1
|
Alcazar-Felix RJ, Jhaveri A, Iqbal J, Srinath A, Bennett C, Bindal A, Vera Cruz D, Romanos S, Hage S, Stadnik A, Lee J, Lightle R, Shenkar R, Koskimäki J, Polster SP, Girard R, Awad IA. A Systematic Review of MicroRNAs in Hemorrhagic Neurovascular Disease: Cerebral Cavernous Malformations as a Paradigm. Int J Mol Sci 2025; 26:3794. [PMID: 40332397 PMCID: PMC12028044 DOI: 10.3390/ijms26083794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Hemorrhagic neurovascular diseases, with high mortality and poor outcomes, urge novel biomarker discovery and therapeutic targets. Micro-ribonucleic acids (miRNAs) are potent post-transcriptional regulators of gene expression. They have been studied in association with disease states and implicated in mechanistic gene interactions in various pathologies. Their presence and stability in circulating fluids also suggest a role as biomarkers. This review summarizes the current state of knowledge about miRNAs in the context of cerebral cavernous malformations (CCMs), a disease involving cerebrovascular dysmorphism and hemorrhage, with known genetic underpinnings. We also review common and distinct miRNAs of CCM compared to other diseases with brain vascular dysmorphism and hemorrhage. A systematic search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline, queried all peer-reviewed articles published in English as of January 2025 and reported miRNAs associated with four hemorrhagic neurovascular diseases: CCM, arteriovenous malformations, moyamoya disease, and intracerebral hemorrhage. The PubMed systematic search retrieved 154 articles that met the inclusion criteria, reporting a total of 267 unique miRNAs identified in the literature on these four hemorrhagic neurovascular diseases. Of these 267 miRNAs, 164 were identified in preclinical studies, while 159 were identified in human subjects. Seventeen miRNAs were common to CCM and other hemorrhagic diseases. Common and unique disease-associated miRNAs in this systematic review motivate novel mechanistic hypotheses and have potential applications in diagnostic, predictive, prognostic, and therapeutic contexts of use. Much of current research can be considered hypothesis-generating, reflecting association rather than causation. Future areas of mechanistic investigation are proposed alongside approaches to analytic and clinical validations of contexts of use for biomarkers.
Collapse
Affiliation(s)
- Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Aditya Jhaveri
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Javed Iqbal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Carolyn Bennett
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Diana Vera Cruz
- Center for Research Informatics, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Justine Lee
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Janne Koskimäki
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Sean P. Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| |
Collapse
|
2
|
Galvão GDF, Trefilio LM, Salvio AL, da Silva EV, Alves-Leon SV, Fontes-Dantas FL, de Souza JM. Comprehensive analysis of Novel mutations in CCM1/KRIT1 and CCM2/MGC4607 and their clinical implications in Cerebral Cavernous malformations. J Stroke Cerebrovasc Dis 2024; 33:107947. [PMID: 39181174 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Cerebral Cavernous Malformations (CCM) is a genetic disease characterized by vascular abnormalities in the brain and spinal cord, affecting 0.4-0.5 % of the population. We identified two novel pathogenic mutations, CCM1/KRIT1 c.811delT (p.Trp271GlyfsTer5) and CCM2/MGC4607 c.613_614insGG p.Glu205GlyfsTer31), which disrupt crucial protein domains and potentially alter disease progression. OBJECTIVE The study aims to comprehensively analyze a Brazilian cohort of CCM patients, integrating genetic, clinical, and structural aspects. Specifically, we sought to identify novel mutations within the CCM complex, and explore their potential impact on disease progression. METHODS We conducted a detailed examination of neuroradiological and clinical features in both symptomatic and asymptomatic CCM patients, performing genetic analyses through sequencing of the CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes In silico structural predictions were carried out using PolyPhen-2, SIFT, and Human Genomics Community tools. Protein-protein interactions and docking analyses were explored using the STRING database. RESULTS Genetic analysis identifies 6 pathogenic mutations, 4 likely pathogenic, 1 variants of uncertain significance, and 7 unclassified mutations, including the novel mutations in CCM1 c.811delT and CCM2 c.613_614insGG. In silico structural analysis revealed significant alterations in protein structure, supporting their pathogenicity. Protein-protein interaction analysis indicated nuanced impacts on cellular processes. Clinically, we observed a broad spectrum of symptoms, including seizures and focal neurological deficits. However, no statistically significant differences were found in lesion burden, age of first symptom onset, or sex between the identified CCM1/KRIT1 and CCM2/MGC4607 mutations among all patients studied. CONCLUSION This study enhances the understanding of CCM by linking clinical variability, genetic mutations, and structural effects. The identification of these novel mutations opens new avenues for research and potential therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo da Fontoura Galvão
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brasil
| | - Luisa Menezes Trefilio
- Universidade Estadual do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Estado do Rio de Janeiro, Instituto Biomédico, Rio de Janeiro RJ, Brasil
| | - Andreza Lemos Salvio
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Elielson Veloso da Silva
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil
| | - Soniza Vieira Alves-Leon
- Universidade Federal do Estado do Rio de Janeiro, Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Rio de Janeiro RJ, Brasil; Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurologia, Rio de Janeiro RJ, Brasil
| | - Fabrícia Lima Fontes-Dantas
- Universidade Estadual do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brasil.
| | - Jorge Marcondes de Souza
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brasil
| |
Collapse
|
3
|
Ball NJ, Ghimire S, Follain G, Pajari AO, Wurzinger D, Vaitkevičiūtė M, Cowell AR, Berki B, Ivaska J, Paatero I, Goult BT, Jacquemet G. TLNRD1 is a CCM complex component and regulates endothelial barrier integrity. J Cell Biol 2024; 223:e202310030. [PMID: 39013281 PMCID: PMC11252447 DOI: 10.1083/jcb.202310030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/08/2024] [Accepted: 05/23/2024] [Indexed: 07/18/2024] Open
Abstract
We previously identified talin rod domain-containing protein 1 (TLNRD1) as a potent actin-bundling protein in vitro. Here, we report that TLNRD1 is expressed in the vasculature in vivo. Its depletion leads to vascular abnormalities in vivo and modulation of endothelial cell monolayer integrity in vitro. We demonstrate that TLNRD1 is a component of the cerebral cavernous malformations (CCM) complex through its direct interaction with CCM2, which is mediated by a hydrophobic C-terminal helix in CCM2 that attaches to a hydrophobic groove on the four-helix domain of TLNRD1. Disruption of this binding interface leads to CCM2 and TLNRD1 accumulation in the nucleus and actin fibers. Our findings indicate that CCM2 controls TLNRD1 localization to the cytoplasm and inhibits its actin-bundling activity and that the CCM2-TLNRD1 interaction impacts endothelial actin stress fiber and focal adhesion formation. Based on these results, we propose a new pathway by which the CCM complex modulates the actin cytoskeleton and vascular integrity.
Collapse
Affiliation(s)
- Neil J. Ball
- School of Biosciences, University of Kent, Canterbury, UK
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sujan Ghimire
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Gautier Follain
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ada O. Pajari
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Diana Wurzinger
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Monika Vaitkevičiūtė
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | | | - Bence Berki
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Life Technologies, University of Turku, Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, UK
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Guillaume Jacquemet
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
4
|
Jauhiainen S, Onyeogaziri FC, Lazzaroni F, Conze LL, Laakkonen JP, Laham-Karam N, Laakso A, Niemelä M, Rezai Jahromi B, Magnusson PU. Proteomics on human cerebral cavernous malformations reveals novel biomarkers in neurovascular dysfunction for the disease pathology. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167139. [PMID: 38537685 DOI: 10.1016/j.bbadis.2024.167139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Cerebral cavernous malformation (CCM) is a disease associated with an elevated risk of focal neurological deficits, seizures, and hemorrhagic stroke. The disease has an inflammatory profile and improved knowledge of CCM pathology mechanisms and exploration of candidate biomarkers will enable new non-invasive treatments. METHODS We analyzed protein signatures in human CCM tissue samples by using a highly specific and sensitive multiplexing technique, proximity extension assay. FINDINGS Data analysis revealed CCM specific proteins involved in endothelial dysfunction/inflammation/activation, leukocyte infiltration/chemotaxis, hemostasis, extracellular matrix dysfunction, astrocyte and microglial cell activation. Biomarker expression profiles matched bleeding status, especially with higher levels of inflammatory markers and activated astrocytes in ruptured than non-ruptured samples, some of these biomarkers are secreted into blood or urine. Furthermore, analysis was also done in a spatially resolving manner by separating the lesion area from the surrounding brain tissue. Our spatial studies revealed that although appearing histologically normal, the CCM border areas were pathological when compared to control brain tissues. Moreover, the functional relevance of CD93, ICAM-1 and MMP9, markers related to endothelial cell activation and extracellular matrix was validated by a murine pre-clinical CCM model. INTERPRETATION Here we present a novel strategy for proteomics analysis on human CCMs, offering a possibility for high-throughput protein screening acquiring data on the local environment in the brain. Our data presented here describe CCM relevant brain proteins and specifically those which are secreted can serve the need of circulating CCM biomarkers to predict cavernoma's risk of bleeding.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Francesca Lazzaroni
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lei Liu Conze
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Frias-Anaya E, Gallego-Gutierrez H, Gongol B, Weinsheimer S, Lai CC, Orecchioni M, Sriram A, Bui CM, Nelsen B, Hale P, Pham A, Shenkar R, DeBiasse D, Lightle R, Girard R, Li Y, Srinath A, Daneman R, Nudleman E, Sun H, Guma M, Dubrac A, Mesarwi OA, Ley K, Kim H, Awad IA, Ginsberg MH, Lopez-Ramirez MA. Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Arterioscler Thromb Vasc Biol 2024; 44:1246-1264. [PMID: 38660801 PMCID: PMC11111348 DOI: 10.1161/atvbaha.123.320367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Chemokine CX3CL1/metabolism
- Chemokine CX3CL1/genetics
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Disease Models, Animal
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hypoxia/metabolism
- Hypoxia/complications
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/metabolism
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Eduardo Frias-Anaya
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Helios Gallego-Gutierrez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Brendan Gongol
- Department of Health Sciences, Victor Valley College, Victorville, CA (B.G.)
