1
|
Gunasekara H, Cheng YS, Perez-Silos V, Zevallos-Morales A, Abegg D, Burgess A, Gong LW, Minshall RD, Adibekian A, Murga-Zamalloa C, Ondrus AE, Hu YS. Unveiling cellular communications through rapid pan-membrane-protein labeling. Nat Commun 2025; 16:3584. [PMID: 40234465 PMCID: PMC12000395 DOI: 10.1038/s41467-025-58779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Dynamic protein distribution within and across the plasma membrane is pivotal in regulating cell communication. However, rapid, high-density labeling methods for multiplexed live imaging across diverse cell types remain scarce. Here, we demonstrate N-hydroxysuccinimide (NHS)-ester-based amine crosslinking of fluorescent dyes to uniformly label live mammalian cell surface proteins. Using model cell systems, we capture previously elusive membrane topology and cell-cell interactions. Live imaging shows transient membrane protein accumulation at cell-cell contacts and bidirectional migration patterns guided by membrane fibers in DC2.4 dendritic cells. Multiplexed superresolution imaging reveals the biogenesis of membrane tunneling nanotubes that facilitate intercellular transfer in DC2.4 cells, and caveolin 1-dependent endocytosis of insulin receptors in HEK293T cells. 3D superresolution imaging reveals membrane topology remodeling in response to stimulation, generation of microvesicles, and phagocytic activities in Jurkat T cells. Furthermore, NHS-labeling remains stable in vivo, enabling visualization of intercellular transfer among splenocytes using a T cell lymphoma mouse model.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Yu-Shiuan Cheng
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Vanessa Perez-Silos
- Department of Pathology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | | | - Daniel Abegg
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Alyssa Burgess
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Liang-Wei Gong
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Richard D Minshall
- Departments of Anesthesiology & Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
| | - Alexander Adibekian
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Carlos Murga-Zamalloa
- Department of Pathology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
| | - Alison E Ondrus
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA.
- University of Illinois Cancer Center, Chicago, IL, 60612, USA.
- Department of Biomedical Engineering, Colleges of Engineering and Medicine, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
2
|
Yoo YM, Joo SS. Serotonin Influences Insulin Secretion in Rat Insulinoma INS-1E Cells. Int J Mol Sci 2024; 25:6828. [PMID: 38999937 PMCID: PMC11241493 DOI: 10.3390/ijms25136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine that plays a critical role in insulin secretion, energy metabolism, and mitochondrial biogenesis. However, the action of serotonin in insulin production and secretion by pancreatic β cells has not yet been elucidated. Here, we investigated how exogenous nanomolar serotonin concentrations regulate insulin synthesis and secretion in rat insulinoma INS-1E cells. Nanomolar serotonin concentrations (10 and 50 nM) significantly increased insulin protein expression above the constant levels in untreated control cells and decreased insulin protein levels in the media. The reductions in insulin protein levels in the media may be associated with ubiquitin-mediated protein degradation. The levels of membrane vesicle trafficking-related proteins including Rab5, Rab3A, syntaxin6, clathrin, and EEA1 proteins were significantly decreased by serotonin treatment compared to the untreated control cells, whereas the expressions of Rab27A, GOPC, and p-caveolin-1 proteins were significantly reduced by serotonin treatment. In this condition, serotonin receptors, Gαq-coupled 5-HT2b receptor (Htr2b), and ligand-gated ion channel receptor Htr3a were significantly decreased by serotonin treatment. To confirm the serotonylation of Rab3A and Rab27A during insulin secretion, we investigated the protein levels of Rab3A and Rab27A, in which transglutaminase 2 (TGase2) serotonylated Rab3A but not Rab27A. The increases in ERK phosphorylation levels were consistent with increases in the expression of p-Akt. Also, the expression level of the Bcl-2 protein was significantly increased by 50 and 100 nM serotonin treatment compared to the untreated control cells, whereas the levels of Cu/Zn-SOD and Mn-SOD proteins decreased. These results indicate that nanomolar serotonin treatment regulates the insulin protein level but decreases this level in media through membrane vesicle trafficking-related proteins (Rab5, Rab3A, syntaxin6, clathrin, and EEA1), the Akt/ERK pathway, and Htr2b/Htr3a in INS-1E cells.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- East Coast Life Sciences Institute, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Department of Marine Bioscience, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Seong Soo Joo
- Department of Marine Bioscience, College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| |
Collapse
|
3
|
Lin MC, Kuo WH, Chen SY, Hsu JY, Lu LY, Wang CC, Chen YJ, Tsai JS, Li HJ. Ago2/CAV1 interaction potentiates metastasis via controlling Ago2 localization and miRNA action. EMBO Rep 2024; 25:2441-2478. [PMID: 38649663 PMCID: PMC11094075 DOI: 10.1038/s44319-024-00132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Ago2 differentially regulates oncogenic and tumor-suppressive miRNAs in cancer cells. This discrepancy suggests a secondary event regulating Ago2/miRNA action in a context-dependent manner. We show here that a positive charge of Ago2 K212, that is preserved by SIR2-mediated Ago2 deacetylation in cancer cells, is responsible for the direct interaction between Ago2 and Caveolin-1 (CAV1). Through this interaction, CAV1 sequesters Ago2 on the plasma membranes and regulates miRNA-mediated translational repression in a compartment-dependent manner. Ago2/CAV1 interaction plays a role in miRNA-mediated mRNA suppression and in miRNA release via extracellular vesicles (EVs) from tumors into the circulation, which can be used as a biomarker of tumor progression. Increased Ago2/CAV1 interaction with tumor progression promotes aggressive cancer behaviors, including metastasis. Ago2/CAV1 interaction acts as a secondary event in miRNA-mediated suppression and increases the complexity of miRNA actions in cancer.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Shih-Yin Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jing-Ya Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Li-Yu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chen-Chi Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Yi-Ju Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Jia-Shiuan Tsai
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Hua-Jung Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
4
|
Spratt J, Dias JM, Kolonelou C, Kiriako G, Engström E, Petrova E, Karampelias C, Cervenka I, Papanicolaou N, Lentini A, Reinius B, Andersson O, Ambrosetti E, Ruas JL, Teixeira AI. Multivalent insulin receptor activation using insulin-DNA origami nanostructures. NATURE NANOTECHNOLOGY 2024; 19:237-245. [PMID: 37813939 PMCID: PMC10873203 DOI: 10.1038/s41565-023-01507-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/15/2023] [Indexed: 10/11/2023]
Abstract
Insulin binds the insulin receptor (IR) and regulates anabolic processes in target tissues. Impaired IR signalling is associated with multiple diseases, including diabetes, cancer and neurodegenerative disorders. IRs have been reported to form nanoclusters at the cell membrane in several cell types, even in the absence of insulin binding. Here we exploit the nanoscale spatial organization of the IR to achieve controlled multivalent receptor activation. To control insulin nanoscale spatial organization and valency, we developed rod-like insulin-DNA origami nanostructures carrying different numbers of insulin molecules with defined spacings. Increasing the insulin valency per nanostructure markedly extended the residence time of insulin-DNA origami nanostructures at the receptors. Both insulin valency and spacing affected the levels of IR activation in adipocytes. Moreover, the multivalent insulin design associated with the highest levels of IR activation also induced insulin-mediated transcriptional responses more effectively than the corresponding monovalent insulin nanostructures. In an in vivo zebrafish model of diabetes, treatment with multivalent-but not monovalent-insulin nanostructures elicited a reduction in glucose levels. Our results show that the control of insulin multivalency and spatial organization with nanoscale precision modulates the IR responses, independent of the insulin concentration. Therefore, we propose insulin nanoscale organization as a design parameter in developing new insulin therapies.
