1
|
Hsu CY, Ahmad I, Maya RW, Abass MA, Gupta J, Singh A, Joshi KK, Premkumar J, Sahoo S, Khosravi M. The potential therapeutic approaches targeting gut health in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a narrative review. J Transl Med 2025; 23:530. [PMID: 40350437 PMCID: PMC12066075 DOI: 10.1186/s12967-025-06527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disorder characterized by persistent fatigue and cognitive impairments, with emerging evidence highlighting the role of gut health in its pathophysiology. The main objective of this review was to synthesize qualitative and quantitative data from research examining the gut microbiota composition, inflammatory markers, and therapeutic outcomes of interventions targeting the microbiome in the context of ME/CFS. METHODS The data collection involved a detailed search of peer-reviewed English literature from January 1995 to January 2025, focusing on studies related to the microbiome and ME/CFS. This comprehensive search utilized databases such as PubMed, Scopus, and Web of Science, with keywords including "ME/CFS," "Gut-Brain Axis," "Gut Health," "Intestinal Dysbiosis," "Microbiome Dysbiosis," "Pathophysiology," and "Therapeutic Approaches." Where possible, insights from clinical trials and observational studies were included to enrich the findings. A narrative synthesis method was also employed to effectively organize and present these findings. RESULTS The study found notable changes in the gut microbiota diversity and composition in ME/CFS patients, contributing to systemic inflammation and worsening cognitive and physical impairments. As a result, various microbiome interventions like probiotics, prebiotics, specific diets, supplements, fecal microbiota transplantation, pharmacological interventions, improved sleep, and moderate exercise training are potential therapeutic strategies that merit further exploration. CONCLUSIONS Interventions focusing on the gut-brain axis may help reduce neuropsychiatric symptoms in ME/CFS by utilizing the benefits of the microbiome. Therefore, identifying beneficial microbiome elements and incorporating their assessments into clinical practice can enhance patient care through personalized treatments. Due to the complexity of ME/CFS, which involves genetic, environmental, and microbial factors, a multidisciplinary approach is also necessary. Since current research lacks comprehensive insights into how gut health might aid ME/CFS treatment, standardized diagnostics and longitudinal studies could foster innovative therapies, potentially improving quality of life and symptom management for those affected.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, USA
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - J Premkumar
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, India
| | - Mohsen Khosravi
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Community Nursing Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
Byeon H. Impact of night sentry duties on cardiometabolic health in military personnel. World J Cardiol 2025; 17:102133. [PMID: 40308619 PMCID: PMC12038707 DOI: 10.4330/wjc.v17.i4.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/21/2025] Open
Abstract
This article examines the study by Lin et al, which explores the effects of night sentry duties on cardiometabolic health in military personnel. The research identifies significant correlations between the frequency of night shifts and negative cardiometabolic outcomes, such as elevated resting pulse rates and lowered levels of high-density lipoprotein cholesterol. These outcomes underscore the health risks linked to partial sleep deprivation, a common challenge in military environments. The editorial highlights the clinical significance of these findings, advocating for the implementation of targeted health interventions to mitigate these risks. Strategies such as structured sleep recovery programs and lifestyle modifications are recommended to improve the health management of military personnel engaged in nocturnal duties. By addressing these issues, military health management can better safeguard the well-being and operational readiness of its personnel.
Collapse
Affiliation(s)
- Haewon Byeon
- Department of Future Technology, Worker's Care and Digital Health Lab, Korea University of Technology and Education, Cheonan 31253, South Korea.
| |
Collapse
|
3
|
Alcock J, Lin D, Setty P, Brown LK, Dichosa AE, Burnett BJ, Han CS, Lin HC. Catecholamine exposure and the gut microbiota in obstructive sleep apnea. PeerJ 2025; 13:e19203. [PMID: 40247843 PMCID: PMC12005174 DOI: 10.7717/peerj.19203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
Patients with obstructive sleep apnea (OSA) have increased mortality from chronic inflammatory and cardiovascular diseases. Excess catecholamine exposure contributes to the disease associations of OSA, but the underlying mechanism is unknown. This study tested the hypothesis that increased catecholamine exposure is associated with Enterobacteriaceae abundance in OSA. We compared urinary norepinephrine and the fecal microbiota in 24 patients with OSA and 23 controls. Urinary norepinephrine was elevated in OSA patients, consistent with increased sympathetic activation in those patients. OSA patients did not show changes in the community structure of the microbiome or in Enterobacteriaceae abundance compared to controls. Longitudinal changes in Enterobacteriaceae abundance in OSA patients were significantly associated with within-subject changes in norepinephrine, but this association was absent in controls. These results provide a preliminary association between norepinephrine exposure and Enterobacteriaceae in patients with disordered sleep.
Collapse
Affiliation(s)
- Joe Alcock
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Dongdong Lin
- EMD Serono, Inc, Boston, MA, United States of America
| | - Prashanth Setty
- Applied Biomedical, Inc, Placentia, CA, United States of America
- New Mexico VA Health Care System, Albuquerque, NM, United States of America
| | - Lee K. Brown
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States of America
| | | | | | - Cliff S. Han
- Knoze Jr, Los Alamos, NM, United States of America
| | - Henry C. Lin
- Division of Gastroenterology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States of America
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, United States of America
| |
Collapse
|
4
|
Sun Q, Fan J, Zhao L, Qu Z, Dong Y, Wu Y, Gu S. Weizmannia coagulans BC99 Improve Cognitive Impairment Induced by Chronic Sleep Deprivation via Inhibiting the Brain and Intestine's NLRP3 Inflammasome. Foods 2025; 14:989. [PMID: 40232008 PMCID: PMC11941109 DOI: 10.3390/foods14060989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 04/16/2025] Open
Abstract
Weizmannia coagulans BC99, a Gram-positive, spore-forming, lactic acid-producing bacterium is renowned for its resilience and health-promoting properties, W. coagulans BC99 survives harsh environments, including high temperatures and gastric acidity, enabling effective delivery to the intestines. The consequences of chronic sleep deprivation (SD) include memory deficits and gastrointestinal dysfunction. In this study, a chronic sleep deprivation cognitive impairment model was established by using a sleep deprivation instrument and W. coagulans BC99 was given by gavage for 4 weeks to explore the mechanism by which BC99 improves cognitive impairment in sleep-deprived mice. BC99 improved cognitive abnormalities in novel object recognition tests induced by chronic sleep deprivation and showed behavior related to spatial memory in the Morris water maze test. W. coagulans BC99 reduced the heart mass index of sleep-deprived mice, increased the sleep-related neurotransmitters 5-HT and DA, decreased corticosterone and norepinephrine, and increased alpha diversity and community similarity. It reduced the abundance of harmful bacteria such as Olsenella, increased the abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, and promoted the production of short-chain fatty acids (SCFAs). W. coagulans BC99 also inhibits LPS translocation and the elevation of peripheral inflammatory factors by maintaining the integrity of the intestinal barrier and inhibiting the expression of the NLRP3 signaling pathway in the jejunum, thereby inhibiting the NLRP3 inflammasome in the brain of mice and reducing inflammatory factors in the brain, providing a favorable environment for the recovery of cognitive function. The present study confirmed that W. coagulans BC99 ameliorated cognitive impairment in chronic sleep-deprived mice by improving gut microbiota, especially by promoting SCFAs production and inhibiting the NLRP3 signaling pathway in the jejunum and brain. These findings may help guide the treatment of insomnia or other sleep disorders through dietary strategies.
Collapse
Affiliation(s)
- Qiaoqiao Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.S.); (J.F.); (L.Z.); (Z.Q.)
| | - Jiajia Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.S.); (J.F.); (L.Z.); (Z.Q.)
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.S.); (J.F.); (L.Z.); (Z.Q.)
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhen Qu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.S.); (J.F.); (L.Z.); (Z.Q.)
| | - Yao Dong
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.S.); (J.F.); (L.Z.); (Z.Q.)
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Q.S.); (J.F.); (L.Z.); (Z.Q.)
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
5
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
6
|
Zimmermann P, Kurth S, Giannoukos S, Stocker M, Bokulich NA. NapBiome trial: Targeting gut microbiota to improve sleep rhythm and developmental and behavioural outcomes in early childhood in a birth cohort in Switzerland - a study protocol. BMJ Open 2025; 15:e092938. [PMID: 40032396 PMCID: PMC11877202 DOI: 10.1136/bmjopen-2024-092938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION The gut-brain axis plays a crucial role in the regulation and development of psychological and physical processes. The first year of life is a critical period for the development of the gut microbiome, which parallels important milestones in establishing sleep rhythm and brain development. Growing evidence suggests that the gut microbiome influences sleep, cognition and early neurodevelopment. For term-born and preterm-born infants, difficulties in sleep regulation may have consequences on health. Identifying effective interventions on the gut-brain axis in early life is likely to have long-term implications for the health and development of at-risk infants. METHODS AND ANALYSES In this multicentre, four-group, double-blinded, placebo (PLC)-controlled randomised trial with a factorial design, 120 preterm-born and 260 term-born infants will be included. The study will investigate whether the administration of daily synbiotics or PLC for a duration of 3 months improves sleep patterns and neurodevelopmental outcomes up to 2 years of age. The trial will also: (1) determine the association between gut microbiota, sleep patterns and health outcomes in children up to 2 years of age; and (2) leverage the interactions between gut microbiota, brain and sleep to develop new intervention strategies for at-risk infants. ETHICS AND DISSEMINATION The NapBiome trial has received ethical approval by the Committee of Northwestern and Central Switzerland and Canton Vaud, Switzerland (#2024-01681). Outcomes will be disseminated through publication and will be presented at scientific conferences. Metagenomic data will be shared through the European Nucleotide Archive. TRIAL REGISTRATION NUMBER The US National Institutes of Health NCT06396689.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Community Health and Department of Paediatrics, Fribourg Hospital, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Stamatios Giannoukos
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Martin Stocker
- Neonatology, Children's Hospital Lucerne, Lucerne, Switzerland
| | - Nicholas A Bokulich
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Yao T, Chao YP, Huang CM, Lee HC, Liu CY, Li KW, Hsu AL, Tung YT, Wu CW. Impacts of night shift on medical professionals: a pilot study of brain connectivity and gut microbiota. Front Neurosci 2025; 19:1503176. [PMID: 40035064 PMCID: PMC11872915 DOI: 10.3389/fnins.2025.1503176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Night shift is a prevalent workstyle in medical hospitals, demanding continuous health monitoring and rapid decision making of medical professionals. Night shifts may cause serious health problems to medical staff, including cognitive impairments, poor sleep, and inflammatory responses, leading to the altered gut-brain axis. However, how night shifts impact gut-brain axis and how long the impact lasts remain to be studied. Hence, we investigated the dynamic changes of brain-microbiota relations following night shifts and subsequent recovery days among medical shift workers. Young medical staffs were recruited for the 3-session assessments over the scheduled night shifts (pre-shift, post-shift, and recovery) by measuring (a) sleep metrics, (b) brain functions, (c) gut bacteriome compositions, and (d) cognitive assessments. Participants experienced partial sleep deprivation only during the 5-day night shifts but rapidly returned to baseline after the 4-day recovery, so as the elevated brain fluctuations in the superior frontal gyrus after night shifts. Meanwhile, the night shifts caused elongated connectivity changes of default-mode and dorsal attention networks without recovery. Nevertheless, we did not find prevailing night-shift effects on cognition and gut bacteriome compositions, except the Gemellaceae concentration and the multi-task performance. Collectively, night shifts may induce prolonged alterations on brain connectivity without impacts on gut bacteriome, suggesting the vulnerable brain functions and the resilient gut bacteriome to the short-term night shifts among medical shift workers.
