1
|
Szojka ZI, Kunkli B, Kiarie IW, Linkner TR, Al-Muffti AS, Ahmad H, Benkő S, Jansson M, Tőzsér J, Mahdi M. Transcriptomic Analysis Reveals Key Pathways Influenced by HIV-2 Vpx. Int J Mol Sci 2025; 26:3460. [PMID: 40331967 PMCID: PMC12026760 DOI: 10.3390/ijms26083460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Viral protein X (Vpx) is a unique accessory protein encoded by the genome of the human immunodeficiency virus type 2 (HIV-2) and lineages of the simian immunodeficiency virus of sooty mangabeys. So far, counteracting the cellular restriction factor SAMHD1 and mediating the efficient translocation of viral pre-integration complex have been recognized as key functions of Vpx; however, a thorough exploration of its effects on the cellular transcriptome and cytokine milieu has not yet been undertaken. In this study, we carried out the transcriptomic analysis of THP-1 cells and determined differential gene expressions induced by HIV-2 Vpx, utilizing vectors coding for the wild-type and K68-R70 functionally restricted proteins. Significantly altered genes were then validated and quantified through real-time quantitative PCR (qPCR); additionally, replication-competent virions were also used to confirm the findings. Moreover, we analyzed the effect of Vpx expression on the secretion of key cytokines in the medium of transfected cells. Our findings revealed that wild-type HIV-2 Vpx can significantly alter the expression of genes coding for helicases, zinc finger proteins, chaperons, transcription factors and proteins involved in DNA methylation. Differentially altered genes were involved in negative regulation of viral processes, the type I interferon-signaling pathway, DNA-template transcription, elongation, the positive regulation of interferon beta production and the negative regulation of innate immune response. Importantly, Vpx was also found to decrease the expression of HIV-1 Tat, possibly through the downregulation of a crucial splicing factor, required for the maturation of Tat. Additionally, studies on cellular cytokine milieu showed that this accessory protein induced key proinflammatory cytokines. Our study provides important information about the complex role played by HIV-2 Vpx in priming and taming the cellular environment to allow for the establishment of the infection.
Collapse
Affiliation(s)
- Zsófia Ilona Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.I.S.); (I.W.K.); (T.R.L.); (A.S.A.-M.)
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Box 188, SE-221 00 Lund, Sweden;
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.I.S.); (I.W.K.); (T.R.L.); (A.S.A.-M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Irene Wanjiru Kiarie
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.I.S.); (I.W.K.); (T.R.L.); (A.S.A.-M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Tamás Richárd Linkner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.I.S.); (I.W.K.); (T.R.L.); (A.S.A.-M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Aya Shamal Al-Muffti
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.I.S.); (I.W.K.); (T.R.L.); (A.S.A.-M.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Hala Ahmad
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Marianne Jansson
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Box 188, SE-221 00 Lund, Sweden;
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.I.S.); (I.W.K.); (T.R.L.); (A.S.A.-M.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.I.S.); (I.W.K.); (T.R.L.); (A.S.A.-M.)
| |
Collapse
|
2
|
Vegas Rodriguez A, Velez de Mendizábal N, Girish S, Trocóniz IF, Feigelman JS. Modeling the Interplay Between Viral and Immune Dynamics in HIV: A Review and Mrgsolve Implementation and Exploration. Clin Transl Sci 2025; 18:e70160. [PMID: 39980203 PMCID: PMC11842467 DOI: 10.1111/cts.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Since its initial discovery, HIV has infected more than 70 million individuals globally, leading to the deaths of 35 million. At present, the annual number of deaths has significantly decreased due to 75% of HIV-positive individuals being on antiretroviral therapy. Although there is no cure yet, available treatments extend life expectancy, enhance quality of life, and reduce transmission by maintaining viral load below the detection limit of 50 copies/mL, making the individual's levels undetectable and untransmittable. HIV has attracted considerable attention in the computational modeling area, with various models having been developed with different degrees of complexity in an attempt to explain the viral dynamics of the disease. It is important to note that no single model can fully incorporate and predict all the critical factors influencing the dynamics of the disease and its response to treatments. Since the number of published models is large, the purpose of this article is to review several relevant models found in the literature that describe biologically plausible scenarios of HIV infection, including key features of disease progression with or without treatment. A total of 15 models are described, with some implemented in the mrgsolve package in R Studio and shared for the benefit of the scientific community. The modeling framework concerning HIV infection aids in identifying the most impactful parameters within the system and their implications in the model outcomes. Insights provided by these models may help in confirming targets for current and novel therapies, thereby contributing to the exploration of new strategies.
Collapse
Affiliation(s)
- Alberto Vegas Rodriguez
- Department of Pharmaceutical Sciences, School of Pharmacy and NutritionUniversity of NavarraPamplonaSpain
| | | | | | - Iñaki F. Trocóniz
- Department of Pharmaceutical Sciences, School of Pharmacy and NutritionUniversity of NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Institute of Data Science and Artificial Intelligence (DATAI)University of NavarraPamplonaSpain
| | | |
Collapse
|
3
|
Jamal Eddine J, Angelovich TA, Zhou J, Byrnes SJ, Tumpach C, Saraya N, Chalmers E, Shepherd RA, Tan A, Marinis S, Gorry PR, Estes JD, Brew BJ, Lewin SR, Telwatte S, Roche M, Churchill MJ. HIV transcription persists in the brain of virally suppressed people with HIV. PLoS Pathog 2024; 20:e1012446. [PMID: 39116185 PMCID: PMC11335163 DOI: 10.1371/journal.ppat.1012446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
HIV persistence in the brain is a barrier to cure, and potentially contributes to HIV-associated neurocognitive disorders. Whether HIV transcription persists in the brain despite viral suppression with antiretroviral therapy (ART) and is subject to the same blocks to transcription seen in other tissues and blood, is unclear. Here, we quantified the level of HIV transcripts in frontal cortex tissue from virally suppressed or non-virally suppressed people with HIV (PWH). HIV transcriptional profiling of frontal cortex brain tissue (and PBMCs where available) from virally suppressed (n = 11) and non-virally suppressed PWH (n = 13) was performed using digital polymerase chain reaction assays (dPCR). CD68+ myeloid cells or CD3+ T cells expressing HIV p24 protein present in frontal cortex tissue was detected using multiplex immunofluorescence imaging. Frontal cortex brain tissue from PWH had HIV TAR (n = 23/24) and Long-LTR (n = 20/24) transcripts. Completion of HIV transcription was evident in brain tissue from 12/13 non-virally suppressed PWH and from 5/11 virally suppressed PWH, with HIV p24+CD68+ cells detected in these individuals. While a block to proximal elongation was present in frontal cortex tissue from both PWH groups, this block was more extensive in virally suppressed PWH. These findings suggest that the brain is a transcriptionally active HIV reservoir in a subset of virally suppressed PWH.
Collapse
Affiliation(s)
- Janna Jamal Eddine
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Thomas A. Angelovich
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
- Life Sciences Discipline, Burnet Institute; Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jingling Zhou
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Sarah J. Byrnes
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nadia Saraya
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Emily Chalmers
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Rory A. Shepherd
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Abigail Tan
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Stephanie Marinis
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
| | - Paul R. Gorry
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jacob D. Estes
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, United States of America
| | - Bruce J. Brew
- Peter Duncan Neurosciences Unit, Departments of Neurology and Immunology St Vincent’s Hospital, Sydney, University of New South Wales and University of Notre Dame; Sydney, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University; Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sushama Telwatte
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michael Roche
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Melissa J. Churchill
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University; Melbourne, Australia
- Life Sciences Discipline, Burnet Institute; Melbourne, Australia
- Departments of Microbiology and Medicine, Monash University; Melbourne, Australia
| |
Collapse
|
4
|
Zhang X, Chen J. HIV Reservoir: How to Measure It? Curr HIV/AIDS Rep 2023; 20:29-41. [PMID: 37004676 DOI: 10.1007/s11904-023-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 04/04/2023]
Abstract
PURPOSEOF REVIEW In the current quest for a complete cure for HIV/AIDS, the persistence of a long-lived reservoir of cells carrying replication-competent proviruses is the major challenge. Here, we describe the main elements and characteristics of several widely used assays of HIV latent reservoir detection. RECENT FINDINGS To date, researchers have developed several different HIV latent reservoir detection assays. Among them, the in vitro quantitative viral outgrowth assay (QVOA) has been the gold standard for assessing latent HIV-1 viral load. The intact proviral DNA assay (IPDA) based on PCR also demonstrated the predominance of defective viruses. However, these assays all have some drawbacks and may still be inadequate in detecting the presence of ultralow levels of latent virus in many patients who were initially thought to have been cured, but eventually showed viral rebound. An accurate and precise measurement of the HIV reservoir is therefore needed to evaluate curative strategies, aimed to functional cure or sterilizing cure.
