1
|
Thompson KD, Leinninger GM. Influence of the neurotensin signaling system on feeding and satiety. Neuropharmacology 2025; 275:110496. [PMID: 40324649 DOI: 10.1016/j.neuropharm.2025.110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Neurotensin (Nts) is a peptide that acts via neurotensin receptors and is implicated in multiple aspects of physiology and behavior, including modulating feeding and body weight. How and where the Nts signaling system mediates these effects, and via which of its receptor isoforms is incompletely understood. This review examines the role of Nts signaling via the periphery and central nervous system on feeding and body weight. These data highlight various ways in which the Nts system contributes to feeding and body weight that differ depending on the site, tissue, and the Nts or Nts receptor-expressing cell type in question. Given that the Nts system does not convey the same signaling throughout the body, constitutive approaches modulating the expression or signaling of the Nts signaling system may not provide sufficient resolution to reveal how it impacts feeding. Combining neuropharmacology and site-specific approaches holds promise define the broad range of mechanisms by the Nts system modulates feeding and satiety and its contributions to normal and disrupted feeding states.
Collapse
Affiliation(s)
- Katie D Thompson
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Cheon DH, Park S, Park J, Koo M, Kim HH, Han S, Choi HJ. Lateral hypothalamus and eating: cell types, molecular identity, anatomy, temporal dynamics and functional roles. Exp Mol Med 2025:10.1038/s12276-025-01451-y. [PMID: 40307571 DOI: 10.1038/s12276-025-01451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
The lateral hypothalamus (LH) is a central hub orchestrating eating behavior through its complex cellular, anatomical and temporal organization. The LH is characterized by high heterogeneity and functional complexity, with many aspects still unexplored. Here we synthesize recent advances in understanding the role of the LH in eating regulation across multiple dimensions. At the cellular level, the LH contains diverse neuronal populations that contribute to distinct roles in behavior. Anatomically, we divided the LH into four regions-anteromedial, anterolateral, posteromedial and posterolateral-each with unique cellular compositions, circuit organizations and projection patterns. By integrating the temporal dynamics of each LH cell type during eating behavior, we identified how various LH cell types are involved in regulating the appetitive and consummatory phases of eating behavior. The LH also plays vital roles in associative learning and different types of eating behavior, including homeostatic, pleasure-induced and stress-induced eating. These insights into LH organization and function provide promising directions for therapeutic interventions in eating disorders and obesity, including drugs, deep brain stimulation and gene therapy.
Collapse
Affiliation(s)
- Deok-Hyeon Cheon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sheejune Park
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jihyun Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - MinSeo Koo
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Hyung Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seol Han
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Gangwon-do, Republic of Korea.
| |
Collapse
|
3
|
Stine C, Marcus DJ, Pasqualini AL, Achanta AS, Johnson JC, Jadhav S, Bruchas MR. Identification of a stress-sensitive endogenous opioid-containing neuronal population in the paranigral ventral tegmental area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.08.647881. [PMID: 40291662 PMCID: PMC12027071 DOI: 10.1101/2025.04.08.647881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Nociceptin/orphanin FQ (N/OFQ), an endogenous opioid neuropeptide, and its G-protein coupled receptor NOPR have been implicated in motivation, feeding behaviors, and aversion. Stress-induced dysfunction in these states is central to the development of numerous psychiatric disorders, and the N/OFQ-NOPR system's role in reward- and stress-related responses has driven broad interest in NOPR as a therapeutic target for anxiety and depression. However, the impact of stress on N/OFQ signaling in the context of its influence on discrete midbrain reward circuitry remains unknown. To this end, we focused on a possible candidate population of N/OFQ neurons in the paranigral ventral tegmental area (pnVTA PNOC ) that have been shown to act locally on NOPR-containing VTA dopamine neurons to suppress motivation. Here we report and characterize pnVTA PNOC sensitivity to stress exposure and identify a functional excitatory and inhibitory afferent input to this subpopulation from the lateral hypothalamus (LH). Our results indicate that pnVTA PNOC neurons become recruited during exposure to a range of acute stressor types, whereas the GABAergic input from the LH to this population is suppressed by predator odor stress, providing a mechanism for disinhibition of these neurons. These findings suggest that this N/OFQ population in the pnVTA could act as a critical bridge between stress and motivation through interactions with upstream hypothalamic circuitry.
Collapse
|
4
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. J Comp Neurol 2024; 532:e25629. [PMID: 39031887 PMCID: PMC11819615 DOI: 10.1002/cne.25629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 07/22/2024]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S, NPS) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray, then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known already about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts roles in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Joel C. Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| |
Collapse
|
7
|
Gereau GB, Zhou D, Van Voorhies K, Tyler RE, Campbell J, Murray JG, Alvarez-Pamir A, Wykoff LA, Companion MA, Jackson MR, Olson SH, Barak LS, Slosky LM, Vetreno RP, Besheer J, McElligott ZA. β-arrestin-biased Allosteric Modulator of Neurotensin Receptor 1 Reduces Ethanol Drinking and Responses to Ethanol Administration in Rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588903. [PMID: 38645173 PMCID: PMC11030371 DOI: 10.1101/2024.04.10.588903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Alcohol use disorders (AUDs) impose an enormous societal and financial burden, and world-wide, alcohol misuse is the 7th leading cause of premature death1. Despite this, there are currently only 3 FDA approved pharmacological treatments for the treatment of AUDs in the United States. The neurotensin (Nts) system has long been implicated in modulating behaviors associated with alcohol misuse. Recently, a novel compound, SBI-553, that biases the action of Nts receptor 1 (NTSR1) activation, has shown promise in preclinical models of psychostimulant misuse. Here we investigate the efficacy of this compound to alter ethanol-mediated behaviors in a comprehensive battery of experiments assessing ethanol consumption, behavioral responses to ethanol, sensitivity to ethanol, and ethanol metabolism. Additionally, we investigated behavior in avoidance and cognitive assays to monitor potential side effects of SBI-553. We find that SBI-553 reduces binge-like ethanol consumption in mice without altering avoidance behavior or novel object recognition. We also observe sex-dependent differences in physiological responses to sequential ethanol injections in mice. In rats, we show that SBI-553 attenuates sensitivity to the interoceptive effects of ethanol (using a Pavlovian drug discrimination task). Our data suggest that targeting NTSR1 signaling may be promising to attenuate alcohol misuse, and adds to a body of literature that suggests NTSR1 may be a common downstream target involved in the psychoactive effects of multiple reinforcing substances.
Collapse
Affiliation(s)
- Graydon B Gereau
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - Diana Zhou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - Ryan E Tyler
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, USA
| | - Jeffrey Campbell
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Jackson G Murray
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Ali Alvarez-Pamir
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Luke A Wykoff
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | - Michel A Companion
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | | | | | | | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Zoe A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
8
|
Hristov M, Landzhov B, Yakimova K. Effect of leptin on nitrergic neurons in the lateral hypothalamic area and the supraoptic nucleus of rats. Biotech Histochem 2024; 99:125-133. [PMID: 38533595 DOI: 10.1080/10520295.2024.2335167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production. We used histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) as a marker for nitric oxide synthase activity and assessed the effect of leptin on nitrergic neurons in the LH and SO of rats. We found that intraperitoneal administration of leptin led to a significant increase in the number of NADPH-d-positive neurons in the LH and SO. In addition, the intensity (optical density) of NADPH-d staining in LH and SO neurons was significantly elevated in rats that received leptin compared with saline-treated rats. These findings suggest that nitrergic neurons in the LH and SO may be implicated in mediating the central effects of leptin.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yakimova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
9
|
Kyriatzis G, Khrestchatisky M, Ferhat L, Chatzaki EA. Neurotensin and Neurotensin Receptors in Stress-related Disorders: Pathophysiology & Novel Drug Targets. Curr Neuropharmacol 2024; 22:916-934. [PMID: 37534788 PMCID: PMC10845085 DOI: 10.2174/1570159x21666230803101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 08/04/2023] Open
Abstract
Neurotensin (NT) is a 13-amino acid neuropeptide widely distributed in the CNS that has been involved in the pathophysiology of many neural and psychiatric disorders. There are three known neurotensin receptors (NTSRs), which mediate multiple actions, and form the neurotensinergic system in conjunction with NT. NTSR1 is the main mediator of NT, displaying effects in both the CNS and the periphery, while NTSR2 is mainly expressed in the brain and NTSR3 has a broader expression pattern. In this review, we bring together up-to-date studies showing an involvement of the neurotensinergic system in different aspects of the stress response and the main stress-related disorders, such as depression and anxiety, post-traumatic stress disorder (PTSD) and its associated symptoms, such as fear memory and maternal separation, ethanol addiction, and substance abuse. Emphasis is put on gene, mRNA, and protein alterations of NT and NTSRs, as well as behavioral and pharmacological studies, leading to evidence-based suggestions on the implicated regulating mechanisms as well as their therapeutic exploitation. Stress responses and anxiety involve mainly NTSR1, but also NTSR2 and NTSR3. NTSR1 and NTSR3 are primarily implicated in depression, while NTSR2 and secondarily NTSR1 in PTSD. NTSR1 is interrelated with substance and drug abuse and NTSR2 with fear memory, while all NTSRs seem to be implicated in ethanol consumption. Some of the actions of NT and NTSRs in these pathological settings may be driven through interactions between NT and corticotrophin releasing factor (CRF) in their regulatory contribution, as well as by NT's pro-inflammatory mediating actions.
