1
|
Higa K, Ishiwata M, Kimoto R, Hirayama M, Yamaguchi T, Shimmura S. Human corneal organoid has a limbal function that supplies epithelium to the cornea with limbal deficiency. Regen Ther 2025; 29:247-253. [PMID: 40230358 PMCID: PMC11995013 DOI: 10.1016/j.reth.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Patients with limbal dysfunction, which occurs when corneal epithelial stem cells are depleted, require the transplantation of donor corneal epithelial stem cells or donor-independent cell sources. This study aimed to establish organoids with limbal epithelial progenitor cell function from the central cornea, where stem cells do not reside in vivo. We confirmed the regenerative capacity of organoids in a rabbit limbal deficiency model. Methods After treatment with collagenase, central corneal epithelial cells were scraped from corneal tissue and seeded onto Matrigel. For comparison, cells were collected from the limbus. The cells were cultured in Limbal Phenotype Maintenance Medium (LPMM). After 1 month, the organoids were observed in terms of number and size, immunohistochemistry, cell cycle, and colony-forming efficiency. Organoids were also transplanted into a rabbit model of limbal deficiency. Results Although we were able to form organoids from the central cornea, the number of organoids from the cornea was small (approximately one tenth compared to the limbus) after 1-month culture. Cornea-derived organoids were similar in shape and size to limbal-derived organoids, and expressed keratin 15 and p63, which are characteristics of the limbal epithelium, as well as collagen type IV, laminin, and tenascin-C, which are limbal basement membrane components. Cornea-derived organoids also showed colony forming efficiency, slow-cycling cells, and label-retaining cells. Transplanted corneal organoids were observed in the limbus of a rabbit limbal deficiency model, and the presence of organoid-derived cells extending into the host cornea was confirmed by immunohistochemistry using anti-human nuclei, -K12, -collagen type IV, and -laminin antibodies. Conclusions Our data suggest that corneal organoids de-differentiated to gain a limbal phenotype and functionally supplied corneal epithelium in a rabbit limbal deficiency model for up to 1 month.
Collapse
Affiliation(s)
- Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Mifuyu Ishiwata
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Reona Kimoto
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takefumi Yamaguchi
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba, 272-8513, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, 1-1-4 Haneda-kukou, Ota-ku, Tokyo 144-0041, Japan
| |
Collapse
|
2
|
Dykstra GD, Kawasaki M, Burbick CR, McConnel CS, Ambrosini YM. From in vitro development to accessible luminal interface of neonatal bovine-derived intestinal organoids. BMC Vet Res 2025; 21:319. [PMID: 40325425 PMCID: PMC12054211 DOI: 10.1186/s12917-025-04773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Intestinal organoids provide physiologically relevant in vitro models that bridge the gap between conventional cell culture and animal studies. Although these systems have been developed for adult cattle, their use in neonatal calves-who are particularly vulnerable to enteric disease-has not been well established. Neonatal diarrhea remains a major health concern in modern agriculture, yet age-appropriate models for studying its pathogenesis are lacking. Given that host-pathogen interactions vary with developmental stage, there is a need for culture systems that reflect the distinct biology of the neonatal gut. In this study, we developed intestinal organoids and organoid-derived monolayers from 14-day-old dairy calves to enable research on early-life intestinal function and disease. RESULTS Organoids were successfully established from five intestinal sections of 14-day-old dairy calves using customized growth media and characterized by immunofluorescence and gene expression analyses. They remained viable for over 300 days of cryopreservation and were serially passaged at least 15 times. Rectal organoid-derived monolayers were further assessed by electron microscopy and barrier function assays, demonstrating stable transepithelial electrical resistance and controlled paracellular permeability. CONCLUSIONS Optimized methods for adult bovine intestinal organoids and rectal organoid-derived monolayers are applicable to neonatal intestinal epithelial stem cells. Organoids cultured from 14-day-old calves captured key aspects of the multicellularity and functionality of the native epithelium. Future work should focus on adapting monolayer culture methods for additional gut regions, particularly the proximal gastrointestinal tract. Neonatal rectal monolayers represent a promising platform for advancing veterinary research, agricultural innovation, and studies of zoonotic disease.
Collapse
Affiliation(s)
- Gerald D Dykstra
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Minae Kawasaki
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Claire R Burbick
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Craig S McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Yoko M Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.
| |
Collapse
|
3
|
Branco F, Cunha J, Mendes M, Sousa JJ, Vitorino C. 3D Bioprinting Models for Glioblastoma: From Scaffold Design to Therapeutic Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501994. [PMID: 40116532 DOI: 10.1002/adma.202501994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Indexed: 03/23/2025]
Abstract
Conventional in vitro models fail to accurately mimic the tumor in vivo characteristics, being appointed as one of the causes of clinical attrition rate. Recent advances in 3D culture techniques, replicating essential physical and biochemical cues such as cell-cell and cell-extracellular matrix interactions, have led to the development of more realistic tumor models. Bioprinting has emerged to advance the creation of 3D in vitro models, providing enhanced flexibility, scalability, and reproducibility. This is crucial for the development of more effective drug treatments, and glioblastoma (GBM) is no exception. GBM, the most common and deadly brain cancer, remains a major challenge, with a median survival of only 15 months post-diagnosis. This review highlights the key components needed for 3D bioprinted GBM models. It encompasses an analysis of natural and synthetic biomaterials, along with crosslinking methods to improve structural integrity. Also, it critically evaluates current 3D bioprinted GBM models and their integration into GBM-on-a-chip platforms, which hold noteworthy potential for drug screening and personalized therapies. A versatile development framework grounded on Quality-by-Design principles is proposed to guide the design of bioprinting models. Future perspectives, including 4D bioprinting and machine learning approaches, are discussed, along with the current gaps to advance the field further.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| | - João J Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| |
Collapse
|
4
|
Tao B, Li X, Hao M, Tian T, Li Y, Li X, Yang C, Li Q, Feng Q, Zhou H, Zhao Y, Wang D, Liu W. Organoid-Guided Precision Medicine: From Bench to Bedside. MedComm (Beijing) 2025; 6:e70195. [PMID: 40321594 PMCID: PMC12046123 DOI: 10.1002/mco2.70195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 05/08/2025] Open
Abstract
Organoid technology, as an emerging field within biotechnology, has demonstrated transformative potential in advancing precision medicine. This review systematically outlines the translational trajectory of organoids from bench to bedside, emphasizing their construction methodologies, key regulatory factors, and multifaceted applications in personalized healthcare. By recapitulating physiological architectures and disease phenotypes through three-dimensional culture systems, organoids leverage natural and synthetic scaffolds, stem cell sources, and spatiotemporal cytokine regulation to model tissue-specific microenvironments. Diverse organoid types-including skin, intestinal, lung, and tumor organoids-have facilitated breakthroughs in modeling tissue development, drug efficacy and toxicity screening, disease pathogenesis studies, and patient-tailored diagnostics. For instance, patient-derived tumor organoids preserve tumor heterogeneity and genomic profiles, serving as predictive platforms for individualized chemotherapy responses. In precision medicine, organoid-guided multiomics analyses identify actionable biomarkers and resistance mechanisms, while clustered regularly interspaced short palindromic repeats-based functional screens optimize therapeutic targeting. Despite preclinical successes, challenges persist in standardization, vascularization, and ethical considerations. Future integration of artificial intelligence, microfluidics, and spatial transcriptomics will enhance organoid scalability, reproducibility, and clinical relevance. By bridging molecular insights with patient-specific therapies, organoids are poised to revolutionize precision medicine, offering dynamic platforms for drug development, regenerative strategies, and individualized treatment paradigms.