- Institute for Integrative Genome Biology, 1207F Genomics Building, University of California, Riverside (B.G.)
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Catherine Chinhchu Lai
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Aditya Sriram
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Cassandra M Bui
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Bliss Nelsen
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Preston Hale
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Angela Pham
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Richard Daneman
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| | - Eric Nudleman
- Department of Ophthalmology (E.N.), University of California San Diego, La Jolla
| | - Hao Sun
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Monica Guma
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, Quebec, Canada. Département de Pathologie et Biologie Cellulaire, Université de Montréal, Quebec, Canada (A.D.)
| | - Omar A Mesarwi
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Mark H Ginsberg
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| |
Collapse
|
6
|
Offenberger J, Chen B, Rossitto LA, Jin I, Conaboy L, Gallego-Gutierrez H, Nelsen B, Frias-Anaya E, Gonzalez DJ, Anagnostaras S, Lopez-Ramirez MA. Behavioral impairments are linked to neuroinflammation in mice with Cerebral Cavernous Malformation disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596485. [PMID: 38853989 PMCID: PMC11160801 DOI: 10.1101/2024.05.29.596485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cerebral Cavernous Malformations (CCMs) are neurovascular abnormalities in the central nervous system (CNS) caused by loss of function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3) genes. One of the most common symptoms in CCM patients is associated with motor disability, weakness, seizures, stress, and anxiety, and the extent of the symptom or symptoms may be due to the location of the lesion within the CNS or whether multiple lesions are present. Previous studies have primarily focused on understanding the pathology of CCM using animal models. However, more research has yet to explore the potential impact of CCM lesions on behavioral deficits in animal models, including effects on short-term and long-term memory, motor coordination, and function. Methods We used the accelerating RotaRod test to assess motor and coordination deficits. We also used the open field test to assess locomotor activity and pathology-related behavior and Pavlovian fear conditioning to assess short-and long-term memory deficits. Our behavioral studies were complemented by proteomics, histology, immunofluorescence, and imaging techniques. We found that neuroinflammation is crucial in behavioral deficits in male and female mice with neurovascular CCM lesions (Slco1c1-iCreERT2; Pdcd10 fl/fl ; Pdcd10 BECKO ). Results Functional behavior tests in male and female Pdcd10 BECKO mice revealed that CCM lesions cause sudden motor coordination deficits associated with the manifestation of profound neuroinflammatory lesions. Our findings indicate that maturation of CCM lesions in Pdcd10 BECKO mice also experienced a significant change in short- and long-term memory compared to their littermate controls, Pdcd10 fl/fl mice. Proteomic experiments reveal that as CCM lesions mature, there is an increase in pathways associated with inflammation, coagulation, and angiogenesis, and a decrease in pathways associated with learning and plasticity. Therefore, our study shows that Pdcd10 BECKO mice display a wide range of behavioral deficits due to significant lesion formation in their central nervous system and that signaling pathways associated with neuroinflammation and learning impact behavioral outcomes. Conclusions Our study found that CCM animal models exhibited behavioral impairments such as decreased motor coordination and amnesia. These impairments were associated with the maturation of CCM lesions that displayed a neuroinflammatory pattern.
Collapse
Affiliation(s)
- Joseph Offenberger
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Bianca Chen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Irisa Jin
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Liam Conaboy
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
| | | | - Bliss Nelsen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Stephan Anagnostaras
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
- Program in Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Schnitzler GR, Kang H, Fang S, Angom RS, Lee-Kim VS, Ma XR, Zhou R, Zeng T, Guo K, Taylor MS, Vellarikkal SK, Barry AE, Sias-Garcia O, Bloemendal A, Munson G, Guckelberger P, Nguyen TH, Bergman DT, Hinshaw S, Cheng N, Cleary B, Aragam K, Lander ES, Finucane HK, Mukhopadhyay D, Gupta RM, Engreitz JM. Convergence of coronary artery disease genes onto endothelial cell programs. Nature 2024; 626:799-807. [PMID: 38326615 PMCID: PMC10921916 DOI: 10.1038/s41586-024-07022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.
Collapse
Affiliation(s)
- Gavin R Schnitzler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Helen Kang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Shi Fang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ramcharan S Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Vivian S Lee-Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Ronghao Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Tony Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shamsudheen K Vellarikkal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aurelie E Barry
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar Sias-Garcia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alex Bloemendal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tung H Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Drew T Bergman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Stephen Hinshaw
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan Cheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Cleary
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Computing and Data Sciences, Departments of Biology and Biomedical Engineering, Biological Design Center, and Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Krishna Aragam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Rajat M Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Wang R, Lu D, Song R, Du L, Yang X, Wu ST, Wang X, Wong J, Xu Z, Zhao Q, Liu R, Zheng X. Epicardial CCM2 Promotes Cardiac Development and Repair Via its Regulation on Cytoskeletal Reorganization. JACC Basic Transl Sci 2024; 9:203-219. [PMID: 38510716 PMCID: PMC10950406 DOI: 10.1016/j.jacbts.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 03/22/2024]
Abstract
The epicardium provides epicardial-derived cells and molecular signals to support cardiac development and regeneration. Zebrafish and mouse studies have shown that ccm2, a cerebral cavernous malformation disease gene, is essential for cardiac development. Endocardial cell-specific deletion of Ccm2 in mice has previously established that Ccm2 is essential for maintenance of the cardiac jelly for cardiac development during early gestation. The current study aimed to explore the function of Ccm2 in epicardial cells for heart development and regeneration. Through genetic deletion of Ccm2 in epicardial cells, our in vivo and ex vivo experiments revealed that Ccm2 is required by epicardial cells to support heart development. Ccm2 regulates epicardial cell adhesion, cell polarity, cell spreading, and migration. Importantly, the loss of Ccm2 in epicardial cells delays cardiac function recovery and aggravates cardiac fibrosis following myocardial infarction. Molecularly, Ccm2 targets the production of cytoskeletal and matrix proteins to maintain epicardial cell function and behaviors. Epicardial Ccm2 plays a critical role in heart development and regeneration via its regulation of cytoskeleton reorganization.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Dongbo Lu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Renhua Song
- Epigenetics and RNA Biology Program, Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Luping Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shi-ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Justin Wong
- Epigenetics and RNA Biology Program, Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute and School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Kalanj-Bognar S, Zamfir AD. Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers. Int J Mol Sci 2024; 25:1335. [PMID: 38279335 PMCID: PMC10816113 DOI: 10.3390/ijms25021335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| |
Collapse
|
10
|
Lazzaroni F, Meessen JMTA, Sun Y, Lanfranconi S, Scola E, D'Alessandris QG, Tassi L, Carriero MR, Castori M, Marino S, Blanda A, Nicolis EB, Novelli D, Calabrese R, Agnelli NM, Bottazzi B, Leone R, Mazzola S, Besana S, Catozzi C, Nezi L, Lampugnani MG, Malinverno M, Grdseloff N, Rödel CJ, Rezai Jahromi B, Bolli N, Passamonti F, Magnusson PU, Abdelilah-Seyfried S, Dejana E, Latini R. Circulating biomarkers in familial cerebral cavernous malformation. EBioMedicine 2024; 99:104914. [PMID: 38113759 PMCID: PMC10767159 DOI: 10.1016/j.ebiom.2023.104914] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression. METHODS Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n = 17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches. FINDINGS Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM. INTERPRETATION Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease. FUNDING Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro (AIRC), ERC, Leducq Transatlantic Network of Excellence, Swedish Research Council.
