1
|
Dai Y, Yang L, Cao G, Mo L, Yang C, Zhu Y, Guo Y, Hong Y, Xu H, Lu S, Du S, He J. Combination therapy and drug co-delivery systems for atherosclerosis. J Control Release 2025; 381:113543. [PMID: 39986476 DOI: 10.1016/j.jconrel.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of plaque within the arteries. Despite advances in therapeutic strategies including anti-inflammatory, antioxidant, and lipid metabolism modulation treatments over the past two decades, the treatment of atherosclerosis remains challenging, as arterial damage is the result of interconnected pathological factors. Therefore, current monotherapies often fail to address the complex nature of this disease, leading to insufficient therapeutic outcomes. This review addressed this paucity of effective treatment options by comprehensively exploring the potential for combination therapies and advanced drug co-delivery systems for the treatment of atherosclerosis. We investigated the pathological features of and risk factors for atherosclerosis, underscoring the importance of drug combination therapies for the treatment of atherosclerotic diseases. We discuss herein mathematical models for quantifying the efficacy of the combination therapies and provide a systematic summary of drug combinations for the treatment of atherosclerosis. We also provide a detailed review of the latest advances in nanoparticle-based drug co-delivery systems for the treatment of atherosclerosis, focusing on the design of carriers with high biocompatibility and efficacy. By exploring the possibilities and challenges inherent to this approach, we aim to highlight cutting-edge technologies that can foster the development of innovative strategies, optimize drug co-administration, improve treatment outcomes, and reduce the burden of atherosclerosis-related morbidity and mortality on the healthcare system.
Collapse
Affiliation(s)
- Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Li Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Guosheng Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Liqing Mo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuxi Zhu
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yi Hong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hanlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shi Du
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
2
|
He J, Dai Y, Xu F, Huang X, Gao Y, Liu L, Zhang W, Liu J. High-density lipoprotein-based nanoplatforms for macrophage-targeted diagnosis and therapy of atherosclerosis. Int J Biol Macromol 2025; 306:140826. [PMID: 40010459 DOI: 10.1016/j.ijbiomac.2025.140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/19/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Atherosclerosis, the primary cause of cardiovascular disease, which has the highest mortality worldwide, is a chronic inflammatory disease mainly induced by excessive lipid accumulation in plaque macrophages. Lipid-laden macrophages are crucial at all stages of atherosclerotic lesion progression and are, thus, regarded as popular therapeutic targets for atherosclerosis. High-density lipoprotein (HDL), an endogenous particle with excellent atherosclerotic plaque-homing properties, is considered a potential therapeutic agent for treating atherosclerosis. Based on the excellent properties of HDL, reconstituted HDL (rHDL), with physiological functions similar to those of its natural counterparts, have been successfully prepared as therapeutics and are also recognized as a potential nanoplatform for delivering drugs or contrast agents to atherosclerotic plaques owing to their high biocompatibility, amphiphilic structure, and macrophage-targeting capability. In this review, we focus on the (a) important role of macrophages in atherosclerotic lesions, (b) biological properties of rHDL as a delivery nanoplatform in atherosclerotic diseases, and (c) multiple applications of rHDL in the diagnosis and treatment of atherosclerosis. We systematically summarize the novel applications of rHDL with unique advantages in atherosclerosis, aiming to provide specific insights and inspire additional innovative research in this field.
Collapse
Affiliation(s)
- Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Fengfei Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yu Gao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Fracassi A, Qiao H, Lowell AN, Cao J, Bode JW, Masai H, Yoshizawa-Sugata N, Zhou R, Yamakoshi Y. Natural and Synthetic LDL-Based Imaging Probes for the Detection of Atherosclerotic Plaques. ACS Pharmacol Transl Sci 2025; 8:578-591. [PMID: 39974638 PMCID: PMC11833727 DOI: 10.1021/acsptsci.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Low-density lipoprotein (LDL) is the primary natural carrier of lipids in the bloodstream and plays a central role in the development of atherosclerosis. By leveraging LDL's natural tendency to accumulate at sites of plaque formation, LDL can be employed as a carrier to selectively deliver the imaging probes to efficiently detect atherosclerotic plaques. In our previous studies, we reported several LDL-based magnetic resonance imaging contrast agents (MRI-CAs) formed by modifying natural LDL (nLDL) or developing LDL-mimetic (synthetic LDL, sLDL) from lipid nanoparticles (LNPs) utilizing chemical reactions on the nanoparticle surface, including preliminary MRI tests. In this study, we report the in vivo biological functionality of these LDLs (both nLDL and sLDL)-based Gd(III)-based contrast agents (GBCAs) by conducting detailed in vivo studies on two types of atherosclerosis murine models, namely, apoE -/- and LDLr -/- . We provide more comprehensive MRI data accompanied by ex vivo results, including microscopic analysis of aorta segments for LDL accumulation and whole-body cryoVIZ analysis for biodistribution of the probe. We also tested in vitro cellular internalization of sLDL on two cell lines (RAW 264.7 and THP-1), which are derived from macrophages and monocytes, respectively, in order to observe sLDL uptake by macrophages, which are often present at the vulnerable types of atherosclerotic plaques. In conclusion, our current study demonstrates that modified LDLs-both nLDL and sLDL-facilitate MRI detection of atheroplaques by efficient uptake by macrophages. Taken together with the high loading capacity of Gd(III)-chelate molecules on LDL, especially sLDL, the LDL-based MRI contrast agents reported here hold significant potential for the early detection of atherosclerosis, including vulnerable ones, and should be useful for preventive diagnosis strategies.
Collapse
Affiliation(s)
- Alessandro Fracassi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| | - Hui Qiao
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Andrew N. Lowell
- Department
of Chemistry, Virginia Polytechnic Institute and State University,
Davidson Hall, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Jianbo Cao
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey W. Bode
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| | - Hisao Masai
- Department
of Basic Medical Sciences, Tokyo Metropolitan
Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Naoko Yoshizawa-Sugata
- Research
Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Rong Zhou
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Yoko Yamakoshi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| |
Collapse
|
4
|
Miles CM, Cullen S, Kenaan H, Gu W, Andrews GP, Sosso GC, Tian Y. Unravelling the interactions between small molecules and liposomal bilayers via molecular dynamics and thermodynamic modelling. Int J Pharm 2024; 660:124367. [PMID: 38901537 DOI: 10.1016/j.ijpharm.2024.124367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Lipid-based drug delivery systems hold immense promise in addressing critical medical needs, from cancer and neurodegenerative diseases to infectious diseases. By encapsulating active pharmaceutical ingredients - ranging from small molecule drugs to proteins and nucleic acids - these nanocarriers enhance treatment efficacy and safety. However, their commercial success faces hurdles, such as the lack of a systematic design approach and the issues related to scalability and reproducibility. This work aims to provide insights into the drug-phospholipid interaction by combining molecular dynamic simulations and thermodynamic modelling techniques. In particular, we have made a connection between the structural properties of the drug-phospholipid system and the physicochemical performance of the drug-loaded liposomal nanoformulations. We have considered two prototypical drugs, felodipine (FEL) and naproxen (NPX), and one model hydrogenated soy phosphatidylcholine (HSPC) bilayer membrane. Molecular dynamic simulations revealed which regions within the phospholipid bilayers are most and least favoured by the drug molecules. NPX tends to reside at the water-phospholipid interface and is characterized by a lower free energy barrier for bilayer membrane permeation. Meanwhile, FEL prefers to sit within the hydrophobic tails of the phospholipids and is characterized by a higher free energy barrier for membrane permeation. Flory-Huggins thermodynamic modelling, small angle X-ray scattering, dynamic light scattering, TEM, and drug release studies of these liposomal nanoformulations confirmed this drug-phospholipid structural difference. The naproxen-phospholipid system has a lower free energy barrier for permeation, higher drug miscibility with the bilayer, larger liposomal nanoparticle size, and faster drug release in the aqueous medium than felodipine. We suggest that this combination of molecular dynamics and thermodynamics approach may offer a new tool for designing and developing lipid-based nanocarriers for unmet medical applications.
