression, facilitated cholesterol accumulation, impared cholesterol efflux, promoted NF-κB nuclear translocation and the inflammatory cytokines secretion. Moreover, the knockdown of Ror2 increased ABCA1 expression and reduced Wnt5a-induced cholesterol accumulation and inflammatory responses. Furthermore, the knockdown of ABCA1 enhanced cholesterol accumulation and inflammatory response. Therefore, Wnt5a/Ror2 pathway was critical in regulating cholesterol homeostasis and inflammatory response, which might be a promising therapeutic target for AS therapy.
Collapse
Affiliation(s)
- Chan-Juan Zhang
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zheng Liu
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhe Shi
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jia Long
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xu-Yu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, China
| | - Zhen-Wang Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of University of South China, Heng Yang, Hunan, China
| | - Zhe-Yu Hu
- Department of Breast Medical Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
19
|
Xu Y, Wang M, Xie Y, Jiang Y, Liu M, Yu S, Wang B, Liu Q. Activation of GPR39 with the agonist TC-G 1008 ameliorates ox-LDL-induced attachment of monocytes to endothelial cells. Eur J Pharmacol 2019; 858:172451. [PMID: 31202806 DOI: 10.1016/j.ejphar.2019.172451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
Attachment of monocytes to endothelial cells is a major event in the pathogenesis of atherosclerosis and cardiovascular disease. As atherosclerosis is considered to be an inflammatory disease, increased expression of proinflammatory cytokines greatly contributes to endothelial dysfunction and atherogenesis. Additionally, attachment of monocytes to endothelial cells triggered by cellular adhesion molecules such as vascular cellular adhesion molecule 1 (VCAM-1) and E-selectin plays a vital role in the development of atherosclerotic plaques. Zinc therapy has been suggested as a potential strategy for countering atherosclerosis. In the present study, for the first time to our knowledge, we investigated the potential role of the GPR39 zinc-sensing receptor in mediating the adhesion of monocytes to endothelial cells, oxidative stress and inflammation in human aortic endothelial cells induced by oxidized low-density lipoprotein (ox-LDL). Our findings show that agonism of GPR39 by the selective agonist TC-G 1008 potently reversed the effects of ox-LDL including increased expression of proinflammatory cytokines and chemokines, markers of oxidative stress, and enhanced expression of cellular adhesion molecules. Importantly, we also show that this protective effect is mediated through the nuclear factor-κB (NF-κB) pathway. Taken together, our findings suggest a potential role of GPR39 as a novel therapeutic target for the treatment and prevention of atherosclerosis induced by ox-LDL.
Collapse
Affiliation(s)
- Yiguan Xu
- Department of Cardiology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, 200060, China
| | - Mingliang Wang
- Department of Cardiology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, 200060, China
| | - Yun Xie
- Department of Cardiology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, 200060, China
| | - Yumei Jiang
- Department of Cardiology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, 200060, China
| | - Min Liu
- Department of Cardiology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, 200060, China
| | - Shushu Yu
- Department of Cardiology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, 200060, China
| | - Bo Wang
- Department of Cardiology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, 200060, China
| | - Qiliang Liu
- Department of Cardiology, Putuo People's Hospital Affiliated to Tongji University, Shanghai, 200060, China.
| |
Collapse
|
20
|
Zhao S, Liang M, Wang Y, Hu J, Zhong Y, Li J, Huang K, Li Y. Chrysin Suppresses Vascular Endothelial Inflammation via Inhibiting the NF-κB Signaling Pathway. J Cardiovasc Pharmacol Ther 2018; 24:278-287. [PMID: 30497287 DOI: 10.1177/1074248418810809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vascular endothelium is a continuous layer of flat polygonal cells that are in direct contact with the blood and participate in responses to inflammation. Chrysin is a flavonoid compound extracted from plants of the genus Asteraceae with a wide range of pharmacological activities and physiological activities. Here, we studied the effects of chrysin on the regulation of the proadhesion and pro-inflammatory phenotypes of the endothelium both in vitro and in vivo. Our results revealed that chrysin strongly inhibited Tohoku Hospital Pediatrics-1 (THP-1) cell adhesion to primary human umbilical vein endothelial cells and concentration-dependently attenuated interleukin 1β-induced increases in intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin messenger RNA levels and ICAM-1 and VCAM-1 protein levels. Previous studies reported that nuclear factor κB (NF-κB) is important in the inflammatory response in endothelial cells, particularly in regulating adhesion molecules, and our data shed light on the mechanisms whereby chrysin suppressed endothelial inflammation via the NF-κB signaling pathway. In addition, our in vivo findings demonstrated the effects of chrysin in the permeability and inflammatory responses of the endothelium to inflammatory injury. Taken together, we conclude that chrysin inhibits endothelial inflammation both in vitro and in vivo, which could be mainly due to its inhibition of NF-κB signaling activation. In conclusion, chrysin may serve as a promising therapeutic candidate for inflammatory vascular diseases.