Collapse
Affiliation(s)
- Francesca Lazzaroni
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Jennifer M T A Meessen
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Silvia Lanfranconi
- Department of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Scola
- Department of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Quintino Giorgio D'Alessandris
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Laura Tassi
- Claudio Munari Epilepsy Surgery Centre, ASST Niguarda Hospital, Milan, Italy
| | - Maria Rita Carriero
- Cerebrovascular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Adriana Blanda
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Enrico B Nicolis
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Deborah Novelli
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Roberta Calabrese
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Nicolò M Agnelli
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | | | | | - Selene Mazzola
- Laboratory Medicine, Desio Hospital, Università Milano Bicocca, Milan, Italy
| | - Silvia Besana
- Laboratory Medicine, Desio Hospital, Università Milano Bicocca, Milan, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Maria G Lampugnani
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Matteo Malinverno
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Nastasja Grdseloff
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Claudia J Rödel
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | | | - Niccolò Bolli
- Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Francesco Passamonti
- Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Salim Abdelilah-Seyfried
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Elisabetta Dejana
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Roberto Latini
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
11
|
Kobayashi S, Cox AG, Harvey KF, Hogan BM. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev Cell 2023; 58:2627-2640. [PMID: 38052179 DOI: 10.1016/j.devcel.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/29/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The Hippo signaling pathway regulates developmental organ growth, regeneration, and cell fate decisions. Although the role of the Hippo pathway, and its transcriptional effectors YAP and TAZ, has been well documented in many cell types and species, only recently have the roles for this pathway come to light in vascular development and disease. Experiments in mice, zebrafish, and in vitro have uncovered roles for the Hippo pathway, YAP, and TAZ in vasculogenesis, angiogenesis, and lymphangiogenesis. In addition, the Hippo pathway has been implicated in vascular cancers and cardiovascular diseases, thus identifying it as a potential therapeutic target for the treatment of these conditions. However, despite recent advances, Hippo's role in the vasculature is still underappreciated compared with its role in epithelial tissues. In this review, we appraise our current understanding of the Hippo pathway in blood and lymphatic vessel development and highlight the current knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew G Cox
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Ren J, Hong T, Zhang H. Angioarchitecture and genetic variants of spinal cord cavernous malformations and associated developmental venous anomalies: a case report. Childs Nerv Syst 2023; 39:1945-1948. [PMID: 36917268 DOI: 10.1007/s00381-023-05887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Cavernous malformations (CM) have long been considered congenital of central nervous system, while the mechanism of CMs detailed development process associated with genetic factors remains unclear. We reported an uncommon case which suffered spinal cord cavernous malformations. In this work, representative samples were obtained, and the sequenced results were described for the first time. A 9-year-old boy was found oblique shoulder with slightly weakness of left limbs; MRI indicated spinal cord cavernous malformations (CMs) located at the C4-C6 vertebral level. On genetic analysis, a shared mutation of PIK3CA (p.H1047R) in CMs and associated developmental venous anomalies (DVAs) was detected, with a different abundance (2% and 7%, respectively), and a somatic mutation of MAP3K3 (p.I441M) was detected in the CM tissue samples. This case provides better knowledge of the formation history and genetic triggers of the DVA-associated CMs. This evidence allows us to speculate the developmental history of the CM lesion: The DVA with PIK3CA mutation might be genetic precursor, and then the associated CM could be derived from terminal cell population of the DVA by acquiring a somatic mutation in MAP3K3.
Collapse
Affiliation(s)
- Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
13
|
Rada CC, Yuki K, Ding J, Kuo CJ. Regulation of the Blood-Brain Barrier in Health and Disease. Cold Spring Harb Perspect Med 2023; 13:a041191. [PMID: 36987582 PMCID: PMC10691497 DOI: 10.1101/cshperspect.a041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
14
|
Hudson J, Paul S, Veraksa A, Ghabrial A, Harvey KF, Poon C. NDR kinase tricornered genetically interacts with Ccm3 and metabolic enzymes in Drosophila melanogaster tracheal development. G3 (BETHESDA, MD.) 2023; 13:6991444. [PMID: 36653023 PMCID: PMC9997570 DOI: 10.1093/g3journal/jkad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/18/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
The Germinal Center Kinase III (GckIII) pathway is a Hippo-like kinase module defined by sequential activation of Ste20 kinases Thousand and One (Tao) and GckIII, followed by nuclear dbf2-related (NDR) kinase Tricornered (Trc). We previously uncovered a role for the GckIII pathway in Drosophila melanogaster tracheal (respiratory) tube morphology. The trachea form a network of branched epithelial tubes essential for oxygen transport, and are structurally analogous to branched tubular organs in vertebrates, such as the vascular system. In the absence of GckIII pathway function, aberrant dilations form in tracheal tubes characterized by mislocalized junctional and apical proteins, suggesting that the pathway is important in maintaining tube integrity in development. Here, we observed a genetic interaction between trc and Cerebral cavernous malformations 3 (Ccm3), the Drosophila ortholog of a human vascular disease gene, supporting our hypothesis that the GckIII pathway functions downstream of Ccm3 in trachea, and potentially in the vertebrate cerebral vasculature. However, how GckIII pathway signaling is regulated and the mechanisms that underpin its function in tracheal development are unknown. We undertook biochemical and genetic approaches to identify proteins that interact with Trc, the most downstream GckIII pathway kinase. We found that known GckIII and NDR scaffold proteins are likely to control GckIII pathway signaling in tracheal development, consistent with their conserved roles in Hippo-like modules. Furthermore, we show genetic interactions between trc and multiple enzymes in glycolysis and oxidative phosphorylation, suggesting a potential function of the GckIII pathway in integrating cellular energy requirements with maintenance of tube integrity.
Collapse
Affiliation(s)
- Joshua Hudson
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Amin Ghabrial
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Carole Poon
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Capitanio JF, Mortini P. Brain and/or Spinal Cord Tumors Accompanied with Other Diseases or Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:645-672. [PMID: 37452957 DOI: 10.1007/978-3-031-23705-8_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Several medical conditions that interest both the brain and the spinal cord have been described throughout the history of medicine. Formerly grouped under the term Phacomatosis because lesions of the eye were frequently encountered or genodermatosis when typical skin lesions were present, these terms have been progressively discarded. Although originally reported centuries ago, they still represent a challenge for their complexity of cure. Nowadays, with the introduction of advanced genetics and the consequent opportunity of whole-genome sequencing, new single cancer susceptibility genes have been identified or better characterized; although there is evidence that the predisposition to a few specific tumor syndromes should be accounted to a group of mutations in different genes while certain syndromes appeared to be manifestations of different mutations in the same gene adding supplementary problems in their characterization and establishing the diagnosis. Noteworthy, many syndromes have been genetically determined and well-characterized, accordingly in the near future, we expect that new targeted therapies will be available for the definitive cure of these syndromes and other gliomas (Pour-Rashidi et al. in World Neurosurgery, 2021). The most common CNS syndromes that will be discussed in this chapter include neurofibromatosis (NF) types 1 and 2, von Hippel-Lindau (VHL) disease, and tuberous sclerosis complex (TSC), as well as syndromes having mostly extra-neural manifestations such as Cowden, Li-Fraumeni, Turcot, and Gorlin syndromes.
Collapse
Affiliation(s)
- Jody Filippo Capitanio
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy.
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Chang LH, Chi NF, Chen CY, Lin YS, Hsu SL, Tsai JY, Huang HC, Lin CJ, Chung CP, Tung CY, Jeng CJ, Lee YC, Liu YT, Lee IH. Monogenic Causes in Familial Stroke Across Intracerebral Hemorrhage and Ischemic Stroke Subtypes Identified by Whole-Exome Sequencing. Cell Mol Neurobiol 2022:10.1007/s10571-022-01315-3. [PMID: 36580209 DOI: 10.1007/s10571-022-01315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Whole exome sequencing (WES) has been used to detect rare causative variants in neurological diseases. However, the efficacy of WES in genetic diagnosis of clinically heterogeneous familial stroke remains inconclusive. We prospectively searched for disease-causing variants in unrelated probands with defined familial stroke by candidate gene/hotspot screening and/or WES, depending on stroke subtypes and neuroimaging features at a referral center. The clinical significance of each variant was determined according to the American College of Medical Genetics guidelines. Among 161 probands (mean age at onset 53.2 ± 13.7 years; male 63.4%), 33 participants (20.5%) had been identified with 19 pathogenic/likely pathogenic variants (PVs; WES applied 152/161 = 94.4%). Across subtypes, the highest hit rate (HR) was intracerebral hemorrhage (ICH, 7/18 = 38.9%), particularly with the etiological subtype of structural vasculopathy (4/4 = 100%, PVs in ENG, KRIT1, PKD1, RNF213); followed by ischemic small vessel disease (SVD, 15/48 = 31.3%; PVs in NOTCH3, HTRA1, HBB). In contrast, large artery atherosclerosis (LAA, 4/44 = 9.1%) and cardioembolism (0/11 = 0%) had the lowest HR. NOTCH3 was the most common causative gene (16/161 = 9.9%), presenting with multiple subtypes of SVD (n = 13), ICH (n = 2), or LAA (n = 1). Importantly, we disclosed two previously unreported PVs, KRIT1 p.E379* in a familial cerebral cavernous malformation, and F2 p.F382L in a familial cerebral venous sinus thrombosis. The contribution of monogenic etiologies was particularly high in familial ICH and SVD subtypes in our Taiwanese cohort. Utilizing subtype-guided hotspot screening and/or subsequent WES, we unraveled monogenic causes in 20.5% familial stroke probands, including 1.2% novel PVs. Genetic diagnosis may enable early diagnosis, management and lifestyle modification. Among 161 familial stroke probands, 33 (20.5%) had been identified pathogenic or likely pathogenic monogenic variants related to stroke. The positive hit rate among all subtypes was high in intracerebral hemorrhage (ICH) and ischemic small vessel disease (SVD). Notably, two previously unreported variants, KRIT1 p.E379* in a familial cerebral cavernous malformation and F2 p.F382L in familial cerebral venous sinus thrombosis, were disclosed. CVT cerebral venous thrombosis; HTN Hypertensive subtype; LAA large artery atherosclerosis; SV structural vasculopathy; U Undetermined.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Shao-Lun Hsu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Jui-Yao Tsai
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Hui-Chi Huang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan
| | - Chun-Jen Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ping Chung
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Yi Tung
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yo-Tsen Liu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - I-Hui Lee
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei City, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
17
|
Yang X, Dai Z, Gao C, Yin Y, Shi C, Liu R, Zhuge Q, Huang Y, Zhou B, Han Z, Zheng X. Cerebral cavernous malformation development in chronic mouse models driven by dual recombinases induced gene deletion in brain endothelial cells. J Cereb Blood Flow Metab 2022; 42:2230-2244. [PMID: 35686705 PMCID: PMC9669998 DOI: 10.1177/0271678x221105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral cavernous malformation (CCM) is a brain vascular disease which can cause stroke, cerebral hemorrhage and neurological deficits in affected individuals. Loss-of-function mutations in three genes (CCM1, CCM2 and CCM3) cause CCM disease. Multiple mouse models for CCM disease have been developed although each of them are associated with various limitations. Here, we employed the Dre-Cre dual recombinase system to specifically delete Ccm genes in brain endothelial cells. In this new series of CCM mouse models, robust CCM lesions now develop in the cerebrum. The survival curve and lesion burden analysis revealed that Ccm2 deletion causes modest CCM lesions with a median life expectance of ∼10 months and Ccm3 gene deletion leads to the most severe CCM lesions with median life expectance of ∼2 months. The extended lifespan of these mutant mice enables their utility in behavioral analyses of neurologic deficits in adult mice, and allow the development of methods to quantify lesion burden in mice over time and also permit longitudinal drug testing in live animals.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zifeng Dai
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caixia Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Yin
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Huang
- China National Clinical Research Centre for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Globisch MA, Onyeogaziri FC, Jauhiainen S, Yau AC, Orsenigo F, Conze LL, Arce M, Corada M, Smith RO, Rorsman C, Sundell V, Fernando D, Daniel G, Mattsson O, Savander H, Wanders A, Rezai Jahromi B, Laakso A, Niemelä M, Dejana E, Magnusson PU. Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation. Blood 2022; 140:2154-2169. [PMID: 35981497 PMCID: PMC10653039 DOI: 10.1182/blood.2021015350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.