Collapse
Affiliation(s)
- Boqaing Tao
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| | - Xiaolan Li
- Laboratory of Allergy and Precision MedicineChengdu Institute of Respiratory Healththe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| | - Ming Hao
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| | - Tian Tian
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| | - Chun Yang
- College of Basic MedicineBeihua UniversityJilinChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Yicheng Zhao
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Zhichuang Gene Editing Animal Model Research CenterWenzhou Institute of TechnologyWenzhouChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin UniversityChangchunChina
| |
Collapse
|
5
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025:10.1007/s10787-025-01760-8. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
6
|
Lyu X, Wang J, Su J. Intelligent Manufacturing for Osteoarthritis Organoids. Cell Prolif 2025:e70043. [PMID: 40285592 DOI: 10.1111/cpr.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease worldwide, imposing a substantial global disease burden. However, its pathogenesis remains incompletely understood, and effective treatment strategies are still lacking. Organoid technology, in which stem cells or progenitor cells self-organise into miniature tissue structures under three-dimensional (3D) culture conditions, provides a promising in vitro platform for simulating the pathological microenvironment of OA. This approach can be employed to investigate disease mechanisms, carry out high-throughput drug screening and facilitate personalised therapies. This review summarises joint structure, OA pathogenesis and pathological manifestations, thereby establishing the disease context for the application of organoid technology. It then examines the components of the arthrosis organoid system, specifically addressing cartilage, subchondral bone, synovium, skeletal muscle and ligament organoids. Furthermore, it details various strategies for constructing OA organoids, including considerations of cell selection, pathological classification and fabrication techniques. Notably, this review introduces the concept of intelligent manufacturing of OA organoids by incorporating emerging engineering technologies such as artificial intelligence (AI) into the organoid fabrication process, thereby forming an innovative software and hardware cluster. Lastly, this review discusses the challenges currently facing intelligent OA organoid manufacturing and highlights future directions for this rapidly evolving field. By offering a comprehensive overview of state-of-the-art methodologies and challenges, this review anticipates that intelligent, automated fabrication of OA organoids will expedite fundamental research, drug discovery and personalised translational applications in the orthopaedic field.
Collapse
Affiliation(s)
- Xukun Lyu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Zhou L, Huang J, Li C, Gu Q, Li G, Li ZA, Xu J, Zhou J, Tuan RS. Organoids and organs-on-chips: Recent advances, applications in drug development, and regulatory challenges. MED 2025; 6:100667. [PMID: 40220744 DOI: 10.1016/j.medj.2025.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/30/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
Organoids and organs-on-chips (OoCs) are rapidly evolving technologies for creating miniature human tissue models. They can mimic complex physiological functions and pathological conditions, offering more realistic platforms for disease modeling, drug screening, precision medicine, and regenerative therapies. The passing of the FDA Modernization Act 2.0 has reduced animal testing requirements for drug trials, marking a significant milestone in using advanced in vitro models such as organoids and OoCs for therapeutic discovery. Apart from technical and ethical challenges, regulatory issues persist in ensuring the reliability, scientificity, and applicability of these models in drug development. This perspective explores the concept, advancements, pros and cons, and applications of organoids and OoCs, particularly in drug research and development. It also examines global regulatory agencies' policies and actions on using these models in drug evaluation, aiming to guide industry standard setting and advance regulatory science.
Collapse
Affiliation(s)
- Liangbin Zhou
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science and Technology Park, Hong Kong SAR, China; Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingjing Huang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Cun Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qi Gu
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital of the Southern Medical University, Guangzhou, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science and Technology Park, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Innovative Orthopaedic Biomaterials and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jie Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Rocky S Tuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science and Technology Park, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Belova L, Demchenko A, Erofeeva A, Kochergin-Nikitsky K, Zubkova O, Popova O, Ozharovskaia T, Salikhova D, Efremova A, Lavrov A, Smirnikhina S. Lung Organoids from hiPSCs Can Be Efficiently Transduced by Recombinant Adeno-Associated Viral and Adenoviral Vectors. Biomedicines 2025; 13:879. [PMID: 40299508 PMCID: PMC12024971 DOI: 10.3390/biomedicines13040879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Organoids are a valuable model for studying hereditary diseases such as cystic fibrosis (CF). Recombinant adenoviral (rAdV) and adeno-associated viral (rAAV) vectors are promising tools for CF gene therapy and genome editing. Objective: This study aims to determine the most efficient viral vector (rAdV5, rAAV serotypes 5, 6 and 9) and transduction protocol for delivering transgenes to lung organoids (LOs), providing a foundation for future CF gene therapy development. Methods: Three transduction protocols were used taking into account the specificities of LOs' cultivation in specific matrices, both with and without organoid extraction from the matrix. This work was carried out on organoids from a healthy donor (LOs-WT) and on a patient with cystic fibrosis (LOs-CF). Results: High transduction efficiency was observed with rAdV5 (30% cells), rAAV6 (>80% cells), and rAAV9 (>40% cells). rAdV5 and rAAV9 transduced basal and secretory cells with >90% efficiency. For rAAV9, Protocol 1 (without extraction of organoids from the matrix) showed lower transduction efficiency (33% for LOs-WT, 9% for LOs-CF), significantly lower than that of Protocols 2 (60% for LOs-WT, 59% for LOs-CF) and 3 (46% for LOs-WT, 35% for LOs-CF) with organoid extraction from the matrix (p < 0.005). Conclusions: rAdV5 and rAAV9 are the most promising vectors for the delivery of transgenes to basal and secretory cells in a lung organoid model, providing a solid foundation for CF gene therapy development.
Collapse
Affiliation(s)
- Lyubava Belova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow 115478, Russia; (L.B.); (A.D.); (A.E.); (K.K.-N.); (A.L.)
| | - Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow 115478, Russia; (L.B.); (A.D.); (A.E.); (K.K.-N.); (A.L.)
| | - Anastasia Erofeeva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow 115478, Russia; (L.B.); (A.D.); (A.E.); (K.K.-N.); (A.L.)
| | - Konstantin Kochergin-Nikitsky
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow 115478, Russia; (L.B.); (A.D.); (A.E.); (K.K.-N.); (A.L.)
| | - Olga Zubkova
- Department of Genetics and Molecular Biology of Bacteria, Gamalei Institute of Epidemiology and Microbiology, Moscow 123098, Russia; (O.Z.); (T.O.)
| | - Olga Popova
- Department of Genetics and Molecular Biology of Bacteria, Gamalei Institute of Epidemiology and Microbiology, Moscow 123098, Russia; (O.Z.); (T.O.)
| | - Tatiana Ozharovskaia
- Department of Genetics and Molecular Biology of Bacteria, Gamalei Institute of Epidemiology and Microbiology, Moscow 123098, Russia; (O.Z.); (T.O.)
| | - Diana Salikhova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow 115478, Russia; (D.S.); (A.E.)
| | - Anna Efremova
- Stem Cell Genetics Laboratory, Research Centre for Medical Genetics, Moscow 115478, Russia; (D.S.); (A.E.)
| | - Alexander Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow 115478, Russia; (L.B.); (A.D.); (A.E.); (K.K.-N.); (A.L.)
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow 115478, Russia; (L.B.); (A.D.); (A.E.); (K.K.-N.); (A.L.)
| |
Collapse
|
9
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [DOI: https:/doi.org/10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Leila Roshangar
- Department of Histology, Faculty of Medicine
- Tabriz University of Medical Sciences
| | | | - Fatemeh Soulat
- Applied Chemistry laboratory, Department of Chemistry, Faculty of Basic Science
- Azarbaijan Shahid Madani University (ASMU)
| |
Collapse
|
10
|
Yang J, Li W, Zhang Z, Xu Z, Zhu W, Wang J, Wang W. Development and Applications of Organoids in Gynecological Diseases. Stem Cell Rev Rep 2025; 21:629-644. [PMID: 39666266 PMCID: PMC11965162 DOI: 10.1007/s12015-024-10833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Organoids are rapidly self-organizing 3D in vitro cultures derived from pluripotent stem cells (PSCs) or adult stem cells (ASCs) that possess disease-like characteristics with high success rates. Due to their ability to retain tissue structure, biological phenotypes, and genetic information, they have been utilized as a novel in vitro model for disease research. In recent years, scientists have established self-organizing 3D organoids for human endometrium, fallopian tubes, ovaries, and cervix by culturing stem cells with cytokines in 3D scaffolds. The integration of organoids with animal models, organ-on-a-chip systems, and 3D printing technologies offers a novel preclinical model for exploring disease mechanisms and developing treatments. This review elaborate on the recent research progress of stem cells-formed organoids in the field of gynecology from the aspects of constructing gynecological disease organoids, drug screening and new drug development, simulation modeling, allogeneic transplantation, regenerative medicine and personalized treatment."