Collapse
Affiliation(s)
- Grigorios Kyriatzis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Michel Khrestchatisky
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Lotfi Ferhat
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Ekaterini Alexiou Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, University Research Centre, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
10
|
Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 2023; 20:784-796. [PMID: 37626258 DOI: 10.1038/s41575-023-00830-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.
Collapse
Affiliation(s)
- Rula Bany Bakar
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Ferreira FP, Pereira SS, Costa MM, Guimarães M, Albrechtsen NJW, Holst JJ, Nora M, Monteiro MP. Individuals with type 2 diabetes have higher density of small intestinal neurotensin-expressing cells. Mol Cell Biochem 2023; 478:2779-2787. [PMID: 36920577 PMCID: PMC10627918 DOI: 10.1007/s11010-023-04698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Neurotensin (NT) is a gastro-intestinal hormone involved in several pathways that regulate energy and glucose homeostasis. NT was hypothesized to act in synergy with incretin hormones to potentiate its anti-diabetic effects. Additionally, circulating NT levels were shown to rise after bariatric surgery-induced weight loss. Knowledge of NT-secreting cells distribution along the small intestine and its variation according to diabetes status could provide insights on NT role in mediating type 2 diabetes (T2D) improvement after bariatric surgery. So, our aims were to characterize NT-expressing cell distribution along the human small intestine and to compare the relative density of NT-expressing cells in the small intestine of individuals with and without T2D undergoing bariatric surgery for obesity treatment. Autopsy-derived small intestine fragments (n = 30) were obtained at every 20 cm along the entire intestinal length. Additionally, jejunum biopsies (n = 29) were obtained during elective gastric bypass interventions from patients with (n = 10) or without T2D (n = 18). NT-expressing cells were identified by immunohistochemistry and quantified via computerized morphometric analysis. NT-expressing cell density increased along the human small intestine. NT-expressing cell density was significantly higher from 200 cm distal to the duodenojejunal flexure onward, as well as in subjects with T2D when compared to those without T2D. NT-expressing cell density increases along the human small gut, and a higher density is found in individuals with T2D. This finding suggests a potential role for NT in the mechanisms of disease and T2D improvement observed after bariatric surgery.
Collapse
Affiliation(s)
- Filipa P Ferreira
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Sofia S Pereira
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal.
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Madalena M Costa
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Marta Guimarães
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Department of General Surgery, Centro Hospitalar de Entre Douro E Vouga, Santa Maria da Feira, Portugal
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mário Nora
- Department of General Surgery, Centro Hospitalar de Entre Douro E Vouga, Santa Maria da Feira, Portugal
| | - Mariana P Monteiro
- Department of Anatomy, UMIB-Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, Building 1.3, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
12
|
Geisler CE, Hayes MR. Metabolic hormone action in the VTA: Reward-directed behavior and mechanistic insights. Physiol Behav 2023; 268:114236. [PMID: 37178855 PMCID: PMC10330780 DOI: 10.1016/j.physbeh.2023.114236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Dysfunctional signaling in midbrain reward circuits perpetuates diseases characterized by compulsive overconsumption of rewarding substances such as substance abuse, binge eating disorder, and obesity. Ventral tegmental area (VTA) dopaminergic activity serves as an index for how rewarding stimuli are perceived and triggers behaviors necessary to obtain future rewards. The evolutionary linking of reward with seeking and consuming palatable foods ensured an organism's survival, and hormone systems that regulate appetite concomitantly developed to regulate motivated behaviors. Today, these same mechanisms serve to regulate reward-directed behavior around food, drugs, alcohol, and social interactions. Understanding how hormonal regulation of VTA dopaminergic output alters motivated behaviors is essential to leveraging therapeutics that target these hormone systems to treat addiction and disordered eating. This review will outline our current understanding of the mechanisms underlying VTA action of the metabolic hormones ghrelin, glucagon-like peptide-1, amylin, leptin, and insulin to regulate behavior around food and drugs of abuse, highlighting commonalities and differences in how these five hormones ultimately modulate VTA dopamine signaling.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Zhang R, Huang D, Gasparini S, Geerling JC. Efferent projections of Nps-expressing neurons in the parabrachial region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553140. [PMID: 37645772 PMCID: PMC10462015 DOI: 10.1101/2023.08.13.553140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In the brain, connectivity determines function. Neurons in the parabrachial nucleus (PB) relay diverse information to widespread brain regions, but the connections and functions of PB neurons that express Nps (neuropeptide S) remain mysterious. Here, we use Cre-dependent anterograde tracing and whole-brain analysis to map their output connections. While many other PB neurons project ascending axons through the central tegmental tract, NPS axons reach the forebrain via distinct periventricular and ventral pathways. Along the periventricular pathway, NPS axons target the tectal longitudinal column and periaqueductal gray then continue rostrally to target the paraventricular nucleus of the thalamus. Along the ventral pathway, NPS axons blanket much of the hypothalamus but avoid the ventromedial and mammillary nuclei. They also project prominently to the ventral bed nucleus of the stria terminalis, A13 cell group, and magnocellular subparafasciular nucleus. In the hindbrain, NPS axons have fewer descending projections, targeting primarily the superior salivatory nucleus, nucleus of the lateral lemniscus, and periolivary region. Combined with what is known about NPS and its receptor, the output pattern of Nps-expressing neurons in the PB region predicts a role in threat response and circadian behavior.
Collapse
Affiliation(s)
- Richie Zhang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Dake Huang
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Silvia Gasparini
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| | - Joel C. Geerling
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa
| |
Collapse
|
14
|
Laing BT, Anderson MS, Bonaventura J, Jayan A, Sarsfield S, Gajendiran A, Michaelides M, Aponte Y. Anterior hypothalamic parvalbumin neurons are glutamatergic and promote escape behavior. Curr Biol 2023; 33:3215-3228.e7. [PMID: 37490921 PMCID: PMC10529150 DOI: 10.1016/j.cub.2023.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
The anterior hypothalamic area (AHA) is a critical structure for defensive responding. Here, we identified a cluster of parvalbumin-expressing neurons in the AHA (AHAPV) that are glutamatergic with fast-spiking properties and send axonal projections to the dorsal premammillary nucleus (PMD). Using in vivo functional imaging, optogenetics, and behavioral assays, we determined the role of these AHAPV neurons in regulating behaviors essential for survival. We observed that AHAPV neuronal activity significantly increases when mice are exposed to a predator, and in a real-time place preference assay, we found that AHAPV neuron photoactivation is aversive. Moreover, activation of both AHAPV neurons and the AHAPV → PMD pathway triggers escape responding during a predator-looming test. Furthermore, escape responding is impaired after AHAPV neuron ablation, and anxiety-like behavior as measured by the open field and elevated plus maze assays does not seem to be affected by AHAPV neuron ablation. Finally, whole-brain metabolic mapping using positron emission tomography combined with AHAPV neuron photoactivation revealed discrete activation of downstream areas involved in arousal, affective, and defensive behaviors including the amygdala and the substantia nigra. Our results indicate that AHAPV neurons are a functional glutamatergic circuit element mediating defensive behaviors, thus expanding the identity of genetically defined neurons orchestrating fight-or-flight responses. Together, our work will serve as a foundation for understanding neuropsychiatric disorders triggered by escape such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Megan S Anderson
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Aishwarya Jayan
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Anjali Gajendiran
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Soden ME, Yee JX, Zweifel LS. Circuit coordination of opposing neuropeptide and neurotransmitter signals. Nature 2023; 619:332-337. [PMID: 37380765 PMCID: PMC10947507 DOI: 10.1038/s41586-023-06246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/22/2023] [Indexed: 06/30/2023]
Abstract
Fast-acting neurotransmitters and slow, modulatory neuropeptides are co-released from neurons in the central nervous system, albeit from distinct synaptic vesicles1. The mechanisms of how co-released neurotransmitters and neuropeptides that have opposing actions-for example, stimulatory versus inhibitory-work together to exert control of neural circuit output remain unclear. This has been difficult to resolve owing to the inability to selectively isolate these signalling pathways in a cell- and circuit-specific manner. Here we developed a genetic-based anatomical disconnect procedure that utilizes distinct DNA recombinases to independently facilitate CRISPR-Cas9 mutagenesis2 of neurotransmitter- and neuropeptide-related genes in distinct cell types in two different brain regions simultaneously. We demonstrate that neurons within the lateral hypothalamus that produce the stimulatory neuropeptide neurotensin and the inhibitory neurotransmitter GABA (γ-aminobutyric acid) utilize these signals to coordinately activate dopamine-producing neurons of the ventral tegmental area. We show that GABA release from lateral hypothalamus neurotensin neurons inhibits GABA neurons within the ventral tegmental area, disinhibiting dopamine neurons and causing a rapid rise in calcium, whereas neurotensin directly generates a slow inactivating calcium signal in dopamine neurons that is dependent on the expression of neurotensin receptor 1 (Ntsr1). We further show that these two signals work together to regulate dopamine neuron responses to maximize behavioural responding. Thus, a neurotransmitter and a neuropeptide with opposing signals can act on distinct timescales through different cell types to enhance circuit output and optimize behaviour.