Collapse
Affiliation(s)
- Xinyu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Soto PC, Terry VH, Lewinski MK, Deshmukh S, Beliakova-Bethell N, Spina CA. HIV-1 latency is established preferentially in minimally activated and non-dividing cells during productive infection of primary CD4 T cells. PLoS One 2022; 17:e0271674. [PMID: 35895672 PMCID: PMC9328514 DOI: 10.1371/journal.pone.0271674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Latently infected CD4 T cells form a stable reservoir of HIV that leads to life-long viral persistence; the mechanisms involved in establishment of this latency are not well understood. Three scenarios have been proposed: 1) an activated, proliferating cell becomes infected and reverts back to a resting state; 2) an activated cell becomes infected during its return to resting; or 3) infection is established directly in a resting cell. The aim of this study was, therefore, to investigate the relationship between T cell activation and proliferation and the establishment of HIV latency. Isolated primary CD4 cells were infected at different time points before or after TCR-induced stimulation. Cell proliferation within acutely infected cultures was tracked using CFSE viable dye over 14 days; and cell subsets that underwent varying degrees of proliferation were isolated at end of culture by flow cytometric sorting. Recovered cell subpopulations were analyzed for the amount of integrated HIV DNA, and the ability to produce virus, upon a second round of cell stimulation. We show that cell cultures exposed to virus, prior to stimulus addition, contained the highest levels of integrated and replication-competent provirus after returning to quiescence; whereas, cells infected during the height of cell proliferation retained the least. Cells that did not divide or exhibited limited division, following virus exposure and stimulation contained greater amounts of integrated and inducible HIV than did cells that had divided many times. Based on these results, co-culture experiments were conducted to demonstrate that latent infection could be established directly in non-dividing cells via cell-to-cell transmission from autologous productively infected cells. Together, the findings from our studies implicate the likely importance of direct infection of sub-optimally activated T cells in establishment of latently infected reservoirs in vivo, especially in CD4 lymphocytes that surround productive viral foci within immune tissue microenvironments.
Collapse
Affiliation(s)
- Paula C. Soto
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Valeri H. Terry
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Mary K. Lewinski
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Savitha Deshmukh
- Veterans Medical Research Foundation, San Diego, California, United States of America
| | - Nadejda Beliakova-Bethell
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Celsa A. Spina
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Gaballah A, Ghazal A, Metwally D, Emad R, Essam G, Attia NM, Amer AN. Mutation patterns, cross resistance and virological failure among HIV type-1 patients in Alexandria, Egypt. Future Virol 2022. [DOI: 10.2217/fvl-2021-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The main purpose of this cross-sectional study was to detect the prevalence of drug resistance mutations related to nonnucleoside/nucleoside reverse transcriptase inhibitors (NNRTIs/NRTIs) and protease inhibitors (PIs). Patients & methods: Patients (n = 45) with HIV type-1 were recruited, 30 of whom were treatment naive and 15 treatment experienced. A partial pol gene covering the protease/reverse transcriptase (PRRT) region was amplified and then sequenced by the Sanger method. Results & conclusion: The most common NNRTI/NRTI-related mutations were ‘V179I (24%) and K103N (14.3%)’ and ‘M41L and V75M’ (14.3% each). M36I and H69K were the most prevalent PI-related mutations (86% each). The results of the current study serve as an initial crucial step in defining the overall prevalence of HIV type-1 drug resistance in Egypt.
Collapse
Affiliation(s)
- Ahmed Gaballah
- Microbiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Abeer Ghazal
- Microbiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Dalia Metwally
- Microbiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Rasha Emad
- Alexandria Main University Hospital, Alexandria University, Egypt
| | - Ghada Essam
- Microbiology & Immunology Department, Faculty of Pharmacy & Drug Manufacturing, Pharos University, Egypt
| | - Nancy M Attia
- Microbiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Ahmed N Amer
- Microbiology & Immunology Department, Faculty of Pharmacy & Drug Manufacturing, Pharos University, Egypt
| |
Collapse
|
7
|
Lu MD, Telwatte S, Kumar N, Ferreira F, Martin HA, Kadiyala GN, Wedrychowski A, Moron-Lopez S, Chen TH, Goecker EA, Coombs RW, Lu CM, Wong JK, Tsibris A, Yukl SA. Novel assays to investigate the mechanisms of latent infection with HIV-2. PLoS One 2022; 17:e0267402. [PMID: 35476802 PMCID: PMC9045618 DOI: 10.1371/journal.pone.0267402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Although there have been great advancements in the field of HIV treatment and prevention, there is no cure. There are two types of HIV: HIV-1 and HIV-2. In addition to genetic differences between the two types of HIV, HIV-2 infection causes a slower disease progression, and the rate of new HIV-2 infections has dramatically decreased since 2003. Like HIV-1, HIV-2 is capable of establishing latent infection in CD4+ T cells, thereby allowing the virus to evade viral cytopathic effects and detection by the immune system. The mechanisms underlying HIV latency are not fully understood, rendering this a significant barrier to development of a cure. Using RT-ddPCR, we previously demonstrated that latent infection with HIV-1 may be due to blocks to HIV transcriptional elongation, distal transcription/polyadenylation, and multiple splicing. In this study, we describe the development of seven highly-specific RT-ddPCR assays for HIV-2 that can be applied to the study of HIV-2 infections and latency. We designed and validated seven assays targeting different HIV-2 RNA regions along the genome that can be used to measure the degree of progression through different blocks to HIV-2 transcription and splicing. Given that HIV-2 is vastly understudied relative to HIV-1 and that it can be considered a model of a less virulent infection, application of these assays to studies of HIV-2 latency may inform new therapies for HIV-2, HIV-1, and other retroviruses.
Collapse
Affiliation(s)
- Michael D. Lu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Sushama Telwatte
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Nitasha Kumar
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Fernanda Ferreira
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Holly Anne Martin
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Gayatri Nikhila Kadiyala
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Adam Wedrychowski
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Sara Moron-Lopez
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Tsui-Hua Chen
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Erin A. Goecker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
| | - Chuanyi M. Lu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Joseph K. Wong
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Steven A. Yukl
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Atindaana E, Kissi-Twum A, Emery S, Burnett C, Pitcher J, Visser M, Kidd JM, Telesnitsky A. Bimodal Expression Patterns, and Not Viral Burst Sizes, Predict the Effects of Vpr on HIV-1 Proviral Populations in Jurkat Cells. mBio 2022; 13:e0374821. [PMID: 35384697 PMCID: PMC9040753 DOI: 10.1128/mbio.03748-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Integration site landscapes, clonal dynamics, and latency reversal with or without vpr were compared in HIV-1-infected Jurkat cell populations, and the properties of individual clones were defined. Clones differed in fractions of long terminal repeat (LTR)-active daughter cells, with some clones containing few to no LTR-active cells, while almost all cells were LTR active for others. Clones varied over 4 orders of magnitude in virus release per active cell. Proviruses in largely LTR-active clones were closer to preexisting enhancers and promoters than low-LTR-active clones. Unsurprisingly, major vpr+ clones contained fewer LTR-active cells than vpr- clones, and predominant vpr+ proviruses were farther from enhancers and promoters than those in vpr- pools. Distances to these marks among intact proviruses previously reported for antiretroviral therapy (ART)-suppressed patients revealed that patient integration sites were more similar to those in the vpr+ pool than to vpr- integrants. Complementing vpr-defective proviruses with vpr led to the rapid loss of highly LTR-active clones, indicating that the effect of Vpr on proviral populations occurred after integration. However, major clones in the complemented pool and its vpr- parent population did not differ in burst sizes. When the latency reactivation agents prostratin and JQ1 were applied separately or in combination, vpr+ and vpr- population-wide trends were similar, with dual-treatment enhancement being due in part to reactivated clones that did not respond to either drug applied separately. However, the expression signatures of individual clones differed between populations. These observations highlight how Vpr, exerting selective pressure on proviral epigenetic variation, can shape integration site landscapes, proviral expression patterns, and reactivation properties. IMPORTANCE A bedrock assumption in HIV-1 population modeling is that all active cells release the same amount of virus. However, the findings here revealed that when HIV-infected cells expand into clones, each clone differs in virus production. Reasoning that this variation in expression patterns constituted a population of clones from which differing subsets would prevail under differing environmental conditions, the cytotoxic HIV-1 protein Vpr was introduced, and population dynamics and expression properties were compared in the presence and absence of Vpr. The results showed that whereas most clones produced fairly continuous levels of virus in the absence of Vpr, its presence selected for a distinct subset of clones with properties reminiscent of persistent populations in patients, suggesting the possibility that the interclonal variation in expression patterns observed in culture may contribute to proviral persistence in vivo.