Collapse
Affiliation(s)
- Shengnan Zhao
- 1 Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,2 Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The authors Shengnan Zhao and Minglu Liang contributed equally to this article as first authors
| | - Minglu Liang
- 2 Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The authors Shengnan Zhao and Minglu Liang contributed equally to this article as first authors
| | - Yilong Wang
- 2 Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,3 Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ji Hu
- 2 Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,3 Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhong
- 2 Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,3 Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Li
- 2 Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,3 Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Huang
- 2 Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,3 Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiqing Li
- 1 Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,2 Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Hepatic Encephalopathy and Helicobacter pylori. Dig Dis Sci 2018; 63:1368-1369. [PMID: 29594969 DOI: 10.1007/s10620-018-5038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/22/2018] [Indexed: 12/09/2022]
|
22
|
Al-Huseini I, Ashida N, Kimura T. Deletion of IκB-Kinase β in Smooth Muscle Cells Induces Vascular Calcification Through β-Catenin-Runt-Related Transcription Factor 2 Signaling. J Am Heart Assoc 2018; 7:JAHA.117.007405. [PMID: 29301759 PMCID: PMC5778968 DOI: 10.1161/jaha.117.007405] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vascular calcification was previously considered as an advanced phase of atherosclerosis; however, recent studies have indicated that such calcification can appear in different situations. Nevertheless, there has been a lack of mechanistic insight to explain the difference. For example, the roles of nuclear factor-κB, a major regulator of inflammation, in vascular calcification are poorly explored, although its roles in atherosclerosis were well documented. Herein, we investigated the roles of nuclear factor-κB signaling in vascular calcification. METHODS AND RESULTS We produced mice with deletion of IKKβ, an essential kinase for nuclear factor-κB activation, in vascular smooth muscle cells (VSMCs; KO mice) and subjected them to the CaCl2-induced aorta injury model. Unexpectedly, KO mice showed more calcification of the aorta than their wild-type littermates, despite the former's suppressed nuclear factor-κB activity. Cultured VSMCs from the aorta of KO mice also showed significant calcification in vitro. In the molecular analysis, we found that Runt-related transcription factor 2, a transcriptional factor accelerating bone formation, was upregulated in cultured VSMCs from KO mice, and its regulator β-catenin was more activated with suppressed ubiquitination in KO VSMCs. Furthermore, we examined VSMCs from mice in which kinase-active or kinase-dead IKKβ was overexpressed in VSMCs. We found that kinase-independent function of IKKβ is involved in suppression of calcification via inactivation of β-catenin, which leads to suppression of Runt-related transcription factor 2 and osteoblast marker genes. CONCLUSIONS IKKβ negatively regulates VSMC calcification through β-catenin-Runt-related transcription factor 2 signaling, which revealed a novel function of IKKβ on vascular calcification.
Collapse
Affiliation(s)
- Isehaq Al-Huseini
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Wu Y, Wang F, Fan L, Zhang W, Wang T, Du Y, Bai X. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways. Biomed Pharmacother 2017; 97:1673-1679. [PMID: 29793330 DOI: 10.1016/j.biopha.2017.12.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS) is a chronic progressive disease related to inflammatory reaction. Baicalin is a flavonoid isolated from Scutellaria baicalensis georgi (Huang-qin) and exerts anti-inflammation effects in various diseases. Here, we investigated the protective effects of baicalin treatment and the potential mechanism in AS progression on AS mouse model. After ApoE-/- mice with high-lipid diets had received 12 weeks' of baicalin treatment at different concentrations, plasma lipids levels and atherosclerotic plaque areas in aorta were measured and there exhibited a prominent improvement in the baicalin treated mice compared with mice in AS model group. The expression of lipolysis related proteins (PPARα, CPT-1) was increased while the expression of adipogenesis related proteins (SREBP-1c, ACS) was decreased by baicalin treatment, indicating the anti-adipogenic effect of baicalin. Moreover, baicalin up-regulated the activities of antioxidant enzymes (SOD, CAT and GSH-Px) and down-regulated the activity of oxidative parameter MDA compared with AS model group, indicating the anti-oxidant effect of baicalin. The increased levels of pro-inflammatory cytokines (IL-6, TNF-α, sVE-cadherin) induced by AS were also decreased by baicalin treatment, indicating that baicalin acted as an anti-inflammation regulator in AS. In addition, we further explored the potential mechanism of baicalin treatment on AS, and found that baicalin treatment attenuated the high phosphorylation levels of JNK, p65, p-38 and ERK1/2 induced by AS, indicating that baicalin treatment inhibited the NF-κB and p38 MAPK signaling pathways in AS. In conclusion, baicalin treatment inhibited the NF-κB and p38 MAPK signaling pathways, thereby achieved its anti-adipogenic effect, anti-oxidant effect and anti-inflammation effect in a dose-dependent manner in AS.
Collapse
Affiliation(s)
- Yuliang Wu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shaanxi Province, 710061, China
| | - Fang Wang
- Department of Cardiology, Han Zhong Central Hospital, Hanzhong City, Shaanxi Province, 723000, China
| | - Lihong Fan
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shaanxi Province, 710061, China
| | - Weiping Zhang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shaanxi Province, 710061, China
| | - Tingzhong Wang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shaanxi Province, 710061, China
| | - Yuan Du
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shaanxi Province, 710061, China
| | - Xiaojun Bai
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shaanxi Province, 710061, China.
| |
Collapse
|
24
|
Abstract
Cardiovascular diseases (CVDs) are the commonest cause of global mortality and morbidity. Atherosclerosis, the fundamental pathological manifestation of CVDs, is a complex process and is poorly managed both in terms of preventive and therapeutic intervention. Aberrant lipid metabolism and chronic inflammation play critical roles in the development of atherosclerosis. These processes can be targeted for effective management of the disease. Although managing lipid metabolism is in the forefront of current therapeutic approaches, controlling inflammation may also prove to be crucial for an efficient treatment regimen of the disease. Flavonoids, the plant-derived polyphenols, are known for their antiinflammatory properties. This review discusses the possible antiatherogenic role of 3 flavonoids, namely, chrysin, quercetin, and luteolin primarily known for their antiinflammatory properties.
Collapse
|
25
|
Timucin AC, Basaga H. Pro-apoptotic effects of lipid oxidation products: HNE at the crossroads of NF-κB pathway and anti-apoptotic Bcl-2. Free Radic Biol Med 2017; 111:209-218. [PMID: 27840321 DOI: 10.1016/j.freeradbiomed.2016.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
Abstract
The axis between lipid oxidation products and cell death is explicitly linked. 4-Hydroxynonenal (HNE), as well as other lipid oxidation products was also established to induce apoptosis in various experimental settings. Yet, the decision leading to apoptotic execution not only includes upregulation of pro-apoptotic signals but also involves a downregulation of anti-apoptotic signals. Within the frames of this paradigm, HNE acts significantly different from other lipid oxidation products in the regulation of two widely known anti-apoptotic elements, Nuclear Factor-κB (NF-κB) transcription factors and its target anti-apoptotic B-Cell Lymphoma-2 (Bcl-2) protein. Even so, a review inclusively linking these anti-apoptotic factors and their crosstalk upon HNE exposure is still at demand. In order to elucidate presence of such crosstalk, reports on the link between HNE and NF-κB pathway, on the link between HNE and anti-apoptotic Bcl-2 and on the crossroad of these links during HNE exposure were summarized and discussed. IKK, the upstream kinase of NF-κB, has been shown to regulate HNE mediated phosphorylation and inactivation of Bcl-2 by our group. Based on this observation and other studies reporting on HNE-NF-κB pathway interaction, IKK was proposed to mediate the crosstalk of NF-κB pathway and anti-apoptotic Bcl-2 protein, when HNE is present. These reports further suggested that HNE based inhibition of NF-κB pathway is highly likely. Besides, evidence on the HNE-anti-apoptotic Bcl-2 axis supported the deduction of HNE mediated NF-κB pathway inhibition and IKK mediated Bcl-2 inactivation. In conclusion, through combining all evidences, three possible scenarios intervening the HNE mediated crosstalk between NF-κB pathway and anti-apoptotic Bcl-2 protein, was extrapolated.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey.