Collapse
Affiliation(s)
- Joel Spratt
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - José M Dias
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Kolonelou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georges Kiriako
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Enya Engström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Petrova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Natali Papanicolaou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
The insulin receptor endocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:79-107. [PMID: 36631202 DOI: 10.1016/bs.pmbts.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin signaling controls multiple aspects of animal physiology. At the cell surface, insulin binds and activates the insulin receptor (IR), a receptor tyrosine kinase. Insulin promotes a large conformational change of IR and stabilizes the active conformation. The insulin-activated IR triggers signaling cascades, thus controlling metabolism, growth, and proliferation. The activated IR undergoes internalization by clathrin- or caveolae-mediated endocytosis. The IR endocytosis plays important roles in insulin clearance from blood, and distribution and termination of the insulin signaling. Despite decades of extensive studies, the mechanism and regulation of IR endocytosis and its contribution to pathophysiology remain incompletely understood. Here we discuss recent findings that provide insights into the molecular mechanisms and regulatory pathways that mediate the IR endocytosis.
Collapse
|
6
|
Dall'Agnese A, Platt JM, Zheng MM, Friesen M, Dall'Agnese G, Blaise AM, Spinelli JB, Henninger JE, Tevonian EN, Hannett NM, Lazaris C, Drescher HK, Bartsch LM, Kilgore HR, Jaenisch R, Griffith LG, Cisse II, Jeppesen JF, Lee TI, Young RA. The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance. Nat Commun 2022; 13:7522. [PMID: 36473871 PMCID: PMC9727033 DOI: 10.1038/s41467-022-35176-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (IR) signaling is central to normal metabolic control and is dysregulated in metabolic diseases such as type 2 diabetes. We report here that IR is incorporated into dynamic clusters at the plasma membrane, in the cytoplasm and in the nucleus of human hepatocytes and adipocytes. Insulin stimulation promotes further incorporation of IR into these dynamic clusters in insulin-sensitive cells but not in insulin-resistant cells, where both IR accumulation and dynamic behavior are reduced. Treatment of insulin-resistant cells with metformin, a first-line drug used to treat type 2 diabetes, can rescue IR accumulation and the dynamic behavior of these clusters. This rescue is associated with metformin's role in reducing reactive oxygen species that interfere with normal dynamics. These results indicate that changes in the physico-mechanical features of IR clusters contribute to insulin resistance and have implications for improved therapeutic approaches.
Collapse
Affiliation(s)
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ming M Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Giuseppe Dall'Agnese
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Alyssa M Blaise
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | | | - Erin N Tevonian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hannah K Drescher
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Henry R Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jacob F Jeppesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Global Drug Discovery, Novo Nordisk, Copenhagen, Denmark
| | - Tong I Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Liu M, Chen MY, An L, Ma SQ, Mei J, Huang WH, Zhang W. Effects of apolipoprotein E on regulating insulin sensitivity via regulating insulin receptor signalosome in caveolae. Life Sci 2022; 308:120929. [PMID: 36063979 DOI: 10.1016/j.lfs.2022.120929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
AIMS Although impaired insulin signaling at a post-receptor level was a well-established key driver of insulin resistance, the role of surface abnormal insulin receptor (INSR) location in insulin resistance pathogenesis tended to be ignored and its molecular mechanisms remained obscure. Herein, this study aimed to investigate hepatic apolipoprotein E (APOE) impaired cellular insulin action via reducing cell surface INSR, especially in caveolae. KEY FINDINGS Downregulation of APOE enhanced the caveolae translocation of INSR and glucose transporter 2 (GLUT2), and improved hepatic cells' sensitivity to insulin. Consistently, mice with selective suppression of liver tissue APOE showed lower fasting insulin and fasting glucose levels, better homeostatic model assessment (HOMA) index (HOMA-IS, HOMA-IR, HOMA-β) and quantitative insulin sensitivity check index (QUICKI). Furthermore, the co-localization of INSR and CAV1 in the liver of these mice were more substantial than controls. SIGNIFICANCE APOE might adversely set the basal gain of INSR signaling implied that APOE could be a new endogenous INSR regulator.
Collapse
Affiliation(s)
- Miao Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Liang An
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Si-Qing Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Hunan 410008, PR China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
8
|
Poly(ADP-ribose) Polymerase 1 Mediates Rab5 Inactivation after DNA Damage. Int J Mol Sci 2022; 23:ijms23147827. [PMID: 35887176 PMCID: PMC9319841 DOI: 10.3390/ijms23147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Parthanatos is programmed cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1) after DNA damage. PARP1 acts by catalyzing the transfer of poly(ADP-ribose) (PAR) polymers to various nuclear proteins. PAR is subsequently cleaved, generating protein-free PAR polymers, which are translocated to the cytoplasm where they associate with cytoplasmic and mitochondrial proteins, altering their functions and leading to cell death. Proteomic studies revealed that several proteins involved in endocytosis bind PAR after PARP1 activation, suggesting endocytosis may be affected by the parthanatos process. Endocytosis is a mechanism for cellular uptake of membrane-impermeant nutrients. Rab5, a small G-protein, is associated with the plasma membrane and early endosomes. Once activated by binding GTP, Rab5 recruits its effectors to early endosomes and regulates their fusion. Here, we report that after DNA damage, PARP1-generated PAR binds to Rab5, suppressing its activity. As a result, Rab5 is dissociated from endosomal vesicles, inhibiting the uptake of membrane-impermeant nutrients. This PARP1-dependent inhibition of nutrient uptake leads to cell starvation and death. It thus appears that this mechanism may represent a novel parthanatos pathway.
Collapse
|
9
|
Roy C, Molin L, Alcolei A, Solyga M, Bonneau B, Vachon C, Bessereau JL, Solari F. DAF-2/insulin IGF-1 receptor regulates motility during aging by integrating opposite signaling from muscle and neuronal tissues. Aging Cell 2022; 21:e13660. [PMID: 35808897 PMCID: PMC9381905 DOI: 10.1111/acel.13660] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 12/11/2022] Open
Abstract
During aging, preservation of locomotion is generally considered an indicator of sustained good health, in elderlies and in animal models. In Caenorhabditis elegans, mutants of the insulin‐IGF‐1 receptor DAF2/IIRc represent a paradigm of healthy aging, as their increased lifespan is accompanied by a delay in age‐related loss of motility. Here, we investigated the DAF‐2/IIRc‐dependent relationship between longevity and motility using an auxin‐inducible degron to trigger tissue‐specific degradation of endogenous DAF‐2/IIRc. As previously reported, inactivation of DAF‐2/IIRc in neurons or intestine was sufficient to extend the lifespan of worms, whereas depletion in epidermis, germline, or muscle was not. However, neither intestinal nor neuronal depletion of DAF‐2/IIRc prevented the age‐related loss of motility. In 1‐day‐old adults, DAF‐2/IIRc depletion in neurons reduced motility in a DAF‐16/FOXO dependent manner, while muscle depletion had no effect. By contrast, DAF‐2 depletion in the muscle of middle‐age animals improved their motility independently of DAF‐16/FOXO but required UNC‐120/SRF. Yet, neuronal or muscle DAF‐2/IIRc depletion both preserved the mitochondria network in aging muscle. Overall, these results show that the motility pattern of daf‐2 mutants is determined by the sequential and opposing impact of neurons and muscle tissues and can be dissociated from the regulation of the lifespan. This work also provides the characterization of a versatile tool to analyze the tissue‐specific contribution of insulin‐like signaling in integrated phenotypes at the whole organism level.