Collapse
Affiliation(s)
- Edmond Atindaana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abena Kissi-Twum
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Greater Accra Region, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Greater Accra Region, Ghana
| | - Sarah Emery
- Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jake Pitcher
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Myra Visser
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey M. Kidd
- Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
10
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
11
|
Sonti S, Sharma AL, Tyagi M. HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 2021; 303:198523. [PMID: 34314771 DOI: 10.1016/j.virusres.2021.198523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Despite four decades of research into the human immunodeficiency virus (HIV-1), a successful strategy to eradicate the virus post-infection is lacking. The major reason for this is the persistence of the virus in certain anatomical reservoirs where it can become latent and remain quiescent for as long as the cellular reservoir is alive. The Central Nervous System (CNS), in particular, is an intriguing anatomical compartment that is tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major challenge owing to the decreased permeability of drugs into the CNS and the cellular microenvironment that facilitates the compartmentalization and evolution of the virus. Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail to eliminate the virus from the CNS. To facilitate the improvement of the existing elimination strategies, as well as the development of potential therapeutic targets, the aim of this review is to provide an in-depth understanding of HIV latency in CNS and the onset of HIV-1 associated neurological disorders.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
12
|
Debyser Z, Bruggemans A, Van Belle S, Janssens J, Christ F. LEDGINs, Inhibitors of the Interaction Between HIV-1 Integrase and LEDGF/p75, Are Potent Antivirals with a Potential to Cure HIV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:97-114. [PMID: 34258738 DOI: 10.1007/978-981-16-0267-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A permanent cure remains the greatest challenge in the field of HIV research. In order to reach this goal, a profound understanding of the molecular mechanisms controlling HIV integration and transcription is needed. Here we provide an overview of recent advances in the field. Lens epithelium-derived growth factor p75 (LEDGF/p75), a transcriptional coactivator, tethers and targets the HIV integrase into transcriptionally active regions of the chromatin through an interaction with the epigenetic mark H3K36me2/3. This finding prompted us to propose a "block-and-lock" strategy to retarget HIV integration into deep latency. A decade ago, we pioneered protein-protein interaction inhibitors for HIV and discovered LEDGINs. LEDGINs are small molecule inhibitors of the interaction between the integrase binding domain (IBD) of LEDGF/p75 and HIV integrase. They modify integration site selection and therefore might be molecules with a "block-and-lock" mechanism of action. Here we will describe how LEDGINs may become part in the future functional cure strategies.
Collapse
Affiliation(s)
- Zeger Debyser
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium.
| | - Anne Bruggemans
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Siska Van Belle
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Julie Janssens
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Ma L, Chen S, Wang Z, Guo S, Zhao J, Yi D, Li Q, Liu Z, Guo F, Li X, Jia P, Ding J, Liang C, Cen S. The CREB Regulated Transcription Coactivator 2 Suppresses HIV-1 Transcription by Preventing RNA Pol II from Binding to HIV-1 LTR. Virol Sin 2021; 36:796-809. [PMID: 33723808 DOI: 10.1007/s12250-021-00363-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 10/21/2022] Open
Abstract
The CREB-regulated transcriptional co-activators (CRTCs), including CRTC1, CRTC2 and CRTC3, enhance transcription of CREB-targeted genes. In addition to regulating host gene expression in response to cAMP, CRTCs also increase the infection of several viruses. While human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter harbors a cAMP response element and activation of the cAMP pathway promotes HIV-1 transcription, it remains unknown whether CRTCs have any effect on HIV-1 transcription and HIV-1 infection. Here, we reported that CRTC2 expression was induced by HIV-1 infection, but CRTC2 suppressed HIV-1 infection and diminished viral RNA expression. Mechanistic studies revealed that CRTC2 inhibited transcription from HIV-1 LTR and diminished RNA Pol II occupancy at the LTR independent of its association with CREB. Importantly, CRTC2 inhibits the activation of latent HIV-1. Together, these data suggest that in response to HIV-1 infection, cells increase the expression of CRTC2 which inhibits HIV-1 gene expression and may play a role in driving HIV-1 into latency.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Shumin Chen
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100176, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Pingping Jia
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China. .,Beijing Friendship Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
14
|
Zerbato JM, Khoury G, Zhao W, Gartner MJ, Pascoe RD, Rhodes A, Dantanarayana A, Gooey M, Anderson J, Bacchetti P, Deeks SG, McMahon J, Roche M, Rasmussen TA, Purcell DF, Lewin SR. Multiply spliced HIV RNA is a predictive measure of virus production ex vivo and in vivo following reversal of HIV latency. EBioMedicine 2021; 65:103241. [PMID: 33647768 PMCID: PMC7920823 DOI: 10.1016/j.ebiom.2021.103241] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND One strategy being pursued to clear latently infected cells that persist in people living with HIV (PLWH) on antiretroviral therapy (ART) is to activate latent HIV infection with a latency reversing agent (LRA). Surrogate markers that accurately measure virus production following an LRA are needed. METHODS We quantified cell-associated unspliced (US), multiply spliced (MS) and supernatant (SN) HIV RNA by qPCR from total and resting CD4+ T cells isolated from seven PLWH on ART before and after treatment ex vivo with different LRAs, including histone deacetylase inhibitors (HDACi). MS and plasma HIV RNA were also quantified from PLWH on ART (n-11) who received the HDACi panobinostat. FINDINGS In total and resting CD4+ T cells from PLWH on ART, detection of US RNA was common while detection of MS RNA was infrequent. Primers used to detect MS RNA, in contrast to US RNA, bound sites of the viral genome that are commonly mutated or deleted in PLWH on ART. Following ex vivo stimulation with LRAs, we identified a strong correlation between the fold change increase in SN and MS RNA, but not the fold change increase in SN and US RNA. In PLWH on ART who received panobinostat, MS RNA was significantly higher in samples with detectable compared to non0detectable plasma HIV RNA. INTERPRETATION Following administration of an LRA, quantification of MS RNA is more likely to reflect an increase in virion production and is therefore a better indicator of meaningful latency reversal. FUNDING NHMRC, NIH DARE collaboratory.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georges Khoury
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Rachel D Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Megan Gooey
- HIV Characterisation Laboratory, Victorian Infectious Diseases Reference Laboratory, the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jenny Anderson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, Division of HIV/AIDS, University of California San Francisco, San Francisco, USA
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Damian Fj Purcell
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
15
|
Yang J, Bi S. Stability and Hopf bifurcation of a delayed virus infection model with latently infected cells and Beddington–DeAngelis incidence. INT J BIOMATH 2020. [DOI: 10.1142/s179352452050045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, the dynamical behaviors for a five-dimensional virus infection model with Latently Infected Cells and Beddington–DeAngelis incidence are investigated. In the model, four delays which denote the latently infected delay, the intracellular delay, virus production period and CTL response delay are considered. We define the basic reproductive number and the CTL immune reproductive number. By using Lyapunov functionals, LaSalle’s invariance principle and linearization method, the threshold conditions on the stability of each equilibrium are established. It is proved that when the basic reproductive number is less than or equal to unity, the infection-free equilibrium is globally asymptotically stable; when the CTL immune reproductive number is less than or equal to unity and the basic reproductive number is greater than unity, the immune-free infection equilibrium is globally asymptotically stable; when the CTL immune reproductive number is greater than unity and immune response delay is equal to zero, the immune infection equilibrium is globally asymptotically stable. The results show that immune response delay may destabilize the steady state of infection and lead to Hopf bifurcation. The existence of the Hopf bifurcation is discussed by using immune response delay as a bifurcation parameter. Numerical simulations are carried out to justify the analytical results.