Collapse
Affiliation(s)
- Marta E Soden
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| | - Joshua X Yee
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Bumbak F, Bower JB, Zemmer SC, Inoue A, Pons M, Paniagua JC, Yan F, Ford J, Wu H, Robson SA, Bathgate RAD, Scott DJ, Gooley PR, Ziarek JJ. Stabilization of pre-existing neurotensin receptor conformational states by β-arrestin-1 and the biased allosteric modulator ML314. Nat Commun 2023; 14:3328. [PMID: 37286565 PMCID: PMC10247727 DOI: 10.1038/s41467-023-38894-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. β-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A β-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.
Collapse
Affiliation(s)
- Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - James B Bower
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Skylar C Zemmer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Miquel Pons
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Juan Carlos Paniagua
- Department of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Fei Yan
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Ford
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Scott A Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
17
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
18
|
Guo Y, Jiang Z, Jin T, Huang J, Sun X. Activation of calcium-sensing receptors in the basolateral nucleus of the amygdala inhibits food intake and induces anxiety-depressive-like emotions via dopamine system. Behav Brain Res 2023; 444:114357. [PMID: 36813182 DOI: 10.1016/j.bbr.2023.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The calcium-sensing receptor (CaSR) is abundantly expressed in gastrointestinal mucosa and participates in the regulation of feeding by affecting hormone secretion. Studies have demonstrated that the CaSR is also expressed in feeding-related brain areas, such as the hypothalamus and limbic system, but the effect of the central CaSR on feeding has not been reported. Therefore, the aim of this study was to explore the effect of the CaSR in the basolateral amygdala (BLA) on feeding, and the potential mechanism was also studied. CaSR agonist R568 was microinjected into the BLA of male Kunming mice to investigate the effects of the CaSR on food intake and anxiety-depression-like behaviours. The enzyme-linked immunosorbent assay (ELISA) and fluorescence immunohistochemistry were used to explore the underlying mechanism. Our results showed that microinjection of R568 into the BLA could inhibit both standard and palatable food intake in mice for 0-2 h, induce anxiety-depression-like behaviours, increase glutamate levels in the BLA, and activate dynorphin and gamma-aminobutyric acid neurons through the N-methyl-D-aspartate receptor and thus reduce the content of dopamine in the arcuate nucleus of the hypothalamus (ARC) and ventral tegmental area (VTA), respectively. Our findings suggest that activation of the CaSR in the BLA inhibited food intake and caused anxiety-depression-like emotions. The reduced dopamine levels in the VTA and ARC via glutamatergic signals are involved in these functions of CaSR.
Collapse
Affiliation(s)
- Yajie Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zhongxin Jiang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tingting Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Jinfang Huang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
19
|
Römer SS, Bliokas V, Teo JT, Thomas SJ. Food addiction, hormones and blood biomarkers in humans: A systematic literature review. Appetite 2023; 183:106475. [PMID: 36716820 DOI: 10.1016/j.appet.2023.106475] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Food addiction may play a role in rising obesity rates in connection with obesogenic environments and processed food availability, however the concept of food addiction remains controversial. While animal studies show evidence for addictive processes in relation to processed foods, most human studies are psychologically focussed and there is a need to better understand evidence for biological mechanisms of food addiction in humans. Several key hormones are implicated in models of food addiction, due to their key roles in feeding, energy metabolism, stress and addictive behaviours. This systematic literature review examines evidence for relationships between food addiction, hormones and other blood biomarkers. METHODS A series of literature searches was performed in Scopus, PsychInfo, MedLine, ProQuest, CINAHL and Web of Science. A total of 3111 articles were found, of which 1045 were duplicates. Articles were included if they contained a psychometric measurement of food addiction, such as the Yale Food Addiction Scale, as well as addressed the association between FA and hormones or blood biomarkers in humans. Articles were assessed for eligibility by two independent reviewers. RESULTS Sixteen studies were identified that examined relationships between food addiction and blood biomarkers, published between 2015 and 2021. Significant findings were reported for leptin, ghrelin, cortisol, insulin and glucose, oxytocin, cholesterol, plasma dopamine, thyroid stimulating hormone (TSH), haemoglobin A1c (HbA1c), triglyceride (TG), amylin, tumour necrosis factor alpha (TNF- α) and cholecystokinin (CCK). Methodological issues included small sample sizes and variation in obesity status, sex and mental health-related comorbidities. Due to methodological limitations, definite connections between FA, hormones and other blood biomarkers cannot yet be determined. CONCLUSION This systematic review identified preliminary evidence linking FA symptoms to hormones and other blood biomarkers related to feeding, addiction, and stress. However, due to the small number of studies and methodological limitations, further research is needed to evaluate biopsychosocial models of FA and to resolve controversies.
Collapse
Affiliation(s)
- Stephanie Sophie Römer
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia.
| | - Vida Bliokas
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2522, Australia.
| | - Jillian Terese Teo
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Australia.
| | - Susan J Thomas
- Illawarra Health and Medical Research Institute, University of Wollongong, 2522, Australia; Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Australia.
| |
Collapse
|
20
|
Petzold A, van den Munkhof HE, Figge-Schlensok R, Korotkova T. Complementary lateral hypothalamic populations resist hunger pressure to balance nutritional and social needs. Cell Metab 2023; 35:456-471.e6. [PMID: 36827985 PMCID: PMC10028225 DOI: 10.1016/j.cmet.2023.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/03/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Animals continuously weigh hunger and thirst against competing needs, such as social contact and mating, according to state and opportunity. Yet neuronal mechanisms of sensing and ranking nutritional needs remain poorly understood. Here, combining calcium imaging in freely behaving mice, optogenetics, and chemogenetics, we show that two neuronal populations of the lateral hypothalamus (LH) guide increasingly hungry animals through behavioral choices between nutritional and social rewards. While increased food consumption was marked by increasing inhibition of a leptin receptor-expressing (LepRLH) subpopulation at a fast timescale, LepRLH neurons limited feeding or drinking and promoted social interaction despite hunger or thirst. Conversely, neurotensin-expressing LH neurons preferentially encoded water despite hunger pressure and promoted water seeking, while relegating social needs. Thus, hunger and thirst gate both LH populations in a complementary manner to enable the flexible fulfillment of multiple essential needs.