Collapse
Affiliation(s)
- Charline Roy
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Laurent Molin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Allan Alcolei
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Mathilde Solyga
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Benjamin Bonneau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Camille Vachon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Florence Solari
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| |
Collapse
|
10
|
Skovsø S, Panzhinskiy E, Kolic J, Cen HH, Dionne DA, Dai XQ, Sharma RB, Elghazi L, Ellis CE, Faulkner K, Marcil SAM, Overby P, Noursadeghi N, Hutchinson D, Hu X, Li H, Modi H, Wildi JS, Botezelli JD, Noh HL, Suk S, Gablaski B, Bautista A, Kim R, Cras-Méneur C, Flibotte S, Sinha S, Luciani DS, Nislow C, Rideout EJ, Cytrynbaum EN, Kim JK, Bernal-Mizrachi E, Alonso LC, MacDonald PE, Johnson JD. Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nat Commun 2022; 13:735. [PMID: 35136059 PMCID: PMC8826929 DOI: 10.1038/s41467-022-28039-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/05/2022] [Indexed: 01/23/2023] Open
Abstract
Insulin receptor (Insr) protein is present at higher levels in pancreatic β-cells than in most other tissues, but the consequences of β-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in β-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined β-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout β-cells from female, but not male mice, whereas only male βInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female βInsrKO and βInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter β-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include β-cell insulin resistance, which predicts that β-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female βInsrKO and βInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of β-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that β-cell insulin resistance in the form of reduced β-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.
Collapse
Affiliation(s)
- Søs Skovsø
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Evgeniy Panzhinskiy
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jelena Kolic
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Derek A Dionne
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiao-Qing Dai
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Rohit B Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Lynda Elghazi
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Cara E Ellis
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katharine Faulkner
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie A M Marcil
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter Overby
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nilou Noursadeghi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daria Hutchinson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoke Hu
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hong Li
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Honey Modi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer S Wildi
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J Diego Botezelli
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hye Lim Noh
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
| | - Brian Gablaski
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Austin Bautista
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Ryekjang Kim
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Corentin Cras-Méneur
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Stephane Flibotte
- UBC Life Sciences Institute Bioinformatics Facility, University of British Columbia, Vancouver, BC, Canada
| | - Sunita Sinha
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dan S Luciani
- BC Children's Hospital Research Institute, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- UBC Sequencing and Bioinformatics Consortium, Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth J Rideout
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eric N Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Jason K Kim
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, MA, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine and Miami VA Health Care System, Miami, FL, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Arefanian H, Ramji Q, Gupta N, Spigelman AF, Grynoch D, MacDonald PE, Mueller TF, Gazda LS, Rajotte RV, Rayat GR. Yield, cell composition, and function of islets isolated from different ages of neonatal pigs. Front Endocrinol (Lausanne) 2022; 13:1032906. [PMID: 36619563 PMCID: PMC9811407 DOI: 10.3389/fendo.2022.1032906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
The yield, cell composition, and function of islets isolated from various ages of neonatal pigs were characterized using in vitro and in vivo experimental models. Islets from 7- and 10-day-old pigs showed significantly better function both in vitro and in vivo compared to islets from 3- and 5-day-old pigs however, the islet yield from 10-day-old pigs were significantly less than those obtained from the other pigs. Since islets from 3-day-old pigs were used in our previous studies and islets from 7-day-old pigs reversed diabetes more efficiently than islets from other groups, we further evaluated the function of these islets post-transplantation. B6 rag-/- mouse recipients of various numbers of islets from 7-day-old pigs achieved normoglycemia faster and showed significantly improved response to glucose challenge compared to the recipients of the same numbers of islets from 3-day-old pigs. These results are in line with the findings that islets from 7-day-old pigs showed reduced voltage-dependent K+ (Kv) channel activity and their ability to recover from post-hypoxia/reoxygenation stress. Despite more resident immune cells and immunogenic characteristics detected in islets from 7-day-old pigs compared to islets from 3-day-old pigs, the combination of anti-LFA-1 and anti-CD154 monoclonal antibodies are equally effective at preventing the rejection of islets from both age groups of pigs. Collectively, these results suggest that islets from various ages of neonatal pigs vary in yield, cellular composition, and function. Such parameters may be considered when defining the optimal pancreas donor for islet xenotransplantation studies.
Collapse
Affiliation(s)
- Hossein Arefanian
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Qahir Ramji
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nancy Gupta
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Donald Grynoch
- Alberta Precision Labs, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas F. Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ray V. Rajotte
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| | - Gina R. Rayat
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| |
Collapse
|
12
|
Revising Endosomal Trafficking under Insulin Receptor Activation. Int J Mol Sci 2021; 22:ijms22136978. [PMID: 34209489 PMCID: PMC8268289 DOI: 10.3390/ijms22136978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions.
Collapse
|
13
|
Abstract
Caveolin-1 (CAV1) has long been implicated in cancer progression, and while widely accepted as an oncogenic protein, CAV1 also has tumor suppressor activity. CAV1 was first identified in an early study as the primary substrate of Src kinase, a potent oncoprotein, where its phosphorylation correlated with cellular transformation. Indeed, CAV1 phosphorylation on tyrosine-14 (Y14; pCAV1) has been associated with several cancer-associated processes such as focal adhesion dynamics, tumor cell migration and invasion, growth suppression, cancer cell metabolism, and mechanical and oxidative stress. Despite this, a clear understanding of the role of Y14-phosphorylated pCAV1 in cancer progression has not been thoroughly established. Here, we provide an overview of the role of Src-dependent phosphorylation of tumor cell CAV1 in cancer progression, focusing on pCAV1 in tumor cell migration, focal adhesion signaling and metabolism, and in the cancer cell response to stress pathways characteristic of the tumor microenvironment. We also discuss a model for Y14 phosphorylation regulation of CAV1 effector protein interactions via the caveolin scaffolding domain.