Collapse
Affiliation(s)
- Christopher M Miles
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Shane Cullen
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Hussein Kenaan
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Wenjie Gu
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Gabriele C Sosso
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - Yiwei Tian
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
5
|
Mehryab F, Rabbani S, Shekari F, Nazari A, Goshtasbi N, Haeri A. Sirolimus-loaded exosomes as a promising vascular delivery system for the prevention of post-angioplasty restenosis. Drug Deliv Transl Res 2024; 14:158-176. [PMID: 37518365 DOI: 10.1007/s13346-023-01390-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Restenosis remains the main reason for treatment failure of arterial disease. Sirolimus (SIR) as a potent anti-proliferative agent is believed to prevent the phenomenon. The application of exosomes provides an extended-release delivery platform for SIR intramural administration. Herein, SIR was loaded into fibroblast-derived exosomes isolated by ultracentrifugation. Different parameters affecting drug loading were optimized, and exosome samples were characterized regarding physicochemical, pharmaceutical, and biological properties. Cytotoxicity, scratch wound assays, and quantitative real-time PCR for inflammation- and migration-associated genes were performed. Restenosis was induced by carotid injury in a rat carotid model and then exosomes were locally administered. After 14 days, animals were investigated by computed tomography (CT) angiography, morphometric, and immunohistochemical analyses. Western blotting confirmed the presence of specific protein markers in exosomes. Characterization of empty and SIR-loaded exosomes verified round and nanoscale structure of vesicles. Among prepared formulations, desired entrapment efficiency (EE) of 76% was achieved by protein:drug proportion of 2:1 and simple incubation for 30 min at 37 °C. Also, the optimal formulation released about 30% of the drug content during the first 24 h, followed by a prolonged release for several days. In vitro studies revealed the uptake and functional efficacy of the optimized formulation. In vivo studies revealed that %restenosis was in the following order: saline > empty exosomes > SIR-loaded exosomes. Furthermore, Ki67, alpha smooth muscle actin (α-SMA), and matrix metalloproteinase (MMP) markers were less expressed in the SIR-exosomes-treated arteries. These findings confirmed that exosomal SIR could be a hopeful strategy for the prevention of restenosis.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box: 14155-6153, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box: 14155-6153, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box: 14155-6153, Tehran, Iran.
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Qiu D, Hu J, Wang P, Huang D, Lin Y, Tian H, Yi X, Zou Q, Zhu H. Synthesis of NaYF4:20% Yb3+,2% Er3+,2% Ce3+@NaYF4 nanorods and their size dependent uptake efficiency under flow condition. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Cheraga N, Ye Z, Xu MJ, Zou L, Sun NC, Hang Y, Shan CJ, Yang ZZ, Chen LJ, Huang NP. Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. NANOSCALE 2022; 14:8709-8726. [PMID: 35673987 DOI: 10.1039/d1nr06514a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atherosclerosis, the leading cause of death in the elderly worldwide, is typically characterized by elevated reactive oxygen species (ROS) levels and a chronic inflammatory state at the arterial plaques. Herein, pH-sensitive nanoparticles (HRRAP NPs) co-delivering all-trans retinal (ATR), an antioxidant linked to hyaluronic acid (HA) through a pH-sensitive hydrazone bond, and rapamycin (RAP), an anti-atherosclerotic drug loaded into the nanoparticle core, are developed for targeted combination therapy of atherosclerosis. In this way, HRRAP NPs might simultaneously reduce ROS levels via ATR antioxidant activity and reduce inflammation via the anti-inflammatory effect of RAP. In response to mildly acidic conditions mimicking the lesional inflammation in vitro, HRRAP NPs dissociated and both ATR and RAP were effectively released. The developed HRRAP NPs effectively inhibited pro-inflammatory macrophage proliferation, and displayed dose- and time-dependent specific internalization by different cellular models of atherosclerosis. Also, HRRAP NP combination therapy showed an efficient synergetic anti-atherosclerotic effect in vitro by effectively inhibiting the inflammatory response and oxidative stress in inflammatory cells. More importantly, HR NPs specifically accumulated in the atherosclerotic plaques of apolipoprotein E-deficient (ApoE-/-) mice, by active interaction with HA receptors overexpressed by different cells of the plaque. The treatment with HRRAP NPs remarkably inhibited the progression of atherosclerosis in ApoE-/- mice which resulted in stable plaques with considerably smaller necrotic cores, lower matrix metalloproteinase-9, and decreased proliferation of macrophages and smooth muscle cells (SMCs). Furthermore, HRRAP NPs attenuated RAP adverse effects and exhibited a good safety profile after long-term treatment in mice. Consequently, the developed pH-sensitive HRRAP NP represent a promising nanoplatform for atherosclerosis combination therapy.
Collapse
Affiliation(s)
- Nihad Cheraga
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ming-Jie Xu
- Nanjing University Medical School, Nanjing, 210093, China
| | - Lin Zou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ning-Cong Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Yue Hang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Cong-Jia Shan
- Nanjing University Medical School, Nanjing, 210093, China
| | | | - Li-Juan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| |
Collapse
|
10
|
Naman S, Naryal S, Palliwal R, Paliwal SR, Baldi A. Combating atherosclerosis with nanodrug delivery approaches: from bench side to commercialization. DRUG DELIVERY SYSTEMS FOR METABOLIC DISORDERS 2022:97-136. [DOI: 10.1016/b978-0-323-99616-7.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Zhang R, Zhang Q, Zhu S, Liu B, Liu F, Xu Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol Res 2021; 175:106029. [PMID: 34896248 DOI: 10.1016/j.phrs.2021.106029] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
The leaves of Morus alba L. (called Sangye in Chinese, ML), which belong to the genus Morus., are highly valuable edible plants in nutrients and nutraceuticals. In Asian countries including China, Japan and Korea, ML are widely used as functional foods including beverages, noodles and herbal tea because of its biological and nutritional value. Meanwhile, ML-derived products in the form of powders, extracts and capsules are widely consumed as dietary supplements for controlling blood glucose and sugar. Clinical studies showed that ML play an important role in the treatment of metabolic diseases including the diabetes, dyslipidemia, obesity, atherosclerosis and hypertension. People broadly use ML due to their nutritiousness, deliciousness, safety, and abundant active benefits. However, the systematic pharmacological mechanisms of ML on metabolic diseases have not been fully revealed. Therefore, in order to fully utilize and scale relevant products about ML, this review summarizes the up-to-date information about the ML and its constituents effecting on metabolic disease.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Qian Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Shun Zhu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Biyang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China.
| | - Yao Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China.
| |
Collapse
|
12
|
Banerjee S, Mwangi JG, Stanley TK, Mitra R, Ebong EE. Regeneration and Assessment of the Endothelial Glycocalyx To Address Cardiovascular Disease. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Selina Banerjee
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - John G. Mwangi
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Theodora K. Stanley
- Department of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eno E. Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461, United States
| |
Collapse
|
13
|
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28:550-568. [PMID: 33703990 PMCID: PMC7954496 DOI: 10.1080/10717544.2021.1892241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Collapse
Affiliation(s)
- Sindhu C. Pillai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Ankita Borah
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Eden Mariam Jacob
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| |
Collapse
|
14
|
Shrestha SC, Ghebremeskel K, White K, Minelli C, Tewfik I, Thapa P, Tewfik S. Formulation and Characterization of Phytostanol Ester Solid Lipid Nanoparticles for the Management of Hypercholesterolemia: An ex vivo Study. Int J Nanomedicine 2021; 16:1977-1992. [PMID: 33727810 PMCID: PMC7955784 DOI: 10.2147/ijn.s276301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Phytostanols are naturally occurring compounds that reduce blood cholesterol levels significantly. However, their aqueous insolubility poses formulation challenges. AIM To formulate and characterize solid lipid nanoparticle carriers for phytostanol esters to enhance the bioavailability of phytostanols. METHODS Phytostanol ester solid lipid nanoparticles were formulated by the microemulsion method. They were characterized for particle size distribution, polydispersity index, shape, surface charge, entrapment efficiency, stability, chemical structure, and thermal properties. The uptake of the formulation by cell lines, HepG2 and HT-29, and its effect on cell viability were evaluated. RESULTS The formulation of solid lipid nanoparticles was successfully optimised by varying the type of lipids and their concentration relative to that of surfactants in the present study. The optimised formulation had an average diameter of (171 ± 9) nm, a negative surface charge of (-23.0 ± 0.8) mV and was generally spherical in shape. We report high levels of drug entrapment at (89 ± 5)% in amorphous form, drug loading of (9.1 ± 0.5)%, nanoparticle yield of (67 ± 4)% and drug excipient compatibility. The biological safety and uptake of the formulations were demonstrated on hepatic and intestinal cell lines. CONCLUSION Phytostanol ester solid lipid nanoparticles were successfully formulated and characterized. The formulation has the potential to provide an innovative drug delivery system for phytostanols which reduce cholesterol and have a potentially ideal safety profile. This can contribute to better management of one of the main risk factors of cardiovascular diseases.