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey.
| |
Collapse
|
26
|
Shu YN, Dong LH, Li H, Pei QQ, Miao SB, Zhang F, Zhang DD, Chen R, Yin YJ, Lin YL, Xue ZY, Lv P, Xie XL, Zhao LL, Nie X, Chen P, Han M. CKII-SIRT1-SM22α loop evokes a self-limited inflammatory response in vascular smooth muscle cells. Cardiovasc Res 2017; 113:1198-1207. [DOI: 10.1093/cvr/cvx048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/11/2017] [Indexed: 11/15/2022] Open
|
27
|
Sodium azide suppresses LPS-induced expression MCP-1 through regulating IκBζ and STAT1 activities in macrophages. Cell Immunol 2017; 315:64-70. [PMID: 28391993 DOI: 10.1016/j.cellimm.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/12/2023]
Abstract
Sodium azide (NaN3) is a chemical compound with multiple toxic effects on vascular and neuronal systems, causing hypotension and neurotoxicity, respectively. In order to test its effects on the immune system, human and mouse macrophage-like cell lines were treated with nontoxic doses of NaN3 and the changes in LPS-induced inflammatory activation was measured. Interestingly, the LPS-induced expression of monocyte chemoattractant protein (MCP)-1 was suppressed by NaN3 without affecting the expression of IL-8 and TNF-α. Further analysis of cellular signaling mediators involved in the expression of these cytokines revealed that NaN3 suppressed the LPS-induced activation of signal transducers and activator of transcription (STAT)1 and inhibitor of κB (IκB) ς, which are involved in the LPS-induced expression of MCP-1, while the LPS-induced activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) was not affected. The LPS-induced expression of MCP-2 and CXCL10, which are also regulated by STAT1, was suppressed by NaN3. Similarly, the LPS-induced expression of IL-6, which is regulated by IκBζ, was suppressed by NaN3. These results demonstrate that NaN3 selectively suppresses the LPS-induced expression of pro-inflammatory mediators through the suppression of STAT1 and IκBζ activation. These new findings about the activity of NaN3 may contribute to the development of specific regulators of macrophage activity during acute and chronic inflammation.
Collapse
|
28
|
Feng M, Zou Z, Zhou X, Hu Y, Ma H, Xiao Y, Li X, Ye X. Comparative effect of berberine and its derivative 8-cetylberberine on attenuating atherosclerosis in ApoE−/− mice. Int Immunopharmacol 2017; 43:195-202. [DOI: 10.1016/j.intimp.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/10/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
|
29
|
Zhao D, Tong L, Zhang L, Li H, Wan Y, Zhang T. Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice. Mol Med Rep 2016; 14:4983-4990. [PMID: 27840935 PMCID: PMC5355755 DOI: 10.3892/mmr.2016.5916] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/05/2016] [Indexed: 11/11/2022] Open
Abstract
Tanshinone II A (TSIIA) is a diterpene quinone extracted from the roots of Salvia miltiorrhiza with anti-inflammatory and anti‑oxidant properties that is used to treat atherosclerosis. In the current study, morphological analyses were conducted to evaluate the effects of TSIIA on atherosclerotic vulnerable plaque stability. Additionally, receptor of advanced glycation end products (RAGE), adhesion molecule, and matrix‑metalloproteinases (MMPs) expression, and nuclear factor-κB (NF‑κB) activation were examined in apolipoprotein E (apoE)‑deficient mice treated with TSIIA. Eight‑week‑old apoE-/- mice were administered TSIIA and fed an atherogenic diet for 8 weeks. TSIIA exhibited no effects on plaque size. Analysis of the vulnerable plaque composition demonstrated decreased numbers of macrophages and smooth muscle cells, and increased collagen content in apoE‑deficient mice treated with TSIIA compared with untreated mice. Western blotting revealed that TSIIA downregulated the expression levels of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule‑1 (ICAM‑1), and MMP‑2, ‑3, and ‑9, suppressed RAGE, and inhibited NF‑κB, JNK and p38 activation. The present study demonstrated that the underlying mechanism of TSIIA stabilization of vulnerable plaques involves interfering with RAGE and NF‑κB activation, and downregulation of downstream inflammatory factors, including ICAM‑1, VCAM‑1, and MMP‑2, ‑3 and ‑9 in apoE-/- mice.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Geriatric Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lufang Tong
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lixin Zhang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Hong Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yingxin Wan
- Third Department of Internal Medicine, Changping Chinese and Western Medicine Hospital, Beijing 102208, P.R. China
| | - Tiezhong Zhang
- Department of Geriatric Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
30
|
Yang D, Jia W, Zhu YZ. Leonurine, a Potential Agent of Traditional Chinese Medicine: Recent Updates and Future Perspectives. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herba Leonuri, also named Chinese Motherwort, has been extensively investigated as an effective agent on the uterus system. Our group has been studying the natural products of Herba Leonuri for several years, and during this period, many biological activities of the drug were recognized. Leonurine (4-guanidino- N-butyl-syringate) is an alkaloid present in Herba Leonuri. Recently, growing evidence has highlighted the therapeutic potential of leonurine in multiple diseases, especially cardiovascular. In this review, we discuss the biological activities of leonurine, as well as recent advances involving this alkaloid.