Collapse
Affiliation(s)
- Jian Yang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenwen Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zihan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhonglei Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Anhui Women and Children's Medical Center, Hefei, Anhui, China
| | - Wenyan Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
11
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [PMID: 40191350 PMCID: PMC11966581 DOI: 10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Transitional cold atmospheric plasma (TCAP) represents a novel technique for generating plasma remotely from a primary source. It consists of a partially nonthermal ionized gas mixture containing charged and neutral particles, photons, and free radicals. In recent years, TCAP has attracted considerable attention in biomedical applications. In order to evaluate colon cancer stem cells' (CCSCs) proliferation, apoptotic induction, inflammatory response, and survival, TCAP was utilized both directly and indirectly in this study. Using argon and helium gases, TCAP was continuously delivered in two stages during the experiment. For direct state, TCAP was irradiated onto CCSCs for 3 and 5 min. In the indirect technique, Matrigel was treated with TCAP for 5 min before the introduction of cells. In vitro assays demonstrated that TCAP exposure significantly reduced the viability of CCSCs; helium gas and direct application had greater impacts than argon. Numerous investigations confirmed the induction of apoptosis, showing that the treated groups had more apoptotic cells and altered cellular structures than controls (****p < 0.0001). A substantial increase in the Bax/Bcl-2 ratio was found by analyzing the expression of the Bax and Bcl-2 genes, indicating increased susceptibility to apoptosis (*p = 0.0177 and ***p = 0.0004). The higher efficacy of the direct helium mode was further highlighted by inflammatory marker analysis, which showed a significant reduction in interleukin-6 and interleukin-8 expression in cells directly treated with TCAP-helium compared to TCAP-argon (**p = 0.0015 and ***p = 0.0007). Lastly, the proliferation test, which relies on K i-67 expression, demonstrated a noteworthy decline in all TCAP-treated groups, with the direct helium group exhibiting the most robust impact (**p = 0.0014). Overall, the findings highlight the potential of TCAP, particularly with helium, as a promising approach for selectively targeting CCSCs and providing insights into its therapeutic mechanisms for cancer treatment. TCAP, therefore, emerges as a unique therapeutic strategy with potential applications in cancer stem cell-targeted therapies.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Taghi Mohsenpour
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Leila Roshangar
- Department
of Histology, Faculty of Medicine, Tabriz
University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver
and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Fatemeh Soulat
- Applied
Chemistry laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), 5375171379 Tabriz, Iran
| |
Collapse
|
12
|
Shi X, Wang Z, Liu Z, Lin Q, Huang M, Lim TY, Li X, Wang T. Qingqi Guxue Decoction induces S cell cycle arrest to inhibit replication of severe fever with thrombocytopenia syndrome virus. Virol Sin 2025:S1995-820X(25)00033-1. [PMID: 40157606 DOI: 10.1016/j.virs.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a novel emerging acute infectious disease caused by severe fever with thrombocytopenia syndrome virus (SFTSV), characterized by high fever and thrombocytopenia. It has been proved that traditional Chinese medicine (TCM) has displayed definite therapeutic effects on viral hemorrhagic fever, indicating its potential to treat SFTS. In this study, SFTS-relative key targets were predicted via gene ontology (GO) analysis and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. Molecular docking was then used to select stable binders. Molecules matched TCMs were identified, and a new prescription, Qingqi Guxue decoction (QQGX), was formulated to clear heat and nourish blood, with a resulting drug composition network. We explored the optimal drug proportion for QQGX. Through an in-depth study of molecular mechanisms, we found that QQGX induces S phase arrest by promoting the degradation of cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2), thereby inhibiting SFTSV replication. Finally, we verified the effectiveness and safety of QQGX based on the mouse liver bile duct organoid model infected with SFTSV. In summary, our study prepared a TCM decoction using the method of network pharmacology. This decoction has a significant inhibitory effect on the replication of SFTSV and provides a new treatment strategy for hemorrhagic fever with TCM.
Collapse
Affiliation(s)
- Xixi Shi
- School of Life Sciences, Tianjin University, Tianjin 300110, China
| | - Zining Wang
- School of Life Sciences, Tianjin University, Tianjin 300110, China
| | - Zixiang Liu
- School of Life Sciences, Tianjin University, Tianjin 300110, China
| | - Qinting Lin
- School of Life Sciences, Tianjin University, Tianjin 300110, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin 300110, China
| | - Tze Yean Lim
- School of Life Sciences, Tianjin University, Tianjin 300110, China
| | - Xiaoyan Li
- Tianjin Centers for Disease Control and Prevention, Tianjin 300022, China; Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin 300011, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin 300110, China; Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin 300011, China.
| |
Collapse
|
13
|
Yang Q, Li M, Xiao Z, Feng Y, Lei L, Li S. A New Perspective on Precision Medicine: The Power of Digital Organoids. Biomater Res 2025; 29:0171. [PMID: 40129676 PMCID: PMC11931648 DOI: 10.34133/bmr.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
Precision medicine is a personalized medical model based on the individual's genome, phenotype, and lifestyle that provides tailored treatment plans for patients. In this context, tumor organoids, a 3-dimensional preclinical model based on patient-derived tumor cell self-organization, combined with digital analysis methods, such as high-throughput sequencing and image processing technology, can be used to analyze the genome, transcriptome, and cellular heterogeneity of tumors, so as to accurately track and assess the growth process, genetic characteristics, and drug responsiveness of tumor organoids, thereby facilitating the implementation of precision medicine. This interdisciplinary approach is expected to promote the innovation of cancer diagnosis and enhance personalized treatment. In this review, the characteristics and culture methods of tumor organoids are summarized, and the application of multi-omics, such as bioinformatics and artificial intelligence, and the digital methods of organoids in precision medicine research are discussed. Finally, this review explores the main causes and potential solutions for the bottleneck in the clinical translation of digital tumor organoids, proposes the prospects of multidisciplinary cooperation and clinical transformation to narrow the gap between laboratory and clinical settings, and provides references for research and development in this field.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Yekai Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
14
|
Acosta-Virgen K, González-Conchillos HD, Vallejo-Flores G, Salazar-Villatoro LI, Guerrero-Sánchez E, Martínez-Palomo A, Espinosa-Cantellano M. Digital PCR characterizes epithelial cell populations in murine duodenal organoids. PLoS One 2025; 20:e0319701. [PMID: 40080477 PMCID: PMC11906084 DOI: 10.1371/journal.pone.0319701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Three-dimensional cultures are powerful tools to recapitulate animal and human tissues. Under the influence of specific growth factors, adult stem cells differentiate and organize into 3D cultures named organoids. The molecular phenotyping of these structures is an essential step for validating an organoid model. However, the limited number of organoids generated in culture yields very low amounts of genetic material, making phenotyping difficult. Recently, digital PCR (dPCR) techniques have become available for the highly sensitive detection of genetic material at low concentrations. The aim of this work was to apply dPCR to the identification of the various cell populations expected to be present in murine duodenal organoids. Results show the potential use of dPCR as a genetic characterization tool for organoids.
Collapse
Affiliation(s)
- Karla Acosta-Virgen
- Departamento de Infectómica y Patogénesis Molecular, Center for Research and Advanced Studies, Mexico City, Mexico
| | | | - Gabriela Vallejo-Flores
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - Adolfo Martínez-Palomo
- Departamento de Infectómica y Patogénesis Molecular, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Martha Espinosa-Cantellano
- Departamento de Infectómica y Patogénesis Molecular, Center for Research and Advanced Studies, Mexico City, Mexico
| |
Collapse
|
15
|
Lai W, Geliang H, Bin X, Wang W. Effects of hydrogel stiffness and viscoelasticity on organoid culture: a comprehensive review. Mol Med 2025; 31:83. [PMID: 40033190 DOI: 10.1186/s10020-025-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
As an emerging technology, organoids are promising new tools for basic and translational research in disease. Currently, the culture of organoids relies mainly on a type of unknown composition scaffold, namely Matrigel, which may pose problems in studying the effect of mechanical properties on organoids. Hydrogels, a new material with adjustable mechanical properties, can adapt to current studies. In this review, we summarized the synthesis of recent advance in developing definite hydrogel scaffolds for organoid culture and identified the critical parameters for regulating mechanical properties. In addition, classified by different mechanical properties like stiffness and viscoelasticity, we concluded the effect of mechanical properties on the development of organoids and tumor organoids. We hope this review enhances the understanding of the development of organoids by hydrogels and provides more practical approaches to investigating them.
Collapse
Affiliation(s)
- Wei Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Geliang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Bin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
16
|
Hysi PG, Hammond CJ. An Ocular Gene-Set Expression Library for Heritability Partition and Cell Line Enrichment Analyses. Invest Ophthalmol Vis Sci 2025; 66:11. [PMID: 40042876 DOI: 10.1167/iovs.66.3.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
Purpose Use of genome-wide association studies (GWASs) in combination with transcriptomic arrays of different tissues or cell lines can reveal relevant cellular profiles and significantly improve understanding of the mechanisms of diseases. However, due to difficulty of access, few ocular transcriptomics datasets are available. This work aimed to create and make available an expression library platform that can be used with popular and versatile tools such as the linkage disequilibrium score (LDSC) regression techniques to identify specific cell lines enriched in ocular diseases. Methods We used transcriptome information from six publicly available single-cell and single-nucleus RNA sequence datasets to obtain matrices of normalized gene expression and estimated enrichment of the 10% most expressed transcripts in each cell line. We tested for type 1 error using simulated GWAS datasets and then used LDSC regression analyses to study the enrichment in different eye diseases. Results Gene expression databases for over 197 ocular cell lines were generated. Simulations of 1000 random GWASs of varying sample sizes showed no genomic inflation. Cell line-specific analyses of GWAS results found that genes near single nucleotide polymorphisms (SNPs) associated with refractive error were significantly enriched in cones (P = 0.008), rods (P = 0.002) and peripheral retina Müller cells (P = 0.002), juxtacanalicular cribriform cells (P = 0.0017), stromal keratocytes (P = 0.0018), and one beam-cell subpopulation (P = 0.0028) in primary open-angle glaucoma, emphasizing the importance of intraocular pressure in its etiology. Conclusions We have built a structured ocular transcriptomics library to estimate cell line enrichment among association signals from genome-wide association studies that may be extended by incorporating other datasets. We identified cells that appear important in the genetics of common eye diseases.