Collapse
Affiliation(s)
- Sony Chandi Shrestha
- School of Human Sciences, London Metropolitan University, London, UK
- Surface Technology, National Physical Laboratory, London, UK
| | | | - Kenneth White
- School of Human Sciences, London Metropolitan University, London, UK
| | | | - Ihab Tewfik
- Life Sciences, University of Westminster, London, UK
| | - Panna Thapa
- Department of Pharmacy, Kathmandu University, Dhulikhel, Nepal
| | - Sundus Tewfik
- Department of Applied Nanomolecules, Bloomsnano Limited, London, UK
| |
Collapse
|
15
|
Ou LC, Zhong S, Ou JS, Tian JW. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis. Acta Pharmacol Sin 2021; 42:10-17. [PMID: 32457416 DOI: 10.1038/s41401-020-0436-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
Atherosclerosis (AS) is the main pathological cause of coronary heart disease (CHD). Current clinical interventions including statin drugs can effectively reduce acute myocardial infarction and stroke to some extent, but residual risk remains high. The current clinical treatment regimens are relatively effective for early atherosclerotic plaques and can even reverse their progression. However, the effectiveness of these treatments for advanced AS is not ideal, and advanced atherosclerotic plaques-the pathological basis of residual risk-can still cause a recurrence of acute cardiovascular and cerebrovascular events. Recently, nanomedicine-based treatment strategies have been extensively used in antitumor therapy, and also shown great potential in anti-AS therapy. There are many microstructures in late-stage atherosclerotic plaques, such as neovascularization, micro-calcification, and cholesterol crystals, and these have become important foci for targeted nanomedicine delivery. The use of targeted nanoparticles has become an important strategy for the treatment of advanced AS to further reduce the residual risk of cardiovascular events. Furthermore, the feasibility and safety of nanotechnology in clinical treatment have been preliminarily confirmed. In this review, we summarize the application of nanomedicine delivery in the treatment of advanced AS and the clinical value of several promising nanodrugs.
Collapse
|
16
|
Li W, Yu J, Zhao J, Xiao X, Li W, Zang L, Yu J, Liu H, Niu X. Poria cocos
polysaccharides reduces high‐fat diet‐induced arteriosclerosis in
ApoE
−/−
mice by inhibiting inflammation. Phytother Res 2020; 35:2220-2229. [DOI: 10.1002/ptr.6980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Weifeng Li
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jinjin Yu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jinmeng Zhao
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Xin Xiao
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Wenqi Li
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Lulu Zang
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jiabao Yu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Haijing Liu
- Quality Inspection Department Shaanxi Institute for Food and Drug Control Xi'an China
| | - Xiaofeng Niu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| |
Collapse
|
17
|
Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for alleviating atherosclerosis. J Nanobiotechnology 2020; 18:179. [PMID: 33287831 PMCID: PMC7720571 DOI: 10.1186/s12951-020-00744-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation and oxidative stress are two major factors that are involved in the pathogenesis of atherosclerosis. A smart drug delivery system that responds to the oxidative microenvironment of atherosclerotic plaques was constructed in the present study. Simvastatin (SIM)-loaded biodegradable polymeric micelles were constructed from hyaluronic acid (HA)-coated poly(ethylene glycol)-poly(tyrosine-ethyl oxalyl) (PEG-Ptyr-EO) for the purpose of simultaneously inhibiting macrophages and decreasing the level of reactive oxygen species (ROS) to treat atherosclerosis. HA coating endows the micelle system the ability of targeting CD44-positive inflammatory macrophages. Owing to the ROS-responsive nature of PEG-Ptyr-EO, the micelles can not only be degraded by enzymes, but also consumes ROS by itself at the pathologic sites, upon which the accumulation of pro-inflammatory macrophages is effectively suppressed and oxidative stress is alleviated. Consequently, the cellular uptake experiment demonstrated that SIM-loaded HA-coated micelles can be effectively internalized by LPS-induced RAW264.7 cells and showed high cytotoxicity against the cells, but low cytotoxicity against LO2 cells. In mouse models of atherosclerosis, intravenously SIM-loaded HA-coated micelles can effectively reduce plaque content of cholesterol, resulting in remarkable therapeutic effects. In conclusion, the SIM-loaded micelle system provides a promising and innovative option against atherosclerosis.![]()
Collapse
|
18
|
Zhang S, Xu W, Gao P, Chen W, Zhou Q. Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2020; 48:169-179. [PMID: 31852323 DOI: 10.1080/21691401.2019.1699823] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging (MRI) is an essential tool for the diagnosis of atherosclerosis, a chronic cardiovascular disease. MRI primarily uses superparamagnetic iron oxide (SPIO) as a contrast agent. However, SPIO integrated with therapeutic drugs has rarely been studied. In this study, we explored biocompatible paramagnetic iron-oxide nanoparticles (NPs) in a complex with low pH-sensitive cyclodextrin for the diagnostic imaging and treatment of atherosclerosis. The NPs were conjugated with profilin-1 antibody (PFN1) to specifically target vascular smooth muscle cells (VSMCs) in the atherosclerotic plaque and integrated with the anti-inflammatory drug, rapamycin. The PFN1-CD-MNPs were easily binded to the VSMCs, indicating their good biocompatibility and low renal toxicity over the long term. Ex vivo near-infrared fluorescence (NIRF) imaging and in vivo MRI indicated the accumulation of PFN1-CD-MNPs in the atherosclerotic plaque. The RAP@PFN1-CD-MNPs alleviated the progression of arteriosclerosis. Thus, PFN1-CD-MNPs served not only as multifunctional imaging probes but also as nanovehicles for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuihua Zhang
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
- Guangzhou Universal Medical Imaging Diagnostic Center, Universal Medical Imaging, Guangzhou, China
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wan Xu
- Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Peng Gao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenli Chen
- Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| |
Collapse
|
19
|
Zhang X, Luo M, Wang E, Zheng L, Shu C. Numerical simulation of magnetic nano drug targeting to atherosclerosis: Effect of plaque morphology (stenosis degree and shoulder length). COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 195:105556. [PMID: 32505972 DOI: 10.1016/j.cmpb.2020.105556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/22/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Nanoparticle-mediated targeted drug delivery is a promising option for treatment of atherosclerosis. However, the drug targeting may be affected by multiple factors. Considerable attentions have been focused on the influences of external factors, e.g., magnetic field, drug-loaded particle, but internal factors, e.g., plaque morphology (stenosis degree and shoulder length), have not received any attention yet. Therefore, we investigate the impact of plaque morphology on magnetic nanoparticles targeting under the action of an external field. METHOD Numerical simulation, based on Eulerian-Lagrangian coupled Fluid-Solid Interaction, is performed in ANSYS Workbench platform. Blood flow is solved by Navier-Stokes equation, particles are tracked by discrete phase model, and the incorporated effect is obtained by two-way method. Plaques with varying stenosis degrees and shoulder lengths are acquired by manually modifying the geometry of patient-specific. The quantified variables include targeted delivery efficiency (deposition+adhesive strength) of particles and plaque injury characterized by temporal-spatial averaged shear stress (TAWSS¯) during the process of drug transport, in which the critical deposition velocity is determined by plaques and particles, the DEFINE_DPM_BC and User Defined Memory are employed to evaluate whether the particles are deposited, and to store the total number and the adhesive strength of particles deposited on the plaque. RESULTS Results signify that, with an increment of plaque stenosis degree, the deposition of particle and the adhesive strength between particle and plaque decrease, while the TAWSS¯ increases. Furthermore, for the same stenosis degree, with the increase of plaque shoulder length, the deposition and the adhesive strength of particle increase, and the TAWSS¯ decreases. CONCLUSIONS Results demonstrates that the plaque with smaller stenosis degree or longer shoulder length may achieve a better treatment effect in view of the higher targeted delivery efficiency of particles and the lighter shear damage to plaque itself during the process of drug transport.
Collapse
Affiliation(s)
- Xuelan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 10083, China; School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingyao Luo
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Erhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 10083, China; School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Liancun Zheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chang Shu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
20
|
Abstract
Magnetic drug targeting (MDT) is a noninvasive method for the medical treatment of various diseases of the cardiovascular system. Biocompatible magnetic nanoparticles loaded with medicinal drugs are carried to a tissue target in the human body (in vivo) under the applied magnetic field. The present study examines the MDT technique in various microchannels geometries by adopting the principles of biofluid dynamics (BFD). The blood flow is considered as laminar, pulsatile and the blood as an incompressible and non-Newtonian fluid. A two-phase model is adopted to resolve the blood flow and the motion of magnetic nanoparticles (MNPs). The numerical results are obtained by utilizing a meshless point collocation method (MPCM) alongside with the moving least squares (MLS) approximation. The numerical results are verified by comparing with published numerical results. We investigate the effect of crucial parameters of MDT, including (1) the volume fraction of nanoparticles, (2) the location of the magnetic field, (3) the strength of the magnetic field and its gradient, (4) the way that MNPs approach the targeted area, and (5) the bifurcation angle of the vessel.
