1
|
Xu Y, Xiao Y, Ai C, Huang Y, Zhou H, Li J, Yuan J. Antibiotic growth promoters and waxy corn enhance broiler growth performance through starch digestibility and microbiota modulation in the crop and ileum. Poult Sci 2025; 104:105288. [PMID: 40398307 DOI: 10.1016/j.psj.2025.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025] Open
Abstract
This study aimed to investigate the internal connections between starch digestion properties and microbial changes in the gastrointestinal tract of broiler chickens. A total of 240 male AA+ broilers (21-day-old) were allocated to 4 treatments of regular and waxy corn with and without virginiamycin (6.4 g/t) in a 2 × 2 factorial arrangement. On day 35, growth performance and apparent starch digestibility were determined, and hormones in the serum and microbial profiles in the crop and ileum were analyzed. The results indicated that dietary starch was primarily digested in the jejunum of broiler chickens, and broilers receiving waxy corn exhibited significantly greater digestibility of both total starch and amylopectin in the distal jejunum, along with an improved feed-to-gain ratio (F/G) and European performance index (EPI), compared with the regular corn group (P< 0.05). Notably, virginiamycin significantly enhanced the amylose digestibility in the distal ileum and improved the F/G ratio (P< 0.05). Microbial analyses revealed that corn type did not affect microbial diversity in the crop and ileum. However, virginiamycin significantly reduced alpha diversity in the crop (Chao1: 129.63 vs. 191.14, P < 0.05) and ileum (observed species: 137.23 vs. 316.43, P < 0.05), and elevated Lactobacillus abundance (positively correlated with amylose digestibility, P < 0.001). In summary, waxy corn enhanced jejunal starch hydrolysis via its high amylopectin content, whereas virginiamycin promoted amylose digestion in the distal small intestine by selectively enriching the starch-degrading microbiota.
Collapse
Affiliation(s)
- Yanwei Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Yong Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunxiao Ai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yihong Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huajin Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Milhouse W, Organski AC, Sun X, Ai D, Zhou B, Cross TL, Ren H. Microbiome affects mice metabolic homeostasis via differential regulation of gene expression in the brain and gut. Physiol Rep 2025; 13:e70373. [PMID: 40387487 PMCID: PMC12087290 DOI: 10.14814/phy2.70373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
The gut microbiome (GMB) regulates digestion, metabolism, immunity, and energy homeostasis. This study investigates how gut microbiota integrate the regulation in the neuroendocrine and enteroendocrine systems, with a focus on G protein-coupled receptors (GPCRs) in the brain-gut axis and sex differences. Germ-free (GF) mice exhibited increased hypothalamic expression of the anorexigenic neuropeptide and decreased expression of the negative regulator of leptin signaling. GF males had significantly lower serum leptin levels compared to conventional (CON) males, highlighting a potential link between the microbiome and leptin resistance. In the gut, GF mice demonstrated heightened expression of anorexigenic gut hormones, including peptide YY (Pyy) and cholecystokinin (Cck), in addition to increased levels of G protein-coupled receptors (GPCRs) involved in gut hormone secretion and nutrient metabolism, particularly in females. While carbohydrate metabolism genes were upregulated in CON mice, lipid metabolism genes were predominantly higher in GF mice. These findings suggest that the gut microbiota downregulates genes involved in appetite suppression, modulates GPCRs linked to gut hormone secretion, and contributes to leptin resistance, particularly in males. This research underscores the importance of the gut microbiome in host metabolism and reveals potential molecular targets for novel treatments of metabolic diseases.