Collapse
Affiliation(s)
- Junxian Yang
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Shoudong Bi
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
16
|
Kruize Z, Kootstra NA. The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Front Microbiol 2019; 10:2828. [PMID: 31866988 PMCID: PMC6906147 DOI: 10.3389/fmicb.2019.02828] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of “shock and kill” to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current “shock and kill” strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, Vu M, Lampiris H, Wong JK. HIV latency in isolated patient CD4 + T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med 2019; 10:10/430/eaap9927. [PMID: 29491188 DOI: 10.1126/scitranslmed.aap9927] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022]
Abstract
Latently infected CD4+ T cells are the main barrier to complete clearance of HIV infection, but it is unclear what mechanisms govern latent HIV infection in vivo. To address this question, we developed a new panel of reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assays specific for different HIV transcripts that define distinct blocks to transcription. We applied this panel of assays to CD4+ T cells freshly isolated from HIV-infected patients on suppressive antiretroviral therapy (ART) to quantify the degree to which different mechanisms inhibit HIV transcription. In addition, we measured the degree to which these transcriptional blocks could be reversed ex vivo by T cell activation (using anti-CD3/CD28 antibodies) or latency-reversing agents. We found that the main reversible block to HIV RNA transcription was not inhibition of transcriptional initiation but rather a series of blocks to proximal elongation, distal transcription/polyadenylation (completion), and multiple splicing. Cell dilution experiments suggested that these mechanisms operated in most of the HIV-infected CD4+ T cells examined. Latency-reversing agents exerted differential effects on the three blocks to HIV transcription, suggesting that these blocks may be governed by different mechanisms.
Collapse
Affiliation(s)
- Steven A Yukl
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA.
| | - Philipp Kaiser
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Peggy Kim
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Sushama Telwatte
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Sunil K Joshi
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Mai Vu
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Harry Lampiris
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Joseph K Wong
- San Francisco Veterans Affairs Medical Center and University of California, San Francisco, 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| |
Collapse
|
18
|
Insights into the HIV Latency and the Role of Cytokines. Pathogens 2019; 8:pathogens8030137. [PMID: 31487807 PMCID: PMC6789648 DOI: 10.3390/pathogens8030137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) has the ability to infect latently at the level of individual CD4+ cells. Latent HIV-1 proviruses are transcriptionally silent and immunologically inert, but are still capable of reactivating productive lytic infection following cellular activation. These latent viruses are the main obstacle in the eradication of HIV-1, because current HIV-1 treatment regimens are ineffective against them. Normal immunological response against an antigen activates CD4+ naïve T cells. The activated CD4+ naïve T cells undergo cell cycle, resulting in further transformation and profound proliferation to form effector CD4+ T-cells. Notably, in HIV-1 infected individuals, some of the effector CD4+ T cells get infected with HIV-1. Upon fulfillment of their effector functions, almost all activated CD4+ T cells are committed to apoptosis or programmed cell death, but a miniscule fraction revert to quiescence and become resting memory CD4+ T cells to mediate a rapid immunological response against the same antigen in the future. However, due to the quiescent nature of the resting memory T cells, the integrated HIV-1 becomes transcriptionally silent and acquires a latent phenotype. Following re-exposure to the same antigen, memory cells and integrated HIV-1 are stimulated. The reactivated latent HIV provirus subsequently proceeds through its life cycle and eventually leads to the production of new viral progeny. Recently, many strategies against HIV-1 latency have been developed and some of them have even matured to the clinical level, but none can yet effectively eliminate the latent HIV reservoir, which remains a barrier to HIV-1 cure. Therefore, alternative strategies to eradicate latent HIV need to be considered. This review provides vital knowledge on HIV latency and on strategies to supplement highly active anti-retroviral therapy (HAART) with cytokine-mediated therapeutics for dislodging the latent HIV reservoirs in order to open up new avenues for curing HIV.
Collapse
|
19
|
Interferon-inducible TRIM22 contributes to maintenance of HIV-1 proviral latency in T cell lines. Virus Res 2019; 269:197631. [PMID: 31136823 DOI: 10.1016/j.virusres.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/23/2022]
Abstract
The human immunodeficiency virus type-1 (HIV-1) establishes a state of latent infection in a small number of CD4+ T lymphocytes that, nonetheless, represent a major obstacle to viral eradication. We here show that Tripartite Motif-containing protein 22 (TRIM22), an epigenetic inhibitor of Specificity protein 1 (Sp1)-dependent HIV-1 transcription, is a relevant factor in maintaining a state of repressed HIV-1 expression at least in CD4+ T cell lines. By knocking-down (KD) TRIM22 expression, we observed an accelerated reactivation of a doxycycline (Dox)-controlled HIV-1 replication in the T lymphocytic SupT1 cell line. Furthermore, we here report for the first time that TRIM22 is a crucial factor for maintaining a state of HIV-1 quiescence in chronically infected ACH2 -T cell line while its KD potentiated HIV-1 expression in both ACH-2 and J-Lat 10.6 cell lines upon cell stimulation with either tumor necrosis factor-α (TNF-α) or histone deacetylase inhibitors (HDACi). In conclusion, TRIM22 is a novel determinant of HIV-1 latency, at least in T cell lines, thus representing a potential pharmacological target for strategies aiming at curtailing or silencing the pool of latently infected CD4+ T lymphocytes constituting the HIV-1 reservoir in individuals receiving combination antiretroviral therapy.
Collapse
|
20
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
21
|
Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proc Natl Acad Sci U S A 2019; 116:2282-2289. [PMID: 30670656 DOI: 10.1073/pnas.1819386116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV-1 integrates into the genome of target cells and establishes latency indefinitely. Understanding the molecular mechanism of HIV-1 latency maintenance is needed for therapeutic strategies to combat existing infection. In this study, we found an unexpected role for Apobec3A (apolipoprotein B MRNA editing enzyme catalytic subunit 3A, abbreviated "A3A") in maintaining the latency state within HIV-1-infected cells. Overexpression of A3A in latently infected cell lines led to lower reactivation, while knockdown or knockout of A3A led to increased spontaneous and inducible HIV-1 reactivation. A3A maintains HIV-1 latency by associating with proviral DNA at the 5' long terminal repeat region, recruiting KAP1 and HP1, and imposing repressive histone marks. We show that knockdown of A3A in latently infected human primary CD4 T cells enhanced HIV-1 reactivation. Collectively, we provide evidence and a mechanism by which A3A reinforces HIV-1 latency in infected CD4 T cells.
Collapse
|
22
|
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of "shock and kill" to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current "shock and kill" strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Debyser Z, Vansant G, Bruggemans A, Janssens J, Christ F. Insight in HIV Integration Site Selection Provides a Block-and-Lock Strategy for a Functional Cure of HIV Infection. Viruses 2018; 11:E12. [PMID: 30587760 PMCID: PMC6356730 DOI: 10.3390/v11010012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/20/2022] Open
Abstract
Despite significant improvements in therapy, the HIV/AIDS pandemic remains an important threat to public health. Current treatments fail to eradicate HIV as proviral DNA persists in long-living cellular reservoirs, leading to viral rebound whenever treatment is discontinued. Hence, a better understanding of viral reservoir establishment and maintenance is required to develop novel strategies to destroy latently infected cells, and/or to durably silence the latent provirus in infected cells. Whereas the mechanism of integration has been well studied from a catalytic point of view, it remains unknown how integration site selection and transcription are linked. In recent years, evidence has grown that lens epithelium-derived growth factor p75 (LEDGF/p75) is the main determinant of HIV integration site selection and that the integration site affects the transcriptional state of the provirus. LEDGINs have been developed as small molecule inhibitors of the interaction between LEDGF/p75 and integrase. Recently, it was shown that LEDGIN treatment in cell culture shifts the residual integrated provirus towards the inner nuclear compartment and out of transcription units in a dose dependent manner. This LEDGIN-mediated retargeting increased the proportion of provirus with a transcriptionally silent phenotype and the residual reservoir proved refractory to reactivation in vitro. LEDGINs provide us with a research tool to study the link between integration and transcription, a quintessential question in retrovirology. LEDGIN-mediated retargeting of the residual reservoirs provides a novel potential "block-and-lock" strategy as a functional cure of HIV infection.