Collapse
Affiliation(s)
- Anne Petzold
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Hanna Elin van den Munkhof
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Rebecca Figge-Schlensok
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
21
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
22
|
Perez-Bonilla P, Ramirez-Virella J, Menon P, Troyano-Rodriguez E, Arriaga SK, Makela A, Bugescu R, Beckstead MJ, Leinninger GM. Developmental or adult-onset deletion of neurotensin receptor-1 from dopamine neurons differentially reduces body weight. Front Neurosci 2022; 16:874316. [PMID: 36213756 PMCID: PMC9537700 DOI: 10.3389/fnins.2022.874316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Central neurotensin signaling via neurotensin receptor-1 (NtsR1) modulates various aspects of physiology, including suppressing feeding and promoting locomotor activity that can support weight loss. However, it remains unclear when and where NtsR1 expression contributes to control of body weight vs. other effects. We previously showed that activating ventral tegmental area (VTA) dopamine (DA) neurons that express NtsR1 promotes weight loss. We therefore hypothesized that deleting NtsR1 from DA neurons would promote weight gain by increasing food intake and decreasing physical activity. In contrast, developmental deletion of NtsR1 from DA neurons (by crossing DATCre mice with NtsR1flox/flox mice) had no impact on the feeding or body weight of mice fed a chow diet, though it augmented locomotor activity. Developmental deletion of NtsR1 from DA neurons protected mice from diet-induced obesity, but not via altering feeding, physical activity, or energy expenditure. Given that NtsR1 may exert distinct roles within development vs. adulthood, we then examined the impact of adult-onset deletion of NtsR1 from VTA DA neurons. We injected adult NtsR1flox/flox mice in the VTA with adeno associated virus to Cre-dependently delete NtsR1 in the VTA (VTAR1Null mice) and compared them to mice with intact NtsR1 (Controls). Again, in contrast to our hypothesis, VTAR1Null mice gained less weight than Controls while on normal chow or high fat diets. Moreover, VTAR1Null mice exhibited blunted feeding after fasting, suggesting a role for NtsR1 in adult VTA DA neurons in coordinating energy need and intake. Altogether, these data suggest that intact expression of NtsR1 in DA neurons is necessary for appropriate regulation of body weight, but a lack of NtsR1 in the developing vs. adult DA system protects from weight gain via different mechanisms. These findings emphasize the need for temporal and site-specific resolution to fully understand the role of NtsR1 within the brain.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jariel Ramirez-Virella
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Pooja Menon
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Eva Troyano-Rodriguez
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Sydney K. Arriaga
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Michael J. Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, United States
| | - Gina M. Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
23
|
Neurotensin Release from Dopamine Neurons Drives Long-Term Depression of Substantia Nigra Dopamine Signaling. J Neurosci 2022; 42:6186-6194. [PMID: 35794014 PMCID: PMC9374153 DOI: 10.1523/jneurosci.1395-20.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
Midbrain dopamine neurons play central physiological roles in voluntary movement, reward learning, and motivated behavior. Inhibitory signaling at somatodendritic dopamine D2 receptor (D2R) synapses modulates excitability of dopamine neurons. The neuropeptide neurotensin is expressed by many inputs to the midbrain and induces LTD of D2R synaptic currents (LTDDA); however, the source of neurotensin that is responsible for LTDDA is not known. Here we show, in brain slices from male and female mice, that LTDDA is driven by neurotensin released by dopamine neurons themselves. Optogenetic stimulation of dopamine neurons was sufficient to induce LTDDA in the substantia nigra, but not the VTA, and was dependent on neurotensin receptor signaling, postsynaptic calcium, and vacuolar-type H+-ATPase activity in the postsynaptic cell. These findings reveal a novel form of signaling between dopamine neurons involving release of the peptide neurotensin, which may act as a feedforward mechanism to increase dopamine neuron excitability.SIGNIFICANCE STATEMENT Dopamine neurons in the midbrain play a critical role in reward learning and the initiation of movement. Aberrant dopamine neuron function is implicated in a range of diseases and disorders, including Parkinson's disease, schizophrenia, obesity, and substance use disorders. D2 receptor-mediated PSCs are produced by a rare form of dendrodendritic synaptic transmission between dopamine neurons. These D2 receptor-mediated PSCs undergo LTD following application of the neuropeptide neurotensin. Here we show that release of neurotensin by dopamine neurons themselves is sufficient to induce LTD of dopamine transmission in the substantia nigra. Neurotensin signaling therefore mediates a second form of interdopamine neuron communication and may provide a mechanism by which dopamine neurons maintain excitability when nigral dopamine is elevated.
Collapse
|
24
|
Grady FS, Graff SA, Aldridge GM, Geerling JC. BoutonNet: an automatic method to detect anterogradely labeled presynaptic boutons in brain tissue sections. Brain Struct Funct 2022; 227:1921-1932. [PMID: 35648216 PMCID: PMC10597056 DOI: 10.1007/s00429-022-02504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Neurons emit axons, which form synapses, the fundamental unit of the nervous system. Neuroscientists use genetic anterograde tracing methods to label the synaptic output of specific neuronal subpopulations, but the resulting data sets are too large for manual analysis, and current automated methods have significant limitations in cost and quality. In this paper, we describe a pipeline optimized to identify anterogradely labeled presynaptic boutons in brain tissue sections. Our histologic pipeline labels boutons with high sensitivity and low background. To automatically detect labeled boutons in slide-scanned tissue sections, we developed BoutonNet. This detector uses a two-step approach: an intensity-based method proposes possible boutons, which are checked by a neural network-based confirmation step. BoutonNet was compared to expert annotation on a separate validation data set and achieved a result within human inter-rater variance. This open-source technique will allow quantitative analysis of the fundamental unit of the brain on a whole-brain scale.
Collapse
Affiliation(s)
- Fillan S Grady
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, PBDB 1320, 169 Newton Rd, Iowa City, IA, 52246, USA
| | - Shantelle A Graff
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, PBDB 1320, 169 Newton Rd, Iowa City, IA, 52246, USA
| | - Georgina M Aldridge
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, PBDB 1320, 169 Newton Rd, Iowa City, IA, 52246, USA
| | - Joel C Geerling
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, PBDB 1320, 169 Newton Rd, Iowa City, IA, 52246, USA.
| |
Collapse
|
25
|
Maciel IDS, de Abreu GH, Johnson CT, Bonday R, Bradshaw HB, Mackie K, Lu HC. Perinatal CBD or THC Exposure Results in Lasting Resistance to Fluoxetine in the Forced Swim Test: Reversal by Fatty Acid Amide Hydrolase Inhibition. Cannabis Cannabinoid Res 2022; 7:318-327. [PMID: 34182795 PMCID: PMC9225394 DOI: 10.1089/can.2021.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Introduction: There is widespread acceptance of cannabis for medical or recreational use across the society, including pregnant women. Concerningly, numerous studies find that the developing central nervous system (CNS) is vulnerable to the detrimental effects of Δ9-tetrahydrocannabinol (THC). In contrast, almost nothing on the consequences of perinatal cannabidiol (CBD) exposure. In this study, we used mice to investigate the adult impact of perinatal cannabinoid exposure (PCE) with THC, CBD, or a 1:1 ratio of THC and CBD on behaviors. Furthermore, the lasting impact of PCE on fluoxetine sensitivity in the forced swim test (FST) was evaluated to probe neurochemical pathways interacting with the endocannabinoid system (ECS). Methods: Pregnant CD1 dams were injected subcutaneously daily with vehicle, 3 mg/kg THC, 3 mg/kg CBD, or 3 mg/kg THC +3 mg/kg CBD from gestational day 5 to postnatal day 10. Mass spectroscopic (MS) analyses were conducted to measure the THC and CBD brain levels in dams and their embryonic progenies. PCE adults were subjected to a battery of behavioral tests: open field arena, sucrose preference test, marble burying test, nestlet shredding test, and FST. Results: MS analysis found substantial levels of THC and CBD in embryonic brains. Our behavioral testing found that PCE females receiving THC or CBD buried significantly more marbles than control mice. Interestingly, PCE males receiving CBD or THC+CBD had significantly increased sucrose preference. While PCE with THC or CBD did not affect FST immobility, PCE with THC or CBD prevented fluoxetine from decreasing immobility in both males and females. Excitingly, fatty acid amide hydrolase (FAAH) inhibition with a dose of URB597 that was behaviorally inactive in the FST rescued fluoxetine efficacy in PCE mice of both sexes. Conclusions: Our data suggest that PCE with either THC, CBD, or THC+CBD alters repetitive and hedonic behaviors in a phytocannabinoid and sex-dependent manner. In addition, PCE with THC or CBD prevents fluoxetine from enhancing coping behavior. The restoration of fluoxetine responsiveness in THC or CBD PCE adults by inhibition of FAAH suggests that PCE causes a lasting reduction of the ECS and that enhancement of anandamide signaling represents a potential treatment for behavioral deficits following PCE.