Collapse
Affiliation(s)
- Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Wanwan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Yi Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China, 201203
- School of Pharmacy, Macau University of Science and Technology, Macau
| |
Collapse
|
31
|
Cai Z, Liu J, Bian H, Cai J. Astragaloside IV ameliorates necrotizing enterocolitis by attenuating oxidative stress and suppressing inflammation via the vitamin D3-upregulated protein 1/NF-κB signaling pathway. Exp Ther Med 2016; 12:2702-2708. [PMID: 27698775 DOI: 10.3892/etm.2016.3629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/26/2016] [Indexed: 12/28/2022] Open
Abstract
Astragaloside IV (AS-IV) is a flavonoid from the plant Astragalus membranaceus (Fisch) Bge that has a wide range of therapeutic effects. The aim of the present study was to examine the effect of AS-IV on rats with necrotizing enterocolitis (NEC) under oxidative stress and inflammation. Newborn Sprague-Dawley rats were induced with NEC by asphyxia and hypothermia applied on 3 consecutive days. The rats were orally administered AS-IV at 25, 50 and 75 mg/kg for 4 days. The results revealed that AS-IV administration prevented NEC-induced decrease in the concentration of malondialdehyde and myeloperoxidase, and increase in the activity of glutathione (GSH) and superoxide dismutase in murine models. AS-IV also inhibited NEC-induced elevation in the levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-α and nuclear factor (NF)-κB. The effects of AS-IV were achieved under inflammation and oxidative stress. Western blotting demonstrated that AS-IV substantially inhibited the phosphorylated (p)-IκBα, NF-κBp65, p-NF-κBp65 protein levels and increased vitamin D3 upregulated protein 1 (VDUP1) and IκBα protein levels. These data indicate that AS-IV may be effective in the protection of NEC-induced ileum degeneration by inhibiting the levels of inflammatory markers and oxidative stress via the regulation of the VDUP1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Cai
- Newborn Department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Jindi Liu
- Newborn Department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Hongliang Bian
- Newborn Department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Jinlan Cai
- Newborn Department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
32
|
Uslu B, Cakmak YO, Sehirli Ü, Keskinoz EN, Cosgun E, Arbak S, Yalin A. Early Onset of Atherosclerosis of The Carotid Bifurcation in Newborn Cadavers. J Clin Diagn Res 2016; 10:AC01-5. [PMID: 27437199 DOI: 10.7860/jcdr/2016/19827.7706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The anatomy of arterial bifurcations affects blood flow and has a significant role in the development of vascular disease. Therefore, it is important to know the structural characteristics of the Common Carotid Artery (CCA) and its branches for early onset of atherosclerosis in newborns. AIM The present study was conducted to evaluate the characteristics of CCA in newborn cadavers. MATERIALS AND METHODS Eight carotid arteries obtained from newborn cadavers were used. The outflow to inflow area ratios was calculated to evaluate vessel diameters. Additionally, scanning electron and light microscopic investigations were conducted with tissue samples. The brachial artery of each cadaver was used as controls. Correlation between area ratios and atherosclerotic endothelial damage was determined. RESULTS Light microscopic investigations demonstrated that control group sections showed no positivity for Oil red O staining, while carotid bifurcation regions depicted widespread occurrence of intimal lipid accumulations. Scanning electron microscopic examination of control group sections presented regular endothelial topography, while carotid bifurcation region topography exhibited numerous blood cells and separated endothelial cells. Fibrin accumulation on endothelial surface in low area ratios was another important finding in the examination of its endothelial surface degeneration. The above-mentioned morphological findings seemed to be quite parallel to outflow to inflow area ratio data favouring low area and degeneration. CONCLUSION The correlation between area ratios and the histological characteristic of cerebral vessels of newborn cadavers indicate that early stages of atherosclerosis began in early embryologic life.
Collapse
Affiliation(s)
- Bahar Uslu
- PhD, Department of Obstetrics and Gynaecology, Yale School of Medicine , New Haven, CT, USA
| | - Yusuf Ozgur Cakmak
- Department of Anatomy, School of Medicine, Koc University , Istanbul, Turkey
| | - Ümit Sehirli
- Department of Anatomy, School of Medicine, Marmara University , Istanbul, Turkey
| | - Elif Nedret Keskinoz
- Department of Anatomy, School of Medicine, Acibadem University , Istanbul, Turkey
| | - Erdal Cosgun
- PhD, Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University , Istanbul, Turkey
| | - Serap Arbak
- PhD, Department of Histology & Embryology, School of Medicine, Acibadem University , Istanbul, Turkey
| | - Aymelek Yalin
- PhD, Department of Anatomy, School of Medicine, Eastern Mediterranean University , Famagusta, Northern Cyprus
| |
Collapse
|
33
|
An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet. Biomed Pharmacother 2016; 80:276-288. [PMID: 27133067 DOI: 10.1016/j.biopha.2016.03.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022] Open
Abstract
Hypercholesterolemia is a major risk factor for systemic atherosclerosis and subsequent cardiovascular disease. Lipoperoxidation-mediated oxidative damage is believed to contribute strongly to the progression of atherogenesis. In the current investigation, putative anti-atherogenic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were sought in an experimental animal model of chronic hypercholesterolemia. Atherogenic diet-fed rats that received either Piper betle extract orally (500mg/kg b.wt) or eugenol orally (5mg/kg b.wt) for 15days (commencing 30days after the atherogenic diet had been started) exhibited the following variations in different parameters, when compared to atherogenic diet-fed rats that received only saline: (1) significantly lower mean levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and very low density lipoprotein cholesterol in both serum and hepatic tissue samples; (2) lower mean serum levels of aspartate amino-transferase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase and lipid-metabolizing enzymes (lipoprotein lipase, 3-hydroxy-3-methyl-glutaryl-CoA reductase; (3) significantly lower mean levels of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) and non-enzymatic antioxidants (reduced glutathione, vitamin C and vitamin E) and significantly higher mean levels of malondialdehyde in haemolysate and hepatic tissue samples. Histopathological findings suggested a protective effect of the Piper betle extract and a more pronounced protective effect of eugenol on the hepatic and aortic tissues of atherogenic diet-fed (presumed atherosclerotic) rats. These results strongly suggest that the Piper betle extract and its active constituent, eugenol, exhibit anti-atherogenic effects which may be due to their anti-oxidative properties.