Collapse
Affiliation(s)
- Zeger Debyser
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| | - Gerlinde Vansant
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| | - Anne Bruggemans
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| | - Julie Janssens
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| | - Frauke Christ
- Molecular Virology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, Herestraat 49⁻Bus 1023, 3000 Leuven, Flanders, Belgium.
| |
Collapse
|
24
|
Abstract
Studies of RNA Polymerase II (Pol II) transcription of the HIV-1 genome are of clinical interest, as the insight gained may lead to strategies to selectively reactivate latent viruses in patients in whom viral replication is suppressed by antiviral drugs. Such a targeted reactivation may contribute to a functional cure of infection. This review discusses five Cyclin-dependent kinases - CDK7, CDK9, CDK11, CDK2, and CDK8 - involved in transcription and processing of HIV-1 RNA. CDK7 is required for Pol II promoter clearance of reactivated viruses; CDK7 also functions as an activating kinase for CDK9 when resting CD4+ T cells harboring latent HIV-1 are activated. CDK9 is targeted by the viral Tat protein and is essential for productive Pol II elongation of the HIV-1 genome. CDK11 is associated with the TREX/THOC complex and it functions in the 3' end processing and polyadenylation of HIV-1 transcripts. CDK2 phosphorylates Tat and CDK9 and this stimulates Tat activation of Pol II transcription. CDK8 may stimulate Pol II transcription of the HIV-1 genome through co-recruitment with NF-κB to the viral promoter. Some notable open questions are discussed concerning the roles of these CDKs in HIV-1 replication and viral latency.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
25
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
26
|
Sen S, Maulik U. Recent advancement toward significant association between disordered transcripts and virus-infected diseases: a survey. Brief Funct Genomics 2018; 17:458-470. [DOI: 10.1093/bfgp/ely021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sagnik Sen
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-700032, India
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
27
|
SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin. mBio 2018; 9:mBio.02408-17. [PMID: 29717016 PMCID: PMC5930302 DOI: 10.1128/mbio.02408-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host’s modulation of HIV-1 transcription and latency. Here we revealed that “Sad1 and UNC84 domain containing 2” (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5′-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5′-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new therapeutic strategies. It has been known that the formation of repressive chromatin at the 5′-LTR of HIV-1 proviral DNA impedes viral transcription and maintains viral latency, but how the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. In this study, we performed in-depth virological and cell biological studies and discovered that an inner nuclear membrane protein, SUN2, is a novel chromatin reassembly factor that maintains repressive chromatin and thus modulates HIV-1 transcription and latency: therefore, targeting SUN2 may lead to new strategies for HIV cure.
Collapse
|
28
|
Whitney JB, Brad Jones R. In Vitro and In Vivo Models of HIV Latency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:241-263. [DOI: 10.1007/978-981-13-0484-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Song J, Carey M, Zhu H, Miao H, Ramírez JC, Wu H. Identifying the dynamic gene regulatory network during latent HIV-1 reactivation using high-dimensional ordinary differential equations. ACTA ACUST UNITED AC 2018; 11:135-153. [PMID: 34531927 DOI: 10.1504/ijcbdd.2018.10011910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactivation of latently infected cells has emerged as an important strategy for eradication of HIV. However, genetic mechanisms of regulation after reactivation remain unclear. We describe a five-step pipeline to study the dynamics of the gene regulatory network following a viral reactivation using high-dimensional ordinary differential equations. Our pipeline implements a combination of five different methods, by detecting temporally differentially expressed genes (step 1), clustering genes with similar temporal expression patterns into a small number of response modules (step2), performing a functional enrichment analysis within each gene response module (step 3), identifying a network structure based on the gene response modules using ordinary differential equations (ODE) and a high-dimensional variable selection technique (step 4), and obtaining a gene regulatory model based on refined parameter estimates using nonlinear least squares (step 5). We applied our pipeline to a time course gene expression data of latently infected T-cells following a latency-reversion.
Collapse
Affiliation(s)
- Jaejoon Song
- Department of Biostatistics, The University of Texas MD, Anderson Cancer Center, 1400 Pressler Street, Houston, TX, 77030, USA
| | - Michelle Carey
- Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Canada, H3A 0B9
| | - Hongjian Zhu
- Department of Biostatistics, The University of Texas School of Public Health, 1200 Pressler Street, Houston, TX, 77030, USA
| | - Hongyu Miao
- Department of Biostatistics, The University of Texas School of Public Health, 1200 Pressler Street, Houston, TX, 77030, USA
| | - Juan Camilo Ramírez
- Faculty of Computer Engineering, Universidad Antonio Nariño, Cl. 58a Bis 3794, Bogotá, Cundinamarca, Colombia
| | - Hulin Wu
- Department of Biostatistics, The University of Texas School of Public Health, 1200 Pressler Street, Houston, TX, USA, 77030, USA
| |
Collapse
|
30
|
Abstract
The introduction of combination antiretroviral therapy (cART) in the 1990s has dramatically changed the course of HIV infection, decreasing the risk for both AIDS- and non-AIDS-related events. Cancers, cardiovascular disease (CVD), liver and kidney disease, neurological disorders and frailty have become of great importance lately in the clinical management as they represent the principal cause of death in people living with HIV who receive cART (Kirk et al. in Clin Infect Dis 45(1):103-10, 2007; Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006; Ances et al. J Infect Dis 201(3):336-340, 2010; Desquilbet et al. J Gerontol A Biol Sci Med Sci 62(11):1279-1286, 2007; Lifson et al. HIV Clin Trials 9(3):177-185, 2008). Despite the undeniable achievements of cART, we are now faced with its limitations: a considerable proportion of individuals, referred as to immunological non-responders, fails to reconstitute the immune system despite optimal treatment and viral suppression (Kelley et al. Clin Infect Dis 48(6):787-794, 2009; Robbins et al. Clin Infect Dis 48(3):350-361, 2009) and remains at high risk for opportunistic infections and non-AIDS-related events (Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006). Moreover, the generalized state of immune activation and inflammation, linked to serious non-AIDS events, persists despite successful HIV suppression with cART. Finally, the current strategies have so far failed to eradicate the virus, and inflammation appears a driving force in viral persistence. In the light of all this, it is of fundamental importance to investigate the pathophysiological processes that link incomplete immune recovery, immune activation and HIV persistence to design targeted therapies that could impact on the three.
Collapse
Affiliation(s)
- Elena Bruzzesi
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. .,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
31
|
Manoto SL, Thobakgale L, Malabi R, Maphanga C, Ombinda-Lemboumba S, Mthunzi-Kufa P. Therapeutic strategies to fight HIV-1 latency: progress and challenges. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
33
|
Williams T, Virto C, Murillo R, Caballero P. Covert Infection of Insects by Baculoviruses. Front Microbiol 2017; 8:1337. [PMID: 28769903 PMCID: PMC5511839 DOI: 10.3389/fmicb.2017.01337] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Baculoviruses (Baculoviridae) are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera). These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host-virus interactions through the action of microRNAs (miRNA). Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host-pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect-virus pathosystems at the organismal level and to explore the evolutionary and ecological relationships of these pathogens with major crop and forest pests.
Collapse
Affiliation(s)
| | - Cristina Virto
- Bioinsecticidas Microbianos, Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Universidad Pública de NavarraMutilva, Spain
- Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de NavarraPamplona, Spain
| | - Rosa Murillo
- Bioinsecticidas Microbianos, Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Universidad Pública de NavarraMutilva, Spain
- Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de NavarraPamplona, Spain
| | - Primitivo Caballero
- Bioinsecticidas Microbianos, Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Universidad Pública de NavarraMutilva, Spain
- Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de NavarraPamplona, Spain
| |
Collapse
|
34
|
Oteiza A, Mechti N. FoxO4 negatively controls Tat-mediated HIV-1 transcription through the post-transcriptional suppression of Tat encoding mRNA. J Gen Virol 2017; 98:1864-1878. [PMID: 28699853 DOI: 10.1099/jgv.0.000837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The connection between the repression of human immunodeficiency virus type 1(HIV-1) transcription and the resting CD4+ T cell state suggests that the host transcription factors involved in the active maintenance of lymphocyte quiescence are likely to repress the viral transactivator, Tat, thereby restricting HIV-1 transcription. In this study, we analysed the interplay between Tat and the forkhead box transcription factors, FoxO1 and FoxO4. We show that FoxO1 and FoxO4 antagonize Tat-mediated transactivation of HIV-1 promoter through the repression of Tat protein expression. No effect was observed on the expression of two HIV-1 accessory proteins, Vif and Vpr. Unexpectedly, we found that FoxO1 and FoxO4 expression causes a strong dose-dependent post-transcriptional suppression of Tat mRNA, indicating that FoxO should effectively inhibit HIV-1 replication by destabilizing Tat mRNA and suppressing Tat-mediated HIV-1 transcription. In accordance with this, we observed that the Tat mRNA half-life is reduced by FoxO4 expression. The physiological relevance of our findings was validated using the J-Lat 10.6 model of latently infected cells. We demonstrated that the overexpression of a constitutively active FoxO4-TM mutant antagonized HIV-1 transcription reactivation in response to T cell activators, such as TNF-α or PMA. Altogether, our findings demonstrate that FoxO factors can control HIV-1 transcription and provide new insights into their potential role during the establishment of HIV-1 latency.