Collapse
|
21
|
Darwitan A, Wong YS, Nguyen LTH, Czarny B, Vincent A, Nedumaran AM, Tan YF, Muktabar A, Tang JK, Ng KW, Venkatraman S. Liposomal Nanotherapy for Treatment of Atherosclerosis. Adv Healthc Mater 2020; 9:e2000465. [PMID: 32543010 DOI: 10.1002/adhm.202000465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Indexed: 02/02/2023]
Abstract
Atherosclerosis is a chronic disease that can lead to life-threatening events such as myocardial infarction and stroke, is characterized by the build-up of lipids and immune cells within the arterial wall. It is understood that inflammation is a hallmark of atherosclerosis and can be a target for therapy. In support of this concept, an injectable nanoliposomal formulation encapsulating fluocinolone acetonide (FA), a corticosteroid, is developed that allows for drug delivery to atherosclerotic plaques while reducing the systemic exposure to off-target tissues. In this study, FA is successfully incorporated into liposomal nanocarriers of around 100 nm in size with loading efficiency of 90% and the formulation exhibits sustained release up to 25 d. The anti-inflammatory effect and cholesterol efflux capability of FA-liposomes are demonstrated in vitro. In vivo studies carried out with an apolipoprotein E-knockout (Apoe-/- ) mouse model of atherosclerosis show accumulation of liposomes in atherosclerotic plaques, colocalization with plaque macrophages and anti-atherogenic effect over 3 weeks of treatment. This FA-liposomal-based nanocarrier represents a novel potent nanotherapeutic option for atherosclerosis.
Collapse
Affiliation(s)
- Anastasia Darwitan
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Yee Shan Wong
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Luong T. H. Nguyen
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State University Columbus OH 43210 USA
| | - Bertrand Czarny
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Anita Vincent
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Yang Fei Tan
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Aristo Muktabar
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Jin Kai Tang
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Kee Woei Ng
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Subbu Venkatraman
- Materials Science and EngineeringNational University of Singapore Singapore 117575 Singapore
| |
Collapse
|
22
|
Darwitan A, Tan YF, Wong YS, Nedumaran AM, Czarny B, Venkatraman S. Targeting efficiency of nanoliposomes on atherosclerotic foam cells: polyethylene glycol-to-ligand ratio effects. Expert Opin Drug Deliv 2020; 17:1165-1176. [DOI: 10.1080/17425247.2020.1777982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anastasia Darwitan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yang Fei Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yee Shan Wong
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bertrand Czarny
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Subbu Venkatraman
- Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
24
|
Vigne J, Cabella C, Dézsi L, Rustique E, Couffin AC, Aid R, Anizan N, Chauvierre C, Letourneur D, Le Guludec D, Rouzet F, Hyafil F, Mészáros T, Fülöp T, Szebeni J, Cordaro A, Oliva P, Mourier V, Texier I. Nanostructured lipid carriers accumulate in atherosclerotic plaques of ApoE -/- mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102157. [PMID: 31982616 DOI: 10.1016/j.nano.2020.102157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/04/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
Nanostructured lipid carriers (NLC) might represent an interesting approach for the identification and targeting of rupture-prone atherosclerotic plaques. In this study, we evaluated the biodistribution, targeting ability and safety of 64Cu-fonctionalized NLC in atherosclerotic mice. 64Cu-chelating-NLC (51.8±3.1 nm diameter) with low dispersity index (0.066±0.016) were produced by high pressure homogenization at tens-of-grams scale. 24 h after injection of 64Cu-chelated particles in ApoE-/- mice, focal regions of the aorta showed accumulation of particles on autoradiography that colocalized with Oil Red O lipid mapping. Signal intensity was significantly greater in aortas isolated from ApoE-/- mice compared to wild type (WT) control (8.95 [7.58, 10.16]×108 vs 4.59 [3.11, 5.03]×108 QL/mm2, P < 0.05). Moreover, NLC seemed safe in relevant biocompatibility studies. NLC could constitute an interesting platform with high clinical translation potential for targeted delivery and imaging purposes in atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Vigne
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - László Dézsi
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | - Rachida Aid
- Université de Paris, UMS34 FRIM, Paris, France
| | | | | | | | - Dominique Le Guludec
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - François Rouzet
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Fabien Hyafil
- Université de Paris, LVTS, INSERM U1148, Paris, France; Nuclear Medicine Department, X. Bichat Hospital, APHP and DHU FIRE, Paris, France; Université de Paris, UMS34 FRIM, Paris, France
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Tamás Fülöp
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Alessia Cordaro
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | - Paolo Oliva
- Centro Ricerche Bracco, Bracco Imaging SpA, Colleretto Giacosa, Italy
| | | | | |
Collapse
|
25
|
Wijaya A, Maruf A, Wu W, Wang G. Recent advances in micro- and nano-bubbles for atherosclerosis applications. Biomater Sci 2020; 8:4920-4939. [DOI: 10.1039/d0bm00762e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Micro- and nano-bubbles have been developed as powerful multimodal theranostic agents for atherosclerosis treatment.
Collapse
Affiliation(s)
- Andy Wijaya
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| |
Collapse
|
26
|
Kim M, Sahu A, Hwang Y, Kim GB, Nam GH, Kim IS, Chan Kwon I, Tae G. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/- mice. Biomaterials 2020; 226:119550. [DOI: 10.1016/j.biomaterials.2019.119550] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
|
27
|
Biodistribution of Nanostructured Lipid Carriers in Mice Atherosclerotic Model. Molecules 2019; 24:molecules24193499. [PMID: 31561608 PMCID: PMC6803849 DOI: 10.3390/molecules24193499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a major cardiovascular disease worldwide, that could benefit from innovative nanomedicine imaging tools and treatments. In this perspective, we here studied, by fluorescence imaging in ApoE-/- mice, the biodistribution of non-functionalized and RXP470.1-targeted nanostructured lipid carriers (NLC) loaded with DiD dye. RXP470.1 specifically binds to MMP12, a metalloprotease that is over-expressed by macrophages residing in atherosclerotic plaques. Physico-chemical characterizations showed that RXP-NLC (about 105 RXP470.1 moieties/particle) displayed similar features as non-functionalized NLC in terms of particle diameter (about 60-65 nm), surface charge (about −5 — −10 mV), and colloidal stability. In vitro inhibition assays demonstrated that RXP-NLC conserved a selectivity and affinity profile, which favored MMP-12. In vivo data indicated that NLC and RXP-NLC presented prolonged blood circulation and accumulation in atherosclerotic lesions in a few hours. Twenty-four hours after injection, particle uptake in atherosclerotic plaques of the brachiocephalic artery was similar for both nanoparticles, as assessed by ex vivo imaging. This suggests that the RXP470.1 coating did not significantly induce an active targeting of the nanoparticles within the plaques. Overall, NLCs appeared to be very promising nanovectors to efficiently and specifically deliver imaging agents or drugs in atherosclerotic lesions, opening avenues for new nanomedicine strategies for cardiovascular diseases.
Collapse
|
28
|
Doll F, Keckeis P, Scheel P, Cölfen H. Visualizing Cholesterol Uptake by Self-Assembling Rhodamine B-Labeled Polymer Inside Living Cells via FLIM-FRET Microscopy. Macromol Biosci 2019; 20:e1900081. [PMID: 31222918 DOI: 10.1002/mabi.201900081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/04/2019] [Indexed: 01/25/2023]
Abstract
Atherosclerosis is a widespread and hazardous disease characterized by the formation of arterial plaques mostly composed of fat, cholesterol, and calcium ions. The direct solubilization of cholesterol represents a promising, atheroprotective strategy to subside lipid blood levels and reverse atherosclerosis. This study deals with the in-depth analysis of polymer-mediated cholesterol dissolution inside living human cells. To this end, a recently described multifunctional block-polymer is labeled with Rhodamine B (RhoB) to investigate its interaction with cells via fluorescence microscopy. This gives insight into the cellular internalization process of the polymer, which appears to be clathrin- and caveolae/raft-dependent endocytosis. In cell single particle tracking reveals an active transport of RhoB polymer including structures. Förster resonance energy transfer (FRET) measurements of cells treated with a fluorophore-tagged cholesterol derivative and the RhoB polymer indicates the uptake of cholesterol by the polymeric particles. Hence, these results present a first step toward possible applications of cholesterol-absorbing polymers for treating atherosclerosis.