Collapse
|
14
|
Bosi E, Marselli L, De Luca C, Suleiman M, Tesi M, Ibberson M, Eizirik DL, Cnop M, Marchetti P. Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes. NAR Genom Bioinform 2020; 2:lqaa097. [PMID: 33575641 PMCID: PMC7679065 DOI: 10.1093/nargab/lqaa097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet β-cell failure is key to the onset and progression of type 2 diabetes (T2D). The advent of single-cell RNA sequencing (scRNA-seq) has opened the possibility to determine transcriptional signatures specifically relevant for T2D at the β-cell level. Yet, applications of this technique have been underwhelming, as three independent studies failed to show shared differentially expressed genes in T2D β-cells. We performed an integrative analysis of the available datasets from these studies to overcome confounding sources of variability and better highlight common T2D β-cell transcriptomic signatures. After removing low-quality transcriptomes, we retained 3046 single cells expressing 27 931 genes. Cells were integrated to attenuate dataset-specific biases, and clustered into cell type groups. In T2D β-cells (n = 801), we found 210 upregulated and 16 downregulated genes, identifying key pathways for T2D pathogenesis, including defective insulin secretion, SREBP signaling and oxidative stress. We also compared these results with previous data of human T2D β-cells from laser capture microdissection and diabetic rat islets, revealing shared β-cell genes. Overall, the present study encourages the pursuit of single β-cell RNA-seq analysis, preventing presently identified sources of variability, to identify transcriptomic changes associated with human T2D and underscores specific traits of dysfunctional β-cells across different models and techniques.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier Sorge, CH-1015 Lausanne, Switzerland
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| |
Collapse
|
15
|
Pei J, Xiao Z, Guo Z, Pei Y, Wei S, Wu H, Wang D. Sustained Stimulation of β 2AR Inhibits Insulin Signaling in H9C2 Cardiomyoblast Cells Through the PKA-Dependent Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:3887-3898. [PMID: 33116735 PMCID: PMC7585860 DOI: 10.2147/dmso.s268028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION This study aimed to investigate the role of β2 adrenergic receptor (β2AR) in insulin signaling transduction in H9C2 cardiomyoblast cells to understand the formation of the β2AR-insulin receptor (IR) protein complex and its role in insulin-induced Glut4 expression. METHODS H9C2 cells were treated with various protein inhibitors (CGP, β1AR inhibitor CGP20712; ICI, β2AR inhibitor ICI 118,551; PKI, PKA inhibitor myristoylated PKI; PD 0325901, MEK inhibitor; SP600125, JNK inhibitor) with or without insulin or isoproterenol (ISO) before RNA-sequencing (RNA-Seq) and quantitative-PCR (Q-PCR). Yeast two-hybrid, co-immunoprecipitation and His-tag pull-down assay were carried out to investigate the formation of the β2AR-IR protein complex. The intracellular concentrations of cAMP in H9C2 cells were tested by high performance liquid chromatography (HPLC) and the phosphorylation of JNK was tested by Western blot. RESULTS Gene Ontology (GO) analysis revealed that the most significantly enriched processes in the domain of molecular function (MF) were catalytic activity and binding, whereas in the domain of biological processes (BP) were metabolic process and cellular process. Furthermore, the enriched processes in the domain of cellular components (CC) were cell and cell parts. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the most significant pathways that have been altered included the PI3K-Akt and MAPK signaling pathways. Q-PCR, which was performed to verify the gene expression levels exhibited consistent results. In evaluating the signaling pathways, the sustained stimulation of β2AR by ISO inhibited insulin signalling, and the effect was primarily through the cAMP-PKA-JNK pathway and MEK/JNK signaling pathway. Yeast two-hybrid, co-immunoprecipitation and His-tag pull-down assay revealed that β2AR, IR, insulin receptor substrate 1 (IRS1), Grb2-associated binding protein 1 (GAB1) and Grb2 existed in the same protein complex. CONCLUSION The sustained stimulation of β2AR might inhibit insulin signaling transduction through the cAMP-PKA-JNK and MEK/JNK pathways in H9C2 cells.
Collapse
Affiliation(s)
- Jinli Pei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Zhengpan Xiao
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Ziyi Guo
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Yechun Pei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Shuangshuang Wei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Hao Wu
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Dayong Wang
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| |
Collapse
|
16
|
Loss of Caveolin-1 Is Associated with a Decrease in Beta Cell Death in Mice on a High Fat Diet. Int J Mol Sci 2020; 21:ijms21155225. [PMID: 32718046 PMCID: PMC7432291 DOI: 10.3390/ijms21155225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Elevated free fatty acids (FFAs) impair beta cell function and reduce beta cell mass as a consequence of the lipotoxicity that occurs in type 2 diabetes (T2D). We previously reported that the membrane protein caveolin-1 (CAV1) sensitizes to palmitate-induced apoptosis in the beta pancreatic cell line MIN6. Thus, our hypothesis was that CAV1 knock-out (CAV1 KO) mice subjected to a high fat diet (HFD) should suffer less damage to beta cells than wild type (WT) mice. Here, we evaluated the in vivo response of beta cells in the pancreatic islets of 8-week-old C57Bl/6J CAV1 KO mice subjected to a control diet (CD, 14% kcal fat) or a HFD (60% kcal fat) for 12 weeks. We observed that CAV1 KO mice were resistant to weight gain when on HFD, although they had high serum cholesterol and FFA levels, impaired glucose tolerance and were insulin resistant. Some of these alterations were also observed in mice on CD. Interestingly, KO mice fed with HFD showed an adaptive response of the pancreatic beta cells and exhibited a significant decrease in beta cell apoptosis in their islets compared to WT mice. These in vivo results suggest that although the CAV1 KO mice are metabolically unhealthy, they adapt better to a HFD than WT mice. To shed light on the possible signaling pathway(s) involved, MIN6 murine beta cells expressing (MIN6 CAV) or not expressing (MIN6 Mock) CAV1 were incubated with the saturated fatty acid palmitate in the presence of mitogen-activated protein kinase inhibitors. Western blot analysis revealed that CAV1 enhanced palmitate-induced JNK, p38 and ERK phosphorylation in MIN6 CAV1 cells. Moreover, all the MAPK inhibitors partially restored MIN6 viability, but the effect was most notable with the ERK inhibitor. In conclusion, our results suggest that CAV1 KO mice adapted better to a HFD despite their altered metabolic state and that this may at least in part be due to reduced beta cell damage. Moreover, they indicate that the ability of CAV1 to increase sensitivity to FFAs may be mediated by MAPK and particularly ERK activation.
Collapse
|
17
|
The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans 2020; 48:165-177. [PMID: 32010944 DOI: 10.1042/bst20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.