Collapse
Affiliation(s)
- Izaque de Sousa Maciel
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Gabriel H.D. de Abreu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Claire T. Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Rida Bonday
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Ken Mackie
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA.,Address correspondence to: Hui-Chen Lu, PhD, The Linda and Jack Gill Center for Biomolecular Science, Indiana University, 702 N Walnut Grove Ave, IN 47405, USA,
| |
Collapse
|
26
|
Kurt G, Kodur N, Quiles CR, Reynolds C, Eagle A, Mayer T, Brown J, Makela A, Bugescu R, Seo HD, Carroll QE, Daniels D, Robison AJ, Mazei-Robison M, Leinninger G. Time to drink: Activating lateral hypothalamic area neurotensin neurons promotes intake of fluid over food in a time-dependent manner. Physiol Behav 2022; 247:113707. [PMID: 35063424 PMCID: PMC8844224 DOI: 10.1016/j.physbeh.2022.113707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/24/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding. Here we investigated the connectivity of LHANts neurons, their necessity and sufficiency for drinking and feeding, and how timing and resource availability influence their modulation of these behaviors. LHANts neurons project broadly throughout the brain, including to the lateral preoptic area (LPO), a brain region implicated in modulating drinking behavior. LHANts neurons also receive inputs from brain regions implicated in sensing hydration and energy status. While activation of LHANts neurons is not required to maintain homeostatic water or food intake, it selectively promotes drinking during the light cycle, when ingestive drive is low. Activating LHANts neurons during this period also increases willingness to work for water or palatable fluids, regardless of their caloric content. By contrast, LHANts neuronal activation during the dark cycle does not promote drinking, but suppresses feeding during this time. Finally, we demonstrate that the activation of the LHANts → LPO projection is sufficient to mediate drinking behavior, but does not suppress feeding as observed after generally activating all LHANts neurons. Overall, our work suggests how and when LHANts neurons oppositely modulate ingestive behaviors.
Collapse
Key Words
- ARC, Arcuate nucleus
- CEA, Central amygdala
- CNO, Clozapine N-Oxide
- CPP, Conditioned place preference
- DR, Dorsal raphe
- DREADD
- DREADD, Designer receptor exclusively activated by designer drugs
- FR-1, Fixed ratio-1
- LHA
- LHA(Nts), Lateral hypothalamic area neuotensin-expressing
- LHA, Lateral hypothalamic area
- LPO, Lateral preoptic area
- LT, Lateral terminalis
- LepRb, Long form of the leptin receptor
- MnPO, Median preoptic area
- ModRabies, Genetically modified rabies virus, EnvA-∆G-Rabies-mCherry
- NTS, Nucleus of solitary tract
- Nts, Neurotensin
- NtsR1, Neurotensin receptor-1
- NtsR2, Neurotensin receptor-2
- OVLT, Organum vasculosum lamina terminalis
- PAG, Periaqueductal gray
- PB, Parabrachial area
- PR, Progressive ratio
- PVH, Paraventricular nucleus of hypothalamus
- SFO, Subfornical organ
- SNc, Substantia nigra compacta
- SO, Supraoptic nucleus
- TVA, avian viral receptor protein
- VEH, Vehicle
- VTA, Ventral tegmental area
- WT, Wild type
- Water
- aCSF, Artificial cerebrospinal fluid
- body weight
- feeding
- homeostasis
- lHb, Lateral habenula
- lateral preoptic area (LPO)
- neurotensin receptor
- reward
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Nandan Kodur
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Chelsea Reynolds
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Tom Mayer
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Juliette Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Harim Delgado Seo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Quinn E Carroll
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - Derek Daniels
- Department of Psychology and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo, NY 14226, USA
| | - A J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
27
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
28
|
Yousefvand S, Hamidi F. Role of Lateral Hypothalamus Area in the Central Regulation of Feeding. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Ratner C, Shin JH, Dwibedi C, Tremaroli V, Bjerregaard A, Hartmann B, Bäckhed F, Leinninger G, Seeley RJ, Holst B. Anorexia and Fat Aversion Induced by Vertical Sleeve Gastrectomy Is Attenuated in Neurotensin Receptor 1-Deficient Mice. Endocrinology 2021; 162:6311588. [PMID: 34190328 PMCID: PMC8294690 DOI: 10.1210/endocr/bqab130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 12/25/2022]
Abstract
Neurotensin (NT) is an anorexic gut hormone and neuropeptide that increases in circulation following bariatric surgery in humans and rodents. We sought to determine the contribution of NT to the metabolic efficacy of vertical sleeve gastrectomy (VSG). To explore a potential mechanistic role of NT in VSG, we performed sham or VSG surgeries in diet-induced obese NT receptor 1 (NTSR1) wild-type and knockout (ko) mice and compared their weight and fat mass loss, glucose tolerance, food intake, and food preference after surgery. NTSR1 ko mice had reduced initial anorexia and body fat loss. Additionally, NTSR1 ko mice had an attenuated reduction in fat preference following VSG. Results from this study suggest that NTSR1 signaling contributes to the potent effect of VSG to initially reduce food intake following VSG surgeries and potentially also on the effects on macronutrient selection induced by VSG. However, maintenance of long-term weight loss after VSG requires signals in addition to NT.
Collapse
Affiliation(s)
- Cecilia Ratner
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence: Cecilia Ratner, University of Copenhagen: Kobenhavns Universitet, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. E-mail:
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chinmay Dwibedi
- Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Anette Bjerregaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Correspondence: Birgitte Holst, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
30
|
Cheng W, Ndoka E, Maung JN, Pan W, Rupp AC, Rhodes CJ, Olson DP, Myers MG. NTS Prlh overcomes orexigenic stimuli and ameliorates dietary and genetic forms of obesity. Nat Commun 2021; 12:5175. [PMID: 34462445 PMCID: PMC8405610 DOI: 10.1038/s41467-021-25525-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Calcitonin receptor (Calcr)-expressing neurons of the nucleus tractus solitarius (NTS; CalcrNTS cells) contribute to the long-term control of food intake and body weight. Here, we show that Prlh-expressing NTS (PrlhNTS) neurons represent a subset of CalcrNTS cells and that Prlh expression in these cells restrains body weight gain in the face of high fat diet challenge in mice. To understand the relationship of PrlhNTS cells to hypothalamic feeding circuits, we determined the ability of PrlhNTS-mediated signals to overcome enforced activation of AgRP neurons. We found that PrlhNTS neuron activation and Prlh overexpression in PrlhNTS cells abrogates AgRP neuron-driven hyperphagia and ameliorates the obesity of mice deficient in melanocortin signaling or leptin. Thus, enhancing Prlh-mediated neurotransmission from the NTS dampens hypothalamically-driven hyperphagia and obesity, demonstrating that NTS-mediated signals can override the effects of orexigenic hypothalamic signals on long-term energy balance. Calcitonin receptor-expressing neurons of the nucleus tractus solitarius contribute to long-term control of food intake and body weight. The authors show that a subset of these cells expresses Prlh and that enhancing Prlh-mediated neurotransmission from the NTS dampens hypothalamically-driven hyperphagia and obesity in mice.
Collapse
Affiliation(s)
- Wenwen Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Ermelinda Ndoka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jessica N Maung
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Warren Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alan C Rupp
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Division of Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Cingöz G, Özyurt G, Uzun H, Doruk ÖG, Küme T, Dündar BN, Çatlı G. High serum neurotensin level in obese adolescents is not associated with metabolic parameters, hyperphagia or food preference. J Pediatr Endocrinol Metab 2021; 34:971-978. [PMID: 34147046 DOI: 10.1515/jpem-2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Obesity is often the result of a high-calorie and unbalanced diet for a long time and can sometimes be associated with hyperphagia and eating disorders. Neurotensin (NT) is an anorexigenic peptide, which is secreted from the central nervous system and intestines, and increases intestinal fat absorption. In the literature, conflicting results regarding serum NT level in obesity and the relation of NT with metabolic parameters were reported. Besides, there is no data regarding the relation of NT with eating disorders or food preference in obese individuals. We aimed to evaluate the relation of serum NT level with metabolic parameters, hyperphagia, binge eating disorder (BED) and food preference in obese adolescents. METHODS The study included 65 obese adolescents and 65 healthy controls. Anthropometric measurements, biochemical analyzes and body fat analyzes were performed in all cases. Hyperphagia score, presence of BED and three-day food intake records were also evaluated. RESULTS NT level was significantly higher in obese adolescents than in controls and it was not associated with metabolic parameters, hyperphagia or food preference. In the obese group, NT level was not significantly different according to the presence of BED. CONCLUSIONS Serum NT level is high in obese adolescents; however, it is not associated with metabolic parameters, hyperphagia, BED or food preference.