Collapse
Affiliation(s)
- Franziska Doll
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Philipp Keckeis
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Patricia Scheel
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
29
|
Shi S, Kong N, Feng C, Shajii A, Bejgrowicz C, Tao W, Farokhzad OC. Drug Delivery Strategies for the Treatment of Metabolic Diseases. Adv Healthc Mater 2019; 8:e1801655. [PMID: 30957991 PMCID: PMC6663576 DOI: 10.1002/adhm.201801655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/11/2019] [Indexed: 12/24/2022]
Abstract
Metabolic diseases occur when normal metabolic processes are disrupted in the human body, which can be congenital or acquired. The incidence of metabolic diseases worldwide has reached epidemic proportions. So far, various methods including systemic drug therapy and surgery are exploited to prevent and treat metabolic diseases. However, current pharmacotherapeutic options for treatment of these metabolic disorders remain limited and ineffective, especially reducing patient compliance to treatment. Therefore, it is desirable to exploit effective drug delivery approaches to effectively treat metabolic diseases and reduce side effects. This brief review summarizes novel delivery strategies including local, targeted, and oral drug delivery strategies, as well as intelligent stimulus-responsive drug delivery strategy, for the treatment of metabolic disorders including diabetes, obesity, and atherosclerosis.
Collapse
Affiliation(s)
- Sanjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Chan Feng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Aram Shajii
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Claire Bejgrowicz
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
30
|
Bardania H, Shojaosadati SA, Kobarfard F, Morshedi D, Aliakbari F, Tahoori MT, Roshani E. RGD-Modified Nano-Liposomes Encapsulated Eptifibatide with Proper Hemocompatibility and Cytotoxicity Effect. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2008. [PMID: 31457055 PMCID: PMC6697844 DOI: 10.21859/ijb.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Eptifibatide (Integrilin®) is a hepta-peptide drug which specifically prevents the aggregation of activated platelets. The peptide drugs are encapsulated into nanolipisomes in order to decreasing their side effects and improving their half-life and bioavailability. Objectives In this study, the in vitro cytotoxicity and hemocompatibility of RGD-modified nano-liposomes (RGD-MNL) encapsulated a highly potent antiplatelet drug (eptifibatide) was investigated. Material and Methods RGD-MNL encapsulated eptifibatide was prepared using lipid film hydration and freeze/thawing method. The morphology and size distribution (about 90 nm) of RGD-MNL were characterized using transmission electron microscopy (TEM). The in-vitro cytotoxicity of nano-liposomes was examined using the MTT, LDH release and reactive oxygen species (ROS) generation assays. The effect of RGD-MNL on red blood cells (RBC) was investigated using hemolysis and LDH release assays. Results The results revealed that RGD-MNL had no significant cytotoxic effect on HeLa and HUVEC cell lines, and also no ROS generation increase in the cells. In addition, the adverse effect of RGD-MNL on LDH release and membrane integrity of RBC was not observed. Conclusions In conclusion, the recommended RGD-MNL formulations have not any significant cytotoxicity on normal cells or RBC and have potential for protecting and enhancing the activity of antiplatelet drugs.
Collapse
Affiliation(s)
- Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dina Morshedi
- Industrial and Environmental Biotechnology, National Inst. of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farhang Aliakbari
- Industrial and Environmental Biotechnology, National Inst. of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Roshani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Kim KS, Song CG, Kang PM. Targeting Oxidative Stress Using Nanoparticles as a Theranostic Strategy for Cardiovascular Diseases. Antioxid Redox Signal 2019; 30:733-746. [PMID: 29228781 PMCID: PMC6350062 DOI: 10.1089/ars.2017.7428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Nanomedicine is an application of nanotechnology that provides solutions to unmet medical challenges. The unique features of nanoparticles, such as their small size, modifiable components, and diverse functionality, make them attractive and suitable materials for novel diagnostic, therapeutic, or theranostic applications. Cardiovascular diseases (CVDs) are the major cause of noncommunicable illness in both developing and developed countries. Nanomedicine offers novel theranostic options for the treatment of CVDs. Recent Advances: Many innovative nanoparticles to target reactive oxygen species (ROS) have been developed. In this article, we review the characteristics of nanoparticles that are responsive to ROS, their limitations, and their potential clinical uses. Significant advances made in diagnosis of atherosclerosis and treatment of acute coronary syndrome using nanoparticles are discussed. CRITICAL ISSUES Although there is a tremendous potential for the nanoparticle applications in medicine, their safety should be considered while using in humans. We discuss the challenges that may be encountered with some of the innovative nanoparticles used in CVDs. FUTURE DIRECTIONS The unique properties of nanoparticles offer novel diagnostic tool and potential therapeutic strategies. However, nanomedicine is still in its infancy, and further in-depth studies are needed before wide clinical application is achieved.
Collapse
Affiliation(s)
- Kye S Kim
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| | - Chul Gyu Song
- 3 Department of Electronic Engineering, Chonbuk National University, Jeonju, South Korea
| | - Peter M Kang
- 1 Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Wang F, Zhang Z, Fang A, Jin Q, Fang D, Liu Y, Wu J, Tan X, Wei Y, Jiang C, Song X. Macrophage Foam Cell-Targeting Immunization Attenuates Atherosclerosis. Front Immunol 2019; 9:3127. [PMID: 30687328 PMCID: PMC6335275 DOI: 10.3389/fimmu.2018.03127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Macrophage foam cells (FCs) play a crucial role in the initiation and progression of atherosclerosis. Reducing the formation or inducing the removal of FCs could ameliorate atherosclerosis. The present study examined whether the whole-cell vaccination using FCs could be used as novel prevention and treatment strategies to battle atherosclerosis. Methods: ApoE−/− mice with initial or established atherosclerosis were subcutaneously immunized three times with FCs in Freund's adjuvant. Results: Immunization with FCs resulted in an overt reduction of atherosclerotic lesion in the whole aorta and the aortic root with enhanced lesion stability. Subsequent study in mechanism showed that FCs vaccination dramatically increased CD4+ T cell and CD8+ T cell populations. Immunization with FCs significantly raised the plasma FCs-specific IgG antibodies. Of note, the FCs immune plasma could selectively recognize and bind to FC. FCs immune plasma significantly blocked the process of FCs formation, finally reduced the accumulation of FCs in plaque. Additionally, it was observed that FCs immunization down-regulated the expression level of atherosclerosis related pro-inflammatory cytokines, including IFN-γ, MCP-1, and IL-6 and enhanced the lesion stability with a significant increase in TGF-β1 level and collagen content. Conclusions: These findings demonstrate that the whole-cell vaccination using FCs significantly decreased lesion development and positively modulated lesion progression and stability by targeting FCs. The whole-cell FCs vaccine might represent a potential novel strategy for development of new antibodies and vaccines to the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fazhan Wang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhi Zhang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.,School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.,West China School of Public Health, Sichuan University, Chengdu, China
| | - Quansheng Jin
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Dailong Fang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yongmei Liu
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jinhui Wu
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyue Tan
- Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Chunling Jiang
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy, Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Xiang AS, Meikle PJ, Carey AL, Kingwell BA. Brown adipose tissue and lipid metabolism: New strategies for identification of activators and biomarkers with clinical potential. Pharmacol Ther 2018; 192:141-149. [DOI: 10.1016/j.pharmthera.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
de Sousa Cunha F, Dos Santos Pereira LN, de Costa E Silva TP, de Sousa Luz RA, Nogueira Mendes A. Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2018; 27:732-741. [PMID: 30207742 DOI: 10.1080/1061186x.2018.1523418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of nanoparticulate systems with action in breast and ovarian cancer has been highlighted in recent years as an alternative to increasing the therapeutic index of conventional anticancer drugs. Thus, nanoparticles have advantageous characteristics in the treatment of cancer. Several nanocarriers of drugs and nanoparticles are described in the literature. The pharmacokinetics of the drugs can be modified by the use of nanocarriers, which in turn facilitate the specific delivery of the drug to the tumour cell. Therefore, the present work is a review that examines some nanosystems with nanoparticles for action in the treatment of breast cancer and ovarian cancer.