Collapse
Affiliation(s)
- Alexandra Oteiza
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Nadir Mechti
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
35
|
Graci JD, Michaels D, Chen G, Schiralli Lester GM, Nodder S, Weetall M, Karp GM, Gu Z, Colacino JM, Henderson AJ. Identification of benzazole compounds that induce HIV-1 transcription. PLoS One 2017; 12:e0179100. [PMID: 28658263 PMCID: PMC5489165 DOI: 10.1371/journal.pone.0179100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
Despite advances in antiretroviral therapy, HIV-1 infection remains incurable in patients and continues to present a significant public health burden worldwide. While a number of factors contribute to persistent HIV-1 infection in patients, the presence of a stable, long-lived reservoir of latent provirus represents a significant hurdle in realizing an effective cure. One potential strategy to eliminate HIV-1 reservoirs in patients is reactivation of latent provirus with latency reversing agents in combination with antiretroviral therapy, a strategy termed "shock and kill". This strategy has shown limited clinical effectiveness thus far, potentially due to limitations of the few therapeutics currently available. We have identified a novel class of benzazole compounds effective at inducing HIV-1 expression in several cellular models. These compounds do not act via histone deacetylase inhibition or T cell activation, and show specificity in activating HIV-1 in vitro. Initial exploration of structure-activity relationships and pharmaceutical properties indicates that these compounds represent a potential scaffold for development of more potent HIV-1 latency reversing agents.
Collapse
Affiliation(s)
- Jason D. Graci
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Daniel Michaels
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guangming Chen
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Gillian M. Schiralli Lester
- Department of Pediatrics, Neonatology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sarah Nodder
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Gary M. Karp
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Zhengxian Gu
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Joseph M. Colacino
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Andrew J. Henderson
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
36
|
Wilkes RP, Anis E, Dunbar D, Lee PYA, Tsai YL, Lee FC, Chang HFG, Wang HTT, Graham EM. Rapid and sensitive insulated isothermal PCR for point-of-need feline leukaemia virus detection. J Feline Med Surg 2017; 20:362-369. [PMID: 28589743 PMCID: PMC5871024 DOI: 10.1177/1098612x17712847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objectives Feline leukaemia virus (FeLV), a gamma retrovirus, causes diseases of the
feline haematopoietic system that are invariably fatal. Rapid and accurate
testing at the point-of-need (PON) supports prevention of virus spread and
management of clinical disease. This study evaluated the performance of an
insulated isothermal PCR (iiPCR) that detects proviral DNA, and a reverse
transcription (RT)-iiPCR that detects both viral RNA and proviral DNA, for
FeLV detection at the PON. Methods Mycoplasma haemofelis, feline coronavirus, feline
herpesvirus, feline calicivirus and feline immunodeficiency virus were used
to test analytical specificity. In vitro transcribed RNA, artificial
plasmid, FeLV strain American Type Culture Collection VR-719 and a clinical
FeLV isolate were used in the analytical sensitivity assays. A retrospective
study including 116 clinical plasma and serum samples that had been tested
with virus isolation, real-time PCR and ELISA, and a prospective study
including 150 clinical plasma and serum samples were implemented to evaluate
the clinical performances of the iiPCR-based methods for FeLV detection. Results Ninety-five percent assay limit of detection was calculated to be 16 RNA and
five DNA copies for the RT-iiPCR, and six DNA copies for the iiPCR. Both
reactions had analytical sensitivity comparable to a reference real-time PCR
(qPCR) and did not detect five non-target feline pathogens. The clinical
performance of the RT-iiPCR and iiPCR had 98.82% agreement (kappa[κ] = 0.97)
and 100% agreement (κ = 1.0), respectively, with the qPCR (n = 85). The
agreement between an automatic nucleic extraction/RT-iiPCR system and virus
isolation to detect FeLV in plasma or serum was 95.69% (κ = 0.95) and 98.67%
(κ = 0.85) in a retrospective (n = 116) and a prospective (n = 150) study,
respectively. Conclusions and relevance These results suggested that both RT-iiPCR and iiPCR assays can serve as
reliable tools for PON FeLV detection.
Collapse
Affiliation(s)
- Rebecca P Wilkes
- 1 Clinical Virology Laboratory, University of Tennessee Veterinary Medical Center, Knoxville, TN, USA.,*Current address: Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - Eman Anis
- 1 Clinical Virology Laboratory, University of Tennessee Veterinary Medical Center, Knoxville, TN, USA.,2 Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Beheira, Egypt.,*Current address: Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - Dawn Dunbar
- 3 Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Elizabeth M Graham
- 3 Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Kobayashi Y, Gélinas C, Dougherty JP. Histone deacetylase inhibitors containing a benzamide functional group and a pyridyl cap are preferentially effective human immunodeficiency virus-1 latency-reversing agents in primary resting CD4+ T cells. J Gen Virol 2017; 98:799-809. [PMID: 28113052 PMCID: PMC5657027 DOI: 10.1099/jgv.0.000716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antiretroviral therapy (ART) can control human immunodeficiency virus-1 (HIV-1) replication in infected individuals. Unfortunately, patients remain persistently infected owing to the establishment of latent infection requiring that ART be maintained indefinitely. One strategy being pursued involves the development of latency-reversing agents (LRAs) to eliminate the latent arm of the infection. One class of molecules that has been tested for LRA activity is the epigenetic modulating compounds histone deacetylases inhibitors (HDACis). Previously, initial screening of these molecules typically commenced using established cell models of viral latency, and although certain drugs such as the HDACi suberoylanilide hydroxamic acid demonstrated strong activity in these models, it did not translate to comparable activity with patient samples. Here we developed a primary cell model of viral latency using primary resting CD4+ T cells infected with Vpx-complemented HIV-1 and found that the activation profile using previously described LRAs mimicked that obtained with patient samples. This primary cell model was used to evaluate 94 epigenetic compounds. Not surprisingly, HDACis were found to be the strongest activators. However, within the HDACi class, the most active LRAs with the least pronounced toxicity contained a benzamide functional moiety with a pyridyl cap group, as exemplified by the HDACi chidamide. The results indicate that HDACis with a benzamide moiety and pyridyl cap group should be considered for further drug development in the pursuit of a successful viral clearance strategy.
Collapse
Affiliation(s)
- Yoshifumi Kobayashi
- Department of Molecular Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Céline Gélinas
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Joseph P Dougherty
- Department of Molecular Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
38
|
Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017; 53:329-339. [PMID: 28258391 DOI: 10.1007/s11262-017-1443-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
Similarly to other retroviruses, HIV-1 integrates its genome into the cellular chromosome. Expression of viral genes from the integrated viral DNA could then be regulated by the host genome. If the infected cell suppresses viral gene expression, the virus will undergo latency. The latently infected cells cannot be detected or cleared by the immune system since they do not express viral antigens. These cells remain undetected for several years, even under antiretroviral treatments. The silenced HIV-1 DNA could be reactivated under certain conditions. Despite the efficient use of antiretroviral drugs, HIV-1 latently infected cells remain the major obstacles to a permanent cure. In this review, we discuss the cellular and molecular mechanisms through which HIV-1 establishes latency.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.,Department of Biology, Faculty of Science, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.