Collapse
|
34
|
Shu YN, Zhang F, Bi W, Dong LH, Zhang DD, Chen R, Lv P, Xie XL, Lin YL, Xue ZY, Li H, Miao SB, Zhao LL, Wang H, Han M. SM22α inhibits vascular inflammation via stabilization of IκBα in vascular smooth muscle cells. J Mol Cell Cardiol 2015; 84:191-9. [DOI: 10.1016/j.yjmcc.2015.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 12/14/2022]
|
35
|
Meza-Miranda ER, Rangel-Zúñiga OA, Marín C, Pérez-Martínez P, Delgado-Lista J, Haro C, Peña-Orihuela P, Jiménez-Morales AI, Malagón MM, Tinahones FJ, López-Miranda J, Pérez-Jiménez F, Camargo A. Virgin olive oil rich in phenolic compounds modulates the expression of atherosclerosis-related genes in vascular endothelium. Eur J Nutr 2015; 55:519-527. [PMID: 25733165 DOI: 10.1007/s00394-015-0868-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/25/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE Previous studies have shown the anti-inflammatory and antioxidant properties of phenolic compounds of virgin olive oil (VOO). However, the effect of bioavailable phenolic compounds on the vascular endothelium is unknown. We aimed to evaluate the effect of the consumption of virgin olive oil rich in phenolic compounds on the vascular endothelium. METHODS We treated HUVEC with human serum obtained in fasting state and after the intake of a breakfast prepared with VOO with a high or low content of phenolic compounds. RESULTS Treatment of HUVEC with serum obtained 2 h after the intake of the high-phenol VOO-based breakfast decreased p65 and MCP-1 gene expression (p < 0.001 and p = 0.002, respectively) and increased MT-CYB, SDHA and SOD1 gene expression (p = 0.004, p = 0.012 and p = 0.001, respectively), as compared with the treatment of HUVEC with the serum obtained 2 h after the intake of the low-phenol VOO-based breakfast. The treatment with serum obtained 4 h after the intake of the high-phenol VOO-based breakfast decreased MCP-1 and CAT gene expression (p < 0.001 and p = 0.003, respectively) and increased MT-CYB gene expression (p < 0.001), as compared to the treatment with serum obtained 4 h after the intake of the low-phenol VOO-based breakfast. CONCLUSION Our results suggest that the consumption of virgin olive oil rich in phenolic compounds may reduce the risk of atherosclerosis development by decreasing inflammation and improving the antioxidant profile in the vascular endothelium.
Collapse
Affiliation(s)
- Eliana R Meza-Miranda
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol A Rangel-Zúñiga
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Marín
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Pérez-Martínez
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Haro
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Peña-Orihuela
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Jiménez-Morales
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María M Malagón
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology, and Immunology, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Endocrinology and Nutrition Service, Hospital Virgen de la Victoria, Malaga, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Pérez-Jiménez
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Av. Menendez Pidal, s/n., 14004, Cordoba, Spain. .,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
36
|
Zinovkin RA, Romaschenko VP, Galkin II, Zakharova VV, Pletjushkina OY, Chernyak BV, Popova EN. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging (Albany NY) 2014; 6:661-674. [PMID: 25239871 PMCID: PMC4169860 DOI: 10.18632/aging.100685] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/11/2014] [Indexed: 06/01/2023]
Abstract
Vascular aging is accompanied by increases in circulatory proinflammatory cytokines leading to inflammatory endothelial response implicated in early atherogenesis. To study the possible role of mitochondria-derived reactive oxygen species (ROS) in this phenomenon, we applied the effective mitochondria-targeted antioxidant SkQ1, the conjugate of plastoquinone with dodecyltriphenylphosphonium. Eight months treatment of (CBAxC57BL/6) F1 mice with SkQ1 did not prevent age-related elevation of the major proinflammatory cytokines TNF and IL-6 in serum, but completely abrogated the increase in adhesion molecule ICAM1 expression in aortas of 24-month-old animals. In endothelial cell culture, SkQ1 also attenuated TNF-induced increase in ICAM1, VCAM, and E-selectin expression and secretion of IL-6 and IL-8, and prevented neutrophil adhesion to the endothelial monolayer. Using specific inhibitors to transcription factor NF-κB and stress-kinases p38 and JNK, we demonstrated that TNF-induced ICAM1 expression depends mainly on NF-κB activity and, to a lesser extent, on p38. SkQ1 had no effect on p38 phosphorylation (activation) but significantly reduced NF-κB activation by inhibiting phosphorylation and proteolytic cleavage of the inhibitory subunit IκBα. The data indicate an important role of mitochondrial reactive oxygen species in regulation of the NF-κB pathway and corresponding age-related inflammatory activation of endothelium.
Collapse
Affiliation(s)
- Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
- Institute of Mitoengineering, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Valeria P. Romaschenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Ivan I. Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Vlada V. Zakharova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
- Institute of Mitoengineering, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Olga Yu. Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
- Institute of Mitoengineering, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
- Institute of Mitoengineering, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Ekaterina N. Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
- Institute of Mitoengineering, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| |
Collapse
|
37
|
Yang L, Chu Y, Wang Y, Zhao X, Xu W, Zhang P, Liu X, Dong S, He W, Gao C. siRNA-mediated silencing of Wnt5a regulates inflammatory responses in atherosclerosis through the MAPK/NF-κB pathways. Int J Mol Med 2014; 34:1147-52. [PMID: 25050997 DOI: 10.3892/ijmm.2014.1860] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/08/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that the aberrant expression of Wnt5a occurs in atherosclerotic lesions. However, the precise role of Wnt5a in the pathogenesis of atherosclerosis remains largely unknown. The present study was undertaken to determine whether the RNA interference of Wnt5a in vivo by adenovirus (Ad)-mediated small interfering RNA (siRNA) transfection is capable of inhibiting the progression of atherosclerosis. Recombinant adenovirus carrying siRNA targeting Wnt5a (Ad-Wnt5a siRNA) was designed. Male apolipoprotein E-deficient (ApoE(-/-)) mice were fed a high-fat diet to induce the pathogenesis of atherosclerosis. Mice were randomly divided into 3 groups (n=15 in each group): the mock group, which received treatment with phosphate-buffered saline (PBS); the Ad-NC group, which received treatment with Ad-non-specific siRNA; and the Ad-Wnt5a siRNA group, which received treatment with Ad-Wnt5a siRNA. Treatment with Ad-Wnt5a siRNA markedly inhibited the mRNA and protein expression of Wnt5a in the aortic tissues. The knockdown of Wnt5a had no significant effect on blood lipid levels, but it suppressed atherosclerotic development and increased plaque stability, which was determined by hematoxylin and eosin staining, picrosirius red staining and Oil Red O staining. Furthermore, the mRNA and protein expression of inflammatory cytokines, including monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), matrix metalloproteinase (MMP)-2 and MMP-9 was significantly downregulated in the Ad-Wnt5a siRNA group. In addition, the knockdown of Wnt5a inhibited the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results demonstrate that Ad-mediated Wnt5a silencing in vivo attenuates the development of atherosclerotic disease by reducing inflammatory mediators involved in the MAPK/NF-κB pathways.