Collapse
|
18
|
Gralle M, Labrecque S, Salesse C, De Koninck P. Spatial dynamics of the insulin receptor in living neurons. J Neurochem 2020; 156:88-105. [PMID: 31886886 DOI: 10.1111/jnc.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Insulin signaling through the insulin receptor has long been studied in classic target organs, such as adipose tissue and skeletal muscle, where one of its effects is to increase glucose uptake. Insulin and insulin receptor are present in many areas of the brain, but the functions of brain insulin signaling outside feeding circuits are not well defined. It has been proposed that hippocampal insulin signaling is important for memory, that brain insulin signaling is deficient in Alzheimer's disease, and that intranasal insulin treatment improves cognition, but the mechanisms remain unclear and do not seem to involve increased glucose uptake by neurons. The molecular behavior of the insulin receptor itself is not well known in living neurons; therefore, we investigated the spatial dynamics of the insulin receptor on somatodendritic membranes of live rat hippocampal neurons in culture. Using single-molecule tracking of quantum dot-tagged insulin receptors and single-particle tracking photoactivation localization microscopy, we show that the insulin receptor is distributed over both dendritic shafts and spines. Using colocalization with synaptic markers, we also show that in contrast to the glutamate receptor subunit glutamate receptor subunit A1, the dynamics of the insulin receptor are not affected by association with excitatory synapses; however, the insulin receptor is immobilized by components of inhibitory synapses. The mobility of the insulin receptor is reduced both by low concentrations of the pro-inflammatory cytokine tumor necrosis factor α and by cholesterol depletion, suggesting an association with sphingolipid-rich membrane domains. On the other hand, the insulin receptor dynamics in hippocampal neurons are not affected by increased excitatory signaling. Finally, using real-time single-event quantification, we find evidence of strong insulin receptor exocytosis on dendritic shafts. Our results suggest an association of the neuronal insulin receptor with specific elements of the dendritic shaft, rather than excitatory synapses.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,CERVO Brain Research Center, Québec, QC, Canada
| | | | | | - Paul De Koninck
- CERVO Brain Research Center, Québec, QC, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| |
Collapse
|
19
|
Gunasekar SK, Xie L, Sah R. SWELL signalling in adipocytes: can fat 'feel' fat? Adipocyte 2019; 8:223-228. [PMID: 31112068 PMCID: PMC6768237 DOI: 10.1080/21623945.2019.1612223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/04/2023] Open
Abstract
Obesity is becoming a global epidemic, predisposing to Type 2 diabetes, cardiovascular disease, fatty liver disease, pulmonary disease, osteoarthritis and cancer. Therefore, understanding the biology of adipocyte expansion in response to overnutrition is critical to devising strategies to treat obesity, and the associated burden of morbidity and mortality. Through exploratory patch-clamp experiments in freshly isolated primary murine and human adipocytes, we recently determined that SWELL1/LRRC8a, a leucine-rich repeat containing transmembrane protein, functionally encoded an ion channel signalling complex (the volume-regulated anion channel, or VRAC) on the adipocyte plasma membrane. The SWELL1-/LRRC8 channel complex activates in response to increases in adipocyte volume and in the context of obesity. SWELL1 is also required for insulin-PI3K-AKT2 signalling to regulate adipocyte growth and systemic glycaemia. This commentary delves further into our working models for the molecular mechanisms of adipocyte SWELL1-mediated VRAC activation, proposed signal transduction mechanisms, and putative impact on adipocyte hypertrophy during caloric excess.
Collapse
Affiliation(s)
- Susheel K. Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Bae GD, Park EY, Kim K, Jang SE, Jun HS, Oh YS. Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis. Sci Rep 2019; 9:16785. [PMID: 31728004 PMCID: PMC6856349 DOI: 10.1038/s41598-019-53278-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (cav-1), the principal structural and signalling protein of caveolae, is implicated in various signalling events, including apoptotic cell death in type 2 diabetes. However, the precise role of beta cells in apoptosis has not been clearly defined. In this study, we investigated the involvement of cav-1 in cytokine-induced beta cell apoptosis and its underlying mechanisms in the rat beta cell line, INS-1 and isolated islets. Treatment of cytokine mixture (CM, TNFα + IL-1β) significantly increased the mRNA and protein expression of cav-1, and resulting in increased formation of caveolae. We found that IL-1 receptor 1 and TNF receptor localized to plasma membrane lipid rafts in the control cells and CM treatment recruited these receptors to the caveolae domain. After cav-1 siRNA transfection, CM-dependent NF-κB activation was reduced and consequently downregulated the mRNA expression of iNOS and IL-1β. Finally, decreased cell viability by CM treatment was ameliorated in both INS-1 cells and isolated islets treated with cav-1 siRNA. These results suggest that increased cav-1 expression and recruitment of cytokine receptors into caveolae contribute to CM-induced beta cell apoptosis.
Collapse
Affiliation(s)
- Gong Deuk Bae
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Incheon, South Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Jeonnam, South Korea
| | - Kyong Kim
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
| | - Se-Eun Jang
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Incheon, South Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea.
| |
Collapse
|
21
|
Chen Y, Huang L, Qi X, Chen C. Insulin Receptor Trafficking: Consequences for Insulin Sensitivity and Diabetes. Int J Mol Sci 2019; 20:ijms20205007. [PMID: 31658625 PMCID: PMC6834171 DOI: 10.3390/ijms20205007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (INSR) has been extensively studied in the area of cell proliferation and energy metabolism. Impaired INSR activities lead to insulin resistance, the key factor in the pathology of metabolic disorders including type 2 diabetes mellitus (T2DM). The mainstream opinion is that insulin resistance begins at a post-receptor level. The role of INSR activities and trafficking in insulin resistance pathogenesis has been largely ignored. Ligand-activated INSR is internalized and trafficked to early endosome (EE), where INSR is dephosphorylated and sorted. INSR can be subsequently conducted to lysosome for degradation or recycled back to the plasma membrane. The metabolic fate of INSR in cellular events implies the profound influence of INSR on insulin signaling pathways. Disruption of INSR-coupled activities has been identified in a wide range of insulin resistance-related diseases such as T2DM. Accumulating evidence suggests that alterations in INSR trafficking may lead to severe insulin resistance. However, there is very little understanding of how altered INSR activities undermine complex signaling pathways to the development of insulin resistance and T2DM. Here, we focus this review on summarizing previous findings on the molecular pathways of INSR trafficking in normal and diseased states. Through this review, we provide insights into the mechanistic role of INSR intracellular processes and activities in the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Yang Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Lili Huang
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Xinzhou Qi
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
22
|
Morgantini C, Jager J, Li X, Levi L, Azzimato V, Sulen A, Barreby E, Xu C, Tencerova M, Näslund E, Kumar C, Verdeguer F, Straniero S, Hultenby K, Björkström NK, Ellis E, Rydén M, Kutter C, Hurrell T, Lauschke VM, Boucher J, Tomčala A, Krejčová G, Bajgar A, Aouadi M. Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nat Metab 2019; 1:445-459. [PMID: 32694874 DOI: 10.1038/s42255-019-0044-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022]
Abstract
Liver macrophages (LMs) have been proposed to contribute to metabolic disease through secretion of inflammatory cytokines. However, anti-inflammatory drugs lead to only modest improvements in systemic metabolism. Here we show that LMs do not undergo a proinflammatory phenotypic switch in obesity-induced insulin resistance in flies, mice and humans. Instead, we find that LMs produce non-inflammatory factors, such as insulin-like growth factor-binding protein 7 (IGFBP7), that directly regulate liver metabolism. IGFBP7 binds to the insulin receptor and induces lipogenesis and gluconeogenesis via activation of extracellular-signal-regulated kinase (ERK) signalling. We further show that IGFBP7 is subject to RNA editing at a higher frequency in insulin-resistant than in insulin-sensitive obese patients (90% versus 30%, respectively), resulting in an IGFBP7 isoform with potentially higher capacity to bind to the insulin receptor. Our study demonstrates that LMs can contribute to insulin resistance independently of their inflammatory status and indicates that non-inflammatory factors produced by macrophages might represent new drug targets for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Cecilia Morgantini
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jennifer Jager
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
- Université Nice Côte d'Azur, INSERM U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Xidan Li
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Laura Levi
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Valerio Azzimato
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - André Sulen
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Emelie Barreby
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Connie Xu