Collapse
Affiliation(s)
- Pirro G Hysi
- Academic Ophthalmology, King's College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Sørlandet Sykehus Arendal, Arendal, Norway
| | - Christopher J Hammond
- Academic Ophthalmology, King's College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Sarami I, Hekman KE, Gupta AK, Snider JM, Ivancic D, Zec M, Kandpal M, Ben-Sahra I, Menon R, Otto EA, Chilton FH, Wertheim JA. Parallel multiOMIC analysis reveals glutamine deprivation enhances directed differentiation of renal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640060. [PMID: 40060393 PMCID: PMC11888470 DOI: 10.1101/2025.02.27.640060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Metabolic pathways play a critical role in driving differentiation but remain poorly understood in the development of kidney organoids. In this study, parallel metabolite and transcriptome profiling of differentiating human pluripotent stem cells (hPSCs) to multicellular renal organoids revealed key metabolic drivers of the differentiation process. In the early stage, transitioning from hPSCs to nephron progenitor cells (NPCs), both the glutamine and the alanine-aspartate-glutamate pathways changed significantly, as detected by enrichment and pathway impact analyses. Intriguingly, hPSCs maintained their ability to generate NPCs, even when deprived of both glutamine and glutamate. Surprisingly, single cell RNA-Seq analysis detected enhanced maturation and enrichment for podocytes under glutamine-deprived conditions. Together, these findings illustrate a novel role of glutamine metabolism in regulating podocyte development.
Collapse
Affiliation(s)
- Iman Sarami
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Department of Hematopathology and Molecular Diagnostics Laboratory at the University of Texas MD, Anderson Cancer Center, Houston, TX
| | - Katherine E. Hekman
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Atlanta VA Healthcare System, Decatur, GA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Ashwani Kumar Gupta
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
- Southern Arizona VA Healthcare System, Tucson, AZ
| | - Justin M. Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
| | - David Ivancic
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
| | - Manja Zec
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Manoj Kandpal
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Clinical and Translational Science, Rockefeller University Hospital, New York, NY
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Edgar A. Otto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ
| | - Jason A. Wertheim
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Jesse Brown VA Medical Center, Chicago, IL
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
- Southern Arizona VA Healthcare System, Tucson, AZ
| |
Collapse
|
18
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:191-205. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Oh B, Kim J, Kim N, Jeong Y. Lung Cancer Organoid System to Evaluate the Cytotoxicity of Natural Killer Cells. Int J Stem Cells 2025; 18:99-106. [PMID: 38919124 PMCID: PMC11867905 DOI: 10.15283/ijsc24021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024] Open
Abstract
Natural killer (NK) cells are gaining growing attention due to their promise for immunotherapy. A fast and accurate system is needed to test NK cell biology and their therapeutic application. Here, we report a lung cancer organoid-based system to evaluate NK cells' cytotoxicity. We first established the lung cancer organoids on top of Matrigel, which allows the co-culture with NK cells. When co-cultured, NK cells moved close to and inside the lung cancer organoids. When we analyzed by flow cytometry, co-culture of NK cells induced a significantly higher ratio of cell death of lung cancer organoids, suggesting that lung cancer organoids can be employed to test the cytotoxicity of NK cells. Finally, the pre-treatment of NK cells with A83-01, a TGFβ inhibitor, significantly enhanced the cell death of lung cancer organoids by NK cells, indicating that lung cancer organoid-based system faithfully recapitulates cell line-based system in evaluating the in vitro cytotoxicity of NK cells. These data represent that cancer organoid-based NK cell co-culture system is a reliable platform for studying NK cell biology and evaluating their cytotoxicity for screening for NK cell immunotherapy.
Collapse
Affiliation(s)
- Byungmoo Oh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| | - Jeongmin Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Namwoog Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Youngtae Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| |
Collapse
|
20
|
Santos M, Moreira JAF, Santos SS, Solá S. Sustaining Brain Youth by Neural Stem Cells: Physiological and Therapeutic Perspectives. Mol Neurobiol 2025:10.1007/s12035-025-04774-z. [PMID: 39985708 DOI: 10.1007/s12035-025-04774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
In the last two decades, stem cells (SCs) have attracted considerable interest for their research value and therapeutic potential in many fields, namely in neuroscience. On the other hand, the discovery of adult neurogenesis, the process by which new neurons are generated in the adult brain, challenged the traditional view that the brain is a static structure after development. The recent findings showing that adult neurogenesis has a significant role in brain plasticity, learning and memory, and emotional behavior, together with the fact that it is strongly dependent on several external and internal factors, have sparked more interest in this area. The mechanisms of adult neural stem cell (NSC) regulation, the physiological role of NSC-mediated neuroplasticity throughout life, and the most recent NSC-based therapeutic applications will be concisely reviewed. Noteworthy, due to their multipotency, self-renewal potential, and ability to secrete growth and immunomodulatory factors, NSCs have been mainly suggested for (1) transplantation, (2) neurotoxicology tests, and (3) drug screening approaches. The clinical trials of NSC-based therapy for different neurologic conditions are, nonetheless, mostly in the early phases and have not yet demonstrated conclusive efficacy or safety. Here, we provide an outlook of the major challenges and limitations, as well as some promising directions that could help to move toward stem cell widespread use in the treatment and prevention of several neurological disorders.
Collapse
Affiliation(s)
- Matilde Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - João A Ferreira Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
21
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Gu J, Liu F, Li L, Mao J. Advances and Challenges in Modeling Autosomal Dominant Polycystic Kidney Disease: A Focus on Kidney Organoids. Biomedicines 2025; 13:523. [PMID: 40002937 PMCID: PMC11852630 DOI: 10.3390/biomedicines13020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent hereditary disorder characterized by distinct phenotypic variability that has posed challenges for advancing in-depth research. Recent advancements in kidney organoid construction technologies have enabled researchers to simulate kidney development and create simplified in vitro experimental environments, allowing for more direct observation of how genetic mutations drive pathological phenotypes and disrupt physiological functions. Emerging technologies, such as microfluidic bioreactor culture systems and single-cell transcriptomics, have further supported the development of complex ADPKD organoids, offering robust models for exploring disease mechanisms and facilitating drug discovery. Nevertheless, significant challenges remain in constructing more accurate ADPKD disease models. This review will summarize recent advances in ADPKD organoid construction, focusing on the limitations of the current techniques and the critical issues that need to be addressed for future breakthroughs. New and Noteworthy: This review presents recent advancements in ADPKD organoid construction, particularly iPSC-derived models, offering new insights into disease mechanisms and drug discovery. It focuses on challenges such as limited vascularization and maturity, proposing potential solutions through emerging technologies. The ongoing optimization of ADPKD organoid models is expected to enhance understanding of the disease and drive breakthroughs in disease mechanisms and targeted therapy development.
Collapse
Affiliation(s)
| | | | | | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058, China; (J.G.); (F.L.); (L.L.)
| |
Collapse
|
23
|
Zou RQ, Dai YS, Liu F, Yang SQ, Hu HJ, Li FY. Hepatobiliary organoid research: the progress and applications. Front Pharmacol 2025; 16:1473863. [PMID: 40008122 PMCID: PMC11850396 DOI: 10.3389/fphar.2025.1473863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Organoid culture has emerged as a forefront technology in the life sciences field. As "in vitro micro-organs", organoids can faithfully recapitulate the organogenesis process, and conserve the key structure, physiological function and pathological state of the original tissue or organ. Consequently, it is widely used in basic and clinical studies, becoming important preclinical models for studying diseases and developing therapies. Here, we introduced the definition and advantages of organoids and described the development and advances in hepatobiliary organoids research. We focus on applying hepatobiliary organoids in benign and malignant diseases of the liver and biliary tract, drug research, and regenerative medicine to provide valuable reference information for the application of hepatobiliary organoids. Despite advances in research and treatment, hepatobiliary diseases including carcinoma, viral hepatitis, fatty liver and bile duct defects have still been conundrums of the hepatobiliary field. It is necessary and crucial to study disease mechanisms, establish efficient and accurate research models and find effective treatment strategies. The organoid culture technology shed new light on solving these issues. However, the technology is not yet mature, and many hurdles still exist that need to be overcome. The combination with new technologies such as CRISPR-HOT, organ-on-a-chip may inject new vitality into future development.