Collapse
Affiliation(s)
- Lei Yang
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yingjie Chu
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yuhang Wang
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xiangmei Zhao
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Wenke Xu
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Peirong Zhang
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xiaoyu Liu
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shujuan Dong
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Wenqi He
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
38
|
Pang X, Liu J, Zhao J, Mao J, Zhang X, Feng L, Han C, Li M, Wang S, Wu D. Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis 2014; 236:73-81. [PMID: 25016361 DOI: 10.1016/j.atherosclerosis.2014.06.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/04/2014] [Accepted: 06/18/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Homocysteine (Hcy) is known as an independent risk factor for atherosclerosis. C-reactive protein (CRP) directly participates in initiation and progression of atherosclerosis. However, there is no direct evidence to demonstrate pro-inflammatory effect of Hcy on vascular smooth muscle cells (VSMCs) through CRP. In the present study, we examined the effect of Hcy on CRP expression and investigated the related mechanism in VSMCs. METHODS AND RESULTS Protein expression and secretion were detected by Western blot and ELISA, respectively. mRNA expression was detected by RT-PCR. Superoxide anion was detected by lucigenin chemiluminometry and the immunofluorescence staining was observed by a fluorescence microscope. The results revealed that Hcy significantly induced mRNA and protein expressions of CRP in VSMCs both in vitro and in vivo, and anti-IL-1β or anti-IL-6 neutralizing antibody alone or in combination partially reduced Hcy-induced CRP expression. Hcy increased the expression of NR1 subunit of N-methyl-d-aspartate receptor (NMDAr), and MK-801 alleviated Hcy-induced CRP expression in VSMCs. Further studies showed that Hcy-stimulated superoxide anion generation in VSMCs. Nevertheless, pretreatment of the cells with MK-801, TTFA and DPI significantly reduced Hcy-stimulated superoxide anion generation, and antioxidant NAC decreased Hcy-induced CRP expression in VSMCs. Additionally, PD98059, SB205380 or PDTC antagonized Hcy-induced CRP expression, and MK-801, NAC, PD98059 or SB205380 inhibited Hcy-activated phosphorylations of ERK1/2 and p38. CONCLUSION The present study demonstrates that Hcy is able to initiate an inflammatory response in VSMCs by stimulating CRP production, which is mediated through NMDAr-ROS-ERK1/2/p38-NF-κB signal pathway. These findings provide new evidence for a role of Hcy in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoming Pang
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Juntian Liu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China.
| | - Jingjing Zhao
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Junjun Mao
- Department of Pharmacy, the Affiliated Hospital of Xi'an Medical College, Xi'an, China
| | - Xiaolu Zhang
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Liuxin Feng
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Chunjie Han
- Department of Pharmacology, Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Ming Li
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Shuyue Wang
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Di Wu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| |
Collapse
|
39
|
Human coronary heart disease: importance of blood cellular miR-2909 RNomics. Mol Cell Biochem 2014; 392:49-63. [DOI: 10.1007/s11010-014-2017-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/05/2014] [Indexed: 01/07/2023]
|
40
|
Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins ofPanax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin Investig Drugs 2014; 23:523-39. [DOI: 10.1517/13543784.2014.892582] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Jung CH, Lee MJ, Kang YM, Lee YL, Yoon HK, Kang SW, Lee WJ, Park JY. Vaspin inhibits cytokine-induced nuclear factor-kappa B activation and adhesion molecule expression via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Diabetol 2014; 13:41. [PMID: 24517399 PMCID: PMC3925442 DOI: 10.1186/1475-2840-13-41] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022] Open
Abstract
Background Vaspin is an adipocytokine that was recently identified in the visceral adipose tissue of diabetic rats and has anti-diabetic and anti-atherogenic effects. We hypothesized that vaspin prevents inflammatory cytokine-induced nuclear factor-kappa B (NF-κB) activation by activating AMP-activated protein kinase (AMPK) in vascular endothelial cells. Methods We examined the effects of vaspin on NF-κB activation and the expression of the NF-κB-mediated genes intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and monocyte chemoattractant protein-1 (MCP-1). Human aortic endothelial cells (HAECS) were used. Tumor necrosis factor alpha (TNFα) was used as a representative proinflammatory cytokine. Results Treatment with vaspin significantly increased the phosphorylation of AMPK and acetyl-CoA carboxylase, the down-stream target of AMPK. Furthermore, treatment with vaspin significantly decreased TNFα-induced activation of NF-κB, as well as the expression of the adhesion molecules ICAM-1, VCAM-1, E-selectin, and MCP-1. These effects were abolished following transfection of AMPKα1-specific small interfering RNA. In an adhesion assay using THP-1 cells, vaspin reduced TNFα-induced adhesion of monocytes to HAECS in an AMPK-dependent manner. Conclusions Vaspin might attenuate the cytokine-induced expression of adhesion molecule genes by inhibiting NF-κB following AMPK activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joong-Yeol Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Poongnap-dong, Songpa-gu, Seoul 138-736, Korea.