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark, Odense University Hospital and Danish Diabetes Academy, Odense, Denmark
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Chanchal Kumar
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden
- Translational Sciences, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Francisco Verdeguer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Sara Straniero
- Metabolism Unit C2:94, Department of Medicine, and Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ellis
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Mikael Rydén
- Unit of Endocrinology, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Tracey Hurrell
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Jeremie Boucher
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
| | - Aleš Tomčala
- Laboratory of Evolutionary Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Gabriela Krejčová
- Faculty of Science, University of South Bohemia, and Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Faculty of Science, University of South Bohemia, and Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Myriam Aouadi
- Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
23
|
miR-449a induces EndMT, promotes the development of atherosclerosis by targeting the interaction between AdipoR2 and E-cadherin in Lipid Rafts. Biomed Pharmacother 2019; 109:2293-2304. [DOI: 10.1016/j.biopha.2018.11.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
|
24
|
Mugabo Y, Lim GE. Scaffold Proteins: From Coordinating Signaling Pathways to Metabolic Regulation. Endocrinology 2018; 159:3615-3630. [PMID: 30204866 PMCID: PMC6180900 DOI: 10.1210/en.2018-00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Among their pleiotropic functions, scaffold proteins are required for the accurate coordination of signaling pathways. It has only been within the past 10 years that their roles in glucose homeostasis and metabolism have emerged. It is well appreciated that changes in the expression or function of signaling effectors, such as receptors or kinases, can influence the development of chronic diseases such as diabetes and obesity. However, little is known regarding whether scaffolds have similar roles in the pathogenesis of metabolic diseases. In general, scaffolds are often underappreciated in the context of metabolism or metabolic diseases. In the present review, we discuss various scaffold proteins and their involvement in signaling pathways related to metabolism and metabolic diseases. The aims of the present review were to highlight the importance of scaffold proteins and to raise awareness of their physiological contributions. A thorough understanding of how scaffolds influence metabolism could aid in the discovery of novel therapeutic approaches to treat chronic conditions, such as diabetes, obesity, and cardiovascular disease, for which the incidence of all continue to increase at alarming rates.
Collapse
Affiliation(s)
- Yves Mugabo
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gareth E Lim
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Trávez A, Rabanal-Ruiz Y, López-Alcalá J, Molero-Murillo L, Díaz-Ruiz A, Guzmán-Ruiz R, Catalán V, Rodríguez A, Frühbeck G, Tinahones FJ, Gasman S, Vitale N, Jiménez-Gómez Y, Malagón MM. The caveolae-associated coiled-coil protein, NECC2, regulates insulin signalling in Adipocytes. J Cell Mol Med 2018; 22:5648-5661. [PMID: 30160359 PMCID: PMC6201366 DOI: 10.1111/jcmm.13840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Adipocyte dysfunction in obesity is commonly associated with impaired insulin signalling in adipocytes and insulin resistance. Insulin signalling has been associated with caveolae, which are coated by large complexes of caveolin and cavin proteins, along with proteins with membrane-binding and remodelling properties. Here, we analysed the regulation and function of a component of caveolae involved in growth factor signalling in neuroendocrine cells, neuroendocrine long coiled-coil protein-2 (NECC2), in adipocytes. Studies in 3T3-L1 cells showed that NECC2 expression increased during adipogenesis. Furthermore, NECC2 co-immunoprecipitated with caveolin-1 (CAV1) and exhibited a distribution pattern similar to that of the components of adipocyte caveolae, CAV1, Cavin1, the insulin receptor and cortical actin. Interestingly, NECC2 overexpression enhanced insulin-activated Akt phosphorylation, whereas NECC2 downregulation impaired insulin-induced phosphorylation of Akt and ERK2. Finally, an up-regulation of NECC2 in subcutaneous and omental adipose tissue was found in association with human obesity and insulin resistance. This effect was also observed in 3T3-L1 adipocytes exposed to hyperglycaemia/hyperinsulinemia. Overall, the present study identifies NECC2 as a component of adipocyte caveolae that is regulated in response to obesity and associated metabolic complications, and supports the contribution of this protein as a molecular scaffold modulating insulin signal transduction at these membrane microdomains.
Collapse
Affiliation(s)
- Andrés Trávez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Yoana Rabanal-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaime López-Alcalá
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - Laura Molero-Murillo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Guzmán-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Catalán
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Amaia Rodríguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria), Universidad de Málaga, Málaga, Spain
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives (INCI), Centre National de la Recherche Scientifique (CNRS UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), Centre National de la Recherche Scientifique (CNRS UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Yolanda Jiménez-Gómez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain
| | - María M Malagón
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofía University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Hampton KK, Anderson K, Frazier H, Thibault O, Craven RJ. Insulin Receptor Plasma Membrane Levels Increased by the Progesterone Receptor Membrane Component 1. Mol Pharmacol 2018; 94:665-673. [PMID: 29674524 PMCID: PMC5987996 DOI: 10.1124/mol.117.110510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
The insulin receptor (IR) is a ligand-activated receptor tyrosine kinase that has a key role in metabolism, cellular survival, and proliferation. Progesterone receptor membrane component 1 (PGRMC1) promotes cellular signaling via receptor trafficking and is essential for some elements of tumor growth and metastasis. In the present study, we demonstrate that PGRMC1 coprecipitates with IR. Furthermore, we show that PGRMC1 increases plasma membrane IR levels in multiple cell lines and decreases insulin binding at the cell surface. The findings have therapeutic applications because a small-molecule PGRMC1 ligand, AG205, also decreases plasma membrane IR levels. However, PGRMC1 knockdown via short hairpin RNA expression and AG205 treatment potentiated insulin-mediated phosphorylation of the IR signaling mediator AKT. Finally, PGRMC1 also increased plasma membrane levels of two key glucose transporters, GLUT-4 and GLUT-1. Our data support a role for PGRMC1 maintaining plasma membrane pools of the receptor, modulating IR signaling and function.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Katie Anderson
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hilaree Frazier
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
27
|
Zeng W, Tang J, Li H, Xu H, Lu H, Peng H, Lin C, Gao R, Lin S, Lin K, Liu K, Jiang Y, Weng J, Zeng L. Caveolin-1 deficiency protects pancreatic β cells against palmitate-induced dysfunction and apoptosis. Cell Signal 2018; 47:65-78. [PMID: 29596872 DOI: 10.1016/j.cellsig.2018.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022]
Abstract
Lipotoxicity leads to insulin secretion deficiency, which is among the important causes for the onset of type 2 diabetes mellitus. Thus, the restoration of β-cell mass and preservation of its endocrine function are long-sought goals in diabetes research. Previous studies have suggested that the membrane protein caveolin-1 (Cav-1) is implicated in β-cell apoptosis and insulin secretion, however, the underlying mechanisms still remains unclear. Our objective is to explore whether Cav-1 depletion protects pancreatic β cells from lipotoxicity and what are the underlying mechanisms. In this study, we found that Cav-1 silencing significantly promoted β-cell proliferation, inhibited palmitate (PA)-induced pancreatic β-cell apoptosis and enhanced insulin production and secretion. These effects were associated with enhanced activities of Akt and ERK1/2, which in turn downregulated the expression of cell cycle inhibitors (FOXO1, GSK3β, P21, P27 and P53) and upregulated the expression of Cyclin D2 and Cyclin D3. Subsequent inhibition of PI3K/Akt and ERK/MAPK pathways abolished Cav-1 depletion induced β-cell mass protection. Furthermore, under PA induced endoplasmic reticulum (ER) stress, Cav-1 silencing significantly reduced eIF2α phosphorylation and the expression of ER stress-responsive markers BiP and CHOP, which are among the known sensitizers of lipotoxicity. Our findings suggest Cav-1 as potential target molecule in T2DM treatment via the preservation of lipotoxicity-induced β-cell mass reduction and the attenuation of insulin secretion dysfunction.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Jiansong Tang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Haixia Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Hangya Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Chuwen Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Rili Gao
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Shuo Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Keyi Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Kunying Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Yan Jiang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China.