Collapse
Affiliation(s)
- Gülten Cingöz
- Department of Pediatrics, Tepecik Training and Research Hospital, Sağlık Bilimleri Üniversitesi, İzmir, Turkey
| | - Gonca Özyurt
- Department of Pediatric and Adolescent Psychiatry, Faculty of Medicine, İzmir Kâtip Çelebi University, İzmir, Turkey
| | - Hamide Uzun
- Department of Nutrition and Dietetics, Tepecik Training and Research Hospital, Sağlık Bilimleri University, İzmir, Turkey
| | - Özlem Gürsoy Doruk
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Tuncay Küme
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Bumin Nuri Dündar
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Kâtip Çelebi University, İzmir, Turkey
| | - Gönül Çatlı
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Kâtip Çelebi University, İzmir, Turkey
| |
Collapse
|
32
|
Picard A, Metref S, Tarussio D, Dolci W, Berney X, Croizier S, Labouebe G, Thorens B. Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis. Diabetes 2021; 70:1443-1457. [PMID: 33883213 PMCID: PMC8336003 DOI: 10.2337/db20-1121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/03/2021] [Indexed: 11/18/2022]
Abstract
The counterregulatory response to hypoglycemia is an essential survival function. It is controlled by an integrated network of glucose-responsive neurons, which trigger endogenous glucose production to restore normoglycemia. The complexity of this glucoregulatory network is, however, only partly characterized. In a genetic screen of a panel of recombinant inbred mice we previously identified Fgf15, expressed in neurons of the dorsomedial hypothalamus (DMH), as a negative regulator of glucagon secretion. Here, we report on the generation of Fgf15CretdTomato mice and their use to further characterize these neurons. We show that they were glutamatergic and comprised glucose-inhibited and glucose-excited neurons. When activated by chemogenetics, Fgf15 neurons prevented the increase in vagal nerve firing and the secretion of glucagon normally triggered by insulin-induced hypoglycemia. On the other hand, they increased the activity of the sympathetic nerve in the basal state and prevented its silencing by glucose overload. Higher sympathetic tone increased hepatic Creb1 phosphorylation, Pck1 mRNA expression, and hepatic glucose production leading to glucose intolerance. Thus, Fgf15 neurons of the DMH participate in the counterregulatory response to hypoglycemia by a direct adrenergic stimulation of hepatic glucose production while suppressing vagally induced glucagon secretion. This study provides new insights into the complex neuronal network that prevents the development of hypoglycemia.
Collapse
Affiliation(s)
- Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Salima Metref
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Wanda Dolci
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouebe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr Res Rev 2021; 35:236-251. [PMID: 34184629 DOI: 10.1017/s0954422421000196] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic-pituitary-adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.
Collapse
|
34
|
Perez-Bonilla P, Santiago-Colon K, Matasovsky J, Ramirez-Virella J, Khan R, Garver H, Fink G, Dorrance AM, Leinninger GM. Activation of ventral tegmental area neurotensin Receptor-1 neurons promotes weight loss. Neuropharmacology 2021; 195:108639. [PMID: 34116109 DOI: 10.1016/j.neuropharm.2021.108639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 01/31/2023]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) modulate physical activity and feeding behaviors that are disrupted in obesity. Yet, the heterogeneity of VTA DA neurons has hindered determination of which ones might be leveraged to support weight loss. We hypothesized that increased activity in the subset of VTA DA neurons expressing neurotensin receptor-1 (NtsR1) might promote weight loss behaviors. To test this, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate VTA NtsR1 neurons in normal weight and diet-induced obese mice. Acute activation of VTA NtsR1 neurons (24hr) significantly decreased body weight in normal weight and obese mice by reducing food intake and increasing physical activity. Moreover, daily activation of VTA NtsR1 neurons in obese mice sustained weight loss over 7 days. Activating VTA NtsR1 neurons also suppressed how much mice worked to obtain sucrose rewards, even when there was high motivation to consume. However, VTA NtsR1 neural activation was not reinforcing, nor did it invoke liabilities associated with whole-body NtsR1 agonism such as anxiety, vasodepressor response or hypothermia. Activating VTA NtsR1 neurons therefore promotes dual behaviors that support weight loss without causing adverse effects, and is worth further exploration for managing obesity.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA; Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | | | - Jillian Matasovsky
- Department of Physiology and College of Natural Science, Michigan State University, East Lansing, MI, 48114, USA
| | - Jariel Ramirez-Virella
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA; Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | - Rabail Khan
- Neuroscience Graduate Program, Michigan State University, East Lansing, MI, 48114, USA
| | - Hannah Garver
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA
| | - Gregory Fink
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA; College of Osteopathic Medicine, East Lansing, MI, 48114, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, East Lansing, MI, 48114, USA; College of Osteopathic Medicine, East Lansing, MI, 48114, USA
| | - Gina M Leinninger
- Department of Physiology and College of Natural Science, Michigan State University, East Lansing, MI, 48114, USA.
| |
Collapse
|
35
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
36
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
37
|
Dominguez‐Lopez S, Sharma R, Beckstead MJ. Neurotensin receptor 1 deletion decreases methamphetamine self-administration and the associated reduction in dopamine cell firing. Addict Biol 2021; 26:e12854. [PMID: 31742874 DOI: 10.1111/adb.12854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
Abstract
We previously reported that a non-selective pharmacological blockade of neurotensin receptors in the ventral tegmental area (VTA) decreases methamphetamine (METH) self-administration in mice. Here, we explored the consequences of genetic deletion of neurotensin receptor 1 (NtsR1) on METH self-administration and VTA dopamine neuron firing activity. We implanted mice with an indwelling jugular catheter and trained them to nose-poke for intravenous infusions of METH. Mice with NtsR1 deletion (KO) acquired self-administration similar to wildtype (WT) and heterozygous (HET) littermates. However, in NtsR1 KO and HET mice, METH intake and motivated METH seeking decreased when the response requirement was increased to a fixed ratio 3 and when mice were tested on a progressive ratio protocol. After completion of METH self-administration, single cell in vivo extracellular recordings of dopamine firing activity in the VTA were obtained in anesthetized mice. Non-bursting dopamine neurons from KO mice fired at slower rates than those from WT mice, supporting an excitatory role for NtsR1 on VTA dopamine neuronal activity. In WT mice, a history of METH self-administration decreased dopamine cell firing frequency compared with cells from drug-naïve controls. NtsR1 KO and HET mice did not exhibit this decline in dopamine cell firing activity after METH experience. We also observed an increase in population activity following METH self-administration that was strongest in the WT group. Our results suggest a role for NtsR1 in METH-seeking behavior and indicate that ablation of NtsR1 prevents the detrimental effects of prolonged METH self-administration on VTA dopamine cell firing frequency.
Collapse
Affiliation(s)
- Sergio Dominguez‐Lopez
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation Oklahoma City OK USA
| | - Ramaswamy Sharma
- Department of Cell Systems & Anatomy, UT Health San Antonio San Antonio TX USA
| | - Michael J. Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation Oklahoma City OK USA
| |
Collapse
|
38
|
Perez-Bonilla P, Santiago-Colon K, Leinninger GM. Lateral hypothalamic area neuropeptides modulate ventral tegmental area dopamine neurons and feeding. Physiol Behav 2020; 223:112986. [PMID: 32492498 DOI: 10.1016/j.physbeh.2020.112986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023]
Abstract
Understanding how the brain coordinates energy status with the motivation to eat is crucial to identify strategies to improve disordered body weight. The ventral tegmental area (VTA), known as the core of the mesolimbic system, is of particular interest in this regard because it controls the motivation to consume palatable, calorie-dense foods and to engage in volitional activity. The VTA is largely composed of dopamine (DA) neurons, but modulating these DA neurons has been alternately linked with promoting and suppressing feeding, suggesting heterogeneity in their function. Subsets of VTA DA neurons have recently been described based on their anatomical distribution, electrophysiological features, connectivity and molecular expression, but to date there are no signatures to categorize how DA neurons control feeding. Assessing the neuropeptide receptors expressed by VTA DA neurons may be useful in this regard, as many neuropeptides mediate anorexic or orexigenic responses. In particular, the lateral hypothalamic area (LHA) releases a wide variety of feeding-modulating neuropeptides to the VTA. Since VTA neurons intercept LHA neuropeptides known to either evoke or suppress feeding, expression of the cognate neuropeptide receptors within the VTA may point to VTA DA neuronal mechanisms to promote or suppress feeding, respectively. Here we review the role of the VTA in energy balance and the LHA neuropeptide signaling systems that act in the VTA, whose receptors might be used to classify how VTA DA neurons contribute to energy balance.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, USA; Pharmacology and Toxicology Graduate Program, USA; Michigan State University, East Lansing, MI 48114, USA
| | - Krystal Santiago-Colon
- Department of Biology, University of Puerto Rico - Cayey, USA; Bridge to the PhD in Neuroscience Program, USA
| | - Gina M Leinninger
- Department of Physiology, USA; Michigan State University, East Lansing, MI 48114, USA.