Collapse
Affiliation(s)
- Maria A. Globisch
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Favour C. Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anthony C.Y. Yau
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fabrizio Orsenigo
- Vascular Biology Unit, IFOM ETS—The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Lei L. Conze
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Monica Corada
- Vascular Biology Unit, IFOM ETS—The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ross O. Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Charlotte Rorsman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dinesh Fernando
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Oscar Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henri Savander
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alkwin Wanders
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Vascular Biology Unit, IFOM ETS—The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Peetra U. Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Identification of a novel LATS1 variant associated with familial cerebral cavernous malformations in a Chinese family. Neurol Sci 2022; 43:6389-6397. [DOI: 10.1007/s10072-022-06323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
|
20
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Guo D, Li X, Liu N, Yu X, Shu J, Sheng W, Li D, Cai C. Beware of missed diagnosis in patients with multiple genetic diseases: a case report. BMC Pediatr 2022; 22:436. [PMID: 35858850 PMCID: PMC9297618 DOI: 10.1186/s12887-022-03490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked recessive inherited disorder caused by the absence of the Dystrophin protein. Cerebral cavernous malformations (CCMs) are the most common vascular abnormalities in the central nervous system caused by the absence of the products of the CCM genes. Most CCMs cases reported occurring in a sporadic form are often asymptomatic. Case presentation We report a rare case of a 7-year-old Chinese boy with a co-existing DMD and sporadic CCMs. We found classic clinical features of DMD and non-specific pathological changes in his brain. We made the definitive diagnosis based on the results of whole-exome sequencing (WES), a repeat from exon 3 to exon 9 of the DMD inherited from his mother, and a de novo heterozygote nonsense mutation C.418G > T of the PDCD10 exon 6. Conclusion We should take care to avoid missed diagnoses in patients with multiple genetic disorders.
Collapse
Affiliation(s)
- Detong Guo
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Xuemei Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Department of Neurology, Tianjin Children's Hospital, Beichen District, No. 238 Longyan Road, Tianjin, 300134, China
| | - Nan Liu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Tianjin Pediatric Research Institute, Tianjin, 300134, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China
| | - Xiaoli Yu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Department of Neurology, Tianjin Children's Hospital, Beichen District, No. 238 Longyan Road, Tianjin, 300134, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Tianjin Pediatric Research Institute, Tianjin, 300134, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China
| | - Wenchao Sheng
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.,Graduate College of Tianjin Medical University, Tianjin, 300070, China
| | - Dong Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China. .,Department of Neurology, Tianjin Children's Hospital, Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China. .,Tianjin Pediatric Research Institute, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China. .,Department of Neurosurgery, Tianjin Children's Hospital, Tianjin, 300134, China.
| |
Collapse
|
22
|
Fang Z, Sun X, Wang X, Ma J, Palaia T, Rana U, Miao B, Ragolia L, Hu W, Miao QR. NOGOB receptor deficiency increases cerebrovascular permeability and hemorrhage via impairing histone acetylation-mediated CCM1/2 expression. J Clin Invest 2022; 132:e151382. [PMID: 35316220 PMCID: PMC9057619 DOI: 10.1172/jci151382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
The loss function of cerebral cavernous malformation (CCM) genes leads to most CCM lesions characterized by enlarged leaking vascular lesions in the brain. Although we previously showed that NOGOB receptor (NGBR) knockout in endothelial cells (ECs) results in cerebrovascular lesions in the mouse embryo, the molecular mechanism by which NGBR regulates CCM1/2 expression has not been elucidated. Here, we show that genetic depletion of Ngbr in ECs at both postnatal and adult stages results in CCM1/2 expression deficiency and cerebrovascular lesions such as enlarged vessels, blood-brain-barrier hyperpermeability, and cerebral hemorrhage. To reveal the molecular mechanism, we used RNA-sequencing analysis to examine changes in the transcriptome. Surprisingly, we found that the acetyltransferase HBO1 and histone acetylation were downregulated in NGBR-deficient ECs. The mechanistic studies elucidated that NGBR is required for maintaining the expression of CCM1/2 in ECs via HBO1-mediated histone acetylation. ChIP-qPCR data further demonstrated that loss of NGBR impairs the binding of HBO1 and acetylated histone H4K5 and H4K12 on the promotor of the CCM1 and CCM2 genes. Our findings on epigenetic regulation of CCM1 and CCM2 that is modulated by NGBR and HBO1-mediated histone H4 acetylation provide a perspective on the pathogenesis of sporadic CCMs.
Collapse
Affiliation(s)
- Zhi Fang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xiaoran Sun
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Xiang Wang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ji Ma
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Thomas Palaia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Ujala Rana
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Wenquan Hu
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qing Robert Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
- Department of Surgery and Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
24
|
Maheshwari U, Huang SF, Sridhar S, Keller A. The Interplay Between Brain Vascular Calcification and Microglia. Front Aging Neurosci 2022; 14:848495. [PMID: 35309892 PMCID: PMC8924545 DOI: 10.3389/fnagi.2022.848495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications are characterized by the ectopic deposition of calcium and phosphate in the vascular lumen or wall. They are a common finding in computed tomography scans or during autopsy and are often directly related to a pathological condition. While the pathogenesis and functional consequences of vascular calcifications have been intensively studied in some peripheral organs, vascular calcification, and its pathogenesis in the central nervous system is poorly characterized and understood. Here, we review the occurrence of vessel calcifications in the brain in the context of aging and various brain diseases. We discuss the pathomechanism of brain vascular calcification in primary familial brain calcification as an example of brain vessel calcification. A particular focus is the response of microglia to the vessel calcification in the brain and their role in the clearance of calcifications.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
- *Correspondence: Annika Keller,
| |
Collapse
|
25
|
Sartages M, García-Colomer M, Iglesias C, Howell BW, Macía M, Peña P, Pombo CM, Zalvide J. GCKIII (Germinal Center Kinase III) Kinases STK24 and STK25 (Serine/Threonine Kinase 24 and 25) Inhibit Cavernoma Development. Stroke 2022; 53:976-986. [PMID: 35130716 DOI: 10.1161/strokeaha.121.036940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cavernous cerebral malformations can arise because of mutations in the CCM1, CCM2, or CCM3 genes, and lack of Cdc42 has also been reported to induce these malformations in mice. However, the role of the CCM3 (cerebral cavernous malformation 3)-associated kinases in cavernoma development is not known, and we, therefore, have investigated their role in the process. METHODS We used a combination of an in vivo approach, using mice genetically modified to be deficient in the CCM3-associated kinases STK24 and STK25 (serine/threonine kinases 24 and 25), and the in vitro model of human endothelial cells in which expression of STK24 and STK25 was inhibited by RNA interference. RESULTS Mice deficient for both Stk24 and Stk25, but not for either of them individually, developed aggressive vascular lesions with the characteristics of cavernomas at an early age. Stk25 deficiency also gave rise to vascular anomalies in the context of Stk24 heterozygosity. Human endothelial cells deficient for both kinases phenocopied several of the consequences of CCM3 loss, and single STK25 deficiency also induced KLF2 expression, Golgi dispersion, altered distribution of β-catenin, and appearance of stress fibers. CONCLUSIONS The CCM3-associated kinases STK24 and STK25 play a major role in the inhibition of cavernoma development.
Collapse
Affiliation(s)
- Miriam Sartages
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| | - Mar García-Colomer
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| | - Cristina Iglesias
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| | - Brian W Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY (B.W.H.)
| | - Manuel Macía
- Servicio de Obstetricia y Ginecología Hospital Clínico Universitario Santiago, Spain (M.M., P.P.)
| | - Patricia Peña
- Servicio de Obstetricia y Ginecología Hospital Clínico Universitario Santiago, Spain (M.M., P.P.)
| | - Celia M Pombo
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| | - Juan Zalvide
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| |
Collapse
|
26
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
27
|
From remodeling to quiescence: The transformation of the vascular network. Cells Dev 2021; 168:203735. [PMID: 34425253 DOI: 10.1016/j.cdev.2021.203735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.