Collapse
Affiliation(s)
- Fabiana de Sousa Cunha
- a Departamento de Química, Campus Poeta Torquato Neto , Universidade Estadual do Piauí , Teresina , Brazil
| | - Laise Nayra Dos Santos Pereira
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Thâmara Pryscilla de Costa E Silva
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Roberto Alves de Sousa Luz
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Anderson Nogueira Mendes
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil.,c Departamento de Biofísica e Fisiologia, Centro de Ciências em Saúde , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| |
Collapse
|
35
|
Aortic plaque-targeted andrographolide delivery with oxidation-sensitive micelle effectively treats atherosclerosis via simultaneous ROS capture and anti-inflammation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2215-2226. [DOI: 10.1016/j.nano.2018.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023]
|
36
|
Giacalone G, Tsapis N, Mousnier L, Chacun H, Fattal E. PLA-PEG Nanoparticles Improve the Anti-Inflammatory Effect of Rosiglitazone on Macrophages by Enhancing Drug Uptake Compared to Free Rosiglitazone. MATERIALS 2018; 11:ma11101845. [PMID: 30262751 PMCID: PMC6213468 DOI: 10.3390/ma11101845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
Abstract
Among cardiovascular diseases, atherosclerosis remains the first cause of death in the United States of America and Europe, as it leads to myocardial infarction or stroke. The high prevalence of heart diseases is due to the difficulty in diagnosing atherosclerosis, since it can develop for decades before symptoms occur, and to the complexity of the treatment since targets are also important components of the host defenses. The antidiabetics thiazolidinediones, among which is rosiglitazone (RSG), have demonstrated anti-atherosclerotic effect in animal models, and are therefore promising candidates for the improvement of atherosclerosis management. Nevertheless, their administration is hindered by the insurgence of severe side effects. To overcome this limitation, rosiglitazone has been encapsulated into polymeric nanoparticles, which permit efficient delivery to its nuclear target, and selective delivery to the site of action, allowing the reduction of unwanted effects. In the present work, we describe nanoparticle formulation using polylactic acid (PLA) coupled to polyethylene glycol (PEG), their characterization, and their behavior on RAW264.7 macrophages, an important target in atherosclerosis treatment. RSG nanocarriers showed no toxicity on cells at all concentrations tested, an anti-inflammatory effect in a dose-dependent manner, up to 5 times more efficient than the free molecule, and an increased RSG uptake which is consistent with the effect shown. These biodegradable nanoparticles represent a valid tool to be further investigated for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Giovanna Giacalone
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Ludivine Mousnier
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Hélène Chacun
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
37
|
Arjmand S, Pardakhty A, Forootanfar H, Khazaeli P. A road to bring Brij52 back to attention: Shear stress sensitive Brij52 niosomal carriers for targeted drug delivery to obstructed blood vessels. Med Hypotheses 2018; 121:137-141. [PMID: 30396467 DOI: 10.1016/j.mehy.2018.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/05/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
Thrombosis is a shared perpetrating event in the pathophysiology of several cardiovascular disorders such as ischemic stroke, venous thromboembolism, atherosclerosis, and myocardial infarction. Despite holding a wide range of ammunition in our arsenal to ameliorate such conditions, we are still facing with many stumbling blocks in the satisfactory pharmacotherapy of cardiovascular diseases among which the risk of hemorrhage and life threatening drug interactions can be highlighted. Our hypothesis focuses on mimicking the nature of platelet activation, to design a novel targeted delivery system based on the alterations of a physical parameter, the hemodynamic shear stress, to aim at the offending thrombi in an attempt to offer a noninvasive, rapid, and monitoring-free method that not only can prolong the circulation time of the cargo, but also deliver it locally and reduce both the undesirable adverse effects and drug interactions. Brij52 is our chosen candidate due to its unique non-spherical morphology after forming a niosomal vesicle. We surmised that thanks to its non-spherical shape, diverse shear rates may generate different shear stresses to its equators and axes which might result in the breakdown or at least distortion of niosomal structure under elevated shear stress. The vesicles have to be synthesized in the size of platelets or in the nano-sized scale. In order to prolong the time vesicles are circulating in the blood, PEGylation may help and to make such carriers highly selective to be only activated during pathophysiological clot formation, attachment of domain A1 von Willebrand factor can be of benefit to lead this proposed delivery system to the site of thrombus formation where shear rate exceeds those of 1000 s-1. There is now an emerging fast growing universal research on shear activated carriers, and the present theory is an endeavor to reach a successful treatment strategy to combat cardiovascular diseases based on the hypothesis that a non-spherical nano-carrier such as Brij 52 niosomal vesicle can be of paramount benefit to deliver current antithrombotic agents in a targeted and controlled manner in the presence of elevated shear stress of the obstructed blood vessels. With more radical advanced drug delivery systems being developed and new strategies being pursued, there will be more options in our arsenal to represent a promising avenue for achieving preventive, well-tolerated, and intelligent drug carriers to circumvent the drawbacks of antithrombotic pharmacotherapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- School of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Pharmacy and Pharmaceutical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
38
|
Nakhlband A, Eskandani M, Omidi Y, Saeedi N, Ghaffari S, Barar J, Garjani A. Combating atherosclerosis with targeted nanomedicines: recent advances and future prospective. ACTA ACUST UNITED AC 2018; 8:59-75. [PMID: 29713603 PMCID: PMC5915710 DOI: 10.15171/bi.2018.08] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 12/19/2022]
Abstract
![]()
Introduction:
Cardiovascular diseases (CVDs) is recognized as the leading cause of mortality worldwide. The increasing prevalence of such disease demands novel therapeutic and diagnostic approaches to overcome associated clinical/social issues. Recent advances in nanotechnology and biological sciences have provided intriguing insights to employ targeted Nanomachines to the desired location as imaging, diagnosis, and therapeutic modalities. Nanomedicines as novel tools for enhanced drug delivery, imaging, and diagnosis strategies have shown great promise to combat cardiovascular diseases.
Methods:
In the current study, we intend to review the most recent studies on the nano-based strategies for improved management of CVDs.
Results:
A cascade of events results in the formation of atheromatous plaque and arterial stenosis. Furthermore, recent studies have shown that nanomedicines have displayed unique functionalities and provided de novo applications in the diagnosis and treatment of atherosclerosis.
Conclusion:
Despite some limitations, nanomedicines hold considerable potential in the prevention, diagnosis, and treatment of various ailments including atherosclerosis. Fewer side effects, amenable physicochemical properties and multi-potential application of such nano-systems are recognized through various investigations. Therefore, it is strongly believed that with targeted drug delivery to atherosclerotic lesions and plaque, management of onset and progression of disease would be more efficient than classical treatment modalities.
Collapse
Affiliation(s)
- Ailar Nakhlband
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Garjani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Uhl B, Hirn S, Mildner K, Coletti R, Massberg S, Reichel CA, Rehberg M, Zeuschner D, Krombach F. The surface chemistry determines the spatio-temporal interaction dynamics of quantum dots in atherosclerotic lesions. Nanomedicine (Lond) 2018; 13:623-638. [PMID: 29334311 DOI: 10.2217/nnm-2017-0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To optimize the design of nanoparticles for diagnosis or therapy of vascular diseases, it is mandatory to characterize the determinants of nano-bio interactions in vascular lesions. MATERIALS & METHODS Using ex vivo and in vivo microscopy, we analyzed the interactive behavior of quantum dots with different surface functionalizations in atherosclerotic lesions of ApoE-deficient mice. RESULTS We demonstrate that quantum dots with different surface functionalizations exhibit specific interactive behaviors with distinct molecular and cellular components of the injured vessel wall. Moreover, we show a role for fibrinogen in the regulation of the spatio-temporal interaction dynamics in atherosclerotic lesions. CONCLUSION Our findings emphasize the relevance of surface chemistry-driven nano-bio interactions on the differential in vivo behavior of nanoparticles in diseased tissue.
Collapse
Affiliation(s)
- Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Munich, Germany.,Department of Otorhinolaryngology, Head & Neck Surgery, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephanie Hirn
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Munich, Germany
| | - Karina Mildner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Raffaele Coletti
- Department of Cardiology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Massberg
- Department of Cardiology, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Munich, Germany.,Department of Otorhinolaryngology, Head & Neck Surgery, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Munich, Germany.,Institute for Stroke & Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
40
|
Banik B, Wen R, Marrache S, Kumar A, Kolishetti N, Howerth EW, Dhar S. Core hydrophobicity tuning of a self-assembled particle results in efficient lipid reduction and favorable organ distribution. NANOSCALE 2017; 10:366-377. [PMID: 29218349 PMCID: PMC5744677 DOI: 10.1039/c7nr06295h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atherosclerosis, the deadliest disease in the United States, arises due to the build up of plaques in the arteries as a result of excessive cholesterol deposition and an impaired cholesterol removal process. High density lipoproteins (HDL), popularly known as "good cholesterol", are naturally occurring nano-sized particles that, along with apolipoproteins, are deployed to maintain cholesterol homeostasis in the body. Both cholesterol efflux, from the fat-laden macrophages in the arteries, and intracellular lipid transport, to deliver cholesterol to the mitochondria of liver cells for metabolism, hold key responsibilities to maintain healthy lipid levels inside the body. We designed a library of nine mitochondria targeted polymer-lipid hybrid nanoparticles (NPs), comprised of completely synthetic yet biodegradable components, that are capable of performing HDL-like functions. Using this library, we optimized a superior mitochondria targeted NP candidate, which can show favourable organ distribution, therapeutic potential, and non-toxic properties. Two targeted NP formulations with optimum NP size, zeta potential, and cholesterol binding and release properties were identified. Lipid reduction and anti-oxidative properties of these two NPs demonstrated cholesterol removal ability. In vivo therapeutic evaluation of the targeted-NP formulations in apolipoprotein E knockout (apoE-/-) mice indicated lipid reduction and anti-inflammatory properties compared to non-targeted NPs. This synthetic targeted NP with potential abilities to participate in both extra- and intracellular cholesterol transport might potentiate therapeutic interventions for heart diseases.