| |
Collapse
|
39
|
Sutton Hickey AK, Gonzalez IE, Sadagurski M, Rajala M, Lu C, Allison MB, Adams JM, Myers MG, White MF, Olson DP. Paraventricular, subparaventricular and periventricular hypothalamic IRS4-expressing neurons are required for normal energy balance. Sci Rep 2020; 10:5546. [PMID: 32218485 PMCID: PMC7099088 DOI: 10.1038/s41598-020-62468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding the neural components modulating feeding-related behavior and energy expenditure is crucial to combating obesity and its comorbidities. Neurons within the paraventricular nucleus of the hypothalamus (PVH) are a key component of the satiety response; activation of the PVH decreases feeding and increases energy expenditure, thereby promoting negative energy balance. In contrast, PVH ablation or silencing in both rodents and humans leads to substantial obesity. Recent studies have identified genetically-defined PVH subpopulations that control discrete aspects of energy balance (e.g. oxytocin (OXT), neuronal nitric oxide synthase 1 (NOS1), melanocortin 4-receptor (MC4R), prodynorphin (PDYN)). We previously demonstrated that non-OXT NOS1PVH neurons contribute to PVH-mediated feeding suppression. Here, we identify and characterize a non-OXT, non-NOS1 subpopulation of PVH and peri-PVH neurons expressing insulin-receptor substrate 4 (IRS4PVH) involved in energy balance control. Using Cre-dependent viral tools to activate, trace and silence these neurons, we highlight the sufficiency and necessity of IRS4PVH neurons in normal feeding and energy expenditure regulation. Furthermore, we demonstrate that IRS4PVH neurons lie within a complex hypothalamic circuitry that engages distinct hindbrain regions and is innervated by discrete upstream hypothalamic sites. Overall, we reveal a requisite role for IRS4PVH neurons in PVH-mediated energy balance which raises the possibility of developing novel approaches targeting IRS4PVH neurons for anti-obesity therapies.
Collapse
Affiliation(s)
- Ames K Sutton Hickey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Ian E Gonzalez
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Michael Rajala
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chunxia Lu
- Division of Pediatric Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Margaret B Allison
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica M Adams
- Division of Pediatric Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Morris F White
- Department of Endocrinology, Children's Hospital Boston, Boston, MA, USA
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Pediatric Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Hou Y, Liu Y, Liu C, Yan Z, Ma Q, Chen J, Zhang M, Yan Q, Li X, Chen J. Xiaoyaosan regulates depression‐related behaviors with physical symptoms by modulating Orexin A/OxR1 in the hypothalamus. Anat Rec (Hoboken) 2020; 303:2144-2153. [DOI: 10.1002/ar.24386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yajing Hou
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Yueyun Liu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Chenyue Liu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Zhiyi Yan
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Qingyu Ma
- Formula‐pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong China
| | - Jianbei Chen
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Man Zhang
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Qiuying Yan
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Xiaojuan Li
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Formula‐pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Formula‐pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong China
| |
Collapse
|
41
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
42
|
Cheng W, Gonzalez I, Pan W, Tsang AH, Adams J, Ndoka E, Gordian D, Khoury B, Roelofs K, Evers SS, MacKinnon A, Wu S, Frikke-Schmidt H, Flak JN, Trevaskis JL, Rhodes CJ, Fukada SI, Seeley RJ, Sandoval DA, Olson DP, Blouet C, Myers MG. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metab 2020; 31:301-312.e5. [PMID: 31955990 PMCID: PMC7104375 DOI: 10.1016/j.cmet.2019.12.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/29/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023]
Abstract
To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.
Collapse
Affiliation(s)
- Wenwen Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ian Gonzalez
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Warren Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anthony H Tsang
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jessica Adams
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ermelinda Ndoka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Desiree Gordian
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Basma Khoury
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Karen Roelofs
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Simon S Evers
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew MacKinnon
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shuangcheng Wu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | | | - Jonathan N Flak
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - James L Trevaskis
- Cardiovascular, Renal and Metabolic Diseases, AstraZenica LLC, Gaithersburg, MD 20878, USA
| | - Christopher J Rhodes
- Cardiovascular, Renal and Metabolic Diseases, AstraZenica LLC, Gaithersburg, MD 20878, USA
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Osaka University, Osaka 565-0871, Japan
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Darleen A Sandoval
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA; Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
43
|
Oginsky MF, Ferrario CR. Eating "junk food" has opposite effects on intrinsic excitability of nucleus accumbens core neurons in obesity-susceptible versus -resistant rats. J Neurophysiol 2019; 122:1264-1273. [PMID: 31365322 DOI: 10.1152/jn.00361.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleus accumbens (NAc) plays critical roles in motivated behaviors, including food seeking and feeding. Differences in NAc function contribute to overeating that drives obesity, but the underlying mechanisms are poorly understood. In addition, there is a fair degree of variation in individual susceptibility versus resistance to obesity that is due in part to differences in NAc function. For example, using selectively bred obesity-prone and obesity-resistant rats, we have found that excitability of medium spiny neurons (MSNs) within the NAc core is enhanced in obesity-prone versus -resistant populations, before any diet manipulation. However, it is unknown whether consumption of sugary, fatty "junk food" alters MSN excitability. Here whole cell patch-clamp recordings were conducted to examine MSN intrinsic excitability in adult male obesity-prone and obesity-resistant rats with and without exposure to a sugary, fatty junk food diet. We replicated our initial finding that basal excitability is enhanced in obesity-prone versus obesity-resistant rats and determined that this is due to a lower fast transient potassium current (IA) in prone versus resistant groups. In addition, the junk food diet had opposite effects on excitability in obesity-prone versus obesity-resistant rats. Specifically, junk food enhanced excitability in MSNs of obesity-resistant rats; this was mediated by a reduction in IA. In contrast, junk food reduced excitability in MSNs from obesity-prone rats; this was mediated by an increase in inward-rectifying potassium current. Thus individual differences in obesity susceptibility influence both basal excitability and how MSN excitability adapts to junk food consumption.NEW & NOTEWORTHY Medium spiny neurons (MSNs) in the nucleus accumbens of obesity-prone rats are hyperexcitable compared with MSNs from obesity-resistant rats. We found that 10 days of "junk food" exposure reduces MSN excitability in obesity-prone rats by increasing inward-rectifying potassium current and increases MSN excitability in obesity-resistant rats by decreasing fast transient potassium current. These data show that there are basal and junk food diet-induced differences in MSN excitability in obesity-prone and obesity-resistant individuals; this may contribute to previously observed differences in incentive motivation.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
44
|
Schiffino FL, Siemian JN, Petrella M, Laing BT, Sarsfield S, Borja CB, Gajendiran A, Zuccoli ML, Aponte Y. Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation. PLoS One 2019; 14:e0219522. [PMID: 31291348 PMCID: PMC6619795 DOI: 10.1371/journal.pone.0219522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Across species, motivated states such as food-seeking and consumption are essential for survival. The lateral hypothalamus (LH) is known to play a fundamental role in regulating feeding and reward-related behaviors. However, the contributions of neuronal subpopulations in the LH have not been thoroughly identified. Here we examine how lateral hypothalamic leptin receptor-expressing (LHLEPR) neurons, a subset of GABAergic cells, regulate motivation in mice. We find that LHLEPR neuronal activation significantly increases progressive ratio (PR) performance, while inhibition decreases responding. Moreover, we mapped LHLEPR axonal projections and demonstrated that they target the ventral tegmental area (VTA), form functional inhibitory synapses with non-dopaminergic VTA neurons, and their activation promotes motivation for food. Finally, we find that LHLEPR neurons also regulate motivation to obtain water, suggesting that they may play a generalized role in motivation. Together, these results identify LHLEPR neurons as modulators within a hypothalamic-ventral tegmental circuit that gates motivation.