Collapse
Affiliation(s)
- Tengmao Yao
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Chien Lee
- Graduate Institute of Humanities in Medicine, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chi-Yun Liu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Wei Li
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ai-Ling Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
- Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Changwei W. Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Nôga DA, Meth EMS, Pacheco AP, Cedernaes J, Xue P, Benedict C. Habitual sleep duration, healthy eating, and digestive system cancer mortality. BMC Med 2025; 23:44. [PMID: 39865237 PMCID: PMC11770963 DOI: 10.1186/s12916-025-03882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Lifestyle choices, such as dietary patterns and sleep duration, significantly impact the health of the digestive system and may influence the risk of mortality from digestive system cancer. METHODS This study aimed to examine the associations between sleep duration, dietary habits, and mortality from digestive system cancers. The analysis included 406,584 participants from the UK Biobank cohort (54.1% women; age range: 38-73 years), with sleep duration classified as short (≤ 6 h, 24.2%), normal (7-8 h, 68.4%), and long (≥ 9 h, 7.4%). Healthy eating habits were defined as a daily intake of at least 25 g of fibre, seven portions of fruits and vegetables, and fewer than four servings of meat per week. These dietary factors were combined into a score ranging from 0 (least healthy) to 3 (healthiest). Cox proportional hazards regression analyses were conducted, with a median follow-up period of 12.6 years, ending on September 30, 2021. RESULTS 3949 participants died from cancer of the digestive system. Both short and long sleep duration were associated with an increased risk of mortality from cancer of the digestive system (1.09 (1.01-1.18) and 1.14 (1.03-1.27), respectively). Additionally, a diet score ≥ 1 was linked to a lower cancer risk (0.72-0.91 (0.59-0.96)). Adjusting for smoking, type 2 diabetes, and body mass index (BMI) status eliminated the association between sleep duration and digestive cancer mortality. The association between healthy dietary patterns and the risk of digestive system cancer mortality did not vary by sleep duration. CONCLUSIONS Aberrant sleep durations may increase the risk of mortality from digestive system cancer, potentially through smoking, higher BMI, and type 2 diabetes. However, aberrant sleep durations do not seem to reduce the protective effects of a healthy dietary pattern.
Collapse
Affiliation(s)
- Diana A Nôga
- Department of Pharmaceutical Biosciences, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden.
| | - Elisa M S Meth
- Department of Pharmaceutical Biosciences, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden
| | - André P Pacheco
- Department of Pharmaceutical Biosciences, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden
- Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Sognsvannsveien 21, Oslo, 0372, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1039 Blindern, 0315, Oslo, Norway
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset, Ing. 40, 5 Tr, Uppsala, 751 85, Sweden
- Department of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, Uppsala, 751 24, Sweden
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Box 593, Husargatan 3, Uppsala, 751 24, Sweden
| |
Collapse
|
9
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
10
|
Florêncio GP, Xavier AR, Natal ACDC, Sadoyama LP, Röder DVDDB, Menezes RDP, Sadoyama Leal G, Patrizzi LJ, Pena GDG. Synergistic Effects of Probiotics and Lifestyle Interventions on Intestinal Microbiota Composition and Clinical Outcomes in Obese Adults. Metabolites 2025; 15:70. [PMID: 39997695 PMCID: PMC11857521 DOI: 10.3390/metabo15020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Obesity is a growing global epidemic. The composition of the intestinal microbiota can be influenced by several factors. Studies highlight the role of intestinal bacteria in the pathophysiology of obesity. So, the objective of this study was to investigate whether the use of probiotics, together with healthy lifestyle habits, contributes to weight reduction in obese individuals by analyzing the intestinal microbiota profile. METHODS A prospective study was carried out with 45 adults with obesity. Participants underwent guidance on healthy lifestyle habits, received a probiotic component containing different microbiological strains and were followed for 60 days. Clinical parameters, body composition, biochemical analysis, and intestinal microbiota assessment were performed before and after treatment. After 60 days, it was observed that the bacterial strains present in the probiotic were present in the patients' intestinal microbiota. Participants also showed improvements in physical activity, sleep quality, and anxiety management, as well as changes in some eating habits, such as a reduction in the consumption of processed foods and a significant increase in water intake. RESULTS A reduction in BMI, fasting glucose, insulin, HOMA-IR, LDL cholesterol, and triglycerides was observed, in addition to an increase in HDL cholesterol, improvement in bowel movement frequency, and stool consistency. Analysis of the intestinal microbiota revealed an increase in microbial diversity and a better balance between the bacterial phyla Firmicutes and Bacteroidetes. CONCLUSIONS The changes related to improving the composition of the intestinal microbiota, dietary habits, increased physical activity, reduced anxiety, and better sleep quality have significantly contributed to weight loss and improvements in physiological parameters in obese individuals.
Collapse
Affiliation(s)
- Glauber Pimentel Florêncio
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Analicy Rodrigues Xavier
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Ana Catarina de Castro Natal
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Lorena Prado Sadoyama
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | | | - Ralciane de Paula Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-318, MG, Brazil;
| | - Geraldo Sadoyama Leal
- Institute of Biotechnology, Federal University of Catalão, Catalão 75704-020, GO, Brazil;
| | - Lislei Jorge Patrizzi
- Department of Physiotherapy, Federal University of Triângulo Mineiro, Uberaba 38025-350, MG, Brazil;
| | - Geórgia das Graças Pena
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| |
Collapse
|
11
|
Hong S, Lee DB, Yoon DW, Yoo SL, Kim J. The Effect of Sleep Disruption on Cardiometabolic Health. Life (Basel) 2025; 15:60. [PMID: 39860000 PMCID: PMC11766988 DOI: 10.3390/life15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Sleep disruption has emerged as a significant public health concern with profound implications for metabolic health. This review synthesizes current evidence demonstrating the intricate relationships between sleep disturbances and cardiometabolic dysfunction. Epidemiological studies have consistently demonstrated that insufficient sleep duration (<7 h) and poor sleep quality are associated with increased risks of obesity, type 2 diabetes, and cardiovascular disease. The underlying mechanisms are multifaceted, involving the disruption of circadian clock genes, alterations in glucose and lipid metabolism, the activation of inflammatory pathways, and the modulation of the gut microbiome. Sleep loss affects key metabolic regulators, including AMPK signaling and disrupts the secretion of metabolic hormones such as leptin and ghrelin. The latest evidence points to the role of sleep-induced changes in the composition and function of gut microbiota, which may contribute to metabolic dysfunction through modifications in the intestinal barrier and inflammatory responses. The NLRP3 inflammasome and NF-κB signaling pathways have been identified as crucial mediators linking sleep disruption to metabolic inflammation. An understanding of these mechanisms has significant implications for public health and clinical practice, suggesting that improving sleep quality could be an effective strategy for preventing and treating cardiometabolic disorders in modern society.
Collapse
Affiliation(s)
- SeokHyun Hong
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Da-Been Lee
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
| | - Dae-Wui Yoon
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Seung-Lim Yoo
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Jinkwan Kim
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
12
|
Singh A, Negi PS. Appraising the role of biotics and fermented foods in gut microbiota modulation and sleep regulation. J Food Sci 2025; 90:e17634. [PMID: 39750017 DOI: 10.1111/1750-3841.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
Sleep disturbances are increasingly prevalent, significantly impacting physical and mental health. Recent research reveals a bidirectional relationship between gut microbiota and sleep, mediated through the microbiota-gut-brain axis. This review examines the role of gut microbiota in sleep physiology and explores how biotics, including probiotics, prebiotics, synbiotics, postbiotics, and fermented foods, can enhance sleep quality. Drawing from animal and human studies, we discuss neurobiological mechanisms by which biotics may influence sleep, including modulation of neurotransmitters, immune responses, and hormonal regulation. Key microbial metabolites, such as short-chain fatty acids, are highlighted for their role in supporting sleep-related neurochemical processes. Additionally, this review presents dietary strategies and food processing technologies, like fermentation, as innovative approaches for sleep enhancement. Although promising, the available research has limitations, including small sample sizes, variability in biotic strains and dosages, and reliance on subjective sleep assessments. This review underscores the need for standardized protocols, objective assessments such as polysomnography, and personalized biotic interventions. Emerging findings highlight the therapeutic potential of gut microbiota modulation for sleep improvement, though further large-scale human trials are essential to refine strain selection, dosage, and formulation. This interdisciplinary exploration seeks to advance food-based interventions and holistic strategies for managing sleep disorders and improving quality of life.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
13
|
Che Mohd Nassir CMN, Che Ramli MD, Mohamad Ghazali M, Jaffer U, Abdul Hamid H, Mehat MZ, Hein ZM. The Microbiota-Gut-Brain Axis: Key Mechanisms Driving Glymphopathy and Cerebral Small Vessel Disease. Life (Basel) 2024; 15:3. [PMID: 39859943 PMCID: PMC11766513 DOI: 10.3390/life15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
The human microbiota constitute a very complex ecosystem of microorganisms inhabiting both the inside and outside of our bodies, in which health maintenance and disease modification are the main regulatory features. The recent explosion of microbiome research has begun to detail its important role in neurological health, particularly concerning cerebral small vessel disease (CSVD), a disorder associated with cognitive decline and vascular dementia. This narrative review represents state-of-the-art knowledge of the intimate, complex interplay between microbiota and brain health through the gut-brain axis (GBA) and the emerging role of glymphatic system dysfunction (glymphopathy) and circulating cell-derived microparticles (MPs) as mediators of these interactions. We discuss how microbial dysbiosis promotes neuroinflammation, vascular dysfunction, and impaired waste clearance in the brain, which are critical factors in the pathogenesis of CSVD. Further, we discuss lifestyle factors that shape the composition and functionality of the microbiota, focusing on sleep as a modifiable risk factor in neurological disorders. This narrative review presents recent microbiome research from a neuroscientific and vascular perspective to establish future therapeutic avenues in targeting the microbiota to improve brain health and reduce the burden of CSVD.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia; (C.M.N.C.M.N.); (M.M.G.)
| | - Muhammad Danial Che Ramli
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40150, Selangor, Malaysia;
| | - Mazira Mohamad Ghazali
- Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia; (C.M.N.C.M.N.); (M.M.G.)
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Usman Jaffer
- Kulliyyah of Islamic Revealed Knowledge and Human Sciences, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia;
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.); (M.Z.M.)