Collapse
Affiliation(s)
- Rui-Qi Zou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shi Dai
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Si-Qi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Jie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fu-Yu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Shabkhizan R, Avci ÇB, Haiaty S, Moslehian MS, Sadeghsoltani F, Bazmani A, Mahdipour M, Takanlou LS, Takanlou MS, Zamani ARN, Rahbarghazi R. Metformin exerted tumoricidal effects on colon cancer tumoroids via the regulation of autophagy pathway. Stem Cell Res Ther 2025; 16:45. [PMID: 39901295 PMCID: PMC11792360 DOI: 10.1186/s13287-025-04174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Despite the existence of promising outcomes from standard 2D culture systems, these data are not completely akin to in vivo tumor parenchyma. Therefore, the development and fabrication of various 3D culture systems can in part mimic intricate cell-to-cell interaction within the real tumor mass. Here, we aimed to evaluate the tumoricidal impacts of metformin (MTF) on colorectal cancer (CRC) tumoroids in an in vitro system via the modulation of autophagy. METHODS CRC tumoroids were developed using human umbilical vein endothelial cells (HUVECs), adenocarcinoma HT29 cells, and fibroblasts (HFFF2) in a ratio of 1: 2: 1 and 2.5% methylcellulose. Tumoroids were exposed to different concentrations of MTF, ranging from 20 to 1000 mM, for 72 h. The survival rate was detected using an LDH release assay. The expression and protein levels of autophagy-related factors were measured using PCR array and western blotting, respectively. Using H & E, and immunofluorescence staining (Ki-67), the integrity and proliferation rate of CRC tumoroids were examined. RESULTS The current protocol yielded typical compact tumoroids with a dark central region. Despite slight changes in released LDH contents, no statistically significant differences were achieved in terms of cell toxicity in MTF-exposed groups compared to the control tumoroids, indicating the insufficiency of MTF in the induction of tumor cell death (p > 0.05). Western blotting indicated that the LC3II/I ratio was reduced in tumoroids exposed to 120 mM MTF (p < 0.05). These data coincided with the reduction of intracellular p62 content in MTF 120 mM-treated tumoroids compared to MTF 40 mM and control groups (p < 0.05). PCR array analysis confirmed the up-regulation, and down-regulation of several genes related to various signaling transduction pathways associated with autophagy machinery and shared effectors between autophagy and apoptosis in 40 and 120 mM MTF groups compared to the non-treated control group (p < 0.05). These changes were more prominent in tumoroids incubated with 120 mM MTF. Histological examination confirmed the loosening integrity of tumoroids in MTF-treated groups, especially 120 mM MTF, with the increase in cell death via the induction of apoptosis (chromatin marginalization) and necrotic (pyknotic nuclei) changes. In the 120 mM MTF group, spindle-shaped cells with the remnants of a fibrillar matrix were detected. Data indicated the reduction of proliferating Ki-67+ cells within the tumoroids by increasing the MTF concentration from 40 to 120 mM. CONCLUSIONS Different shared autophagy/apoptosis genes were modulated in CRC tumoroids after MTF treatment coinciding with both typical necrotic and apoptotic cells within the tumoroid structure. MTF can inhibit the integrity and proliferation of CRC tumoroids in dose-dependent manner.
Collapse
Affiliation(s)
- Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2025; 48:1-26. [PMID: 38806997 PMCID: PMC11850459 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Moss SP, Bakirci E, Feinberg AW. Engineering the 3D structure of organoids. Stem Cell Reports 2025; 20:102379. [PMID: 39706178 PMCID: PMC11784486 DOI: 10.1016/j.stemcr.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Organoids form through the sel f-organizing capabilities of stem cells to produce a variety of differentiated cell and tissue types. Most organoid models, however, are limited in terms of the structure and function of the tissues that form, in part because it is difficult to regulate the cell type, arrangement, and cell-cell/cell-matrix interactions within these systems. In this article, we will discuss the engineering approaches to generate more complex organoids with improved function and translational relevance, as well as their advantages and disadvantages. Additionally, we will explore how biofabrication strategies can manipulate the cell composition, 3D organization, and scale-up of organoids, thus improving their utility for disease modeling, drug screening, and regenerative medicine applications.
Collapse
Affiliation(s)
- Samuel P Moss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Koc AC, Sari V, Kocak G, Recber T, Nemutlu E, Aberdam D, Güven S. Patient-derived cornea organoid model to study metabolomic characterization of rare disease: aniridia-associated keratopathy. BMC Ophthalmol 2025; 25:14. [PMID: 39794714 PMCID: PMC11724546 DOI: 10.1186/s12886-024-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions. Recently, patient-derived limbal epithelial stem cells (LESCs) and human-induced pluripotent stem cells (hiPSCs) have been used to model the disease in vitro, providing new insights into therapeutic strategies. METHODS In this study, corneal organoids were generated from hiPSCs derived from aniridia patients with three different PAX6 nonsense mutations, allowing for a detailed comparison between diseased and healthy control models. These organoids structurally mimicked the human cornea and were used to investigate histologic and metabolomic differences between healthy and aniridia-derived samples. RESULTS Untargeted metabolomic analysis revealed significant metabolic differences between wild-type (WT) and aniridia-associated keratopathy (AAK) hiPSCs. Further metabolomic profiling at different time points demonstrated distinct metabolic shifts, with amino acid metabolism pathways being consistently enriched in AAK organoids. CONCLUSIONS This study emphasizes the profound impact of AAK mutations on metabolism, particularly in amino acid biosynthesis and energy metabolism pathways.
Collapse
Affiliation(s)
- Ali Can Koc
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Vedat Sari
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Gamze Kocak
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye
| | - Tuba Recber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100, Ankara, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100, Ankara, Türkiye
| | - Daniel Aberdam
- INSERM U1138, Centre de Recherche Des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, 35340, Izmir, Türkiye.
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Izmir, Türkiye.
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, 35340, Izmir, Türkiye.
| |
Collapse
|
28
|
Wang Z, Zhao F, Lang H, Ren H, Zhang Q, Huang X, He C, Xu C, Tan C, Ma J, Duan S, Wang Z. Organoids in skin wound healing. BURNS & TRAUMA 2025; 13:tkae077. [PMID: 39759541 PMCID: PMC11697111 DOI: 10.1093/burnst/tkae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Stem cells (SCs) can self-replicate and differentiate into multiple lineages. Organoids, 3D cultures derived from SCs, can replicate the spatial structure and physiological characteristics of organs in vitro. Skin organoids can effectively simulate the physiological structure and function of skin tissue, reliably restoring the natural skin ecology in various in vitro environments. Skin organoids have been employed extensively in skin development and pathology research, offering valuable insights for drug screening. Moreover, they play crucial roles in skin regeneration and tissue repair. This in-depth review explores the construction and applications of skin organoids in wound healing, with a focus on their construction process, including skin appendage integration, and significant advancements in wound-healing research.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Haiyue Ren
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No. 1 Hospital), No. 215 Zhongshan Street, Wuhan, Hubei 430022, China
| | - Qiqi Zhang
- Department of Pathology, Chengdu Third People's Hospital, No. 82 Qinglong Street, Chengdu, Sichuan 610031, China
| | - Xing Huang
- Department of Anaesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yantaxi Road, Xi'an, Shanxi 710061, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chiyu Tan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Shu Duan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| |
Collapse
|
29
|
Moon JH, Roh HS, Park YJ, Song HH, Choi J, Jung DW, Park SJ, Park HJ, Park SH, Kim DE, Kim G, Auh JH, Bhang DH, Lee HJ, Lee DY. A three-dimensional mouse liver organoid platform for assessing EDCs metabolites simulating liver metabolism. ENVIRONMENT INTERNATIONAL 2025; 195:109184. [PMID: 39798515 DOI: 10.1016/j.envint.2024.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025]
Abstract
Hepatic metabolism is an important process for evaluate the potential activity and toxicity of endocrine disrupting chemicals (EDCs) metabolites. Organization for Economic Co-operation and Development (OECD) has advocated the development of in vitro assays that mimic in vivo hepatic metabolism to eventually replace classical animal tests. In response to this need, we established a 3D mouse liver organoid (mLO) platform that mimics the animal model and is distinct from existing models. We evaluated the effects the activity of EDC metabolites generated through mLOs based on human cell-based reporter gene assays in addition to existing models. This study emphasizes the importance of hepatic ex-vivo and suggests the need a new metabolic model through a 3D mLOs platform. These results indicate that mLOs provides a novel biological method to screen for potential endocrine-disrupting activities of EDC metabolites.