Collapse
|
28
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
29
|
Maiuri F, Mariniello G, Corvino S, Somma T, Guadagno E, Teodonno G, Del Basso De Caro M, Cappabianca P. Cavernous Malformations to Be Investigated for Familiarity: The Role of Ki67 MIB1. World Neurosurg 2021; 155:e75-e82. [PMID: 34389524 DOI: 10.1016/j.wneu.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Familial forms of cavernous malformations (CMs) often occur as multiple lesions. Nevertheless, the presence of a single CM does not exclude the familiarity. The aim of this study is to establish which patients who undergo surgery for a single cerebral cavernous malformation (CCM), with no family history at initial diagnosis, should be investigated for familiarity through genetic testing and counseling. METHODS Eight families with 2 or more members affected by CCM have been studied. A control group of sporadic cases operated on, with no family history and followed up 10 years or more, was also included. Analyzed factors were patient age and sex, location, number and size of the lesions, associated developmental venous anomaly, presence of epileptic seizures, symptomatic hemorrhage, focal neurological deficits, and documented growth of the malformation and Ki67 MIB1 proliferation index. RESULTS The familial group of CCMs showed higher incidence of pediatric patients (P = 0.01), more frequent occurrence of multiple lesions (P = 0.0004), higher rate of large CCMs, and symptomatic hemorrhage; besides, all 3 cases with documented growth belonged to the familial group (14%). The expression of Ki67 MIB1 was positive in 79% of the familial cases versus 0% in the sporadic ones (P < 0.00001). CONCLUSIONS Patients with CCM and no known family history at the time of the initial diagnosis who present specific features should be studied by genetic screening. The Ki67 MIB1 is a useful biomarker in favor of familial occurrence and may be studied in all patients with CMs to define the indication to the genetic tests.
Collapse
Affiliation(s)
- Francesco Maiuri
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy.
| | - Giuseppe Mariniello
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | - Sergio Corvino
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | - Teresa Somma
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | - Elia Guadagno
- Department of Advanced Biomedical Sciences, Section of Pathology, University "Federico II" of Naples, Naples, Italy
| | - Giuseppe Teodonno
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences, Section of Pathology, University "Federico II" of Naples, Naples, Italy
| | - Paolo Cappabianca
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, Naples, Italy
| |
Collapse
|
30
|
Lopez-Ramirez MA, Lai CC, Soliman SI, Hale P, Pham A, Estrada EJ, McCurdy S, Girard R, Verma R, Moore T, Lightle R, Hobson N, Shenkar R, Poulsen O, Haddad GG, Daneman R, Gongol B, Sun H, Lagarrigue F, Awad IA, Ginsberg MH. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest 2021; 131:139570. [PMID: 34043589 PMCID: PMC8245174 DOI: 10.1172/jci139570] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common neurovascular lesions caused by loss-of-function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3), and generally regarded as an endothelial cell-autonomous disease. Here we reported that proliferative astrocytes played a critical role in CCM pathogenesis by serving as a major source of VEGF during CCM lesion formation. An increase in astrocyte VEGF synthesis is driven by endothelial nitric oxide (NO) generated as a consequence of KLF2- and KLF4-dependent elevation of eNOS in CCM endothelium. The increased brain endothelial production of NO stabilized HIF-1α in astrocytes, resulting in increased VEGF production and expression of a "hypoxic" program under normoxic conditions. We showed that the upregulation of cyclooxygenase-2 (COX-2), a direct HIF-1α target gene and a known component of the hypoxic program, contributed to the development of CCM lesions because the administration of a COX-2 inhibitor significantly prevented the progression of CCM lesions. Thus, non-cell-autonomous crosstalk between CCM endothelium and astrocytes propels vascular lesion development, and components of the hypoxic program represent potential therapeutic targets for CCMs.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/deficiency
- Apoptosis Regulatory Proteins/genetics
- Astrocytes/pathology
- Astrocytes/physiology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Disease Progression
- Endothelial Cells/metabolism
- Hemangioma, Cavernous, Central Nervous System/etiology
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hemangioma, Cavernous, Central Nervous System/physiopathology
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice
- Mice, Knockout
- Models, Neurological
- Mutation
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | | - Gabriel G. Haddad
- Department of Pediatrics, and
- Department of Neuroscience, Division of Respiratory Medicine, University of California, San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Richard Daneman
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | |
Collapse
|
31
|
Wang R, Wu ST, Yang X, Qian Y, Choi JP, Gao R, Song S, Wang Y, Zhuang T, Wong JJ, Zhang Y, Han Z, Lu HA, Alexander SI, Liu R, Xia Y, Zheng X. Pdcd10-Stk24/25 complex controls kidney water reabsorption by regulating Aqp2 membrane targeting. JCI Insight 2021; 6:e142838. [PMID: 34156031 PMCID: PMC8262504 DOI: 10.1172/jci.insight.142838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
PDCD10, also known as CCM3, is a gene found to be associated with the human disease cerebral cavernous malformations (CCMs). PDCD10 forms a complex with GCKIII kinases including STK24, STK25, and MST4. Studies in C. elegans and Drosophila have shown a pivotal role of the PDCD10-GCKIII complex in maintaining epithelial integrity. Here, we found that mice deficient of Pdcd10 or Stk24/25 in the kidney tubules developed polyuria and displayed increased water consumption. Although the expression levels of aquaporin genes were not decreased, the levels of total and phosphorylated aquaporin 2 (Aqp2) protein in the apical membrane of tubular epithelial cells were decreased in Pdcd10- and Stk24/25-deficient mice. This loss of Aqp2 was associated with increased expression and membrane targeting of Ezrin and phosphorylated Ezrin, Radixin, Moesin (p-ERM) proteins and impaired intracellular vesicle trafficking. Treatment with Erlotinib, a tyrosine kinase inhibitor promoting exocytosis and inhibiting endocytosis, normalized the expression level and membrane abundance of Aqp2 protein, and partially rescued the water reabsorption defect observed in the Pdcd10-deficient mice. Our current study identified the PDCD10-STK-ERM signaling pathway as a potentially novel pathway required for water balance control by regulating vesicle trafficking and protein abundance of AQP2 in the kidneys.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Shi-Ting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yude Qian
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Jaesung P Choi
- Lab of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Rui Gao
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Siliang Song
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yixuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Justin Jl Wong
- Epigenetics and RNA Biology Program Centenary Institute and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hua A Lu
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen I Alexander
- Department of Pediatric Nephrology, The Children's Hospital at Westmead and Centre for Kidney Research, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiangjian Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China.,Lab of Cardiovascular Signaling, Centenary Institute, and Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
Fernando PM, Munasinghe BM, Jayamanne MDCJP, Jayasundara KA, Arambepola WSNWBMAG, Pranavan S, Ranathunge ND. Cerebral cavernous malformation in a child leading to a fatal subarachnoid hemorrhage - "silent but sinister:" A case report and literature review. Surg Neurol Int 2021; 12:253. [PMID: 34221584 PMCID: PMC8247693 DOI: 10.25259/sni_248_2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022] Open
Abstract
Background: Cerebral cavernous malformations (CCMs), otherwise known as cavernous hemangiomas/ cavernomas, are a type of vascular malformation. It is the third most common cerebral vascular malformation, histologically characterized by ectatic, fibrous, blood filled “caverns” with thin-walled vasculature without intervening normal brain parenchyma. Case Description: Herein, we present a case of an original, spontaneous hemorrhage from a sporadic form of CCM without associated gross developmental venous anomaly in an 11-year-old child, which is an extremely rare occurrence, with the special emphasis on the demographic data of the affected population, risk factors associated with hemorrhage, and correlation of histopathological and radiological findings with an in-depth literature review. Conclusion: The significant majority of the CCM are clinically occult. Hence, the development of risk assessment tools and guidelines for timely neurosurgical intervention poses a greater clinical challenge for medical experts rendering the management of the affected individuals with CCM in an anecdotal situation. Presentation of life-threatening rebleeds and neurological deficits in the diagnosed population albeit uncommon is possibly preventable outcomes.
Collapse
Affiliation(s)
- Pasindu M Fernando
- Department of Transfusion Medicine, District General Hospital, Mannar, Sri Lanka
| | - B M Munasinghe
- Department of Anaesthesia and Intensive Care, District General Hospital, Mannar, Sri Lanka
| | | | - K A Jayasundara
- Department of Paediatrics, District General Hospital, Mannar, Sri Lanka
| | | | - Selliah Pranavan
- Department of Forensic Pathology District General Hospital, Mannar, Sri Lanka
| | - N D Ranathunge
- Department of Pathology, District General Hospital, Mannar, Sri Lanka
| |
Collapse
|
33
|
Lin J, Liang J, Wen J, Luo M, Li J, Sun X, Xu X, Li J, Wang D, Wang J, Chen H, Lai R, Liang F, Li C, Ye F, Zhang J, Zeng J, Yang S, Sheng W. Mutations of RNF213 are responsible for sporadic cerebral cavernous malformation and lead to a mulberry-like cluster in zebrafish. J Cereb Blood Flow Metab 2021; 41:1251-1263. [PMID: 32248732 PMCID: PMC8142133 DOI: 10.1177/0271678x20914996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although familial forms of cerebral cavernous malformation are mainly attributed to three CCM genes (KRIT1, CCM2 and PDCD10), no mutation is identified in sporadic cerebral cavernous malformation cases with a unique lesion, indicating additional genes for sporadic cerebral cavernous malformation. To screen the candidate genes, we conducted whole exome sequencing in 31 sporadic cerebral cavernous malformation patients and 32 healthy controls, and identified 5 affected individuals carrying 6 heterozygous deleterious mutations in RNF213 but no RNF213 mutation in healthy individuals. To further confirm RNF213 was associated with cerebral cavernous malformation, we generated rnf213a homozygous knockout zebrafish and found mutation of rnf213a in zebrafish led to a mulberry-like cluster of disordered-flow vascular channels which was reminiscent of human cerebral cavernous malformation. In addition, we revealed kbtbd7 and anxa6 were significantly downregulated due to rnf213a mutation through transcriptomic sequencing and RT-qPCR analysis. Based on the mulberry-like phenotype partly rescued by mRNA of kbtbd7 as well as anxa6, we suggested that rnf213a promoted mulberry-like cluster via downregulation of kbtbd7 and anxa6. Altogether, we firstly demonstrate RNF213is a novel candidate gene for sporadic cerebral cavernous malformation and the mutation of rnf213a is responsible for the mulberry-like cluster in zebrafish.