| |
Collapse
|
42
|
Sitagliptin ameliorates lipid profile changes and endothelium dysfunction induced by atherogenic diet in rabbits. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:433-44. [DOI: 10.1007/s00210-014-0958-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/20/2014] [Indexed: 12/25/2022]
|
43
|
Tan SZ, Ooi DSQ, Shen HM, Heng CK. The Atherogenic Effects of Serum Amyloid A are Potentially Mediated via Inflammation and Apoptosis. J Atheroscler Thromb 2014; 21:854-67. [DOI: 10.5551/jat.22665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
44
|
A tetrahydroisoquinoline alkaloid THI-28 reduces LPS-induced HMGB1 and diminishes organ injury in septic mice through p38 and PI3K/Nrf2/HO-1 signals. Int Immunopharmacol 2013; 17:684-92. [DOI: 10.1016/j.intimp.2013.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/17/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022]
|
45
|
Aslibekyan S, Vaughan LK, Wiener HW, Lemas DJ, Klimentidis YC, Havel PJ, Stanhope KL, O'Brien DM, Hopkins SE, Boyer BB, Tiwari HK. Evidence for novel genetic loci associated with metabolic traits in Yup'ik people. Am J Hum Biol 2013; 25:673-80. [PMID: 23907821 PMCID: PMC3785243 DOI: 10.1002/ajhb.22429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/24/2013] [Accepted: 06/29/2013] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To identify genomic regions associated with fasting plasma lipid profiles, insulin, glucose, and glycosylated hemoglobin in a Yup'ik study population, and to evaluate whether the observed associations between genetic factors and metabolic traits were modified by dietary intake of marine derived omega-3 polyunsaturated acids (n-3 PUFA). METHODS A genome-wide linkage scan was conducted among 982 participants of the Center for Alaska Native Health Research study. n-3 PUFA intake was estimated using the nitrogen stable isotope ratio (δ(15) N) of erythrocytes. All genotyped SNPs located within genomic regions with LOD scores > 2 were subsequently tested for individual SNP associations with metabolic traits using linear models that account for familial correlation as well as age, sex, community group, and n-3 PUFA intake. Separate linear models were fit to evaluate interactions between the genotype of interest and n-3 PUFA intake. RESULTS We identified several chromosomal regions linked to serum apolipoprotein A2, high density lipoprotein-, low density lipoprotein-, and total cholesterol, insulin, and glycosylated hemoglobin. Genetic variants found to be associated with total cholesterol mapped to a region containing previously validated lipid loci on chromosome 19, and additional novel peaks of biological interest were identified at 11q12.2-11q13.2. We did not observe any significant interactions between n-3 PUFA intake, genotypes, and metabolic traits. CONCLUSIONS We have completed a whole genome linkage scan for metabolic traits in Native Alaskans, confirming previously identified loci, and offering preliminary evidence of novel loci implicated in chronic disease pathogenesis in this population.
Collapse
Affiliation(s)
- Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laura Kelly Vaughan
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dominick J. Lemas
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Yann C. Klimentidis
- Epidemiology and Biostatistics Division, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724
| | - Peter J. Havel
- Departments of Nutrition and Molecular Biosciences, University of California at Davis, Davis, CA 95616
| | - Kimber L. Stanhope
- Departments of Nutrition and Molecular Biosciences, University of California at Davis, Davis, CA 95616
| | - Diane M. O'Brien
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska at Fairbanks, Fairbanks, AK 99775
| | - Scarlett E. Hopkins
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska at Fairbanks, Fairbanks, AK 99775
| | - Bert B. Boyer
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska at Fairbanks, Fairbanks, AK 99775
| | - Hemant K. Tiwari
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
46
|
Cao C, Zhu Y, Chen W, Li L, Qi Y, Wang X, Zhao Y, Wan X, Chen X. IKKε knockout prevents high fat diet induced arterial atherosclerosis and NF-κB signaling in mice. PLoS One 2013; 8:e64930. [PMID: 23741427 PMCID: PMC3669140 DOI: 10.1371/journal.pone.0064930] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/19/2013] [Indexed: 01/16/2023] Open
Abstract
AIMS Atherosclerosis is a public health concern affecting many worldwide, but its pathogenesis remains unclear. In this study we investigated the role of IKKε during the formation of atherosclerosis and its molecular mechanism in the mouse aortic vessel wall. METHODS AND RESULTS C57BL/6 wild-type or IKKε knockout mice bred into the ApoE knockout genetic background were divided into 4 groups: (1) wild-type (WT), (2) ApoE knockout (AK), (3) IKKε knockout (IK), (4) or both ApoE and IKKε knockout (DK). Each group of mice were fed with a high fat diet (HFD) for 12 weeks from 8 weeks of age. Immunohistochemistry and Western blotting analysis demonstrated obvious increases in the expression of IKKε in the AK group compared with the WT group, especially in the intima. Serum lipid levels were significantly higher in the AK and DK groups than in the other two groups. Staining with hematoxylin-eosin and Oil Red, as well as scanning electron microscopy revealed less severe atherosclerotic lesions in the DK group than in the AK group. Immunofluorescence and Western blot analysis demonstrated obvious increases in the expression of NF-κB pathway components and downstream factors in the AK group, especially in the intima, while these increases were blocked in the DK group. CONCLUSION The knockout of IKKε prevented significant atherosclerosis lesions in the mouse aorta from in both wild-type and ApoE knockout mice fed a HFD, suggesting that IKKε may play a vital role in HFD-induced atherosclerosis and would be an important target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Changchun Cao
- Division of Nephrology, Department of medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifan Zhu
- Division of Thoracic and Cardiovascular Surgery, Department of surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Chen
- Division of Thoracic and Cardiovascular Surgery, Department of surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangpeng Li
- Division of Thoracic and Cardiovascular Surgery, Department of surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongchao Qi
- Division of Thoracic and Cardiovascular Surgery, Department of surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaodi Wang
- Division of Thoracic and Cardiovascular Surgery, Department of surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Zhao
- Division of Nephrology, Department of medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wan
- Division of Nephrology, Department of medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Chen
- Division of Thoracic and Cardiovascular Surgery, Department of surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl) 2013; 91:323-8. [PMID: 23430240 DOI: 10.1007/s00109-013-1007-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 01/24/2023]
Abstract
Recent evidence suggests that processes of inflammation and angiogenesis are interconnected, especially in human pathologies. Newly formed blood vessels enable the continuous recruitment of inflammatory cells, which release a variety of proangiogenic cytokines, chemokines, and growth factors and further promote angiogenesis. These series of positive feedback loops ultimately create a vicious cycle that exacerbates inflammation, transforming it into the chronic process. Recently, this concept of reciprocity of angiogenesis and inflammation has been expanded to include oxidative stress as a novel mechanistic connection between inflammation-driven oxidation and neovascularization. Production of reactive oxygen species results from activation of immune cells by proinflammatory stimuli. As oxidative stress can lead to chronic inflammation by activating a variety of transcription factors including NF-κB, AP-1, and PPAR-γ, inflammation itself has a reciprocal relationship with oxidative stress. This review discusses the recent findings in the area bridging neovascularization and oxidation and highlights novel mechanisms of inflammation- and oxidative stress-driven angiogenesis.