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.); (M.Z.M.)
| | - Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
14
|
Lin W, Yang Y, Zhu Y, Pan R, Liu C, Pan J. Linking Gut Microbiota, Oral Microbiota, and Serum Metabolites in Insomnia Disorder: A Preliminary Study. Nat Sci Sleep 2024; 16:1959-1972. [PMID: 39664229 PMCID: PMC11633293 DOI: 10.2147/nss.s472675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose Despite recent findings suggesting an altered gut microbiota in those suffering from insomnia disorder (ID), research into the gut microbiota, oral microbiota, serum metabolites, and their interactions in patients with ID is sparse. Patients and Methods We collected a total of 114 fecal samples, 133 oral cavity samples and 20 serum samples to characterize the gut microbiota, oral microbiota and serum metabolites in a cohort of 76 ID patients (IDs) and 59 well-matched healthy controls (HCs). We assessed the microbiota as potentially biomarkers for ID for ID by 16S rDNA sequencing and elucidated the interactions involving gut microbiota, oral microbiota and serum metabolites in ID in conjunction with untargeted metabolomics. Results Gut and oral microbiota of IDs were dysbiotic. Gut and oral microbial biomarkers could be used to differentiate IDs from HCs. Eleven significantly altered serum metabolites, including adenosine, phenol, and phenol sulfate, differed significantly between groups. In multi-omics analyses, adenosine showed a positive correlation with genus_Lachnospira (p=0.029) and total sleep time (p=0.016). Additionally, phenol and phenol sulphate had a negative correlation with genus_Coprococcus (p=0.0059; p=0.0059) and a positive correlation with Pittsburgh Sleep Quality Index (p=0.006; p=0.006) and Insomnia Severity Index (p=0.021; p=0.021). Conclusion Microbiota and serum metabolite changes in IDs are strongly correlated with clinical parameters, implying mechanistic links between altered bacteria, serum metabolites and ID. This study offers novel perspective into the interaction among gut microbiota, oral microbiota, and serum metabolites for ID.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Neurology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523000, People’s Republic of China
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Yifan Yang
- Sleep Medicine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Yurong Zhu
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523000, People’s Republic of China
| | - Rong Pan
- Department of Psychology, The Third People’s Hospital of Zhaoqing, Zhaoqing, Guangdong Province, 526060, People’s Republic of China
| | - Chaonan Liu
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
15
|
Tang M, Wu Y, Liang J, Yang S, Huang Z, Hu J, Yang Q, Liu F, Li S. Gut microbiota has important roles in the obstructive sleep apnea-induced inflammation and consequent neurocognitive impairment. Front Microbiol 2024; 15:1457348. [PMID: 39712898 PMCID: PMC11659646 DOI: 10.3389/fmicb.2024.1457348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a state of sleep disorder, characterized by repetitive episodes of apnea and chronic intermittent hypoxia. OSA has an extremely high prevalence worldwide and represents a serious challenge to public health, yet its severity is frequently underestimated. It is now well established that neurocognitive dysfunction, manifested as deficits in attention, memory, and executive functions, is a common complication observed in patients with OSA, whereas the specific pathogenesis remains poorly understood, despite the likelihood of involvement of inflammation. Here, we provide an overview of the current state of the art, demonstrating the intimacy of OSA with inflammation and cognitive impairment. Subsequently, we present the recent findings on the investigation of gut microbiota alteration in the OSA conditions, based on both patients-based clinical studies and animal models of OSA. We present an insightful discussion on the role of changes in the abundance of specific gut microbial members, including short-chain fatty acid (SCFA)-producers and/or microbes with pathogenic potential, in the pathogenesis of inflammation and further cognitive dysfunction. The transplantation of fecal microbiota from the mouse model of OSA can elicit inflammation and neurobehavioral disorders in naïve mice, thereby validating the causal relationship to inflammation and cognitive abnormality. This work calls for greater attention on OSA and the associated inflammation, which require timely and effective therapy to protect the brain from irreversible damage. This work also suggests that modification of the gut microbiota using prebiotics, probiotics or fecal microbiota transplantation may represent a potential adjuvant therapy for OSA.
Collapse
Affiliation(s)
- Mingxing Tang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Yongliang Wu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Junyi Liang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Shuai Yang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Zuofeng Huang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Jing Hu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Qiong Yang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Fei Liu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Shuo Li
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
16
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
17
|
Han Z, Wang L, Zhu H, Tu Y, He P, Li B. Uncovering the effects and mechanisms of tea and its components on depression, anxiety, and sleep disorders: A comprehensive review. Food Res Int 2024; 197:115191. [PMID: 39593401 DOI: 10.1016/j.foodres.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024]
Abstract
Depression, anxiety and sleep disorders are prevalent psychiatric conditions worldwide, significantly impacting the physical and mental well-being of individuals. The treatment of these conditions poses various challenges, including limited efficacy and potential side effects. Tea, a globally recognized healthful beverage, contains a variety of active compounds. Studies have shown that consuming tea or ingesting its certain active ingredients have a beneficial impact on the mental health issues mentioned above. While the effects of tea on physical health are well-documented, there remains a gap in our systematic understanding of its impact on mental health. This article offers a thorough overview of animal, clinical, and epidemiological studies examining tea and its components in the treatment of depression, anxiety, and sleep disorders, and summarizes the associated molecular mechanisms. The active ingredients in tea, including L-theanine, γ-aminobutyric acid (GABA), arginine, catechins, theaflavins, caffeine, theacrine, and several volatile compounds, may help improve depression, anxiety, and sleep disorders. The underlying molecular mechanisms involve the regulation of neurotransmitters, including monoamines, GABA, and brain-derived neurotrophic factor (BDNF), as well as the suppression of oxidative stress and inflammation. Additionally, these ingredients may influence the microbiota-gut-brain (MGB) axis and the hypothalamic-pituitary-adrenal (HPA) axis. This review provides valuable insights into the effects and mechanisms by which tea and its components regulate depression, anxiety, and sleep disorders, laying the groundwork for further research into relevant mechanisms and the development of tea-based mental health products.
Collapse
Affiliation(s)
- Ziyi Han
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
18
|
Gao F, Ding L, Du G. Short sleep time has a greater impact on the gut microbiota of female. Sleep Breath 2024; 29:18. [PMID: 39607448 DOI: 10.1007/s11325-024-03193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND/OBJECTIVE Short sleep duration (SSD) affects people's health in multiple ways. This study attempted to explore the effect of SSD on the gut microbiota. METHODS In the American Gut Project Database, 361 individuals (without troubled by disease recently) with less than 6 h of sleep per day were obtained and matched with normal sleep time individuals according to gender, age, and BMI. Furthermore, the raw data of 16s rRNA in feces were downloaded and analyzed using QIIME2, and STAMP was used for data statistics. PICRUST2 was used for predicting the alteration of microbial function. RESULTS The SSD did not affect the microbial α-diversity. SSD increased the abundance of the phylum Verrucomicrobia and the families Rikenellaceae, Verrucomicrobiaceae, and S24-7, and decrased the Coriobacteriaceae. Moreover, PICRUST2 predicted that SSD affected 15 metabolic pathways. Subgroup analyses showed that SSD had more significant effects on the microbiota in normal-weight females. CONCLUSION SSD substantially modifies the abundance of specific gut microbiota taxa, exerting a pronounced influence particularly on females, highlighting the need for further investigation into the bidirectional relationship between sleep patterns and gut microbiota.
Collapse
Affiliation(s)
- Fangfang Gao
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Linwei Ding
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Guankui Du
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China.
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China.
| |
Collapse
|
19
|
de Assis LVM, Kramer A. Circadian de(regulation) in physiology: implications for disease and treatment. Genes Dev 2024; 38:933-951. [PMID: 39419580 PMCID: PMC11610937 DOI: 10.1101/gad.352180.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Time plays a crucial role in the regulation of physiological processes. Without a temporal control system, animals would be unprepared for cyclic environmental changes, negatively impacting their survival. Experimental studies have demonstrated the essential role of the circadian system in the temporal coordination of physiological processes. Translating these findings to humans has been challenging. Increasing evidence suggests that modern lifestyle factors such as diet, sedentarism, light exposure, and social jet lag can stress the human circadian system, contributing to misalignment; i.e., loss of phase coherence across tissues. An increasing body of evidence supports the negative impact of circadian disruption on several human health parameters. This review aims to provide a comprehensive overview of how circadian disruption influences various physiological processes, its long-term health consequences, and its association with various diseases. To illustrate the relevant consequences of circadian disruption, we focused on describing the many physiological consequences faced by shift workers, a population known to experience high levels of circadian disruption. We also discuss the emerging field of circadian medicine, its founding principles, and its potential impact on human health.
Collapse
Affiliation(s)
| | - Achim Kramer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, Laboratory of Chronobiology, Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
20
|
Liu L, Zhu JW, Wu JL, Li MZ, Lu ML, Yu Y, Pan L. Insomnia and intestinal microbiota: a narrative review. Sleep Breath 2024; 29:10. [PMID: 39589434 DOI: 10.1007/s11325-024-03206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE The intestinal microbiota and insomnia interact through the microbiota-gut-brain axis. The purpose of this review is to summarize and analyze the changes of intestinal microbiota in insomnia, the interaction mechanisms between intestinal microbiota and insomnia and the treatment methods based on the role of microbiota regulation in insomnia, in order to reveal the feasibility of artificial intervention of intestinal microbiota to improve insomnia. METHODS Pubmed/ Embase were searched through March 2024 to explore the relevant studies, which included the gut microbiota characteristics of insomnia patients, the mechanisms of interaction between insomnia and gut microbiota, and the relationship between gut microbiota and insomnia treatment. RESULTS Numerous studies implicated insomnia could induce intestinal microbiota disorder by activating the immune response, the hypothalamic-pituitary-adrenal axis, the neuroendocrine system, and affecting bacterial metabolites, resulting in intestinal ecological imbalance, intestinal barrier destruction and increased permeability. The intestinal microbiota exerted an influence on the central nervous system through its interactions with intestinal neurons, releasing neurotransmitters and inflammatory factors, which in turn, can exacerbate symptoms of insomnia. Artificial interventions of gut microbiota included probiotics, traditional Chinese medicine, fecal microbiota transplantation, diet and exercise, whose main pathway of action is to improve sleep by affecting the release of neurotransmitters and gut microbial metabolites. CONCLUSION There is an interaction between insomnia and gut microbiota, and it is feasible to diagnose and treat insomnia by focusing on changes in the gut microbiota of patients with insomnia. Large cross-sectional studies and fecal transplant microbiota studies are still needed in the future to validate its safety and efficacy.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Ji-Wei Zhu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Jing-Lin Wu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Ming-Zhen Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Man-Lu Lu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Yan Yu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China.
| | - Lei Pan
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, 256603, China.
| |
Collapse
|
21
|
Szentirmai É, Buckley K, Massie AR, Kapás L. Lipopolysaccharide-mediated effects of the microbiota on sleep and body temperature. Sci Rep 2024; 14:27378. [PMID: 39521828 PMCID: PMC11550806 DOI: 10.1038/s41598-024-78431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Recent research suggests that microbial molecules translocated from the intestinal lumen into the host's internal environment may play a role in various physiological functions, including sleep. Previously, we identified that butyrate, a short-chain fatty acid produced by intestinal bacteria, and lipoteichoic acid, a cell wall component of gram-positive bacteria, induce sleep when their naturally occurring translocation is mimicked by direct delivery into the portal vein. Building upon these findings, we aimed to explore the sleep signaling potential of intraportally administered lipopolysaccharide (LPS), a primary component of gram-negative bacterial cell walls, in rats. Low dose of LPS (1 μg/kg) increased sleep duration and prolonged fever, without affecting systemic LPS levels. Interestingly, administering LPS systemically outside the portal region at a dose 20 times higher did not affect sleep, indicating a localized sensitivity within the hepatoportal region for the sleep and febrile effects of LPS. Furthermore, both the sleep- and fever-inducing effects of LPS were inhibited by indomethacin, a prostaglandin synthesis inhibitor, and replicated by intraportal administration of prostaglandin E2 or arachidonic acid, suggesting the involvement of the prostaglandin system in mediating these actions.