Collapse
Affiliation(s)
- Bhabatosh Banik
- Department of Biochemistry and Molecular Biology Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kim M, Sahu A, Kim GB, Nam GH, Um W, Shin SJ, Jeong YY, Kim IS, Kim K, Kwon IC, Tae G. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. J Control Release 2017; 269:337-346. [PMID: 29175140 DOI: 10.1016/j.jconrel.2017.11.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
Atherosclerosis plaque is a major cause of cardiovascular diseases across the globe and a silent killer. There are no physical symptoms of the disease in its early stage and current diagnostic techniques cannot detect the small plaques effectively or safely. Plaques formed in blood vessels can cause serious clinical problems such as impaired blood flow or sudden death, regardless of their size. Thus, detecting early stage of plaques is especially more important to effectively reduce the risk of atherosclerosis. Nanoparticle based delivery systems are recognized as a promising option to fight against this disease, and various targeting ligands are typically used to improve their efficiency. So, the choice of appropriate targeting ligand is a crucial factor for optimal targeting efficiency. cRGD peptide and collagen IV targeting peptide, which binds with the αvβ3 integrin overexpressed in the neovasculature of the plaque and collagen type IV present in the plaque, respectively, are frequently used for the targeting of nanoparticles. However, at present no study has directly compared these two peptides. Therefore, in this study, we have prepared cRGD or collagen IV targeting (Col IV-tg-) peptide conjugated and iron oxide nanoparticle (IONP) loaded Pluronic based nano-carriers for systemic comparison of their targeting ability towards in vivo atherosclerotic plaque in Apolipoprotein E deficient (Apo E-/-) mouse model. Nano-carriers with similar size, surface charge, and IONP loading content but with different targeting ligands were analyzed through in vitro and in vivo experiments. Near infrared fluorescence imaging and magnetic resonance imaging techniques as well as Prussian blue staining were used to compare the accumulation of different ligand conjugated nano-caariers in the aorta of atherosclerotic mice. Our results indicate that cRGD based targeting is more efficient than Col IV-tg-peptide in the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Manse Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gi Beom Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Gi Hoon Nam
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - So Jin Shin
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju 61469, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju 61469, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
42
|
Bagheri M, Mohammadi M, Steele TW, Ramezani M. Nanomaterial coatings applied on stent surfaces. Nanomedicine (Lond) 2017; 11:1309-26. [PMID: 27111467 DOI: 10.2217/nnm-2015-0007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The advent of percutaneous coronary intervention and intravascular stents has revolutionized the field of interventional cardiology. Nonetheless, in-stent restenosis, inflammation and late-stent thrombosis are the major obstacles with currently available stents. In order to enhance the hemocompatibility of stents, advances in the field of nanotechnology allow novel designs of nanoparticles and biomaterials toward localized drug/gene carriers or stent scaffolds. The current review focuses on promising polymers used in the fabrication of newer generations of stents with a short synopsis on atherosclerosis and current commercialized stents, nanotechnology's impact on stent development and recent advancements in stent biomaterials is discussed in context.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Shariati Hospital, Mashhad University of Medical Sciences, Mashhad, PO Box 935189-9983, Iran.,Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| | - Marzieh Mohammadi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| | - Terry Wj Steele
- Division of Materials Technology, Materials & Science Engineering, Nanyang Technological University, Singapore
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, PO Box 91775-1365, Iran
| |
Collapse
|
43
|
Rizwan H, Mohanta J, Si S, Pal A. Gold nanoparticles reduce high glucose-induced oxidative-nitrosative stress regulated inflammation and apoptosis via tuberin-mTOR/NF-κB pathways in macrophages. Int J Nanomedicine 2017; 12:5841-5862. [PMID: 28860752 PMCID: PMC5566318 DOI: 10.2147/ijn.s141839] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hyperglycemia is a risk factor for cardiovascular mortality and morbidity, and directly responsible for exacerbating macrophage activation and atherosclerosis. We showed that gold nanoparticles (AuNPs) reduce the high glucose (HG)-induced atherosclerosis-related complications in macrophages via oxidative-nitrosative stress-regulated inflammation and apoptosis. The effects of AuNPs on oxidative-nitrosative stress markers such as cellular antioxidants were attenuated by HG exposure, leading to reduction in the accumulation of reactive oxygen/nitrogen species in cellular compartments. Further, these abnormalities of antioxidants level and reactive oxygen/nitrogen species accumulations initiate cellular stress, resulting in the activation of nuclear factor κB (NF-κB) via ERK1/2mitogen-activated protein kinase (MAPK)/Akt/tuberin-mammalian target of rapamycin (mTOR) pathways. The activated NF-κB stimulates inflammatory mediators, which subsequently subdue biomolecules damage, leading to aggravation of the inflammatory infiltration and immune responses. Treatment of AuNPs inhibits the intracellular redox-sensitive signaling pathways, inflammation, and apoptosis in macrophages. Together, our results indicate that AuNPs may modulate HG-induced oxidative-nitrosative stress. These effects may be sealed tight due to the fact that AuNPs treatment reduces the activation of NF-κB by ERK1/2MAPK/Akt/tuberin-mTOR pathways-mediated inflammatory genes expression and cellular stress responses, which may be beneficial for minimizing the atherosclerosis.
Collapse
Affiliation(s)
- Huma Rizwan
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Jagdeep Mohanta
- School of Applied Sciences, KIIT University, Bhubaneswar, India
| | - Satyabrata Si
- School of Biotechnology, KIIT University, Bhubaneswar, India.,School of Applied Sciences, KIIT University, Bhubaneswar, India
| | - Arttatrana Pal
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
44
|
Dou Y, Chen Y, Zhang X, Xu X, Chen Y, Guo J, Zhang D, Wang R, Li X, Zhang J. Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis. Biomaterials 2017; 143:93-108. [PMID: 28778000 DOI: 10.1016/j.biomaterials.2017.07.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is the leading cause of many fatal cardiovascular and cerebrovascular diseases. Whereas nanomedicines are promising for targeted therapy of atherosclerosis, great challenges remain in development of effective, safe, and translational nanotherapies for its treatment. Herein we hypothesize that non-proinflammatory nanomaterials sensitive to low pH or high reactive oxygen species (ROS) may serve as effective platforms for triggerable delivery of anti-atherosclerotic therapeutics in cellular and tissue microenvironments of inflammation. To demonstrate this hypothesis, an acid-labile material of acetalated β-cyclodextrin (β-CD) (Ac-bCD) and a ROS-sensitive β-CD material (Ox-bCD) were separately synthesized by chemical modification of β-CD, which were formed into responsive nanoparticles (NPs). Ac-bCD NP was rapidly hydrolyzed in mildly acidic buffers, while hydrolysis of Ox-bCD NP was selectively accelerated by H2O2. Using an anti-atherosclerotic drug rapamycin (RAP), we found stimuli-responsive release of therapeutic molecules from Ac-bCD and Ox-bCD nanotherapies. Compared with non-responsive poly(lactide-co-glycolide) (PLGA)-based NP, Ac-bCD and Ox-bCD NPs showed negligible inflammatory responses in vitro and in vivo. By endocytosis in cells and intracellularly releasing cargo molecules in macrophages, responsive nanotherapies effectively inhibited macrophage proliferation and suppressed foam cell formation. After intraperitoneal (i.p.) delivery in apolipoprotein E-deficient (ApoE-/-) mice, fluorescence imaging showed accumulation of NPs in atherosclerotic plaques. Flow cytometry analysis indicated that the lymphatic translocation mediated by neutrophils and monocytes/macrophages may contribute to atherosclerosis targeting of i.p. administered NPs, in addition to targeting via the leaky blood vessels. Correspondingly, i.p. treatment with different nanotherapies afforded desirable efficacies. Particularly, both pH and ROS-responsive nanomedicines more remarkably delayed progression of atherosclerosis and significantly enhanced stability of atheromatous lesions, in comparison to non-responsive PLGA nanotherapy. Furthermore, responsive nanovehicles displayed good safety performance after long-term administration in mice. Consequently, for the first time our findings demonstrated the therapeutic advantages of nanomedicines responsive to mildly acidic or abnormally high ROS microenvironments for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yue Chen
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xiangjun Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiaoqiu Xu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yidan Chen
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jiawei Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Dinglin Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China; Department of Chemistry, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
45
|
Ahmad S, Siddiqi MI. Insights from molecular modeling into the selective inhibition of cathepsin S by its inhibitor. J Mol Model 2017; 23:92. [PMID: 28236030 DOI: 10.1007/s00894-017-3255-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022]
Abstract
Cathepsin S has been demonstrated to play a crucial role in the remodeling of extracellular matrix proteins such as elastin and collagen, which in turn contribute to the structural integrity of the cardiovascular wall. Atherosclerotic lesions, aneurysm formation, plaque rupture, thrombosis, and calcification are some of the cardiovascular disorders related to cathepsin S. A highly selective inhibitor of human as well as animal cathepsin S, RO5444101, was recently reported to attenuate the progression of atherosclerotic lesions. Here, we attempted to gain insight into the molecular mechanism of action of RO5444101 on cathepsin S by performing molecular docking and molecular dynamics (MD) simulation studies. The results of our studies correlate well with relevant reported experimental data and potentially explain the selectivity of this inhibitor for cathepsin S rather than cathepsin L1/L, cathepsin L2/V, and cathepsin K, which share conserved catalytic sites and have sequence similarities of 49%, 50%, and 55%, respectively, with respect to cathepsin S. In contrast to those closely related cathepsins, 20 ns MD simulation data reveal that the overall interaction of cathepsin S with RO5444101 is more stable and involves more protein-molecule interactions than the interactions of the inhibitor with the other cathepsins. This study therefore considerably improves our understanding of the molecular mechanism responsible for cathepsin S inhibition and facilitates the identification of potential novel selective inhibitors of cathepsin S.