| |
Collapse
|
28
|
Page MM, Skovsø S, Cen H, Chiu AP, Dionne DA, Hutchinson DF, Lim GE, Szabat M, Flibotte S, Sinha S, Nislow C, Rodrigues B, Johnson JD. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain. FASEB J 2018; 32:1196-1206. [PMID: 29122848 PMCID: PMC5892722 DOI: 10.1096/fj.201700518r] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Excess circulating insulin is associated with obesity in humans and in animal models. However, the physiologic causality of hyperinsulinemia in adult obesity has rightfully been questioned because of the absence of clear evidence that weight loss can be induced by acutely reversing diet-induced hyperinsulinemia. Herein, we describe the consequences of inducible, partial insulin gene deletion in a mouse model in which animals have already been made obese by consuming a high-fat diet. A modest reduction in insulin production/secretion was sufficient to cause significant weight loss within 5 wk, with a specific effect on visceral adipose tissue. This result was associated with a reduction in the protein abundance of the lipodystrophy gene polymerase I and transcript release factor ( Ptrf; Cavin) in gonadal adipose tissue. RNAseq analysis showed that reduced insulin and weight loss also associated with a signature of reduced innate immunity. This study demonstrates that changes in circulating insulin that are too fine to adversely affect glucose homeostasis nonetheless exert control over adiposity.-Page, M. M., Skovsø, S., Cen, H., Chiu, A. P., Dionne, D. A., Hutchinson, D. F., Lim, G. E., Szabat, M., Flibotte, S., Sinha, S., Nislow, C., Rodrigues, B., Johnson, J. D. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain.
Collapse
Affiliation(s)
- Melissa M Page
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haoning Cen
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy P Chiu
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek A Dionne
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daria F Hutchinson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gareth E Lim
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marta Szabat
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Bi C, Tham DKL, Perronnet C, Joshi B, Nabi IR, Moukhles H. The Oxidative Stress-Induced Increase in the Membrane Expression of the Water-Permeable Channel Aquaporin-4 in Astrocytes Is Regulated by Caveolin-1 Phosphorylation. Front Cell Neurosci 2017; 11:412. [PMID: 29326556 PMCID: PMC5742350 DOI: 10.3389/fncel.2017.00412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/08/2017] [Indexed: 01/14/2023] Open
Abstract
The reperfusion of ischemic brain tissue following a cerebral stroke causes oxidative stress, and leads to the generation of reactive oxygen species (ROS). Apart from inflicting oxidative damage, the latter may also trigger the upregulation of aquaporin 4 (AQP4), a water-permeable channel expressed by astroglial cells of the blood-brain barrier (BBB), and contribute to edema formation, the severity of which is known to be the primary determinant of mortality and morbidity. The mechanism through which this occurs remains unknown. In the present study, we have attempted to address this question using primary astrocyte cultures treated with hydrogen peroxide (H2O2) as a model system. First, we showed that H2O2 induces a significant increase in AQP4 protein levels and that this is inhibited by the antioxidant N-acetylcysteine (NAC). Second, we demonstrated using cell surface biotinylation that H2O2 increases AQP4 cell-surface expression independently of it's increased synthesis. In parallel, we found that caveolin-1 (Cav1) is phosphorylated in response to H2O2 and that this is reversed by the Src kinase inhibitor 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). PP2 also abrogated the H2O2-induced increase in AQP4 surface levels, suggesting that the phosphorylation of tyrosine-14 of Cav1 regulates this process. We further showed that dominant-negative Y14F and phosphomimetic Y14D mutants caused a decrease and increase in AQP4 membrane expression respectively, and that the knockdown of Cav1 inhibits the increase in AQP4 cell-surface, expression following H2O2 treatment. Together, these findings suggest that oxidative stress-induced Cav1 phosphorylation modulates AQP4 subcellular distribution and therefore may indirectly regulate AQP4-mediated water transport.
Collapse
Affiliation(s)
- Chongshan Bi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel K L Tham
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Perronnet
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bharat Joshi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ivan R Nabi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hakima Moukhles
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Liu J, Li G, Chen C, Chen D, Zhou Q. MiR-6835 promoted LPS-induced inflammation of HUVECs associated with the interaction between TLR-4 and AdipoR1 in lipid rafts. PLoS One 2017; 12:e0188604. [PMID: 29190778 PMCID: PMC5708807 DOI: 10.1371/journal.pone.0188604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background High mortality rate of critically-ill patients could be induced by sepsis and septic shock, which is the extremely life threatening. The purpose of this work is to identify and evaluate the potential regulatory mechanism of LPS-induced inflammation associated with miR-6835 and lipid rafts in HUVECs. Methods The 3’ UTR luciferase activity of AdipoR1 was detected, which was predicted the potential target gene of miR-6835. Moreover, the treated HUVECs with or without inhibitors or mimics of miR-6835 were used. Furthermore, the bio-functions of HUVECs were explored. The protein expression levels of SIRT-1, AMPK, and AdipoR1 were assessed, which were involved in the AdipoR1 signaling pathway. Then, the interaction between TLR-4 and AdipoR1 in lipid rafts and its mediation role on LPS-induced inflammation was investigated in HUVECs. Results MiR-6835 targeted directly on AdipoR1, and suppressed its expression in mRNA (mimics of miR-6835: 0.731±0.016 vs control: 1.527±0.015, P<0.001) and proteins levels, then regulated protein expression of SIRT-1 and AMPK, which were the downstream target genes of AdipoR1 signaling pathway. MiR-6835 enhanced LPS-induced inflammation process in HUVECs (TNF-α: LPS+mimics of miR-6835: 1638.51±78.43 vs LPS: 918.73±39.73, P<0.001; IL-6: LPS+mimics of miR-6835: 1249.35±69.51 vs LPS: 687.52±43.64, P<0.001), which was associated with the interaction between TLR-4 and AdipoR1 in lipid rafts. Conclusions MiR-6835 is the key regulator of LPS-induced inflammation process in HUVECs. The interaction between TLR-4 and AdipoR1 mediated by lipid rafts at membrane of HUVECs with inflammation process induced by miR-6835. Our results demonstrated a hopeful strategy for treatment on sepsis by aiming at lipid rafts and miR-6835.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Dechang Chen
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Qingshan Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
31
|
Spencer A, Yu L, Guili V, Reynaud F, Ding Y, Ma J, Jullien J, Koubi D, Gauthier E, Cluet D, Falk J, Castellani V, Yuan C, Rudkin BB. Nerve Growth Factor Signaling from Membrane Microdomains to the Nucleus: Differential Regulation by Caveolins. Int J Mol Sci 2017; 18:E693. [PMID: 28338624 PMCID: PMC5412279 DOI: 10.3390/ijms18040693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/16/2022] Open
Abstract