Collapse
Affiliation(s)
- Éva Szentirmai
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, 412 E Spokane Falls Blvd, Spokane, WA, 99210, USA.
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.
| | - Katelin Buckley
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, 412 E Spokane Falls Blvd, Spokane, WA, 99210, USA
| | - Ashley R Massie
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, 412 E Spokane Falls Blvd, Spokane, WA, 99210, USA
| | - Levente Kapás
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, 412 E Spokane Falls Blvd, Spokane, WA, 99210, USA
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| |
Collapse
|
22
|
Souza JFT, Monico-Neto M, Tufik S, Antunes HKM. Sleep Debt and Insulin Resistance: What's Worse, Sleep Deprivation or Sleep Restriction? Sleep Sci 2024; 17:e272-e280. [PMID: 39268336 PMCID: PMC11390169 DOI: 10.1055/s-0044-1782173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/05/2023] [Indexed: 09/15/2024] Open
Abstract
Objective To evaluate which condition of sleep debt has a greater negative impact on insulin resistance: sleep deprivation for 24 hours or 4 hours of sleep restriction for 4 nights. Materials and Methods In total, 28 healthy male subjects aged 18 to 40 years were recruited and randomly allocated to two groups: sleep deprivation (SD) and sleep restriction (SR). Each group underwent two conditions: regular sleep (11 pm to 7 am ) and total sleep deprivation for 24 hours (SD); regular sleep (11 pm to 7 am ) and 4 nights of sleep restriction (SR) (1 am to 5 am ). The oral glucose tolerance test (OGTT) was performed, and baseline glucose, insulin, free fatty acids (FFAs), and cortisol were measured. In addition, the area under the curve (AUC) for glucose and insulin, the homeostasis model assessment of insulin resistance (HOMA-IR), and the Matsuda Index (Insulin Sensitivity Index, ISI) were calculated. Results Glucose and insulin had a similar pattern between groups, except at the baseline, when insulin was higher in the sleep debt condition of the SR when compared with the SD ( p < 0.01). In the comparison between regular sleep and sleep debt, the SD had a higher insulin AUC ( p < 0.01) and FFAs ( p = 0.03) after sleep deprivation, and insulin and the insulin AUC increased ( p < 0.01 for both), while the ISI decreased ( p = 0.02) after sleep restriction in the SR. In baseline parameters covariate by the condition of regular sleep, insulin ( p = 0.02) and the HOMA-IR ( p < 0.01) were higher, and cortisol ( p = 0.04) was lower after sleep restriction when compared with sleep deprivation. Conclusion Sleep restriction for 4 consecutive nights is more detrimental to energy metabolism because of the higher insulin values and insulin resistance compared with an acute period of sleep deprivation of 24 hours.
Collapse
Affiliation(s)
- Jorge Fernando Tavares Souza
- Departamento de Psicobiologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Marcos Monico-Neto
- Departamento de Psicobiologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Hanna Karen Moreira Antunes
- Departamento de Psicobiologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
- Department of Biosciences, Instituto de Saúde e Sociedade (ISS), Universidade Federal de São Paulo (Unifesp), Santos, SP, Brazil
| |
Collapse
|
23
|
Ren H, Kong X, Zhang Y, Deng F, Li J, Zhao F, Li P, Pei K, Tan J, Cheng Y, Wang Y, Zhang L, Wang Y, Hao X. The therapeutic potential of Ziziphi Spinosae Semen and Polygalae Radix in insomnia management: Insights from gut microbiota and serum metabolomics techniques. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118255. [PMID: 38670402 DOI: 10.1016/j.jep.2024.118255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ziziphi Spinosae Semen and Polygalae Radix (ZSS-PR) constitute a traditional Chinese herbal combination with notable applications in clinical and experimental settings due to their evident sedative and calming effects. Aligned with traditional Chinese medicine principles, Ziziphi Spinosae Semen supports cardiovascular health, nourishes the liver, and induces mental tranquillity. Simultaneously, Polygalae Radix elicits calming effects, fosters clear thinking, and reinstates proper coordination between the heart and kidneys. ZSS-PR is commonly employed as a therapeutic intervention for various insomnia types, demonstrating distinct clinical efficacy. Our previous study findings provide evidence that ZSS-PR administration significantly reduces sleep onset latency, increases overall sleep duration, and improves abnormal neurotransmitter levels in a murine insomnia model. AIM OF STUDY This investigation aimed to scrutinize the intrinsic regulatory mechanism of ZSS-PR in managing insomnia using gut microbiota and serum metabolomics techniques. MATERIALS AND METHODS Mice were given DL-4-Chlorophenylalanine to induce insomnia and then treated with ZSS-PR. The open-field test assessed the animals' spontaneous activity. Concentrations of neurotransmitters, endocrine hormones, and cytokines in the duodenum were measured using enzyme linked immunosorbent assay, and brain histopathology was evaluated with H&E staining. The impact of ZSS-PR on the metabolic profile was examined by liquid chromatography couped to high resolution mass spectrometry, and 16S rDNA sequencing was used to study the influence of ZSS-PR on the gut microbiota. Additionally, the content of short-chain fatty acids (SCFAs) was analyzed by GC-MS. Finally, correlation analysis investigated relationships between biochemical markers, metabolites, SCFAs, and gut microbiota. RESULTS ZSS-PR treatment significantly increased movement time and distance in mice with insomnia and improved pathological impairments in the cerebral cortex and hippocampus. It also restored abnormal levels of biochemical markers in the gut of insomnia-afflicted mice, including 5-hydroxytryptamine, dopamine, gastrin, melatonin, tumour necrosis factor-α, and interleukin-1β. Metabolomics findings showed that ZSS-PR had a significant restorative effect on 15 endogenous metabolites in mice with insomnia. Furthermore, ZSS-PR primarily influenced five metabolic pathways, such as phenylalanine, tyrosine, and tryptophan biosynthesis, glutamine, and glutamate metabolism. Additionally, gut microbiota analysis revealed notable alterations in both diversity and microbial composition after ZSS-PR treatment. These changes were primarily attributed to the relative abundances of microbiota, including Firmicutes, Bacteroidota, Fusobacteriota, Muribaculaceae_unclassified, and Ligilactobacillus. The results of SCFAs analysis demonstrated that ZSS-PR effectively restored abnormal levels of acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid, and valeric acid in insomniac mice. Subsequent correlation analysis revealed that microbiota show obvious correlations with both biochemical markers and metabolites. CONCLUSIONS The results provide compelling evidence that ZSS-PR effectively mitigates abnormal activity, reduces cerebral pathological changes, and restores abnormal levels of neurotransmitters, endocrine hormones, and cytokines in mice with insomnia. The underlying mechanism is intricately linked to the modulation of gut microbiota and endogenous metabolic pathways.
Collapse
Affiliation(s)
- Haiqin Ren
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Xiangpeng Kong
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yue Zhang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Fanying Deng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Jianli Li
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Fuxia Zhao
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Pei Li
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Ke Pei
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Jinyan Tan
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yangang Cheng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Yan Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China
| | - Lu Zhang
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, No. 75, section 1, Jinci Road, WanBailin District, Taiyuan, 030024, China
| | - Yingli Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Xuliang Hao
- Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, No. 75, section 1, Jinci Road, WanBailin District, Taiyuan, 030024, China.
| |
Collapse
|
24
|
Wang H, Zhan J, Jiang H, Jia H, Pan Y, Zhong X, Huo J, Zhao S. Metagenomics-Metabolomics Exploration of Three-Way-Crossbreeding Effects on Rumen to Provide Basis for Crossbreeding Improvement of Sheep Microbiome and Metabolome of Sheep. Animals (Basel) 2024; 14:2256. [PMID: 39123781 PMCID: PMC11311065 DOI: 10.3390/ani14152256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of this experiment was to explore the effects of three-way hybridization on rumen microbes and metabolites in sheep using rumen metagenomics and metabolomics. Healthy Hu and CAH (Charolais × Australian White × Hu) male lambs of similar birth weight and age were selected for short-term fattening after intensive weaning to collect rumen fluid for sequencing. Rumen metagenomics diversity showed that Hu and CAH sheep were significantly segregated at the species, KEGG-enzyme, and CAZy-family levels. Moreover, the CAH significantly increased the ACE and Chao1 indices. Further, correlation analysis of the abundance of the top 80 revealed that the microorganisms were interrelated at the species, KEGG-enzyme, and CAZy-family levels. Overall, the microbiome significantly affected metabolites of the top five pathways, with the strongest correlation found with succinic acid. Meanwhile, species-level microbial markers significantly affected rumen differential metabolites. In addition, rumen microbial markers in Hu sheep were overall positively correlated with down-regulated metabolites and negatively correlated with up-regulated metabolites. In contrast, rumen microbial markers in CAH lambs were overall negatively correlated with down-regulated metabolites and positively correlated with up-regulated metabolites. These results suggest that three-way crossbreeding significantly affects rumen microbial community and metabolite composition, and that significant interactions exist between rumen microbes and metabolites.