Collapse
Affiliation(s)
- Ji Hyun Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Young Jae Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyun Ho Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Da Woon Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ho Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - So-Hyeon Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Da-Eun Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea
| | - Gahee Kim
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi 16419, Republic of Korea; Attislab Inc., Anyang, Gyeonggi-Do 14059, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Department of Food and Animal Biotechnology, Seoul National University, Seoul 00826, Republic of Korea; Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 00826, Republic of Korea; Green Bio Science & Technology, Bio-Food Industrialization, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
30
|
Verma R, Rao L, Kumar H, Bansal N, Deep A, Parashar J, Yadav M, Mittal V, Kaushik D. Applications of Nanomedicine in Brain Tumor Therapy: Nanocarrierbased Drug Delivery Platforms, Challenges, and Perspectives. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:99-119. [PMID: 37937554 DOI: 10.2174/0118722105244482231017102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The most difficult kind of cancer to treat is brain cancer, which causes around 3% of all cancer-related deaths. The targeted delivery is improved with the use of technologies based on nanotechnology that are both safe and efficient. Because of this, there is now a lot of research being done on brain cancer treatments based on nanoformulations. OBJECTIVE In this review, the author's primary aim is to elucidate the various nanomedicine for brain cancer therapy. The authors focus primarily on the advancement of nanotechnology in treating brain cancer (BC). This review article gives readers an up-to-date look at publications on sophisticated nanosystems in treating BC, including quantum dots (QDs), nanoparticles (NPs), polymeric micelles (PMs), dendrimers, and solid lipid nanoparticles (SLNs), among others. This article offers insight into the use of various nanotechnology-based systems for therapy as well as their potential in the future. This article also emphasizes the drawbacks of nanotechnology-based methods. Future perspectives for treating brain cancer using proteomics and biomimetic nanosystems are briefly discussed. CONCLUSION In this review, we review several aspects of brain cancer therapy, including various nanomedicines, their challenges and future perspectives. Overall, this article gives a thorough overview of both the present state of brain cancer treatment options and the disease itself. Various patents granted for brain cancer are also discussed.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Harish Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Jatin Parashar
- B.S. Anangpuria Institute of Pharmacy, Faridabad, 121004, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
31
|
Torkashvand M, Rezakhani L, Habibi Z, Mikaeili A, Rahmati S. Innovative approaches in lung tissue engineering: the role of exosome-loaded bioscaffolds in regenerative medicine. Front Bioeng Biotechnol 2024; 12:1502155. [PMID: 39758953 PMCID: PMC11695380 DOI: 10.3389/fbioe.2024.1502155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Lung diseases account for over four million premature deaths every year, and experts predict that this number will increase in the future. The top cause of death globally is diseases which include conditions like lung cancer asthma and COPD. Treating severe acute lung injury is a complex task because lungs struggle to heal themselves in the presence of swelling inflammation and scarring caused by damage, to the lung tissues. Though achieving lung regeneration, in controlled environments is still an ambition; ongoing studies are concentrating on notable progress, in the field of lung tissue engineering and methods for repairing lung damage. This review delves into methods, for regenerating lungs with a focus on exosome carry bioscaffolds and mesenchymal stem cells among others. It talks about how these new techniques can help repair lung tissue and improve lung function in cases of damage. Also noted is the significance of ex vivo lung perfusion (EVLP), for rejuvenating donor lungs and the healing properties of exosomes in supporting lung regeneration.
Collapse
Affiliation(s)
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Habibi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, University of Medical Sciences, Kermanshah, Iran
| | - Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
32
|
Khan AA, Taylor MC, Fortes Francisco A, Jayawardhana S, Atherton RL, Olmo F, Lewis MD, Kelly JM. Animal models for exploring Chagas disease pathogenesis and supporting drug discovery. Clin Microbiol Rev 2024; 37:e0015523. [PMID: 39545730 PMCID: PMC11629624 DOI: 10.1128/cmr.00155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYInfections with the parasitic protozoan Trypanosoma cruzi cause Chagas disease, which results in serious cardiac and/or digestive pathology in 30%-40% of individuals. However, symptomatic disease can take decades to become apparent, and there is a broad spectrum of possible outcomes. The complex and long-term nature of this infection places a major constraint on the scope for experimental studies in humans. Accordingly, predictive animal models have been a mainstay of Chagas disease research. The resulting data have made major contributions to our understanding of parasite biology, immune responses, and disease pathogenesis and have provided a platform that informs and facilitates the global drug discovery effort. Here, we provide an overview of available animal models and illustrate how they have had a key impact across the field.
Collapse
Affiliation(s)
- Archie A. Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Richard L. Atherton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
33
|
Tang R, Liu XQ. Modeling development of breast cancer: from tumor microenvironment to preclinical applications. Front Pharmacol 2024; 15:1466017. [PMID: 39697553 PMCID: PMC11652193 DOI: 10.3389/fphar.2024.1466017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer is a complex disease and its progression is related not only to tumor cells but also to its microenvironment, which can not be sufficiently reflected by the traditional monolayer cell culture manner. The novel human cancer models comprising tumor microenvironment (TME), such as tumor organoids and organs-on-a-chip, has been established in recent years to help elucidate the underlying mechanisms of tumorigenesis and promote the development of cancer therapies. In this review, we first discuss the current state of breast cancer and their treatment strategies, and elucidates the complex properties of TME of breast cancer in vivo. The culture models used in breast cancer research are then summarized with insights into recent development. Finally, we also conclude by discussing the current limitations and future directions of culture models in breast cancer research for providing a preclinical reference for the precise treatment of cancer patients.
Collapse
Affiliation(s)
- Ruizhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Huang W, Xu Z, Li S, Zhou J, Zhao B. Living Biobanks of Organoids: Valuable Resource for Translational Research. Biopreserv Biobank 2024; 22:543-549. [PMID: 38959173 PMCID: PMC11656124 DOI: 10.1089/bio.2023.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
The emergence of organoids is considered a revolutionary model, changing the landscape of traditional translational research. These three-dimensional miniatures of human organs or tissues, cultivated from stem cells or biospecimens obtained from patients, faithfully replicate the structural and functional characteristics of specific target organs or tissues. In this extensive review, we explore the profound impact of organoids and assess the current state of living organoid biobanks, which are essential repositories for cryopreserving organoids derived from a variety of diseases. These resources hold significant value for translational research. We delve into the diverse origins of organoids, the underlying technologies, and their roles in recapitulating human development, disease modeling, as well as their potential applications in the pharmaceutical field. With a particular emphasis on biobanking organoids for prospective applications, we discuss how these advancements expedite the transition from bench to bedside translational research, thereby fostering personalized medicine and enriching our comprehension of human health.
Collapse
Affiliation(s)
- Wenqing Huang
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Zhaoting Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, Republic of China
| | - Shuang Li
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, Republic of China
| |
Collapse
|
35
|
Zheng R, Shen K, Liang S, Lyu Y, Zhang S, Dong H, Li Y, Han Y, Zhao X, Zhang Y, Wang P, Meng R, Bai S, Yang J, Lu G, Li J, Yang A, Zhang R, Yan B. Specific ECM degradation potentiates the antitumor activity of CAR-T cells in solid tumors. Cell Mol Immunol 2024; 21:1491-1504. [PMID: 39472748 PMCID: PMC11606952 DOI: 10.1038/s41423-024-01228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 12/01/2024] Open
Abstract
Although major progress has been made in the use of chimeric antigen receptor (CAR)-T-cell therapy for hematological malignancies, this method is ineffective against solid tumors largely because of the limited infiltration, activation and proliferation of CAR-T cells. To overcome this issue, we engineered CAR-T cells with synthetic Notch (synNotch) receptors, which induce local tumor-specific secretion of extracellular matrix (ECM)-degrading enzymes at the tumor site. SynNotch CAR-T cells achieve precise ECM recognition and robustly kill targeted tumors, with synNotch-induced enzyme production enabling the degradation of components of the tumor ECM. In addition, this regulation strongly increased the infiltration of CAR-T cells and the clearance of solid tumors, resulting in tumor regression without toxicity in vivo. Notably, synNotch CAR-T cells also promoted the persistent activation of CAR-T cells in patient-derived tumor organoids. Thus, we constructed a synthetic T-cell system that increases the infiltration and antitumor function of CAR-T cells, providing a strategy for targeting ECM-rich solid tumors.