| |
Collapse
|
39
|
Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. mBio 2017; 8:mBio.00133-17. [PMID: 28246360 PMCID: PMC5347344 DOI: 10.1128/mbio.00133-17] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We showed previously that the histone lysine methyltransferase (HKMT) H3K27me3 (EZH2) is the catalytic subunit of Polycomb repressive complex 2 (PRC2) and is required for the maintenance of HIV-1 latency in Jurkat T cells. Here we show, by using chromatin immunoprecipitation experiments, that both PRC2 and euchromatic histone-lysine N-methyltransferase 2 (EHMT2), the G9a H3K9me2-3 methyltransferase, are highly enriched at the proviral 5′ long terminal repeat (LTR) and rapidly displaced upon proviral reactivation. Clustered regularly interspaced short palindromic repeat(s) (CRISPR)-mediated knockout of EZH2 caused depletion of both EZH2 and EHMT2, but CRISPR-mediated knockout of EHMT2 was selective for EHMT2, consistent with the failure of EHMT2 knockouts to induce latent proviruses in this system. Either (i) knockout of methyltransferase by short hairpin RNA in Jurkat T cells prior to HIV-1 infection or (ii) inhibition of the enzymes with drugs significantly reduced the levels of the resulting silenced viruses, demonstrating that both enzymes are required to establish latency. To our surprise, inhibition of EZH2 (by GSK-343 or EPZ-6438) or inhibition of EHMT2 (by UNC-0638) in the Th17 primary cell model of HIV latency or resting memory T cells isolated from HIV-1-infected patients receiving highly active antiretroviral therapy, was sufficient to induce the reactivation of latent proviruses. The methyltransferase inhibitors showed synergy with interleukin-15 and suberanilohydroxamic acid. We conclude that both PRC2 and EHMT2 are required for the establishment and maintenance of HIV-1 proviral silencing in primary cells. Furthermore, EZH2 inhibitors such as GSK-343 and EPZ-6438 and the EHMT2 inhibitor UNC-0638 are strong candidates for use as latency-reversing agents in clinical studies. Highly active antiretroviral therapy (HAART) reduces the circulating virus to undetectable levels. Although patients adhering to the HAART regimen have minimal viremia, HIV persists because of the existence of latent but replication-competent proviruses in a very small population of resting memory CD4+ T cells (~1 in 106 cells). Latency remains the major obstacle to a functional cure for HIV infection, since the persistent reservoir almost invariably rebounds within 2 to 8 weeks when HAART is interrupted. In latently infected cells, the HIV genome is stably integrated into the host chromosome but transcriptionally repressed because of epigenetic silencing mechanisms. We demonstrate here that multiple histone lysine methyltransferases play a critical role in both the establishment and maintenance of proviral silencing in cells obtained from well-suppressed patients. Drugs that inhibit these enzymes are available from oncology applications and may find a use in reversing latency as part of a reservoir reduction strategy.
Collapse
|
40
|
Telwatte S, Yukl SA. Exploring HIV latency using transcription profiling. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The major barrier to a cure for HIV is the existence of reservoirs consisting predominantly of latently infected CD4+ T cells, which do not produce virus constitutively but can be induced to produce infectious virus on activation. HIV latency research has largely focused on peripheral blood, yet most HIV-infected cells reside in tissues, especially the gut, where differences in drug penetration, cell types, and immune responses may impact mechanisms of persistence. Exploring the differences between the gut and the blood in transcriptional blocks may reveal fundamental insights into mechanisms that contribute to HIV latency. Our novel transcriptional profiling assays enable us to determine where blocks to HIV transcription occur in various tissues and the magnitude of their contribution. These assays could also be adapted to investigate latency established by other retroviridae or even DNA viruses such as herpesviridae with a view to pinpointing mechanisms underlying latency in vivo and ultimately contribute to designing a cure.
Collapse
|
41
|
Naf1 Regulates HIV-1 Latency by Suppressing Viral Promoter-Driven Gene Expression in Primary CD4+ T Cells. J Virol 2016; 91:JVI.01830-16. [PMID: 27795436 DOI: 10.1128/jvi.01830-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
HIV-1 latency is characterized by reversible silencing of viral transcription driven by the long terminal repeat (LTR) promoter of HIV-1. Cellular and viral factors regulating LTR activity contribute to HIV-1 latency, and certain repressive cellular factors modulate viral transcription silencing. Nef-associated factor 1 (Naf1) is a host nucleocytoplasmic shuttling protein that regulates multiple cellular signaling pathways and HIV-1 production. We recently reported that nuclear Naf1 promoted nuclear export of unspliced HIV-1 gag mRNA, leading to increased Gag production. Here we demonstrate new functions of Naf1 in regulating HIV-1 persistence. We found that Naf1 contributes to the maintenance of HIV-1 latency by inhibiting LTR-driven HIV-1 gene transcription in a nuclear factor kappa B-dependent manner. Interestingly, Naf1 knockdown significantly enhanced viral reactivation in both latently HIV-1-infected Jurkat T cells and primary central memory CD4+ T cells. Furthermore, Naf1 knockdown in resting CD4+ T cells from HIV-1-infected individuals treated with antiretroviral therapy significantly increased viral reactivation upon T-cell activation, suggesting an important role of Naf1 in modulating HIV-1 latency in vivo Our findings provide new insights for a better understanding of HIV-1 latency and suggest that inhibition of Naf1 activity to activate latently HIV-1-infected cells may be a potential therapeutic strategy. IMPORTANCE HIV-1 latency is characterized mainly by a reversible silencing of LTR promoter-driven transcription of an integrated provirus. Cellular and viral proteins regulating LTR activity contribute to the modulation of HIV-1 latency. In this study, we found that the host protein Naf1 inhibited HIV-1 LTR-driven transcription of HIV genes and contributed to the maintenance of HIV-1 latency. Our findings provide new insights into the effects of host modulation on HIV-1 latency, which may lead to a potential therapeutic strategy for HIV persistence by targeting the Naf1 protein.
Collapse
|
42
|
Sörstedt E, Nilsson S, Blaxhult A, Gisslén M, Flamholc L, Sönnerborg A, Yilmaz A. Viral blips during suppressive antiretroviral treatment are associated with high baseline HIV-1 RNA levels. BMC Infect Dis 2016; 16:305. [PMID: 27329293 PMCID: PMC4915053 DOI: 10.1186/s12879-016-1628-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/07/2016] [Indexed: 12/01/2022] Open
Abstract
Background Many HIV-1-infected patients on suppressive antiretroviral therapy (ART) have transiently elevated HIV RNA levels. The clinical significance of these viral blips is uncertain. We have determined the incidence of blips and investigated important associations in the Swedish HIV-cohort. Methods HIV-1-infected ART naïve adults who commenced ART 2007–2013 were retrospectively included. Viral blips were defined as a transient viral load between 50 and 500 copies/mL Subjects not suppressed after six months on ART were excluded. Results Viral blips were found in 76/735 included subjects (10.3 %) and in 90/4449 samples (2.0 %). Median blip viral load was 76 copies/mL (range 56–138). Median follow-up time was 170 weeks (range 97–240). Baseline viral load was higher in subjects with viral blips (median log10 4.85 copies/mL) compared with subjects without blips (median log10 4.55 copies/mL) (p < 0.01). There was a significant association between viral blips and risk for subsequent virological failure (p < 0.001). Conclusions The Swedish national HIV-cohort has a low incidence of viral blips (10 %). Blips were associated with high baseline viral load and an increased risk of subsequent virological failure.
Collapse
Affiliation(s)
- Erik Sörstedt
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden.
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, 412 58, Gothenburg, Sweden
| | - Anders Blaxhult
- Department of Infectious Diseases, Venhälsan-Södersjukhuset, 118 83, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Leo Flamholc
- Department of Infectious Diseases, Malmö University Hospital, 205 02, Malmö, Sweden
| | - Anders Sönnerborg
- Department of Infectious Diseases, Karolinska Institute, Karolinska University Hospital, 141 86, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska Institute, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| |
Collapse
|
43
|
HIV-Induced Epigenetic Alterations in Host Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:27-38. [PMID: 26659262 DOI: 10.1007/978-3-319-24738-0_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI).
Collapse
|
44
|
Abstract
To establish a productive infection, HIV-1 must counteract cellular innate immune mechanisms and redirect cellular processes toward viral replication. Recent studies have discovered that HIV-1 and other primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to achieve these ends. The viral Vpr and Vpx proteins target cell cycle controls to counter innate immunity. The cell-cycle-related protein Cyclin L2 is also utilized to counter innate immunity. The viral Tat protein utilizes Cyclin T1 to activate proviral transcription, and regulation of Cyclin T1 levels in CD4(+) T cells has important consequences for viral replication and latency. This review will summarize this emerging evidence that primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to enhance replication.