Collapse
Affiliation(s)
- Haibo Wang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinshun Zhan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haoyun Jiang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haobin Jia
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Yue Pan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaojun Zhong
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Junhong Huo
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
25
|
Zhao N, Chen X, Chen QG, Liu XT, Geng F, Zhu MM, Yan FL, Zhang ZJ, Ren QG. NLRP3-mediated autophagy dysfunction links gut microbiota dysbiosis to tau pathology in chronic sleep deprivation. Zool Res 2024; 45:857-874. [PMID: 39004863 PMCID: PMC11298670 DOI: 10.24272/j.issn.2095-8137.2024.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Emerging evidence indicates that sleep deprivation (SD) can lead to Alzheimer's disease (AD)-related pathological changes and cognitive decline. However, the underlying mechanisms remain obscure. In the present study, we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD. Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis, elevated NLRP3 inflammasome expression, GSK-3β activation, autophagy dysfunction, and tau hyperphosphorylation in the hippocampus. Colonization with the "SD microbiota" replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice. Remarkably, both the deletion of NLRP3 in NLRP3 -/- mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux, suppressed tau hyperphosphorylation, and ameliorated cognitive deficits induced by chronic SD, while GSK-3β activity was not regulated by the NLRP3 inflammasome in chronic SD. Notably, deletion of NLRP3 reversed NLRP3 inflammasome activation, autophagy deficits, and tau hyperphosphorylation induced by GSK-3β activation in primary hippocampal neurons, suggesting that GSK-3β, as a regulator of NLRP3-mediated autophagy dysfunction, plays a significant role in promoting tau hyperphosphorylation. Thus, gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction, ultimately leading to cognitive deficits. Overall, these findings highlight GSK-3β as a regulator of NLRP3-mediated autophagy dysfunction, playing a critical role in promoting tau hyperphosphorylation.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiu Chen
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Qiu-Gu Chen
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xue-Ting Liu
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fan Geng
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Meng-Meng Zhu
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fu-Ling Yan
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhi-Jun Zhang
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Qing-Guo Ren
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
| |
Collapse
|
26
|
Wang L, Liu H, Zhou L, Zheng P, Li H, Zhang H, Liu W. Association of Obstructive Sleep Apnea with Nonalcoholic Fatty Liver Disease: Evidence, Mechanism, and Treatment. Nat Sci Sleep 2024; 16:917-933. [PMID: 39006248 PMCID: PMC11244635 DOI: 10.2147/nss.s468420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Obstructive sleep apnea (OSA), a common sleep-disordered breathing condition, is characterized by intermittent hypoxia (IH) and sleep fragmentation and has been implicated in the pathogenesis and severity of nonalcoholic fatty liver disease (NAFLD). Abnormal molecular changes mediated by IH, such as high expression of hypoxia-inducible factors, are reportedly involved in abnormal pathophysiological states, including insulin resistance, abnormal lipid metabolism, cell death, and inflammation, which mediate the development of NAFLD. However, the relationship between IH and NAFLD remains to be fully elucidated. In this review, we discuss the clinical correlation between OSA and NAFLD, focusing on the molecular mechanisms of IH in NAFLD progression. We meticulously summarize clinical studies evaluating the therapeutic efficacy of continuous positive airway pressure treatment for NAFLD in OSA. Additionally, we compile potential molecular biomarkers for the co-occurrence of OSA and NAFLD. Finally, we discuss the current research progress and challenges in the field of OSA and NAFLD and propose future directions and prospects.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
27
|
Sharon O, Ben Simon E, Shah VD, Desel T, Walker MP. The new science of sleep: From cells to large-scale societies. PLoS Biol 2024; 22:e3002684. [PMID: 38976664 PMCID: PMC11230563 DOI: 10.1371/journal.pbio.3002684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
In the past 20 years, more remarkable revelations about sleep and its varied functions have arguably been made than in the previous 200. Building on this swell of recent findings, this essay provides a broad sampling of selected research highlights across genetic, molecular, cellular, and physiological systems within the body, networks within the brain, and large-scale social dynamics. Based on this raft of exciting new discoveries, we have come to realize that sleep, in this moment of its evolution, is very much polyfunctional (rather than monofunctional), yet polyfunctional for reasons we had never previously considered. Moreover, these new polyfunctional insights powerfully reaffirm sleep as a critical biological, and thus health-sustaining, requisite. Indeed, perhaps the only thing more impressive than the unanticipated nature of these newly emerging sleep functions is their striking divergence, from operations of molecular mechanisms inside cells to entire group societal dynamics.
Collapse
Affiliation(s)
- Omer Sharon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Eti Ben Simon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Vyoma D. Shah
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Tenzin Desel
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Matthew P. Walker
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
28
|
Napoli TF, Cortez RV, Sparvoli LG, Taddei CR, Salles JEN. Unveiling contrasts in microbiota response: A1c control improves dysbiosis in low-A1c T2DM, but fails in high-A1c cases-a key to metabolic memory? BMJ Open Diabetes Res Care 2024; 12:e003964. [PMID: 38937275 PMCID: PMC11216069 DOI: 10.1136/bmjdrc-2023-003964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is associated with dysbiosis in the gut microbiota (MB). Individually, each medication appears to partially correct this. However, there are no studies on the response of the MB to changes in A1c. Therefore, we investigated the MB's response to intensive glycemic control. RESEARCH DESIGN AND METHODS We studied two groups of patients with uncontrolled T2DM, one group with an A1c <9% (18 patients-G1) and another group with an A1c >9% (13 patients-G2), aiming for at least a 1% reduction in A1c. We collected A1c and fecal samples at baseline, 6, and 12 months. G1 achieved an average A1c reduction of 1.1%, while G2 a reduction of 3.13%. RESULTS G1's microbiota saw a decrease in Erysipelotrichaceae_UCG_003 and in Mollicutes order (both linked to metabolic syndrome and associated comorbidities). G2, despite having a more significant reduction in A1c, experienced an increase in the proinflammatory bacteria Megasphaera and Acidaminococcus, and only one beneficial genus, Phascolarctobacterium, increased, producer of butyrate. CONCLUSION Despite a notable A1c outcome, G2 could not restore its MB. This seeming resistance to change, leading to a persistent inflammation component found in G2, might be part of the "metabolic memory" in T2DM.
Collapse
Affiliation(s)
- Thiago Fraga Napoli
- Serviço de Endocrinologia e Metabologia, Hospital Servidor Público Estadual de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Ramon V Cortez
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Carla R Taddei
- Department of Clinical Analysis and Toxicology, University of Sao Paulo, Sao Paulo, Brazil
| | - Joao Eduardo Nunes Salles
- Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Przewłócka K, Korewo-Labelle D, Berezka P, Karnia MJ, Kaczor JJ. Current Aspects of Selected Factors to Modulate Brain Health and Sports Performance in Athletes. Nutrients 2024; 16:1842. [PMID: 38931198 PMCID: PMC11206260 DOI: 10.3390/nu16121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This review offers a comprehensive evaluation of current aspects related to nutritional strategies, brain modulation, and muscle recovery, focusing on their applications and the underlying mechanisms of physiological adaptation for promoting a healthy brain, not only in athletes but also for recreationally active and inactive individuals. We propose that applying the rule, among others, of good sleep, regular exercise, and a properly balanced diet, defined as "SPARKS", will have a beneficial effect on the function and regeneration processes of the gut-brain-muscle axis. However, adopting the formula, among others, of poor sleep, stress, overtraining, and dysbiosis, defined as "SMOULDER", will have a detrimental impact on the function of this axis and consequently on human health as well as on athletes. Understanding these dynamics is crucial for optimizing brain health and cognitive function. This review highlights the significance of these factors for overall well-being, suggesting that adopting the "SPARKS" approach may benefit not only athletes but also older adults and individuals with health conditions.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Division of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Daria Korewo-Labelle
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Paweł Berezka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| |
Collapse
|
30
|
Deyang T, Baig MAI, Dolkar P, Hediyal TA, Rathipriya AG, Bhaskaran M, PandiPerumal SR, Monaghan TM, Mahalakshmi AM, Chidambaram SB. Sleep apnoea, gut dysbiosis and cognitive dysfunction. FEBS J 2024; 291:2519-2544. [PMID: 37712936 DOI: 10.1111/febs.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Sleep disorders are becoming increasingly common, and their distinct effects on physical and mental health require elaborate investigation. Gut dysbiosis (GD) has been reported in sleep-related disorders, but sleep apnoea is of particular significance because of its higher prevalence and chronicity. Cumulative evidence has suggested a link between sleep apnoea and GD. This review highlights the gut-brain communication axis that is mediated via commensal microbes and various microbiota-derived metabolites (e.g. short-chain fatty acids, lipopolysaccharide and trimethyl amine N-oxide), neurotransmitters (e.g. γ-aminobutyric acid, serotonin, glutamate and dopamine), immune cells and inflammatory mediators, as well as the vagus nerve and hypothalamic-pituitary-adrenal axis. This review also discusses the pathological role underpinning GD and altered gut bacterial populations in sleep apnoea and its related comorbid conditions, particularly cognitive dysfunction. In addition, the review examines the preclinical and clinical evidence, which suggests that prebiotics and probiotics may potentially be beneficial in sleep apnoea and its comorbidities through restoration of eubiosis or gut microbial homeostasis that regulates neural, metabolic and immune responses, as well as physiological barrier integrity via the gut-brain axis.
Collapse
Affiliation(s)
- Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Md Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Center, University of Toledo Health Science Campus, OH, USA
| | - Seithikuruppu R PandiPerumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, UK
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| |
Collapse
|
31
|
Pala B, Pennazzi L, Nardoianni G, Fogacci F, Cicero AFG, Di Renzo L, Barbato E, Tocci G. Gut Microbiota Dysbiosis and Sleep Disorders: Culprit in Cardiovascular Diseases. J Clin Med 2024; 13:3254. [PMID: 38892965 PMCID: PMC11173264 DOI: 10.3390/jcm13113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Over the past decade, the gut microbiome (GM) has progressively demonstrated to have a central role in human metabolism, immunity, and cardiometabolic risk. Likewise, sleep disorders showed an impact on individual health and cardiometabolic risk. Recent studies seem to suggest multi-directional relations among GM, diet, sleep, and cardiometabolic risk, though specific interactions are not fully elucidated. We conducted a systematic review to synthesize the currently available evidence on the potential interactions between sleep and GM and their possible implications on cardiometabolic risk. Methods: A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for reporting systematic reviews and meta-analyses, including articles from January 2016 until November 2022. Narrative syntheses were employed to describe the results. Results: A total of 8 studies were selected according to these criteria. Our findings indicated that the sleep disorder and/or the acute circadian rhythm disturbance caused by sleep-wake shifts affected the human GM, mainly throughout microbial functionality. Conclusions: Sleep disorders should be viewed as cardiovascular risk factors and targeted for preventive intervention. More research and well-designed studies are needed to completely assess the role of sleep deprivation in the multi-directional relationship between GM and cardiometabolic risk.
Collapse
Affiliation(s)
- Barbara Pala
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant’Andrea Hospital, 00189 Rome, Italy (G.N.); (E.B.)
| | - Laura Pennazzi
- Department of Obstetric Sciences, Faculty of Medicine and Surgery, Catholic University Sacro Cuore, 00168 Rome, Italy
| | - Giulia Nardoianni
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant’Andrea Hospital, 00189 Rome, Italy (G.N.); (E.B.)
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, University of Bologna, Sant’Orsola-Malpighi Hospital, 4013 Bologna, Italy (A.F.G.C.)
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, University of Bologna, Sant’Orsola-Malpighi Hospital, 4013 Bologna, Italy (A.F.G.C.)