Collapse
Affiliation(s)
- Rui Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Air Force Hospital of Western Theater Command, Chengdu, Sichuan, 610065, China
| | - Sixin Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yanhong Lyu
- Department of Obstetrics and Gynecology, Xijing Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siyan Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Ultrasound, The first affliated hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Dong
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuanfeng Li
- Department of Obstetrics and Gynecology, Xijing Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yujie Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaojuan Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiting Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pengju Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruotong Meng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Shukun Bai
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianxun Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Guofang Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Jia Li
- Department of Obstetrics and Gynecology, Xijing Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Rui Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Bo Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
36
|
Zhang T, Sheng S, Cai W, Yang H, Li J, Niu L, Chen W, Zhang X, Zhou Q, Gao C, Li Z, Zhang Y, Wang G, Shen H, Zhang H, Hu Y, Yin Z, Chen X, Liu Y, Cui J, Su J. 3-D bioprinted human-derived skin organoids accelerate full-thickness skin defects repair. Bioact Mater 2024; 42:257-269. [PMID: 39285913 PMCID: PMC11404058 DOI: 10.1016/j.bioactmat.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The healing of large skin defects remains a significant challenge in clinical settings. The lack of epidermal sources, such as autologous skin grafting, limits full-thickness skin defect repair and leads to excessive scar formation. Skin organoids have the potential to generate a complete skin layer, supporting in-situ skin regeneration in the defect area. In this study, skin organoid spheres, created with human keratinocytes, fibroblasts, and endothelial cells, showed a specific structure with a stromal core surrounded by surface keratinocytes. We selected an appropriate bioink and innovatively combined an extrusion-based bioprinting technique with dual-photo source cross-linking technology to ensure the overall mechanical properties of the 3D bioprinted skin organoid. Moreover, the 3D bioprinted skin organoid was customized to match the size and shape of the wound site, facilitating convenient implantation. When applied to full-thickness skin defects in immunodeficient mice, the 3D bioprinted human-derived skin organoid significantly accelerated wound healing through in-situ regeneration, epithelialization, vascularization, and inhibition of excessive inflammation. The combination of skin organoid and 3D bioprinting technology can overcome the limitations of current skin substitutes, offering a novel treatment strategy to address large-area skin defects.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
| | - Weihuang Cai
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Huijian Yang
- Department of Laboratory Medicine, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jiameng Li
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Luyu Niu
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wanzhuo Chen
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiuyuan Zhang
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qirong Zhou
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Zuhao Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhifeng Yin
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jin Cui
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Institute of Biomedicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
37
|
An Y, Wang C, Wang Z, Kong F, Liu H, Jiang M, Liu T, Zhang S, Du K, Yin L, Jiao P, Li Y, Fan B, Zhou C, Wang M, Sun H, Lei J, Zhao S, Gong Y. Tight junction protein LSR is a host defense factor against SARS-CoV-2 infection in the small intestine. EMBO J 2024; 43:6124-6151. [PMID: 39443717 PMCID: PMC11612383 DOI: 10.1038/s44318-024-00281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The identification of host factors with antiviral potential is important for developing effective prevention and therapeutic strategies against SARS-CoV-2 infection. Here, by using immortalized cell lines, intestinal organoids, ex vivo intestinal tissues and humanized ACE2 mouse model as proof-of-principle systems, we have identified lipolysis-stimulated lipoprotein receptor (LSR) as a crucial host defense factor against SARS-CoV-2 infection in the small intestine. Loss of endogenous LSR enhances ACE2-dependent infection by SARS-CoV-2 Spike (S) protein-pseudotyped virus and authentic SARS-CoV-2 virus, and exogenous administration of LSR protects against viral infection. Mechanistically, LSR interacts with ACE2 both in cis and in trans, preventing its binding to S protein, and thus inhibiting viral entry and S protein-mediated cell-cell fusion. Finally, a small LSR-derived peptide blocks S protein binding to the ACE2 receptor in vitro. These results identify both a previously unknown function for LSR in antiviral host defense against SARS-CoV-2, with potential implications for peptide-based pan-variant therapeutic interventions.
Collapse
Affiliation(s)
- Yanan An
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Chao Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ziqi Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Feng Kong
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hao Liu
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai, Shandong, China
| | - Ti Liu
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shu Zhang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Kaige Du
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Liang Yin
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peng Jiao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ying Li
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Baozhen Fan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxia Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Hui Sun
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China
| | - Jie Lei
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China.
| | - Shengtian Zhao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China.
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Yongfeng Gong
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China.
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China.
- Laboratory of Tight Junction, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
38
|
Brimmer S, Ji P, Birla RK, Heinle JS, Grande-Allen JK, Keswani SG. Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. Cardiovasc Eng Technol 2024; 15:704-715. [PMID: 39495395 DOI: 10.1007/s13239-024-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey S Heinle
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | | | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
- Feigin Center C.450.06, Texas Children's Hospital, 1102 Bates Ave, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
40
|
Ge JY, Wang Y, Li QL, Liu FK, Lei QK, Zheng YW. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ 2024; 12:e18422. [PMID: 39619184 PMCID: PMC11608026 DOI: 10.7717/peerj.18422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/08/2024] [Indexed: 03/10/2025] Open
Abstract
The increasing demand for disease modeling, preclinical drug testing, and long waiting lists for alternative organ substitutes has posed significant challenges to current limitations in organoid technology. Consequently, organoid technology has emerged as a cutting-edge tool capable of accurately recapitulating the complexity of actual organs in physiology and functionality. To bridge the gaps between basic research and pharmaceutical as well as clinical applications, efforts have been made to develop organoids from tissue-derived stem cells or pluripotent stem cells. These developments include optimizing starting cells, refining culture systems, and introducing genetic modifications. With the rapid development of organoid technology, organoid composition has evolved from single-cell to multi-cell types, enhancing their level of biomimicry. Tissue structure has become more refined, and core challenges like vascularization are being addressed actively. These improvements are expected to pave the way for the construction of organoid atlases, automated large-scale cultivation, and universally compatible organoid biobanks. However, major obstacles remain to be overcome before urgently proof-of-concept organoids can be readily converted to practical applications. These obstacles include achieving structural and functional summarily to native tissue, remodeling the microenvironment, and scaling up production. This review aims to summarize the status of organoid development and applications, highlight recent progress, acknowledge existing limitations and challenges, and provide insights into future advancements. It is expected that this will contribute to the establishment of a reliable, scalable, and practical platform for organoid production and translation, further promoting their use in the pharmaceutical industry and regenerative medicine.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Innovation and Transformation Center, University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yun Wang
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Dermatology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Qi-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fan-Kai Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan-Kai Lei
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affilated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Mysior MM, Simpson JC. An automated high-content screening and assay platform for the analysis of spheroids at subcellular resolution. PLoS One 2024; 19:e0311963. [PMID: 39531451 PMCID: PMC11556727 DOI: 10.1371/journal.pone.0311963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
The endomembrane system is essential for healthy cell function, with the various compartments carrying out a large number of specific biochemical reactions. To date, almost all of our understanding of the endomembrane system has come from the study of cultured cells growing as monolayers. However, monolayer-grown cells only poorly represent the environment encountered by cells in the human body. As a first step to address this disparity, we have developed a platform that allows us to investigate and quantify changes to the endomembrane system in three-dimensional (3D) cell models, in an automated and highly systematic manner. HeLa Kyoto cells were grown on custom-designed micropatterned 96-well plates to facilitate spheroid assembly in the form of highly uniform arrays. Fully automated high-content confocal imaging and analysis were then carried out, allowing us to measure various spheroid-, cellular- and subcellular-level parameters relating to size and morphology. Using two drugs known to perturb endomembrane function, we demonstrate that cell-based assays can be carried out in these spheroids, and that changes to the Golgi apparatus and endosomes can be quantified from individual cells within the spheroids. We also show that image texture measurements are useful tools to discriminate cellular phenotypes. The automated platform that we show here has the potential to be scaled up, thereby allowing large-scale robust screening to be carried out in 3D cell models.