Collapse
Affiliation(s)
- Jing Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jun Wen
- Department of Neurology, Jiangmen Central Hospital, Jiangmen, China
| | - Man Luo
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xunsha Sun
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xiaowei Xu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianli Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dongxian Wang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Wang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huimin Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Rong Lai
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Chuan Li
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
34
|
Ren AA, Snellings DA, Su YS, Hong CC, Castro M, Tang AT, Detter MR, Hobson N, Girard R, Romanos S, Lightle R, Moore T, Shenkar R, Benavides C, Beaman MM, Müller-Fielitz H, Chen M, Mericko P, Yang J, Sung DC, Lawton MT, Ruppert JM, Schwaninger M, Körbelin J, Potente M, Awad IA, Marchuk DA, Kahn ML. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 2021; 594:271-276. [PMID: 33910229 PMCID: PMC8626098 DOI: 10.1038/s41586-021-03562-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023]
Abstract
Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gain of Function Mutation
- Hemangioma, Cavernous, Central Nervous System/blood supply
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/metabolism
- Loss of Function Mutation
- MAP Kinase Kinase Kinase 3/metabolism
- Male
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice
- Mutation
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/pathology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Yourong S Su
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Castro
- Angiogenesis and Metabolism Laboratory, Max Planck institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Christian Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - M Makenzie Beaman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Mericko
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek C Sung
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael T Lawton
- Department of Neurosurgery, The Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation, Hamburg, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck institute for Heart and Lung Research, Bad Nauheim, Germany
- Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Riolo G, Ricci C, Battistini S. Molecular Genetic Features of Cerebral Cavernous Malformations (CCM) Patients: An Overall View from Genes to Endothelial Cells. Cells 2021; 10:704. [PMID: 33810005 PMCID: PMC8005105 DOI: 10.3390/cells10030704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that affect predominantly microvasculature in the brain and spinal cord. CCM can occur either in sporadic or familial form, characterized by autosomal dominant inheritance and development of multiple lesions throughout the patient's life. Three genes associated with CCM are known: CCM1/KRIT1 (krev interaction trapped 1), CCM2/MGC4607 (encoding a protein named malcavernin), and CCM3/PDCD10 (programmed cell death 10). All the mutations identified in these genes cause a loss of function and compromise the protein functions needed for maintaining the vascular barrier integrity. Loss of function of CCM proteins causes molecular disorganization and dysfunction of endothelial adherens junctions. In this review, we provide an overall vision of the CCM pathology, starting with the genetic bases of the disease, describing the role of the proteins, until we reach the cellular level. Thus, we summarize the genetics of CCM, providing a description of CCM genes and mutation features, provided an updated knowledge of the CCM protein structure and function, and discuss the molecular mechanisms through which CCM proteins may act within endothelial cells, particularly in endothelial barrier maintenance/regulation and in cellular signaling.
Collapse
Affiliation(s)
| | | | - Stefania Battistini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy; (G.R.); (C.R.)
| |
Collapse
|
36
|
Choi JP, Yang X, He S, Song R, Xu ZR, Foley M, Wong JJL, Xu CR, Zheng X. CCM2L (Cerebral Cavernous Malformation 2 Like) Deletion Aggravates Cerebral Cavernous Malformation Through Map3k3-KLF Signaling Pathway. Stroke 2021; 52:1428-1436. [PMID: 33657857 DOI: 10.1161/strokeaha.120.031523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jaesung P Choi
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney Medical School (J.P.C., X.Z.), University of Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, School of Life Sciences, University of Technology Sydney, NSW, Australia (J.P.C.)
| | - Xi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (X.Y., X.Z.)
| | - Shuang He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, Sydney Medical School (R.S., J.J.-L.W.), University of Sydney, NSW, Australia
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Matthew Foley
- Australian Centre for Microscopy and Microanalysis (M.F.), University of Sydney, NSW, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, Sydney Medical School (R.S., J.J.-L.W.), University of Sydney, NSW, Australia
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China (S.H., Z.-R.X., C.-R.X.)
| | - Xiangjian Zheng
- Lab of Cardiovascular Signaling, Centenary Institute, Sydney Medical School (J.P.C., X.Z.), University of Sydney, NSW, Australia.,Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, China (X.Y., X.Z.)
| |
Collapse
|
37
|
Wang K, Chen H, Zhou Z, Zhang H, Zhou HJ, Min W. ATPIF1 maintains normal mitochondrial structure which is impaired by CCM3 deficiency in endothelial cells. Cell Biosci 2021; 11:11. [PMID: 33422124 PMCID: PMC7796565 DOI: 10.1186/s13578-020-00514-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background Numerous signaling pathways have been demonstrated experimentally to affect the pathogenesis of cerebral cavernous malformations (CCM), a disease that can be caused by CCM3 deficiency. However, the understanding of the CCM progression is still limited. The objective of the present work was to elucidate the role of CCM3 by RNA-seq screening of CCM3 knockout mice. Results We found that ATPIF1 was decreased in siCCM3-treated Human Umbilical Vein Endothelial Cells (HUVECs), and the overexpression of ATPIF1 attenuated the changes in cell proliferation, adhesion and migration caused by siCCM3. The probable mechanism involved the conserved ATP concentration in mitochondria and the elongated morphology of the organelles. By using the CRISPR-cas9 system, we generated CCM3-KO Endothelial Progenitor Cells (EPCs) and found that the knockout of CCM3 destroyed the morphology of mitochondria, impaired the mitochondrial membrane potential and increased mitophagy. Overexpression of ATPIF1 contributed to the maintenance of normal structure of mitochondria, inhibiting activation of mitophagy and other signaling proteins (e.g., KLF4 and Tie2). The expression of KLF4 returned to normal in CCM3-KO EPCs after 2 days of re-overexpression of CCM3, but not other signaling proteins. Conclusion ATPIF1 maintains the normal structure of mitochondria, inhibiting the activation of mitophagy and other signaling pathway in endothelial cells. Loss of CCM3 leads to the destruction of mitochondria and activation of signaling pathways, which can be regulated by KLF4.
Collapse
Affiliation(s)
- Kang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.,Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Haixuan Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhongyang Zhou
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
38
|
Sartages M, Floridia E, García-Colomer M, Iglesias C, Macía M, Peñas P, Couraud PO, Romero IA, Weksler B, Pombo CM, Zalvide J. High Levels of Receptor Tyrosine Kinases in CCM3-Deficient Cells Increase Their Susceptibility to Tyrosine Kinase Inhibition. Biomedicines 2020; 8:E624. [PMID: 33348877 PMCID: PMC7766026 DOI: 10.3390/biomedicines8120624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular malformations that can be the result of the deficiency of one of the CCM genes. Their only present treatment is surgical removal, which is not always possible, and an alternative pharmacological strategy to eliminate them is actively sought. We have studied the effect of the lack of one of the CCM genes, CCM3, in endothelial and non-endothelial cells. By comparing protein expression in control and CCM3-silenced cells, we found that the levels of the Epidermal Growth Factor Receptor (EGFR) are higher in CCM3-deficient cells, which adds to the known upregulation of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) in these cells. Whereas VEGFR2 is upregulated at the mRNA level, EGFR has a prolonged half-life. Inhibition of EGFR family members in CCM3-deficient cells does not revert the known cellular effects of lack of CCM genes, but it induces significantly more apoptosis in CCM3-deficient cells than in control cells. We propose that the susceptibility to tyrosine kinase inhibitors of CCM3-deficient cells can be harnessed to kill the abnormal cells of these lesions and thus treat CCMs pharmacologically.