- Cardiovascular Medicine Unit, IRCCS AOUBO, 40138 Bologna, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Emanuele Barbato
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant’Andrea Hospital, 00189 Rome, Italy (G.N.); (E.B.)
| | - Giuliano Tocci
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant’Andrea Hospital, 00189 Rome, Italy (G.N.); (E.B.)
| |
Collapse
|
32
|
Huang H, Yu T, Liu C, Yang J, Yu J. Poor sleep quality and overweight/obesity in healthcare professionals: a cross-sectional study. Front Public Health 2024; 12:1390643. [PMID: 38873287 PMCID: PMC11169736 DOI: 10.3389/fpubh.2024.1390643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Objective This study aimed to analyze the relationship between the sleep quality of healthcare professionals and the incidence of overweight and obesity, exploring the potential impact of sleep quality on the onset of overweight and obesity in order to provide a scientific basis for formulating effective health intervention measures. Methods A convenience sampling method was used to conduct a survey on the sleep characteristics and obesity status among healthcare professionals at Peking Union Medical College Hospital and Tianjin Dongli District Traditional Chinese Medicine Hospital. The survey was conducted via online questionnaires, which included demographic data, the Pittsburgh Sleep Quality Index (PSQI), height, weight, and related sleep, exercise, and dietary habits. Univariate and multivariate logistic regression analyses were applied to study the relationship between sleep quality and overweight/obesity among healthcare professionals. Results A total of 402 questionnaires were distributed, with a 100% retrieval rate, yielding 402 valid questionnaires. The average body mass index of the 402 participants was 23.22 ± 3.87 kg/m^2. Among them, 144 cases were overweight or obese, accounting for 35.8% (144/402) of the total. The prevalence of poor sleep quality among healthcare professionals was 27.4% (110/402), with an average PSQI score of 8.37 ± 3.624. The rate of poor sleep quality was significantly higher in the overweight and obese group compared to the normal weight group (36.1% vs. 22.5%, p = 0.003). The multivariate analysis indicated that gender, marital status, lower education level, sleep duration (odds ratio [OR] =1.411, 95% confidence interval [CI] 1.043-1.910, p = 0.026), and sleep disturbances (OR = 1.574, 95%CI 1.123-2.206, p = 0.008) were significant risk factors for overweight and obesity among healthcare professionals. Conclusion Overweight or obese healthcare professionals had poorer sleep quality compared to those with a normal weight. Sleep duration and sleep disorders were identified as independent risk factors for overweight or obesity in healthcare professionals. Increasing sleep duration and improving sleep disorders may play a positive role in controlling overweight and obesity among healthcare professionals.
Collapse
Affiliation(s)
- Hongyun Huang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tian Yu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chengyu Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Yang
- Department of General Surgery, Dongli District Traditional Chinese Medicine Hospital, Tianjin, China
| | - Jianchun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Ohkuma T, Iwase M, Kitazono T. Sleep duration and its association with constipation in patients with diabetes: The fukuoka diabetes registry. PLoS One 2024; 19:e0302430. [PMID: 38776319 PMCID: PMC11111002 DOI: 10.1371/journal.pone.0302430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
AIMS Shorter and longer sleep durations are associated with adverse health consequences. However, available evidence on the association of sleep duration with constipation is limited, especially in patients with diabetes, who are at a high risk of both conditions. This study aimed to examine the association between sleep duration and constipation in patients with type 2 diabetes. METHODS A total of 4,826 patients with type 2 diabetes were classified into six groups according to sleep duration: <4.5, 4.5-5.4, 5.5-6.4, 6.5-7.4, 7.5-8.4, and ≥8.5 hours/day. The odds ratios for the presence of constipation, defined as a defecation frequency <3 times/week and/or laxative use, were calculated using a logistic regression model. RESULTS Shorter and longer sleep durations were associated with a higher likelihood of constipation than an intermediate duration (6.5-7.4 hours/day). This U-shaped association persisted after adjusting for confounding factors, including lifestyle behavior, measures of obesity and glycemic control, and comorbidities. Broadly identical findings were observed when decreased defecation frequency and laxative use were individually assessed. CONCLUSIONS This study shows a U-shaped association between sleep duration and constipation in patients with type 2 diabetes, and highlights the importance of assessing sleep duration in daily clinical practice.
Collapse
Affiliation(s)
- Toshiaki Ohkuma
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Iwase
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Diabetes Center, Hakujyuji Hospital, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Han Z, Yang X, Huang S. Sleep deprivation: A risk factor for the pathogenesis and progression of Alzheimer's disease. Heliyon 2024; 10:e28819. [PMID: 38623196 PMCID: PMC11016624 DOI: 10.1016/j.heliyon.2024.e28819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Sleep deprivation refers to an intentional or unintentional reduction in sleep time, resulting in insufficient sleep. It is often caused by sleep disorders, work demands (e.g., night shifts), and study pressure. Sleep deprivation promotes Aβ deposition and tau hyperphosphorylation, which is a risk factor for the pathogenesis and progression of Alzheimer's disease (AD). Recent research has demonstrated the potential involvement of sleep deprivation in both the pathogenesis and progression of AD through glial cell activation, the glial lymphatic system, orexin system, circadian rhythm system, inflammation, and the gut microbiota. Thus, investigating the molecular mechanisms underlying the association between sleep deprivation and AD is crucial, which may contribute to the development of preventive and therapeutic strategies for AD. This review aims to analyze the impact of sleep deprivation on AD, exploring the underlying pathological mechanisms that link sleep deprivation to the initiation and progression of AD, which offers a theoretical foundation for the development of drugs aimed at preventing and treating AD.
Collapse
Affiliation(s)
- Zhengyun Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingmao Yang
- Ji'nan Zhangqiu District Hospital of Traditional Chinese Medicine, Ji'nan, 250200, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Zhang N, Gao X, Li D, Xu L, Zhou G, Xu M, Peng L, Sun G, Pan F, Li Y, Ren R, Huang R, Yang Y, Wang Z. Sleep deprivation-induced anxiety-like behaviors are associated with alterations in the gut microbiota and metabolites. Microbiol Spectr 2024; 12:e0143723. [PMID: 38421192 PMCID: PMC10986621 DOI: 10.1128/spectrum.01437-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The present study aimed to characterize the gut microbiota and serum metabolome changes associated with sleep deprivation (SD) as well as to explore the potential benefits of multi-probiotic supplementation in alleviating SD-related mental health disorders. Rats were subjected to 7 days of SD, followed by 14 days of multi-probiotics or saline administration. Open-field tests were conducted at baseline, end of SD (day 7), and after 14 days of saline or multi-probiotic gavage (day 21). Metagenomic sequencing was conducted on fecal samples, and serum metabolites were measured by untargeted liquid chromatography tandem-mass spectrometry. At day 7, anxiety-like behaviors, including significant decreases in total movement distance (P = 0.0002) and staying time in the central zone (P = 0.021), were observed. In addition, increased levels of lipopolysaccharide (LPS; P = 0.028) and decreased levels of uridine (P = 0.018) and tryptophan (P = 0.01) were detected in rats after 7 days of SD. After SD, the richness of the gut bacterial community increased, and the levels of Akkermansia muciniphila, Muribaculum intestinale, and Bacteroides caecimuris decreased. The changes in the host metabolism and gut microbiota composition were strongly associated with the anxiety-like behaviors caused by SD. In addition, multi-probiotic supplementation for 14 days modestly improved the anxiety-like behaviors in SD rats but significantly reduced the serum level of LPS (P = 0.045). In conclusion, SD induces changes in the gut microbiota and serum metabolites, which may contribute to the development of chronic inflammatory responses and affect the gut-brain axis, causing anxiety-like behaviors. Probiotic supplementation significantly reduces serum LPS, which may alleviate the influence of chronic inflammation. IMPORTANCE The disturbance in the gut microbiome and serum metabolome induced by SD may be involved in anxiety-like behaviors. Probiotic supplementation decreases serum levels of LPS, but this reduction may be insufficient for alleviating SD-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Nana Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Gao
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Integrative Microecology Clinical Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Clinical Innovation & Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Donghao Li
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Lijuan Xu
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Guanzhou Zhou
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Lihua Peng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Gang Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Rongrong Ren
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Yunsheng Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Zikai Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Holzhausen EA, Peppard PE, Sethi AK, Safdar N, Malecki KC, Schultz AA, Deblois CL, Hagen EW. Associations of gut microbiome richness and diversity with objective and subjective sleep measures in a population sample. Sleep 2024; 47:zsad300. [PMID: 37988614 PMCID: PMC10926107 DOI: 10.1093/sleep/zsad300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
STUDY OBJECTIVES Alterations in gut microbiota composition have been associated with several conditions, and there is emerging evidence that sleep quantity and quality are associated with the composition of the gut microbiome. Therefore, this study aimed to assess the associations between several measures of sleep and the gut microbiome in a large, population-based sample. METHODS Data were collected from participants in the Survey of the Health of Wisconsin from 2016 to 2017 (N = 720). Alpha diversity was estimated using Chao1 richness, Shannon's diversity, and Inverse Simpson's diversity. Beta diversity was estimated using Bray-Curtis dissimilarity. Models for each of the alpha-diversity outcomes were calculated using linear mixed effects models. Permutational multivariate analysis of variance tests were performed to test whether gut microbiome composition differed by sleep measures. Negative binomial models were used to assess whether sleep measures were associated with individual taxa relative abundance. RESULTS Participants were a mean (SD) age of 55 (16) years and 58% were female. The sample was 83% non-Hispanic white, 10.6% non-Hispanic black, and 3.5% Hispanic. Greater actigraphy-measured night-to-night sleep duration variability, wake-after-sleep onset, lower sleep efficiency, and worse self-reported sleep quality were associated with lower microbiome richness and diversity. Sleep variables were associated with beta-diversity, including actigraphy-measured night-to-night sleep duration variability, sleep latency and efficiency, and self-reported sleep quality, sleep apnea, and napping. Relative abundance of several taxa was associated with night-to-night sleep duration variability, average sleep latency and sleep efficiency, and sleep quality. CONCLUSIONS This study suggests that sleep may be associated with the composition of the gut microbiome. These results contribute to the body of evidence that modifiable health habits can influence the human gut microbiome.
Collapse
Affiliation(s)
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Ajay K Sethi
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Nasia Safdar
- Department of Medicine and the William S. Middleton Memorial Veterans Hospital, University of Wisconsin, Madison, WI, USA
| | - Kristen C Malecki
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Amy A Schultz
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | | | - Erika W Hagen
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
37
|
Mao L, Kang J, Sun R, Liu J, Ge J, Ping W. Ecological succession of abundant and rare subcommunities during aerobic composting in the presence of residual amoxicillin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133456. [PMID: 38211525 DOI: 10.1016/j.jhazmat.2024.133456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Aerobic composting increases the content of soluble nutrients and facilitates the safe treatment of livestock manure. Although different taxa play crucial roles in maintaining ecological functionality, the succession patterns of community composition and assembly of rare and abundant subcommunities during aerobic composting under antibiotic stress and their contributions to ecosystem functionality remain unclear. Therefore, this study used 16 S rRNA gene sequencing technology to reveal the response mechanisms of diverse microbial communities and the assembly processes of abundant and rare taxa to amoxicillin during aerobic composting. The results indicated that rare taxa exhibited distinct advantages in terms of diversity, community composition, and ecological niche width compared with abundant taxa, highlighting their significance in maintaining ecological community dynamics. In addition, deterministic (heterogeneous selection) and stochastic processes (dispersal limitation) play roles in the community succession and functional dynamics of abundant and rare subcommunities. The findings of this study may contribute to a better understanding of the relative importance of deterministic and stochastic assembly processes in composting systems, and the ecological functions of diverse microbial communities, ultimately leading to improved ecological environment.