Collapse
Affiliation(s)
- Margaritha M. Mysior
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C. Simpson
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Freer M, Cooper J, Goncalves K, Przyborski S. Bioengineering the Human Intestinal Mucosa and the Importance of Stromal Support for Pharmacological Evaluation In Vitro. Cells 2024; 13:1859. [PMID: 39594608 PMCID: PMC11592477 DOI: 10.3390/cells13221859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Drug discovery is associated with high levels of compound elimination in all stages of development. The current practices for the pharmacokinetic testing of intestinal absorption combine Transwell® inserts with the Caco-2 cell line and are associated with a wide range of limitations. The improvement of pharmacokinetic research relies on the development of more advanced in vitro intestinal constructs that better represent human native tissue and its response to drugs, providing greater predictive accuracy. Here, we present a humanized, bioengineered intestinal construct that recapitulates aspects of intestinal microanatomy. We present improved histotypic characteristics reminiscent of the human intestine, such as a reduction in transepithelial electrical resistance (TEER) and the formation of a robust basement membrane, which are contributed to in-part by a strong stromal foundation. We explore the link between stromal-epithelial crosstalk, paracrine communication, and the role of the keratinocyte growth factor (KGF) as a soluble mediator, underpinning the tissue-specific role of fibroblast subpopulations. Permeability studies adapted to a 96-well format allow for high throughput screening and demonstrate the role of the stromal compartment and tissue architecture on permeability and functionality, which is thought to be one of many factors responsible for unexpected drug outcomes using current approaches for pharmacokinetic testing.
Collapse
Affiliation(s)
- Matthew Freer
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Jim Cooper
- European Collection of Authenticated Cell Cultures, Salisbury SP4 0JG, UK;
| | - Kirsty Goncalves
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham DH1 3LE, UK;
- Reprocell Europe Ltd., Glasgow G20 0XA, UK
| |
Collapse
|
43
|
Yang L, Han Y, Zhang T, Dong X, Ge J, Roy A, Zhu J, Lu T, Jeya Vandana J, de Silva N, Robertson CC, Xiang JZ, Pan C, Sun Y, Que J, Evans T, Liu C, Wang W, Naji A, Parker SCJ, Schwartz RE, Chen S. Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection. Cell Stem Cell 2024; 31:1612-1629.e8. [PMID: 39232561 PMCID: PMC11546835 DOI: 10.1016/j.stem.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and β cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated β cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both β cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced β cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated β cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of β cell damage during viral exposure.
Collapse
Affiliation(s)
- Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institute of Health Science, Tianjin 301600, China.
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jian Ge
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aadita Roy
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tiankun Lu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chendong Pan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Sun
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
44
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
45
|
Kim D, Lim H, Youn J, Park TE, Kim DS. Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane. Nat Commun 2024; 15:9420. [PMID: 39482314 PMCID: PMC11528013 DOI: 10.1038/s41467-024-53073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The application of organoids has been limited by the lack of methods for producing uniformly mature organoids at scale. This study introduces an organoid culture platform, called UniMat, which addresses the challenges of uniformity and maturity simultaneously. UniMat is designed to not only ensure consistent organoid growth but also facilitate an unrestricted supply of soluble factors by a 3D geometrically-engineered, permeable membrane-based platform. Using UniMat, we demonstrate the scalable generation of kidney organoids with enhanced uniformity in both structure and function compared to conventional methods. Notably, kidney organoids within UniMat show improved maturation, showing increased expression of nephron transcripts, more in vivo-like cell-type balance, enhanced vascularization, and better long-term stability. Moreover, UniMat's design offers a more standardized organoid model for disease modeling and drug testing, as demonstrated by polycystic-kidney disease and acute kidney injury modeling. In essence, UniMat presents a valuable platform for organoid technology, with potential applications in organ development, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyeonji Lim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
46
|
Okamoto N, Taniura N, Nakayama T, Tanaka E, Kageyama Y, Noujima M, Kushima R, Mukaisho KI. Three-Dimensional Culture of Glioblastoma Cells Using a Tissueoid Cell Culture System. Acta Histochem Cytochem 2024; 57:149-155. [PMID: 39552931 PMCID: PMC11565224 DOI: 10.1267/ahc.24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 11/19/2024] Open
Abstract
In classical cell culture techniques, cancer cells typically proliferate in a single layer by adhering to the undersurface of laboratory vessels. Consequently, concerns have been raised regarding the fidelity of the morphological and functional characteristics of these cultured cancer cells compared to those of their in vivo counterparts. Our previous studies have investigated various epithelial malignant tumors utilizing the Tissueoid cell culture system, a three-dimensional (3D) cultivation method employing Cellbed-a nonwoven sheet composed of high-purity silica fibers as a scaffold. In this investigation, we have achieved successful 3D culturing of glioblastoma cells (A172 and T98G), which are non-epithelial in nature. As such our focus is to juxtapose their morphological features against that of those cultivated via conventional two-dimensional (2D) methods. Our findings will be elucidated using immunostaining, immunofluorescence staining, and scanning electron microscopy, substantiated with accompanying imaging. Notably, cells cultured in the 3D environment exhibited distinct morphological attributes compared to those of their 2D counterparts, notably featuring pronounced cellular protrusions. We envisage the continued utilization of the 3D culture platform to facilitate diverse avenues of research, encompassing the exploration of novel therapeutic modalities for glioblastoma cells and beyond.
Collapse
Affiliation(s)
- Natsume Okamoto
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Taniura
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| | - Takahisa Nakayama
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Eri Tanaka
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yusuke Kageyama
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Mai Noujima
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ryoji Kushima
- Division of Human Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ken-ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
47
|
Ma SC, Xie YL, Wang Q, Fu SG, Wu HZ. Application of eye organoids in the study of eye diseases. Exp Eye Res 2024; 247:110068. [PMID: 39233304 DOI: 10.1016/j.exer.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The eyes are one of the most important sensory organs in the human body. Currently, diseases such as limbal stem cell deficiency, cataract, retinitis pigmentosa and dry eye seriously threaten the quality of people's lives, and the treatment of advanced blinding eye disease and dry eye is ineffective and costly. Thus, new treatment modalities are urgently needed to improve patients' symptoms and suffering. In recent years, stem cell-derived three-dimensional structural organoids have been shown to mimic specific structures and functions similar to those of organs in the human body. Currently, 3D culture systems are used to construct organoids for different ocular growth and development models and ocular disease models to explore their physiological and pathological mechanisms. Eye organoids can also be used as a platform for drug screening. This paper reviews the latest research progress in regard to eye organoids (the cornea, lens, retina, lacrimal gland, and conjunctiva).
Collapse
Affiliation(s)
- Shi-Chao Ma
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-Lin Xie
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qian Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shan-Gui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332007, Jiangxi, China.
| |
Collapse
|
48
|
Du X, Jia H, Chang Y, Zhao Y, Song J. Progress of organoid platform in cardiovascular research. Bioact Mater 2024; 40:88-103. [PMID: 38962658 PMCID: PMC11220467 DOI: 10.1016/j.bioactmat.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
49
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
50
|
Wang Y, Liu W, Jiao Y, Yang Y, Shan D, Ji X, Zhang R, Zhan Z, Tang Y, Guo D, Yan C, Liu F. Advances in the Differentiation of hiPSCs into Cerebellar Neuronal Cells. Stem Cell Rev Rep 2024; 20:1782-1794. [PMID: 39023738 DOI: 10.1007/s12015-024-10763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
The cerebellum has historically been primarily associated with the regulation of precise motor functions. However, recent findings suggest that it also plays a pivotal role in the development of advanced cognitive functions, including learning, memory, and emotion regulation. Pathological changes in the cerebellum, whether congenital hereditary or acquired degenerative, can result in a diverse spectrum of disorders, ranging from genetic spinocerebellar ataxias to psychiatric conditions such as autism, and schizophrenia. While studies in animal models have significantly contributed to our understanding of the genetic networks governing cerebellar development, it is important to note that the human cerebellum follows a protracted developmental timeline compared to the neocortex. Consequently, employing animal models to uncover human-specific molecular events in cerebellar development presents significant challenges. The emergence of human induced pluripotent stem cells (hiPSCs) has provided an invaluable tool for creating human-based culture systems, enabling the modeling and analysis of cerebellar physiology and pathology. hiPSCs and their differentiated progenies can be derived from patients with specific disorders or carrying distinct genetic variants. Importantly, they preserve the unique genetic signatures of the individuals from whom they originate, allowing for the elucidation of human-specific molecular and cellular processes involved in cerebellar development and related disorders. This review focuses on the technical advancements in the utilization of hiPSCs for the generation of both 2D cerebellar neuronal cells and 3D cerebellar organoids.
Collapse
Affiliation(s)
- Yingxin Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Wenzhu Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yichang Jiao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yitong Yang
- School of Nursing, Jining Medical University, Jining, Shandong, 272067, China
| | - Didi Shan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xinbo Ji
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Rui Zhang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zexin Zhan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yao Tang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Dandan Guo
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266103, China.
| | - Fuchen Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|