Collapse
|
45
|
Perdigão P, Gaj T, Santa-Marta M, Barbas CF, Goncalves J. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors. PLoS One 2016; 11:e0150037. [PMID: 26933881 PMCID: PMC4774903 DOI: 10.1371/journal.pone.0150037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022] Open
Abstract
The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.
Collapse
Affiliation(s)
- Pedro Perdigão
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mariana Santa-Marta
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos F. Barbas
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Departments of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joao Goncalves
- Research Institute for Medicines (iMed ULisboa), Faculdadede Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
46
|
Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D, Weber J, Kučerová D, Vencálek O, Hirsch I, Hejnar J. Development of 5' LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 2016; 8:19. [PMID: 26900410 PMCID: PMC4759744 DOI: 10.1186/s13148-016-0185-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) latency represents the major barrier to virus eradication in infected individuals because cells harboring latent HIV-1 provirus are not affected by current antiretroviral therapy (ART). We previously demonstrated that DNA methylation of HIV-1 long terminal repeat (5' LTR) restricts HIV-1 reactivation and, together with chromatin conformation, represents an important mechanism of HIV-1 latency maintenance. Here, we explored the new issue of temporal development of DNA methylation in latent HIV-1 5' LTR. RESULTS In the Jurkat CD4(+) T cell model of latency, we showed that the stimulation of host cells contributed to de novo DNA methylation of the latent HIV-1 5' LTR sequences. Consecutive stimulations of model CD4(+) T cell line with TNF-α and PMA or with SAHA contributed to the progressive accumulation of 5' LTR DNA methylation. Further, we showed that once established, the high DNA methylation level of the latent 5' LTR in the cell line model was a stable epigenetic mark. Finally, we explored the development of 5' LTR DNA methylation in the latent reservoir of HIV-1-infected individuals who were treated with ART. We detected low levels of 5' LTR DNA methylation in the resting CD4(+) T cells of the group of patients who were treated for up to 3 years. However, after long-term ART, we observed an accumulation of 5' LTR DNA methylation in the latent reservoir. Importantly, within the latent reservoir of some long-term-treated individuals, we uncovered populations of proviral molecules with a high density of 5' LTR CpG methylation. CONCLUSIONS Our data showed the presence of 5' LTR DNA methylation in the long-term reservoir of HIV-1-infected individuals and implied that the transient stimulation of cells harboring latent proviruses may contribute, at least in part, to the methylation of the HIV-1 promoter.
Collapse
Affiliation(s)
- Kateřina Trejbalová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Denisa Kovářová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Jana Blažková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ladislav Machala
- Department of Infectious Diseases, Third Faculty of Medicine, Charles University and Hospital Na Bulovce in Prague, Budínova 67/2, CZ-18081 Prague 8, Czech Republic
| | - David Jilich
- Department of Infectious, Tropical and Parasitic Diseases, First Faculty of Medicine, Charles University in Prague and Hospital Na Bulovce, Budínova 67/ 2, CZ-18081 Prague 8, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science of the Palacky University in Olomouc, Olomouc, CZ-77146 Czech Republic
| | - Ivan Hirsch
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic ; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic ; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, CZ-12844 Prague 2, Czech Republic ; Inserm, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13273 Marseille, France ; Institut Paoli-Calmettes, F-13009 Marseille, France ; Aix-Marseille Univ., F-13284 Marseille, France ; CNRS, UMR7258, CRCM, F-13009 Marseille, France
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| |
Collapse
|
47
|
Chan CN, Trinité B, Lee CS, Mahajan S, Anand A, Wodarz D, Sabbaj S, Bansal A, Goepfert PA, Levy DN. HIV-1 latency and virus production from unintegrated genomes following direct infection of resting CD4 T cells. Retrovirology 2016; 13:1. [PMID: 26728316 PMCID: PMC4700562 DOI: 10.1186/s12977-015-0234-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background HIV-1 integration is prone to a high rate of failure, resulting in the accumulation of unintegrated viral genomes (uDNA) in vivo and in vitro. uDNA can be transcriptionally active, and circularized uDNA genomes are biochemically stable in non-proliferating cells. Resting, non-proliferating CD4 T cells are prime targets of HIV-1 infection and latently infected resting CD4 T cells are the major barrier to HIV cure. Our prior studies demonstrated that uDNA generates infectious virions when T cell activation follows rather than precedes infection. Results Here, we characterize in primary resting CD4 T cells the dynamics of integrated and unintegrated virus expression, genome persistence and sensitivity to latency reversing agents. Unintegrated HIV-1 was abundant in directly infected resting CD4 T cells. Maximal gene expression from uDNA was delayed compared with integrated HIV-1 and was less toxic, resulting in uDNA enrichment over time relative to integrated proviruses. Inhibiting integration with raltegravir shunted the generation of durable latency from integrated to unintegrated genomes. Latent uDNA was activated to de novo virus production by latency reversing agents that also activated latent integrated proviruses, including PKC activators, histone deacetylase inhibitors and P-TEFb agonists. However, uDNA responses displayed a wider dynamic range, indicating differential regulation of expression relative to integrated proviruses. Similar to what has recently been demonstrated for latent integrated proviruses, one or two applications of latency reversing agents failed to activate all latent unintegrated genomes. Unlike integrated proviruses, uDNA gene expression did not down modulate expression of HLA Class I on resting CD4 T cells. uDNA did, however, efficiently prime infected cells for killing by HIV-1-specific cytotoxic T cells. Conclusions These studies demonstrate that contributions by unintegrated genomes to HIV-1 gene expression, virus production, latency and immune responses are inherent properties of the direct infection of resting CD4 T cells. Experimental models of HIV-1 latency employing directly infected resting CD4 T cells should calibrate the contribution of unintegrated HIV-1. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0234-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi N Chan
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Benjamin Trinité
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Caroline S Lee
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Saurabh Mahajan
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Akanksha Anand
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, School of Biological, Sciences, Irvine, CA, 92697, USA.
| | - Steffanie Sabbaj
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
48
|
Swaine T, Dittmar MT. CDC42 Use in Viral Cell Entry Processes by RNA Viruses. Viruses 2015; 7:6526-36. [PMID: 26690467 PMCID: PMC4690878 DOI: 10.3390/v7122955] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
The cellular actin cytoskeleton presents a barrier that must be overcome by many viruses, and it has become increasingly apparent many viral species have developed a diverse repertoire of mechanisms to hijack cellular actin-regulating signalling pathways as part of their cell entry processes. The Rho family GTPase Cdc42 is appreciated as a key moderator of cellular actin dynamics, and the development of specific Cdc42-inhibiting agents has given us an unprecedented ability to investigate its individual role in signalling pathways. However, investigative use of said agents, and the subsequent characterisation of the role Cdc42 plays in viral entry processes has been lacking. Here, we describe the current literature on the role of Cdc42 in human immunodeficiency virus (HIV)-1 cell entry, which represents the most investigated instance of Cdc42 function in viral cell entry processes, and also review evidence of Cdc42 use in other RNA virus cell entries, demonstrating prime areas for more extensive research using similar techniques.
Collapse
Affiliation(s)
- Thomas Swaine
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark Street, London E1 2AT, UK.
| | - Matthias T Dittmar
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
49
|
Liu C, Ma X, Liu B, Chen C, Zhang H. HIV-1 functional cure: will the dream come true? BMC Med 2015; 13:284. [PMID: 26588898 PMCID: PMC4654816 DOI: 10.1186/s12916-015-0517-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
The reservoir of human immunodeficiency virus type 1 (HIV-1), a long-lived pool of latently infected cells harboring replication-competent viruses, is the major obstacle to curing acquired immune deficiency syndrome (AIDS). Although the combination antiretroviral therapy (cART) can successfully suppress HIV-1 viremia and significantly delay the progression of the disease, it cannot eliminate the viral reservoir and the patient must continue to take anti-viral medicines for life. Currently, the appearance of the 'Berlin patient', the 'Boston patients', and the 'Mississippi baby' have inspired many therapeutic strategies for HIV-1 aimed at curing efforts. However, the specific eradication of viral latency and the recovery and optimization of the HIV-1-specific immune surveillance are major challenges to achieving such a cure. Here, we summarize recent studies addressing the mechanisms underlying the viral latency and define two categories of viral reservoir: 'shallow' and 'deep'. We also present the current strategies and recent advances in the development of a functional cure for HIV-1, focusing on full/partial replacement of the immune system, 'shock and kill', and 'permanent silencing' approaches.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
50
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|