Collapse
Affiliation(s)
- Liangyang Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jiaxin Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
38
|
Szentirmai E, Buckley K, Massie AR, Kapas L. Lipopolysaccharide-Mediated Effects of the Microbiota on Sleep and Body Temperature. RESEARCH SQUARE 2024:rs.3.rs-3995260. [PMID: 38496422 PMCID: PMC10942547 DOI: 10.21203/rs.3.rs-3995260/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Recent research suggests that microbial molecules translocated from the intestinal lumen into the host's internal environment may play a role in various physiological functions, including sleep. Previously, we identified that butyrate, a short-chain fatty acid, produced by intestinal bacteria, and lipoteichoic acid, a cell wall component of gram-positive bacteria induce sleep when their naturally occurring translocation is mimicked by direct delivery into the portal vein. Building upon these findings, we aimed to explore the sleep signaling potential of intraportally administered lipopolysaccharide, a primary component of gram-negative bacterial cell walls, in rats. Results Low dose of lipopolysaccharide (1 μg/kg) increased sleep duration and prolonged fever, without affecting systemic lipopolysaccharide levels. Interestingly, administering LPS systemically outside the portal region at a dose 20 times higher did not affect sleep, indicating a localized sensitivity within the hepatoportal region, encompassing the portal vein and liver, for the sleep and febrile effects of lipopolysaccharide. Furthermore, both the sleep- and fever-inducing effects of LPS were inhibited by indomethacin, a prostaglandin synthesis inhibitor, and replicated by intraportal administration of prostaglandin E2 or arachidonic acid, suggesting the involvement of the prostaglandin system in mediating these actions. Conclusions These findings underscore the dynamic influence of lipopolysaccharide in the hepatoportal region on sleep and fever mechanisms, contributing to a complex microbial molecular assembly that orchestrates communication between the intestinal microbiota and brain. Lipopolysaccharide is a physiological component of plasma in both the portal and extra-portal circulation, with its levels rising in response to everyday challenges like high-fat meals, moderate alcohol intake, sleep loss and psychological stress. The increased translocation of lipopolysaccharide under such conditions may account for their physiological impact in daily life, highlighting the intricate interplay between microbial molecules and host physiology.
Collapse
|
39
|
Nôga DA, Meth EDMES, Pacheco AP, Tan X, Cedernaes J, van Egmond LT, Xue P, Benedict C. Habitual Short Sleep Duration, Diet, and Development of Type 2 Diabetes in Adults. JAMA Netw Open 2024; 7:e241147. [PMID: 38441893 PMCID: PMC10915681 DOI: 10.1001/jamanetworkopen.2024.1147] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/14/2024] [Indexed: 03/07/2024] Open
Abstract
Importance Understanding the interplay between sleep duration, dietary habits, and the risk of developing type 2 diabetes (T2D) is crucial for public health and diabetes prevention strategies. Objective To investigate the associations of type of diet and duration of sleep with the development of T2D. Design, Setting, and Participants Data derived from the UK Biobank baseline investigation (2006-2010) were analyzed for this cohort study between May 1 and September 30, 2023. The association between sleep duration and healthy dietary patterns with the risk of T2D was investigated during a median (IQR) follow-up of 12.5 (11.8-13.2) years (end of follow-up, September 30, 2021). Exposure For the analysis, 247 867 participants were categorized into 4 sleep duration groups: normal (7-8 hours per day), mild short (6 hours per day), moderate short (5 hours per day), and extreme short (3-4 hours per day). Their dietary habits were evaluated based on population-specific consumption of red meat, processed meat, fruits, vegetables, and fish, resulting in a healthy diet score ranging from 0 (unhealthiest) to 5 (healthiest). Main Outcomes and Measures Cox proportional hazards regression analysis was used to calculate hazard ratios (HRs) and 95% CIs for the development of T2D across various sleep duration groups and healthy diet scores. Results The cohort comprised 247 867 participants with a mean [SD] age of 55.9 [8.1] years, of whom 52.3% were female. During the follow-up, 3.2% of participants were diagnosed with T2D based on hospital registry data. Cox regression analysis, adjusted for confounding variables, indicated a significant increase in the risk of T2D among participants with 5 hours or less of daily sleep. Individuals sleeping 5 hours per day exhibited a 1.16 adjusted HR (95% CI, 1.05-1.28), and individuals sleeping 3 to 4 hours per day exhibited a 1.41 adjusted HR (95% CI, 1.19-1.68) compared with individuals with normal sleep duration. Furthermore, individuals with the healthiest dietary patterns had a reduced risk of T2D (HR, 0.75 [95% CI, 0.63-0.88]). The association between short sleep duration and increased risk of T2D persisted even for individuals following a healthy diet, but there was no multiplicative interaction between sleep duration and healthy diet score. Conclusions and Relevance In this cohort study involving UK residents, habitual short sleep duration was associated with increased risk of developing T2D. This association persisted even among participants who maintained a healthy diet. To validate these findings, further longitudinal studies are needed, incorporating repeated measures of sleep (including objective assessments) and dietary habits.
Collapse
Affiliation(s)
- Diana Aline Nôga
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health, Hangzhou, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Lieve Thecla van Egmond
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | |
Collapse
|
40
|
Huang B, Liang S, Li X, Xie Z, Yang R, Sun B, Xue J, Li B, Wang S, Shi H, Shi Y. Postweaning intermittent sleep deprivation enhances defensive attack in adult female mice via the microbiota-gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110915. [PMID: 38104921 DOI: 10.1016/j.pnpbp.2023.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Sleep is one of the most important physiological activities in life and promotes the growth and development of an individual. In modern society, sleep deprivation (SD), especially among adolescents, has become a common phenomenon. However, long-term SD severely affected adolescents' neurodevelopment leading to abnormal behavioral phenotypes. Clinical studies indicated that sleep problems caused increased aggressive behavior in adolescents. Aggressive behavior was subordinate to social behaviors, in which defensive attack was often the last line for survival. Meanwhile, increasing studies shown that gut microbiota regulated social behaviors by affecting specific brain regions via the gut-brain axis. However, whether postweaning intermittent SD is related to defensive attack in adulthood, and if so, whether it is mediated by the microbiota-gut-brain axis are still elusive. Combined with microbial sequencing and hippocampal metabolomics, the present study mainly investigated the long-term effects of postweaning intermittent SD on defensive attack in adult mice. Our study demonstrated that postweaning intermittent SD enhanced defensive attack and impaired long-term memory formation in adult female mice. Moreover, microbial sequencing and LC-MS analysis showed that postweaning intermittent SD altered the gut microbial composition and the hippocampal metabolic profile in female mice, respectively. Our attention has been drawn to the neuroactive ligand-receptor interaction pathway and related metabolites. In conclusion, our findings provide a new perspective on the relationship of early-life SD and defensive attack in adulthood, and also highlight the importance of sleep in early-life, especially in females.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Ziyu Xie
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiping Xue
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Bingyu Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
41
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
42
|
Dalton KR, Lee M, Wang Z, Zhao S, Parks CG, Beane-Freeman LE, Motsinger-Reif AA, London SJ. Occupational farm work activities influence workers' indoor home microbiome. ENVIRONMENTAL RESEARCH 2024; 243:117819. [PMID: 38052359 PMCID: PMC10872285 DOI: 10.1016/j.envres.2023.117819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor home environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. OBJECTIVES We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. METHODS Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008 to 2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 banned persistent pesticide ingredients ever used. RESULTS All 6 work tasks were associated with increased microbial diversity levels, with a positive dose-response for the total number of tasks performed (P = 0.001). All tasks were associated with altered microbial compositions (weighted UniFrac P = 0.001) and with higher abundance of specific microbes, including soil-based commensal microbes such as Haloterrigena. Among the 19 pesticides, current use of glyphosate and past use of lindane were associated with increased microbial diversity (P = 0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (P = 0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. DISCUSSION Different farm activities and exposures can uniquely impact the dust microbiome inside homes. Our work suggests that changes to the home microbiome could serve as one pathway for how occupational exposures impact the health of workers and their cohabitating family members, offering possible future intervention targets.
Collapse
Affiliation(s)
- Kathryn R Dalton
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Mikyeong Lee
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Ziyue Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Christine G Parks
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Laura E Beane-Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Stephanie J London
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA.
| |
Collapse
|
43
|
El Tekle G, Andreeva N, Garrett WS. The Role of the Microbiome in the Etiopathogenesis of Colon Cancer. Annu Rev Physiol 2024; 86:453-478. [PMID: 38345904 DOI: 10.1146/annurev-physiol-042022-025619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Studies in preclinical models support that the gut microbiota play a critical role in the development and progression of colorectal cancer (CRC). Specific microbial species and their corresponding virulence factors or associated small molecules can contribute to CRC development and progression either via direct effects on the neoplastic transformation of epithelial cells or through interactions with the host immune system. Induction of DNA damage, activation of Wnt/β-catenin and NF-κB proinflammatory pathways, and alteration of the nutrient's availability and the metabolic activity of cancer cells are the main mechanisms by which the microbiota contribute to CRC. Within the tumor microenvironment, the gut microbiota alter the recruitment, activation, and function of various immune cells, such as T cells, macrophages, and dendritic cells. Additionally, the microbiota shape the function and composition of cancer-associated fibroblasts and extracellular matrix components, fashioning an immunosuppressive and pro-tumorigenic niche for CRC. Understanding the complex interplay between gut microbiota and tumorigenesis can provide therapeutic opportunities for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Polianovskaia A, Jonelis M, Cheung J. The impact of plant-rich diets on sleep: a mini-review. Front Nutr 2024; 11:1239580. [PMID: 38379547 PMCID: PMC10876799 DOI: 10.3389/fnut.2024.1239580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Plant-rich diets (PRDs), also referred to as plant based diets, have been shown to have beneficial effects on various chronic diseases and all-cause mortality. However, limited data are available on the effect of such diets on sleep and sleep disorders. In this review article, we explore existing evidence and potential mechanisms by which PRDs may impact sleep and sleepiness. High-fat diets are associated with drowsiness, while fiber-rich diets improve sleep quality. Anti-inflammatory diets may benefit patients with sleep disturbances, and diets rich in tryptophan and serotonin precursors may improve sleep quality. Isoflavones and polyphenols present in PRDs may also have a positive impact on sleep. Furthermore, diets rich in plants may reduce the risk of obstructive sleep apnea and associated daytime sleepiness. Overall, the current knowledge about PRDs in sleep and sleep disorders is limited, and further research is needed to explore the potential advantages of this dietary approach in sleep disorders.