Collapse
Affiliation(s)
- Miriam Sartages
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| | - Ebel Floridia
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
- IQVIA RDS Ireland Limited, Eastpoint Business Park, Estuary House, Fairview, Dublin 3, D03 K7W7 Leinster, Ireland
| | - Mar García-Colomer
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| | - Cristina Iglesias
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| | - Manuel Macía
- Servicio de Obstetricia y Ginecología Hospital Clínico Universitario Santiago, 15703 Santiago de Compostela, Spain; (M.M.); (P.P.)
| | - Patricia Peñas
- Servicio de Obstetricia y Ginecología Hospital Clínico Universitario Santiago, 15703 Santiago de Compostela, Spain; (M.M.); (P.P.)
| | | | - Ignacio A. Romero
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK;
| | - Babette Weksler
- Weill Medical College, Cornell University, 1300 York Ave, New York, NY 10065, USA;
| | - Celia M. Pombo
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| | - Juan Zalvide
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15703 Santiago de Compostela, Spain; (M.S.); (E.F.); (M.G.-C.); (C.I.); (C.M.P.)
| |
Collapse
|
39
|
Saban D, Larisch J, Nickel AC, Pierscianek D, Dammann P, Sure U, Zhu Y. DNA promoter methylation of CCM genes in human cerebral cavernous malformations: Importance of confirming MSP data through sequencing. Eur J Med Genet 2020; 63:104090. [PMID: 33122157 DOI: 10.1016/j.ejmg.2020.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/18/2020] [Accepted: 10/18/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) is the second most common cerebrovascular disease and is classified as familial (20%) and sporadic (80%) forms. Loss of function mutation of three CCM genes results in the familial CCM. Considering the similar clinic presentation of familial and sporadic CCMs, and based on enriched CpG islands in the DNA promoter region of three CCM genes, we hypothesized that DNA methylation of the CpG islands of the CCM genes is involved in human CCM, thereby leading to loss of CCM genes. MATERIAL AND METHODS 69 human CCMs including sporadic (n = 40), multiple (n = 15) and familial (n = 14) cases. DNA was extracted from the surgical specimens of CCMs followed by bisulfite conversion. The methylation status of the promoter regions of three CCM genes was detected by methylation specific PCR (MSP). To confirm the results of MSP, four MSP-positive probes showing CCM3 methylation underwent deep bisulfite sequencing (DBS). RESULTS MSP mostly excluded methylation of CCM1 and CCM2 promotor regions (data not shown). In the case of CCM3, 12 out of 55 sporadic cases showed positivity for MSP (21.8%). Deep bisulfite sequencing revealed that four CCM3 MSP positive cases were all negative for DNA methylation. CONCLUSION The present study suggests that DNA promotor methylation of CCM1-3 genes is not involved in human family CCMs and that it is important to confirm MSP data with DBS. Further study with higher number of sporadic CCM patients is required for better understanding whether this epigenetic mechanism is involved in the pathology of CCM.
Collapse
Affiliation(s)
- Dino Saban
- Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Joel Larisch
- Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ann-Christin Nickel
- Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
40
|
Zhang F, Xue Y, Zhang F, Wei X, Zhou Z, Ma Z, Wang X, Shen H, Li Y, Cui X, Liu L. Identification of a Novel CCM1 Frameshift Mutation in a Chinese Han Family With Multiple Cerebral Cavernous Malformations. Front Neurosci 2020; 14:525986. [PMID: 33071727 PMCID: PMC7538688 DOI: 10.3389/fnins.2020.525986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly occur in the brain. CCMs can be sporadic or hereditary in an autosomal dominant manner. The genes harboring variants of familial CCMs (FCCMs) include CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. In this study, we identified a novel CCM1/KRIT1 mutation in a Chinese family with FCCMs. This family consists of 20 members, and 6 of them had been diagnosed with CCMs. The proband patient is a 17-year-old female who has suffered from CCM-related intracranial hemorrhage four times. Magnetic resonance imaging (MRI) revealed four lesions in the different brain regions and one lesion has progressively enlarged. The pathological histology confirmed CCMs. Whole exome sequencing revealed a novel deletion mutation (c.1635delA) within exon 15 of CCM1/KRIT1 gene in the proband patient, her mother, and her uncle who had CCMs. This frameshift mutation led to a premature termination codon (PTC) at nucleotides 1652-1654. We also detected that the CCM1 mRNA levels in the blood lymphocytes of the family members with CCMs were reduced by 46.4% compared to that in healthy controls. Collectively, our results suggested that the CCM1 mutation could potentially be a causative factor for FCCMs in the Chinese family and the reduction of CCM1 mRNA expression in the blood lymphocytes of the patients might be a potential biomarker for the diagnosis and prognosis of CCMs. Our findings expanded the spectrum of CCM mutations and helped to guide genetic counseling and early genetic diagnosis for at-risk family members.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiteng Xue
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoming Wei
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhisong Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoru Ma
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaosong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujun Li
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
41
|
Flemming KD, Lanzino G. Cerebral Cavernous Malformation: What a Practicing Clinician Should Know. Mayo Clin Proc 2020; 95:2005-2020. [PMID: 32605781 DOI: 10.1016/j.mayocp.2019.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/17/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023]
Abstract
Cavernous malformations (CMs) are angiographically occult, low-flow vascular malformations of the central nervous system. They are acquired lesions, with approximately 80% of patients having the sporadic form and 20% the familial form of the disease. The lesions may also develop years after radiotherapy. At the microscopic level, they consist of endothelium-lined cavities (or "caverns") containing blood of different ages. The endothelium proliferates abnormally, and tight junctions are absent or dysfunctional, resulting in leakiness of the endothelium and clinical manifestations in some patients. Cavernous malformations can be an incidental finding or can present with focal neurologic deficits, seizures, or headache, with or without associated hemorrhage. Management of the CM lesion requires knowledge of the natural history of the disease compared with the risk of surgical intervention. Surgery is often considered for symptomatic patients with lesions in a noneloquent location. Medical management is warranted for symptoms related to the CM. Research aimed at understanding the genes and signaling pathways related to CMs have provided potential drug targets, and clinical trials are underway to determine whether medications reduce the risk of future bleeding without surgery or modify the disease course. In addition, recent epidemiologic data have aided practitioners in determining how to treat comorbid conditions in patients with a potentially hemorrhagic lesion. This review provides an overview of the epidemiology, presentation, and clinical management of CMs.
Collapse
|
42
|
Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids. J Neurosci 2020; 40:1186-1193. [PMID: 32024767 DOI: 10.1523/jneurosci.0519-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023] Open
Abstract
In vitro differentiation of pluripotent stem cells provides a systematic platform to study development and disease. Recent advances in brain organoid technology have created new opportunities to investigate the formation and function of the human brain, under physiological and pathological conditions. Brain organoids can be generated to model the cellular and structural development of the human brain, and allow the investigation of the intricate interactions between resident neural and glial cell types. Combined with new advances in gene editing, imaging, and genomic analysis, brain organoid technology can be applied to address questions pertinent to human brain development, disease, and evolution. However, the current iterations of brain organoids also have limitations in faithfully recapitulating the in vivo processes. In this perspective, we evaluate the recent progress in brain organoid technology, and discuss the experimental considerations for its utilization.Dual Perspectives Companion Paper: Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems, by Kristina Rehbach, Michael B. Fernando, and Kristen J. Brennand.
Collapse
|
43
|
Santander N, Lizama CO, Meky E, McKinsey GL, Jung B, Sheppard D, Betsholtz C, Arnold TD. Lack of Flvcr2 impairs brain angiogenesis without affecting the blood-brain barrier. J Clin Invest 2020; 130:4055-4068. [PMID: 32369453 PMCID: PMC7410045 DOI: 10.1172/jci136578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Fowler syndrome is a rare autosomal recessive brain vascular disorder caused by mutation in FLVCR2 in humans. The disease occurs during a critical period of brain vascular development, is characterized by glomeruloid vasculopathy and hydrocephalus, and is almost invariably prenatally fatal. Here, we sought to gain insights into the process of brain vascularization and the pathogenesis of Fowler syndrome by inactivating Flvcr2 in mice. We showed that Flvcr2 was necessary for angiogenic sprouting in the brain, but surprisingly dispensable for maintaining the blood-brain barrier. Endothelial cells lacking Flvcr2 had altered expression of angiogenic factors, failed to adopt tip cell properties, and displayed reduced sprouting, leading to vascular malformations similar to those seen in humans with Fowler syndrome. Brain hypovascularization was associated with hypoxia and tissue infarction, ultimately causing hydrocephalus and death of mutant animals. Strikingly, despite severe vascular anomalies and brain tissue infarction, the blood-brain barrier was maintained in Flvcr2 mutant mice. Our Fowler syndrome model therefore defined the pathobiology of this disease and provided new insights into brain angiogenesis by showing uncoupling of vessel morphogenesis and blood-brain barrier formation.
Collapse
Affiliation(s)
| | - Carlos O. Lizama
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | | | | | - Bongnam Jung
- Integrated Cardiometabolic Center, Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
| | - Dean Sheppard
- Department of Cell Biology, UCSF, San Francisco, California, USA
| | - Christer Betsholtz
- Integrated Cardiometabolic Center, Department of Medicine, Huddinge, Karolinska Institutet, Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
44
|
Prolo LM, Jin MC, Loven T, Vogel H, Edwards MSB, Steinberg GK, Grant GA. Recurrence of cavernous malformations after surgery in childhood. J Neurosurg Pediatr 2020; 26:179-188. [PMID: 32357336 DOI: 10.3171/2020.2.peds19543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/20/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cavernous malformations (CMs) are commonly treated cerebrovascular anomalies in the pediatric population; however, the data on radiographic recurrence of pediatric CMs after surgery are limited. The authors aimed to study the clinical presentation, outcomes, and recurrence rate following surgery for a large cohort of CMs in children. METHODS Pediatric patients (≤ 18 years old) who had a CM resected at a single institution were identified and retrospectively reviewed. Fisher's exact test of independence was used to assess differences in categorical variables. Survival curves were evaluated using the Mantel-Cox method. RESULTS Fifty-three patients aged 3 months to 18 years underwent resection of 74 symptomatic CMs between 1996 and 2018 at a single institution. The median length of follow-up was 5.65 years. Patients most commonly presented with seizures (45.3%, n = 24) and the majority of CMs were cortical (58.0%, n = 43). Acute radiographic hemorrhage was common at presentation (64.2%, n = 34). Forty-two percent (n = 22) of patients presented with multiple CMs, and they were more likely to develop de novo lesions (71%) compared to patients presenting with a single CM (3.4%). Both radiographic hemorrhage and multiple CMs were independently prognostic for a higher risk of the patient requiring subsequent surgery. Fifty percent (n = 6) of the 12 patients with both risk factors required additional surgery within 2.5 years of initial surgery compared to none of the patients with neither risk factor (n = 9). CONCLUSIONS Patients with either acute radiographic hemorrhage or multiple CMs are at higher risk for subsequent surgery and require long-term MRI surveillance. In contrast, patients with a single CM are unlikely to require additional surgery and may require less frequent routine imaging.