Membrane microdomains or "lipid rafts" have emerged as essential functional modules of the cell, critical for the regulation of growth factor receptor-mediated responses. Herein we describe the dichotomy between caveolin-1 and caveolin-2, structural and regulatory components of microdomains, in modulating proliferation and differentiation. Caveolin-2 potentiates while caveolin-1 inhibits nerve growth factor (NGF) signaling and subsequent cell differentiation. Caveolin-2 does not appear to impair NGF receptor trafficking but elicits prolonged and stronger activation of MAPK (mitogen-activated protein kinase), Rsk2 (ribosomal protein S6 kinase 2), and CREB (cAMP response element binding protein). In contrast, caveolin-1 does not alter initiation of the NGF signaling pathway activation; rather, it acts, at least in part, by sequestering the cognate receptors, TrkA and p75NTR, at the plasma membrane, together with the phosphorylated form of the downstream effector Rsk2, which ultimately prevents CREB phosphorylation. The non-phosphorylatable caveolin-1 serine 80 mutant (S80V), no longer inhibits TrkA trafficking or subsequent CREB phosphorylation. MC192, a monoclonal antibody towards p75NTR that does not block NGF binding, prevents exit of both NGF receptors (TrkA and p75NTR) from lipid rafts. The results presented herein underline the role of caveolin and receptor signaling complex interplay in the context of neuronal development and tumorigenesis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- CREB-Binding Protein/metabolism
- Caveolin 1/antagonists & inhibitors
- Caveolin 1/genetics
- Caveolin 1/metabolism
- Caveolin 2/antagonists & inhibitors
- Caveolin 2/genetics
- Caveolin 2/metabolism
- Cell Differentiation/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Membrane Microdomains/metabolism
- Mice
- Nerve Growth Factor/pharmacology
- Nerve Tissue Proteins
- PC12 Cells
- Phosphorylation/drug effects
- Protein Binding
- Protein Transport/drug effects
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Receptor, Nerve Growth Factor/metabolism
- Receptor, trkA/chemistry
- Receptor, trkA/immunology
- Receptor, trkA/metabolism
- Receptors, Growth Factor
- Receptors, Nerve Growth Factor/chemistry
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ambre Spencer
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Lingli Yu
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Vincent Guili
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Florie Reynaud
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Yindi Ding
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Ji Ma
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Jérôme Jullien
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - David Koubi
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Emmanuel Gauthier
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - David Cluet
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Julien Falk
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Valérie Castellani
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Chonggang Yuan
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Brian B Rudkin
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
32
|
Li Y, Shan F, Chen J. Lipid raft-mediated miR-3908 inhibition of migration of breast cancer cell line MCF-7 by regulating the interactions between AdipoR1 and Flotillin-1. World J Surg Oncol 2017; 15:69. [PMID: 28327197 PMCID: PMC5361711 DOI: 10.1186/s12957-017-1120-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/14/2017] [Indexed: 02/01/2023] Open
Abstract
Background The mechanisms of lipid raft regulation by microRNAs in breast cancer are not fully understood. This work focused on the evaluation and identification of miR-3908, which may be a potential biomarker related to the migration of breast cancer cells, and elucidates lipid-raft-regulating cell migration in breast cancer. Methods To confirm the prediction that miR-3908 is matched with AdipoR1, we used 3’-UTR luciferase activity of AdipoR1 to assess this. Then, human breast cancer cell line MCF-7 was cultured in the absence or presence of the mimics or inhibitors of miR-3908, after which the biological functions of MCF-7 cells were analyzed. The protein expression of AdipoR1, AMPK, and SIRT-1 were examined. The interaction between AdipoR1 and Flotillin-1, or its effects on lipid rafts on regulating cell migration of MCF-7, was also investigated. Results AdipoR1 is a direct target of miR-3908. miR-3908 suppresses the expression of AdipoR1 and its downstream pathway genes, including AMPK, p-AMPK, and SIRT-1. miR-3908 enhances the process of breast cancer cell clonogenicity. miR-3908 exerts its effects on the proliferation and migration of MCF-7 cells, which are mediated by lipid rafts regulating AdipoR1’s ability to bind Flotillin-1. Conclusions miR-3908 is a crucial mediator of the migration process in breast cancer cells. Lipid rafts regulate the interactions between AdipoR1 and Flotillin-1 and then the migration process associated with miR-3908 in MCF-7 cells. Our findings suggest that targeting miR-3908 and the lipid raft, may be a promising strategy for the treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100048, China
| | - Fei Shan
- Department of Cardiac Surgery, Affiliated Hospital of Medical College of Yan'an University, Yan'an, Shanxi, 716000, China
| | - Jinglong Chen
- Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
33
|
Templeman NM, Skovsø S, Page MM, Lim GE, Johnson JD. A causal role for hyperinsulinemia in obesity. J Endocrinol 2017; 232:R173-R183. [PMID: 28052999 DOI: 10.1530/joe-16-0449] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
Insulin modulates the biochemical pathways controlling lipid uptake, lipolysis and lipogenesis at multiple levels. Elevated insulin levels are associated with obesity, and conversely, dietary and pharmacological manipulations that reduce insulin have occasionally been reported to cause weight loss. However, the causal role of insulin hypersecretion in the development of mammalian obesity remained controversial in the absence of direct loss-of-function experiments. Here, we discuss theoretical considerations around the causal role of excess insulin for obesity, as well as recent studies employing mice that are genetically incapable of the rapid and sustained hyperinsulinemia that normally accompanies a high-fat diet. We also discuss new evidence demonstrating that modest reductions in circulating insulin prevent weight gain, with sustained effects that can persist after insulin levels normalize. Importantly, evidence from long-term studies reveals that a modest reduction in circulating insulin is not associated with impaired glucose homeostasis, meaning that body weight and lipid homeostasis are actually more sensitive to small changes in circulating insulin than glucose homeostasis in these models. Collectively, the evidence from new studies on genetic loss-of-function models forces a re-evaluation of current paradigms related to obesity, insulin resistance and diabetes. The potential for translation of these findings to humans is briefly discussed.
Collapse
Affiliation(s)
- Nicole M Templeman
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melissa M Page
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gareth E Lim
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological SciencesDiabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Personalized Therapeutic NutritionVancouver, British Columbia, Canada
| |
Collapse
|
34
|
Hausmann S, Ussar S. Insulin receptor trafficking steers insulin action. Mol Metab 2016; 5:253-254. [PMID: 27069864 PMCID: PMC4811990 DOI: 10.1016/j.molmet.2016.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- Simone Hausmann
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85748 Munich/Garching, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85748 Munich/Garching, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|