Collapse
Affiliation(s)
- Anastasiia Polianovskaia
- Department of Allergy, Pulmonary and Sleep Medicine, Mayo Clinic Jacksonville, Jacksonville, FL, United States
| | - Michelle Jonelis
- Sleep and Lifestyle Medicine Physician, Lifestyle Sleep, Mill Valley, CA, United States
| | - Joseph Cheung
- Department of Allergy, Pulmonary and Sleep Medicine, Mayo Clinic Jacksonville, Jacksonville, FL, United States
| |
Collapse
|
45
|
Wang X, Wang C, Liu K, Wan Q, Wu W, Liu C. Association between sleep-related phenotypes and gut microbiota: a two-sample bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1341643. [PMID: 38371937 PMCID: PMC10869596 DOI: 10.3389/fmicb.2024.1341643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background An increasing body of evidence suggests a profound interrelation between the microbiome and sleep-related concerns. Nevertheless, current observational studies can merely establish their correlation, leaving causality unexplored. Study objectives To ascertain whether specific gut microbiota are causally linked to seven sleep-related characteristics and propose potential strategies for insomnia prevention. Methods The study employed an extensive dataset of gut microbiota genetic variations from the MiBioGen alliance, encompassing 18,340 individuals. Taxonomic classification was conducted, identifying 131 genera and 196 bacterial taxa for analysis. Sleep-related phenotype (SRP) data were sourced from the IEU OpenGWAS project, covering traits such as insomnia, chronotype, and snoring. Instrumental variables (IVs) were selected based on specific criteria, including locus-wide significance, linkage disequilibrium calculations, and allele frequency thresholds. Statistical methods were employed to explore causal relationships, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighted Mode. Sensitivity analyses, pleiotropy assessments, and Bonferroni corrections ensured result validity. Reverse causality analysis and adherence to STROBE-MR guidelines were conducted to bolster the study's rigor. Results Bidirectional Mendelian randomization (MR) analysis reveals a causative interplay between selected gut microbiota and sleep-related phenotypes. Notably, outcomes from the rigorously Bonferroni-corrected examination illuminate profound correlations amid precise compositions of the intestinal microbiome and slumber-associated parameters. Elevated abundance within the taxonomic ranks of class Negativicutes and order Selenomonadales was markedly associated with heightened susceptibility to severe insomnia (OR = 1.03, 95% CI: 1.02-1.05, p = 0.0001). Conversely, the augmented representation of the phylum Lentisphaerae stands in concord with protracted sleep duration (OR = 1.02, 95% CI: 1.01-1.04, p = 0.0005). Furthermore, heightened exposure to the genus Senegalimassilia exhibits the potential to ameliorate the manifestation of snoring symptoms (OR = 0.98, 95% CI: 0.96-0.99, p = 0.0001). Conclusion This study has unveiled the causal relationship between gut microbiota and SRPs, bestowing significant latent value upon future endeavors in both foundational research and clinical therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wenzhong Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengyong Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Carpena MX, Barros AJ, Comelli EM, López-Domínguez L, Alves ED, Wendt A, Crochemore-Silva I, Bandsma RH, Santos IS, Matijasevich A, Borges MC, Tovo-Rodrigues L. Accelerometer-based sleep metrics and gut microbiota during adolescence: Association findings from a Brazilian population-based birth cohort. Sleep Med 2024; 114:203-209. [PMID: 38219656 DOI: 10.1016/j.sleep.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Sleep and gut microbiota are emerging putative risk factors for several physical, mental, and cognitive conditions. Sleep deprivation has been shown to be linked with unhealthy microbiome environments in animal studies. However, in humans, the results are mixed. Epidemiological studies evaluating the effect of accelerometer-based sleep measures on gut microbiome are scarce. This study aims to explore the relationship between sleep duration and efficiency with the gut microbiota in adolescence. METHODS A subsample of 352 participants from the 2004 Pelotas (Brazil) Birth Cohort Study with sleep and fecal microbiota data available were included in the study. Sleep duration and sleep efficiency were obtained from actigraphy information at 11 years old whereas microbiota information from fecal samples was collected at 12 years. The fecal microbiota was analyzed via Illumina MiSeq (16S rRNA V3-V4 region) and the UNOISE pipeline. Alpha was assessed in QIIME2. Association measures for sleep variables and microbial α-diversity, and bacterial relative abundance were assessed through generalized models (linear and logistic regression), adjusting for maternal and child variables confounders. RESULTS Adjusted models showed that sleep duration was positively associated with Simpson index of α-diversity (β = 0.003; CI95 %: 0.00004; 0.01). Both sleep duration (OR = 0.43; CI95 % 0.25; 0.74) and efficiency (OR = 0.55; CI95 % 0.38; 0.78) were associated with lower Bacteroidetes abundance. CONCLUSION Our results suggest that sleep duration and efficiency are linked to gut microbiota diversity and composition even with 1-2 years gap from exposure to outcome. The findings support the role of sleep in the gut-brain axis as well as provide insights on how to improve microbiota health.
Collapse
Affiliation(s)
| | - Aluisio Jd Barros
- Postgraduate Program in Epidemiology, Federal University of Pelotas, RS, Brazil.
| | - Elena M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada; Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, ON, Canada.
| | - Lorena López-Domínguez
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada; Translational Medicine Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Etiene Dias Alves
- Postgraduate Program in Epidemiology, Federal University of Pelotas, RS, Brazil.
| | - Andrea Wendt
- Programa de Pós-Graduação Em Tecnologia Em Saúde, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil.
| | - Inacio Crochemore-Silva
- Postgraduate Program in Epidemiology, Federal University of Pelotas, RS, Brazil; Postgraduate Program in Physical Education, Federal University of Pelotas, RS, Brazil.
| | - Robert Hj Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada; Translational Medicine Program, Hospital for Sick Children, Toronto, ON, Canada.
| | - Ina S Santos
- Postgraduate Program in Epidemiology, Federal University of Pelotas, RS, Brazil.
| | - Alicia Matijasevich
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | | |
Collapse
|
47
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Jezkova J, Sonka K, Kreisinger J, Prochazkova P, Tlaskalova-Hogenova H, Nevsimalova S, Buskova J, Merkova R, Dvorakova T, Prihodova I, Dostalova S, Roubalova R. Guardians of Rest? Investigating the gut microbiota in central hypersomnolence disorders. Sleep Med 2024; 113:95-102. [PMID: 37995475 DOI: 10.1016/j.sleep.2023.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
In recent years, there has been an increased interest in elucidating the influence of the gut microbiota on sleep physiology. The gut microbiota affects the central nervous system by modulating neuronal pathways through the neuroendocrine and immune system, the hypothalamus-pituitary-adrenal axis, and various metabolic pathways. The gut microbiota can also influence circadian rhythms. In this study, we observed the gut microbiota composition of patients suffering from narcolepsy type 1, narcolepsy type 2, and idiopathic hypersomnia. We did not observe any changes in the alpha diversity of the gut microbiota among patient groups and healthy controls. We observed changes in beta diversity in accordance with Jaccard dissimilarities between the control group and groups of patients suffering from narcolepsy type 1 and idiopathic hypersomnia. Our results indicate that both these patient groups differ from controls relative to the presence of rare bacterial taxa. However, after adjustment for various confounding factors such as BMI, age, and gender, there were no statistical differences among the groups. This indicates that the divergence in beta diversity in the narcolepsy type 1 and idiopathic hypersomnia groups did not arise due to sleep disturbances. This study implies that using metabolomics and proteomics approaches to study the role of microbiota in sleep disorders might prove beneficial.
Collapse
Affiliation(s)
- Janet Jezkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Prague, Czech Republic
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sona Nevsimalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jitka Buskova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radana Merkova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Dvorakova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Prihodova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Simona Dostalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
49
|
Tanaka A, Sanada K, Miyaho K, Tachibana T, Kurokawa S, Ishii C, Noda Y, Nakajima S, Fukuda S, Mimura M, Kishimoto T, Iwanami A. The relationship between sleep, gut microbiota, and metabolome in patients with depression and anxiety: A secondary analysis of the observational study. PLoS One 2023; 18:e0296047. [PMID: 38117827 PMCID: PMC10732403 DOI: 10.1371/journal.pone.0296047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Growing attention is paid to the association between alterations in the gut microbiota and their metabolites in patients with psychiatric disorders. Our study aimed to determine how gut microbiota and metabolomes are related to the sleep quality among patients with depression and anxiety disorders by analyzing the datasets of our previous study. METHODS Samples were collected from 40 patients (depression: 32 patients [80.0%]); anxiety disorders: 8 patients [20.0%]) in this study. Gut microbiomes were analyzed using 16S rRNA gene sequencing and gut metabolomes were analyzed by a mass spectrometry approach. Based on the Pittsburgh Sleep Quality Index (PSQI), patients were categorized into two groups: the insomnia group (PSQI score ≥ 9, n = 20) and the non-insomnia group (PSQI score < 9, n = 20). RESULTS The insomnia group showed a lower alpha diversity in the Chao1 and Shannon indices than the non-insomnia group after the false discovery rate (FDR) correction. The relative abundance of genus Bacteroides showed a positive correlation with PSQI scores in the non-insomnia group. The concentrations of glucosamine and N-methylglutamate were significantly higher in the insomnia group than in the non-insomnia group. CONCLUSIONS Our findings suggest that specific taxa could affect the sleep quality among patients with depression and anxiety disorders. Further studies are needed to elucidate the impact of sleep on specific gut microbiota and metabolomes in depression and anxiety disorders.
Collapse
Affiliation(s)
- Arisa Tanaka
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Tomoyuki Tachibana
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| | - Shunya Kurokawa
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | | | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University Hospital, Tokyo, Japan
| | | | - Akira Iwanami
- Department of Psychiatry, Showa University Karasuyama Hospital, Tokyo, Japan
| |
Collapse
|
50
|
Santi D, Debbi V, Costantino F, Spaggiari G, Simoni M, Greco C, Casarini L. Microbiota Composition and Probiotics Supplementations on Sleep Quality-A Systematic Review and Meta-Analysis. Clocks Sleep 2023; 5:770-792. [PMID: 38131749 PMCID: PMC10742335 DOI: 10.3390/clockssleep5040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The gut microbiota (GM) plays a crucial role in human health. The bidirectional interaction between GM and the central nervous system may occur via the microbiota-gut-brain axis, possibly regulating the sleep/wake cycle. Recent reports highlight associations between intestinal dysbiosis and sleep disorders, suggesting that probiotics could ameliorate this condition. However, data are poor and inconsistent. The aim of this quantitative metanalytic study is to assess the GM composition in sleep disturbances and evaluate probiotics' effectiveness for managing sleep disorders. A systematic review was carried out until July 2022 in online databases, limiting the literature research to human studies and English language articles. No significant GM diversity between patients with sleep disturbances versus healthy controls was found, revealed by α-diversity, while β-diversity is missing due to lack of proper reporting. However, probiotics supplementation significantly reduced the self-assessed parameter of sleep quality and disturbances Pittsburgh Sleep Quality Index (PSQI) score compared with the placebo. No difference in the Epworth Sleepiness Scale (ESS) score was found. While available data suggest that GM diversity is not related to sleep disturbances, probiotics administration strongly improves sleep quality as a subjective perception. However, heterogeneity of data reporting in the scientific literature should be considered as a limitation.
Collapse
Affiliation(s)
- Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (D.S.); (V.D.); (M.S.); (L.C.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
- Unit of Andrology and Sexual Medicine of the Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Valentina Debbi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (D.S.); (V.D.); (M.S.); (L.C.)
| | - Francesco Costantino
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (D.S.); (V.D.); (M.S.); (L.C.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
- Unit of Andrology and Sexual Medicine of the Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (D.S.); (V.D.); (M.S.); (L.C.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
- Unit of Andrology and Sexual Medicine of the Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Carla Greco
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (D.S.); (V.D.); (M.S.); (L.C.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (D.S.); (V.D.); (M.S.); (L.C.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 41126 Modena, Italy
| |
Collapse
|