Collapse
Affiliation(s)
| | | | - Tina Loven
- 3Department of Pediatric Neurosurgery, Global Neuroscience Institute/St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Hannes Vogel
- 2Pathology, Stanford University School of Medicine, Stanford, California; and
| | | | | | | |
Collapse
|
45
|
Huang Q, Yu F, Liao D, Xia J. Microbiota-Immune System Interactions in Human Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:509-526. [PMID: 32713337 DOI: 10.2174/1871527319666200726222138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.
Collapse
Affiliation(s)
- Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China,Hunan Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
46
|
Ishii K, Tozaka N, Tsutsumi S, Muroi A, Tamaoka A. Familial cerebral cavernous malformation presenting with epilepsy caused by mutation in the CCM2 gene: A case report. Medicine (Baltimore) 2020; 99:e19800. [PMID: 32702807 PMCID: PMC7373609 DOI: 10.1097/md.0000000000019800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Cerebral cavernous malformation (CCM) of the familial type is caused by abnormalities in the CCM1, CCM2, and CCM3 genes. These 3 proteins forming a complex associate with the maintenance of vascular endothelial cell-cell junctions. Dysfunction of these proteins results in the development of hemangiomas and abnormal intercellular junctions. PATIENT CONCERNS We report a 68-year-old man with familial cerebral cavernous malformation with initial presentation as convulsions at an advanced age. Brain magnetic resonance imaging revealed multiple cavernous hemangiomas in the right occipital lobe. The convulsions were considered to be induced by hemorrhage from cavernous hemangioma in the right occipital lobe. DIAGNOSES Genetic screening of the CCM1, CCM2, and CCM3 genes revealed a novel mutation in the CCM2 gene (exon4 c: 359 T>A, p: V120D). No abnormalities were found in CCM1 or CCM3. Therefore, we diagnosed the patient with familial CCM caused by a CCM2 mutation. INTERVENTIONS This patient was treated with the administration of levetiracetam at a dosage of 1000 mg/day. OUTCOMES No seizures have been observed since the antiepileptic drug was administered. We performed brain magnetic resonance imaging (MRI) regularly to follow-up on appearance of new cerebral hemorrhages and cavernous hemangiomas. LESSONS This report reviews cases of familial cerebral cavernous malformations caused by abnormalities in the CCM2 gene. This mutation site mediates interactions with CCM1 and CCM3. The mutation occurs in the phosphotyrosine binding (PTB) site, which is considered functionally important to CCM2.
Collapse
MESH Headings
- Aged
- Anticonvulsants/administration & dosage
- Anticonvulsants/therapeutic use
- Carrier Proteins/genetics
- Genetic Testing
- Hemangioma, Cavernous/complications
- Hemangioma, Cavernous/genetics
- Hemangioma, Cavernous/pathology
- Hemangioma, Cavernous, Central Nervous System/diagnostic imaging
- Hemangioma, Cavernous, Central Nervous System/drug therapy
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hemorrhage/diagnostic imaging
- Hemorrhage/etiology
- Humans
- Levetiracetam/administration & dosage
- Levetiracetam/therapeutic use
- Magnetic Resonance Imaging/methods
- Male
- Mutation
- Seizures/diagnosis
- Seizures/etiology
- Treatment Outcome
Collapse
Affiliation(s)
- Kazuhiro Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennnoudai, Tsukuba, Ibaraki, 305-8575
| | - Naoki Tozaka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennnoudai, Tsukuba, Ibaraki, 305-8575
| | - Satoshi Tsutsumi
- Department of Neurological Surgery, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021
| | - Ai Muroi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennnoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennnoudai, Tsukuba, Ibaraki, 305-8575
| |
Collapse
|
47
|
Schwefel K, Spiegler S, Kirchmaier BC, Dellweg PKE, Much CD, Pané-Farré J, Strom TM, Riedel K, Felbor U, Rath M. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J 2020; 34:9018-9033. [PMID: 32515053 DOI: 10.1096/fj.201902888r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Patricia K E Dellweg
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
48
|
Bell KR, Werner ME, Doshi A, Cortes DB, Sattler A, Vuong-Brender T, Labouesse M, Maddox AS. Novel cytokinetic ring components drive negative feedback in cortical contractility. Mol Biol Cell 2020; 31:1623-1636. [PMID: 32491957 PMCID: PMC7521795 DOI: 10.1091/mbc.e20-05-0304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Actomyosin cortical contractility drives many cell shape changes including cytokinetic furrowing. While positive regulation of contractility is well characterized, counterbalancing negative regulation and mechanical brakes are less well understood. The small GTPase RhoA is a central regulator, activating cortical actomyosin contractility during cytokinesis and other events. Here we report how two novel cytokinetic ring components, GCK-1 (germinal center kinase-1) and CCM-3 (cerebral cavernous malformations-3), participate in a negative feedback loop among RhoA and its cytoskeletal effectors to inhibit contractility. GCK-1 and CCM-3 are recruited by active RhoA and anillin to the cytokinetic ring, where they in turn limit RhoA activity and contractility. This is evidenced by increased RhoA activity, anillin and nonmuscle myosin II in the cytokinetic ring, and faster cytokinetic furrowing, following depletion of GCK-1 or CCM-3. GCK-1 or CCM-3 depletion also reduced RGA-3 levels in pulses and increased baseline RhoA activity and pulsed contractility during zygote polarization. Together, our results suggest that GCK-1 and CCM-3 regulate cortical actomyosin contractility via negative feedback. These findings have implications for the molecular and cellular mechanisms of cerebral cavernous malformation pathologies.
Collapse
Affiliation(s)
- Kathryn Rehain Bell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anusha Doshi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Adam Sattler
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Thanh Vuong-Brender
- Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, 75005 Paris, France
| | - Michel Labouesse
- Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, 75005 Paris, France
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
49
|
Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res Bull 2020; 160:121-140. [PMID: 32315731 DOI: 10.1016/j.brainresbull.2020.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Barriers are the hallmark of a healthy physiology, blood-brain barrier (BBB) being a tough nut to crack for most of the antigens and chemical substances. The presence of tight junctions plays a remarkable role in defending the brain from antigenic and pathogenic attacks. BBB constitutes a diverse assemblage of multiple physical and chemical barriers that judiciously restrict the flux of blood solutes into and out of the brain. Restrictions through the paracellular pathway and the tight junctions between intercellular clefts, together create well regulated metabolic and transport barricades, critical to brain pathophysiology. The brain being impermeable to many essential metabolites and nutrients regulates transportation via specialized transport systems across the endothelial abluminal and luminal membranes. The epithelial cells enveloping capillaries of the choroid plexus regulates the transport of complement, growth factors, hormones, microelements, peptides and trace elements into ventricles. Nerve terminals, microglia, and pericytes associated with the endothelium support barrier induction and function, ensuring an optimally stable ionic microenvironment that facilitates neurotransmission, orchestrated by multiple ion channels (Na+, K+ Mg2+, Ca2+) and transporters. Brain pathology which can develop due to genetic mutations or secondary to other cerebrovascular, neurodegenerative diseases can cause aberration in the microvasculature of CNS which is the uniqueness of BBB. This can also alter BBB permeation and result in BBB breakdown and other neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The concluding section outlines contemporary trends in drug discovery, focusing on molecular determinants of BBB permeation and novel drug-delivery systems, such as dendrimers, liposomes, nanoparticles, nanogels, etc.
Collapse
|
50
|
Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X. The progress of gut microbiome research related to brain disorders. J Neuroinflammation 2020; 17:25. [PMID: 31952509 PMCID: PMC6969442 DOI: 10.1186/s12974-020-1705-z] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing that the dynamic changes in the gut microbiota can alter brain physiology and behavior. Cognition was originally thought to be regulated only by the central nervous system. However, it is now becoming clear that many non-nervous system factors, including the gut-resident bacteria of the gastrointestinal tract, regulate and influence cognitive dysfunction as well as the process of neurodegeneration and cerebrovascular diseases. Extrinsic and intrinsic factors including dietary habits can regulate the composition of the microbiota. Microbes release metabolites and microbiota-derived molecules to further trigger host-derived cytokines and inflammation in the central nervous system, which contribute greatly to the pathogenesis of host brain disorders such as pain, depression, anxiety, autism, Alzheimer’s diseases, Parkinson’s disease, and stroke. Change of blood–brain barrier permeability, brain vascular physiology, and brain structure are among the most critical causes of the development of downstream neurological dysfunction. In this review, we will discuss the following parts:
Overview of technical approaches used in gut microbiome studies Microbiota and immunity Gut microbiota and metabolites Microbiota-induced blood–brain barrier dysfunction Neuropsychiatric diseases
■ Stress and depression ■ Pain and migraine ■ Autism spectrum disorders
Neurodegenerative diseases
■ Parkinson’s disease ■ Alzheimer’s disease ■ Amyotrophic lateral sclerosis ■ Multiple sclerosis
Cerebrovascular disease
■ Atherosclerosis ■ Stroke ■ Arteriovenous malformation
Conclusions and perspectives
Collapse
Affiliation(s)
- Sibo Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Kelin Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,School of Data Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Genming Zhao
- School of Data Science, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Fudan University Taizhou Institute of Health Sciences, Taizhou, China. .,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|