Collapse
|
48
|
Tomé-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, Tomás-Barberán FA, García-Conesa MT, Espín JC. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther 2013; 27:37-48. [PMID: 23224687 PMCID: PMC3555235 DOI: 10.1007/s10557-012-6427-8] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The grape and wine polyphenol resveratrol exerts cardiovascular benefits but evidence from randomized human clinical trials is very limited. We investigated dose-depending effects of a resveratrol-containing grape supplement on stable patients with coronary artery disease (CAD) treated according to currently accepted guidelines for secondary prevention of cardiovascular disease. METHODS In a triple-blind, randomized, placebo-controlled, one-year follow-up, 3-arm pilot clinical trial, 75 stable-CAD patients received 350 mg/day of placebo, resveratrol-containing grape extract (grape phenolics plus 8 mg resveratrol) or conventional grape extract lacking resveratrol during 6 months, and a double dose for the following 6 months. Changes in circulating inflammatory and fibrinolytic biomarkers were analyzed. Moreover, the transcriptional profiling of inflammatory genes in peripheral blood mononuclear cells (PBMCs) was explored using microarrays and functional gene expression analysis. RESULTS After 1 year, in contrast to the placebo and conventional grape extract groups, the resveratrol-containing grape extract group showed an increase of the anti-inflammatory serum adiponectin (9.6 %, p = 0.01) and a decrease of the thrombogenic plasminogen activator inhibitor type 1 (PAI-1) (-18.6 %, p = 0.05). In addition, 6 key inflammation-related transcription factors were predicted to be significantly activated or inhibited, with 27 extracellular-space acting genes involved in inflammation, cell migration and T-cell interaction signals presenting downregulation (p < 0.05) in PBMCs. No adverse effects were detected in relation to the study products. CONCLUSIONS Chronic daily consumption of a resveratrol-containing grape nutraceutical could exert cardiovascular benefits in stable-CAD patients treated according to current evidence-based standards, by increasing serum adiponectin, preventing PAI-1 increase and inhibiting atherothrombotic signals in PBMCs.
Collapse
Affiliation(s)
- João Tomé-Carneiro
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | - Manuel Gonzálvez
- Cardiology Service, Morales Meseguer University Hospital, 30008 Avda. Marqués de los Velez, Murcia, Spain
| | - Mar Larrosa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | - María J. Yáñez-Gascón
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | | | - José A. Ruiz-Ros
- Cardiology Service, Morales Meseguer University Hospital, 30008 Avda. Marqués de los Velez, Murcia, Spain
| | - Francisco A. Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | - María T. García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | - Juan Carlos Espín
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| |
Collapse
|
49
|
Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N. Redox-inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol 2013; 91:22-30. [PMID: 23368637 DOI: 10.1139/cjpp-2012-0295] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic syndrome (MetS) comprises interrelated disease states including obesity, insulin resistance and type 2 diabetes (T2DM), dyslipidemia, and hypertension. Essential to normal physiological function, and yet massively damaging in excess, oxidative stress and inflammation are pivotal common threads among the pathologies of MetS. Increasing evidence indicates that redox and inflammatory dysregulation parallels the syndrome's physiological, biochemical, and anthropometric features, leading many to consider the pro-oxidative, pro-inflammatory milieu an unofficial criterion in itself. Left unchecked, cross-promotion of oxidative stress and inflammation creates a feed-forward cycle that can initiate and advance disease progression. Such redox-inflammatory integration is evident in the pathogenesis of obesity, insulin resistance and T2DM, atherogenic dyslipidemia, and hypertension, and is thus hypothesized to be the "common soil" from which they develop. The present review highlights the synergistic contributions of redox-inflammatory processes to each of the components of the MetS.
Collapse
Affiliation(s)
- Sean Bryan
- Medical Sciences Division, Northern Ontario School of Medicine, 955 Oliver Road, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | | | | | | | | |
Collapse
|
50
|
Miyazaki T, Koya T, Kigawa Y, Oguchi T, Lei XF, Kim-Kaneyama JR, Miyazaki A. Calpain and atherosclerosis. J Atheroscler Thromb 2012; 20:228-37. [PMID: 23171729 DOI: 10.5551/jat.14787] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This review highlights the pro-atherogenic roles of Ca(2+)-sensitive intracellular protease calpains. Among more than ten species of calpain isozymes, µ- and m-calpains have been characterized most extensively. These two isozymes are ubiquitously expressed in mammalian tissues, including blood vessels, and tightly regulate functional molecules in the vascular component cells through limited proteolytic cleavage. Indeed, previous cell-based experiments showed that calpains play significant roles in nitric oxide production in vascular endothelial cells (ECs), maintenance of EC barrier function and angiogenesis for maintaining vascular homeostasis. Recently, we demonstrated that modified-low density lipoprotein (LDL)-induced m-calpain causes hyperpermeability in ECs, leading to the infiltration of monocytes/macrophages and plasma lipids into the intimal spaces (Miyazaki T. et al., Circulation. 2011; 124: 2522-2532). Calpains also mediate oxidized LDL-induced apoptotic death in ECs. In monocytes/macrophages, calpains induce proteolytic degradation of ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1), which results in impaired cholesterol efflux and subsequent macrophage foam cell formation. In vascular smooth muscle cells, calpains may be involved in the conversion from contractile phenotype to proliferative phenotype. In hepatocytes, calpains disrupt the biogenesis of high-density lipoprotein via proteolytic degradation of ABCA1. Thus, calpains may serve as novel candidate molecular targets for control of atherosclerosis.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|