Collapse
Affiliation(s)
- Felipe L. Schiffino
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Justin N. Siemian
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Michele Petrella
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino (MC), Italy
| | - Brenton T. Laing
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah Sarsfield
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Cara B. Borja
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Anjali Gajendiran
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Maria Laura Zuccoli
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yeka Aponte
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hardaway JA, Halladay LR, Mazzone CM, Pati D, Bloodgood DW, Kim M, Jensen J, DiBerto JF, Boyt KM, Shiddapur A, Erfani A, Hon OJ, Neira S, Stanhope CM, Sugam JA, Saddoris MP, Tipton G, McElligott Z, Jhou TC, Stuber GD, Bruchas MR, Bulik CM, Holmes A, Kash TL. Central Amygdala Prepronociceptin-Expressing Neurons Mediate Palatable Food Consumption and Reward. Neuron 2019; 102:1037-1052.e7. [PMID: 31029403 DOI: 10.1016/j.neuron.2019.03.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/27/2018] [Accepted: 03/27/2019] [Indexed: 01/04/2023]
Abstract
Food palatability is one of many factors that drives food consumption, and the hedonic drive to feed is a key contributor to obesity and binge eating. In this study, we identified a population of prepronociceptin-expressing cells in the central amygdala (PnocCeA) that are activated by palatable food consumption. Ablation or chemogenetic inhibition of these cells reduces palatable food consumption. Additionally, ablation of PnocCeA cells reduces high-fat-diet-driven increases in bodyweight and adiposity. PnocCeA neurons project to the ventral bed nucleus of the stria terminalis (vBNST), parabrachial nucleus (PBN), and nucleus of the solitary tract (NTS), and activation of cell bodies in the central amygdala (CeA) or axons in the vBNST, PBN, and NTS produces reward behavior but did not promote feeding of palatable food. These data suggest that the PnocCeA network is necessary for promoting the reinforcing and rewarding properties of palatable food, but activation of this network itself is not sufficient to promote feeding.
Collapse
Affiliation(s)
- J Andrew Hardaway
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Lindsay R Halladay
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA; Department of Psychology, Santa Clara University, Santa Clara, CA 95053, USA
| | - Christopher M Mazzone
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel W Bloodgood
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle Kim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jennifer Jensen
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jeffrey F DiBerto
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ami Shiddapur
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ava Erfani
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Olivia J Hon
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sofia Neira
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina M Stanhope
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jonathan A Sugam
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Michael P Saddoris
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - Greg Tipton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Zoe McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Michael R Bruchas
- Division of Basic Research, Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
Distinct Subsets of Lateral Hypothalamic Neurotensin Neurons are Activated by Leptin or Dehydration. Sci Rep 2019; 9:1873. [PMID: 30755658 PMCID: PMC6372669 DOI: 10.1038/s41598-018-38143-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
The lateral hypothalamic area (LHA) is essential for ingestive behavior but it remains unclear how LHA neurons coordinate feeding vs. drinking. Most LHA populations promote food and water consumption but LHA neurotensin (Nts) neurons preferentially induce water intake while suppressing feeding. We identified two molecularly and projection-specified subpopulations of LHA Nts neurons that are positioned to coordinate either feeding or drinking. One subpopulation co-expresses the long form of the leptin receptor (LepRb) and is activated by the anorectic hormone leptin (NtsLepRb neurons). A separate subpopulation lacks LepRb and is activated by dehydration (NtsDehy neurons). These molecularly distinct LHA Nts subpopulations also differ in connectivity: NtsLepRb neurons project to the ventral tegmental area and substantia nigra compacta but NtsDehy neurons do not. Intriguingly, the LHA Nts subpopulations cannot be discriminated via their classical neurotransmitter content, as we found that all LHA Nts neurons are GABAergic. Collectively, our data identify two molecularly- and projection-specified subpopulations of LHA Nts neurons that intercept either leptin or dehydration cues, and which conceivably could regulate feeding vs. drinking behavior. Selective regulation of these LHA Nts subpopulations might be useful to specialize treatment for ingestive disorders such as polydipsia or obesity.
Collapse
|
47
|
Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG, Olson DP. Lateral Hypothalamic Mc3R-Expressing Neurons Modulate Locomotor Activity, Energy Expenditure, and Adiposity in Male Mice. Endocrinology 2019; 160:343-358. [PMID: 30541071 PMCID: PMC6937456 DOI: 10.1210/en.2018-00747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.
Collapse
Affiliation(s)
- Hongjuan Pei
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | | | - Amy K Sutton
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Korri H Burnett
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence: David P. Olson, MD, PhD, University of Michigan, 1000 Wall Street, Brehm Tower 6329, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
48
|
Butler MJ, Eckel LA. Eating as a motivated behavior: modulatory effect of high fat diets on energy homeostasis, reward processing and neuroinflammation. Integr Zool 2019; 13:673-686. [PMID: 29851251 DOI: 10.1111/1749-4877.12340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eating is a basic motivated behavior that provides fuel for the body and supports brain function. To ensure survival, the brain's feeding circuits are tuned to monitor peripheral energy balance and promote food-seeking behavior when energy stores are low. The brain's bias toward a positive energy state, which is necessary to ensure adequate nutrition during times of food scarcity, is evolutionarily conserved across mammalian species and is likely to drive overeating in the presence of a palatable, energy-dense diet. Animal models of diet-induced overeating have played a vital role in investigating how the drive to consume palatable food may override the homeostatic processes that serve to maintain energy balance. These animal models have provided valuable insights into the neurobiological mechanisms underlying homeostatic and non-homeostatic eating, motivation and food reward, and the development of obesity and related comorbidities. Here, we provide a brief review of this literature and discuss how diet-induced inflammation in the central nervous system impacts the neural control of food intake and regulation of body weight. The connection between diet and the immune system provides an exciting new direction for the study of ingestive behavior and the pathophysiology of obesity.
Collapse
Affiliation(s)
- Michael J Butler
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Lisa A Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
49
|
Saiyasit N, Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Potential roles of neurotensin on cognition in conditions of obese-insulin resistance. Neuropeptides 2018; 72:12-22. [PMID: 30279001 DOI: 10.1016/j.npep.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/29/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
Abstract
Neurotensin is an endogenous tridecapeptide that can be found in both central and peripheral nervous systems. Under normal physiological conditions, neurotensin is involved in the regulation of pain, body temperature, physical activity, appetite as well as learning and memory. In addition, it plays an important role in fat metabolism. Previous studies have demonstrated that alterations of neurotensin levels were associated with several neuropathological conditions such as Alzheimer's disease, mood disorders, and obesity associated eating disorders. Obesity has been shown to be associated with low-grade systemic inflammation, brain inflammation, and cognitive decline. Several pieces of evidence suggest that neurotensin might play a role in cognitive decline following obesity. However, the underlying mechanisms of neurotensin on cognition under obese-insulin resistant condition are still unclear. In this review, the current available evidence from in vitro, in vivo and clinical studies regarding the role of neurotensin in the physiological condition and obesity in association with cognition are comprehensively summarized and discussed. The studies which report controversial findings regarding these issues are also presented and discussed.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
50
|
Kurt G, Woodworth HL, Fowler S, Bugescu R, Leinninger GM. Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology 2018; 154:13-21. [PMID: 30266601 DOI: 10.1016/j.neuropharm.2018.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Animals must ingest water via drinking to maintain fluid homeostasis, yet the neurons that specifically promote drinking behavior are incompletely characterized. The lateral hypothalamic area (LHA) as a whole is essential for drinking behavior but most LHA neurons indiscriminately promote drinking and feeding. By contrast, activating neurotensin (Nts)-expressing LHA neurons (termed LHA Nts neurons) causes mice to immediately drink water with a delayed suppression of feeding. We therefore hypothesized that LHA Nts neurons are sufficient to induce drinking behavior and that these neurons specifically bias for fluid intake over food intake. To test this hypothesis we used designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate LHA Nts neurons and studied the impact on fluid intake, fluid preference and feeding. Activation of LHA Nts neurons stimulated drinking in water-replete and dehydrated mice, indicating that these neurons are sufficient to promote water intake regardless of homeostatic need. Interestingly, mice with activated LHA Nts neurons drank any fluid that was provided regardless of its palatability, but if given a choice they preferred water or palatable solutions over unpalatable (quinine) or dehydrating (hypertonic saline) solutions. Notably, acute activation of LHA Nts neurons robustly promoted fluid but not food intake. Overall, our study confirms that activation of LHA Nts neurons is sufficient to induce drinking behavior and biases for fluid intake. Hence, LHA Nts neurons may be important targets for orchestrating the appropriate ingestive behavior necessary to maintain fluid homeostasis. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Sabrina Fowler
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, 48114, USA.
| |
Collapse
|