Collapse
Affiliation(s)
- Sabahuddin Ahmad
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute, Campus, Lucknow, 226031, India.
| |
Collapse
|
46
|
Liu F, Huang H, Gong Y, Li J, Zhang X, Cao Y. Evaluation of in vitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chem Biol Interact 2017; 263:46-54. [PMID: 28025169 DOI: 10.1016/j.cbi.2016.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022]
Abstract
Polymeric micelles have been extensively studied in the area of antitumor therapy, and more recently explored as nanocarriers for atherosclerosis. These applications of polymeric micelles in biomedicine will increase their contact with human blood vessels. However, few studies have considered the interactions between polymeric micelles and endothelial cells, especially in a complex system. This study used human umbilical vein endothelial cells (HUVECs) as an in vitro model for endothelial cells to investigate the toxic effects of methoxy-poly(ethylene glycol)-poly(d,l-lactide) (MPEG-PLA) based micelles. In addition, an endoplasmic reticulum stress inducer thapsigargin (TG), and a pro-atherogenic stimulus palmitate (PA), were used to co-expose HUVECs to further mimic the responses of diseased endothelial cells to micelle exposure. Overall, up to 200 μg/mL micelles did not significantly induce cytotoxicity, reactive oxygen species (ROS), release of inflammatory mediators in terms of interleukin 6 (IL-6), IL-8 and soluble vascular cell adhesion molecule 1 (sVCAM-1), or adhesion of THP-1 monocytes to HUVECs. TG and PA significantly induced cytotoxicity and THP-1 adhesion as well as modestly promoted the release of IL-6, but did not affect ROS or release of sVCAM-1 and IL-8. Co-exposure of micelles did not significantly enhance the effects of TG and PA to HUVECs, and ANOVA analysis indicated no interaction between concentrations of micelles and the presence of TG/PA. Taken together, these data indicated that micelles are not toxic to HUVECs under different conditions in vitro.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Haikang Huang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xuefei Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
47
|
Khodabandehlou K, Masehi-Lano JJ, Poon C, Wang J, Chung EJ. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp Biol Med (Maywood) 2017; 242:799-812. [PMID: 28195515 DOI: 10.1177/1535370217693116] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is a leading cause of death worldwide; in addition to lipid dysfunction, chronic arterial wall inflammation is a key component of atherosclerosis. Techniques that target cell adhesion molecules, which are overexpressed during inflammation, are effective methods to detect and treat atherosclerosis. Specifically, research groups have identified vascular cell adhesion molecule-1, intercellular adhesion molecule-1, platelet endothelial cell adhesion molecule, and selectins (E-selectin and P-selectin) as correlated to atherogenesis. In this review, we discuss recent strategies both in vivo and in vitro that target cell adhesion molecules. First, we discuss peptide-based and antibody (Ab)-based nanoparticles utilized in vivo for diagnostic, therapeutic, and theranostic applications. Second, we discuss flow-based in vitro models that serve to reduce the traditional disadvantages of in vivo studies such as variability, time to develop the disease, and ethical burden, but preserve physiological relevance. The knowledge gained from these targeting studies can be translated into clinical solutions for improved detection, prevention, and treatment of atherosclerosis. Impact statement As atherosclerosis remains the leading cause of death, there is an urgent need to develop better tools for treatment of the disease. The ability to improve current treatments relies on enhancing the accuracy of in vitro and in vivo atherosclerotic models. While in vivo models provide all the relevant testing parameters, variability between animals and among models used is a barrier to reproducible results and comparability of NP efficacy. In vitro cultures isolate cells into microenvironments that fail to take into account flow separation and shear stress, which are characteristics of atherosclerotic lesions. Flow-based in vitro models provide more physiologically relevant platforms, bridging the gap between in vivo and 2D in vitro models. This is the first review that presents recent advances regarding endothelial cell-targeting using adhesion molecules in light of in vivo and flow-based in vitro models, providing insights for future development of optimal strategies against atherosclerosis.
Collapse
Affiliation(s)
- Khosrow Khodabandehlou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jacqueline J Masehi-Lano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
48
|
Bardania H, Shojaosadati SA, Kobarfard F, Dorkoosh F, Zadeh ME, Naraki M, Faizi M. Encapsulation of eptifibatide in RGD-modified nanoliposomes improves platelet aggregation inhibitory activity. J Thromb Thrombolysis 2016; 43:184-193. [DOI: 10.1007/s11239-016-1440-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc Natl Acad Sci U S A 2016; 113:E6731-E6740. [PMID: 27791119 DOI: 10.1073/pnas.1609629113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library's nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe-/-) mouse model of atherosclerosis, we quantitatively evaluated the library's immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases.
Collapse
|
50
|
Sun X, Li W, Zhang X, Qi M, Zhang Z, Zhang XE, Cui Z. In Vivo Targeting and Imaging of Atherosclerosis Using Multifunctional Virus-Like Particles of Simian Virus 40. NANO LETTERS 2016; 16:6164-6171. [PMID: 27622963 DOI: 10.1021/acs.nanolett.6b02386] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atherosclerosis is a leading cause of death globally. Targeted imaging and therapeutics are desirable for the detection and treatment of the disease. In this study, we developed trifunctional Simian virus 40 (SV40)-based nanoparticles for in vivo targeting and imaging of atherosclerotic plaques. These novel trifunctional SV40-based nanoparticles encapsulate near-infrared quantum dots and bear a targeting element and a drug component. Using trifunctional SV40-based nanoparticles, we were able to noninvasively fluorescently image atherosclerotic plaques in live intact ApoE(-/-) mice. Near-infrared quantum dots encapsulated in the SV40 virus-like particles showed prominent optical properties for in vivo imaging. When different targeting peptides for vascular cell adhesion molecule-1, macrophages, and fibrin were used, early, developmental, and late stages of atherosclerosis could be targeted and imaged in live intact ApoE(-/-) mice, respectively. Targeted SV40 virus-like particles also delivered an increased concentration of the anticoagulant drug Hirulog to atherosclerosis plaques. Our study provides novel SV40-based nanoparticles with multivalency and multifunctionality suitable for in vivo imaging, molecular targeting, and drug delivery in atherosclerosis.
Collapse
Affiliation(s)
- Xianxun Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences , Beijing 100049, China
- College of Life Science, Jiang Han University , Wuhan 430056, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| |
Collapse
|