Collapse
Affiliation(s)
- Wynne Milhouse
- Department of PediatricsHerman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for Diabetes and Metabolic DiseaseIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisIndianaUSA
| | | | - Xun Sun
- Department of PediatricsHerman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for Diabetes and Metabolic DiseaseIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Derek Ai
- Center for Diabetes and Metabolic DiseaseIndiana University School of MedicineIndianapolisIndianaUSA
| | - Baohua Zhou
- Department of PediatricsHerman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Tzu‐Wen L. Cross
- Department of Nutrition SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Hongxia Ren
- Department of PediatricsHerman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisIndianaUSA
- Center for Diabetes and Metabolic DiseaseIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
3
|
Bæch‐Laursen C, Ehrenreich RK, Modvig IM, Veedfald S, Holst JJ. Glucose absorption by isolated, vascularly perfused rat intestine: A significant paracellular contribution augmented by SGLT1 inhibition. Acta Physiol (Oxf) 2025; 241:e70033. [PMID: 40186371 PMCID: PMC11971594 DOI: 10.1111/apha.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
AIM Intestinal glucose transport involves SGLT1 in the apical membrane of enterocytes and GLUT2 in the basolateral membrane. In vivo studies have shown that absorption rates appear to exceed the theoretical capacity of these transporters, suggesting that glucose transport may occur via additional pathways, which could include passive mechanisms. The aim of the study was to investigate glucose absorption in an in vitro model, which has proven useful for endocrine studies. METHODS We studied both transcellular and paracellular glucose absorption in the isolated vascularly perfused rat small intestine. Glucose absorbed from the lumen was traced with 14C-d-glucose, allowing sensitive and accurate quantification. SGLT1 and GLUT2 activities were blocked with phlorizin and phloretin. 14C-d-mannitol was used as an indicator of paracellular absorption. RESULTS Our results indicate that glucose absorption in this model involves two transport mechanisms: transport mediated by SGLT1/GLUT2 and a paracellular transport mechanism. Glucose absorption was reduced by 60% when SGLT1 transport was blocked and by 80% when GLUT2 was blocked. After combined luminal SGLT1 and GLUT2 blockade, ~30% of glucose absorption remained. d-mannitol absorption was greater in the proximal small intestine compared to the distal small intestine. Unexpectedly, mannitol absorption increased markedly when SGLT1 transport was blocked. CONCLUSION In this model, glucose absorption occurs via both active transcellular and passive paracellular transport, particularly in the proximal intestine, which is important for the understanding of, for example, hormone secretion related to glucose absorption. Interference with SGLT1 activity may lead to enhanced paracellular transport, pointing to a role in the regulation of the latter.
Collapse
Affiliation(s)
- Cecilie Bæch‐Laursen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Centre for Physical Activity ResearchRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Rune Kuhre Ehrenreich
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Obesity Pharmacology, Global Drug DiscoveryNovo NordiskMåløvDenmark
| | - Ida Marie Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Transplantation and Digestive DiseasesRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Luo C, Wang J, Jiang W, Yin D, Meng G, Wang J, Xu J, Yuan J. Different starch sources and amino acid levels on growth performance, starch and amino acids digestion, absorption and metabolism of 0- to 3-week-old broilers fed low protein diet. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:277-290. [PMID: 39995521 PMCID: PMC11847748 DOI: 10.1016/j.aninu.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 02/26/2025]
Abstract
The synchronized absorption of amino acids and glucose in the gut is essential for amino acid utilization and protein synthesis in the body. The study aimed to investigate how the starch digestion rate and amino acid levels impact the growth and intestinal starch and amino acid digestion, transport, and metabolism in juvenile broilers. The experiment was conducted with 702 Arbor Acres Plus broilers at 1 d old, which were randomly divided into 9 treatments with 6 replicates of 13 chickens each. The treatments included 3 different starch sources (corn, waxy corn, and tapioca) with 3 different apparent ileal digestible lysine (AID Lys) levels (1.08%, 1.20%, and 1.32%). A notable interaction was noted for dietary starch sources and AID Lys levels in the feed-to-gain ratio (F/G) and distal ileal starch digestibility (P < 0.01). The tapioca starch and waxy corn starch diets with 1.32% of AID Lys significantly decreased F/G compared with corn starch (P < 0.01). There was no significant difference in F/G of broilers among waxy corn starch diet with 1.08% AID Lys level, tapioca starch diet with 1.20% AID Lys level, and corn starch diet with 1.32% AID Lys level (P > 0.05). The 1.32% AID Lys level and the waxy corn starch both improved the body weight (BW) of broilers from 0 to 3 weeks of age, intestinal starch digestibility, and intestinal villi height or the ratio of villi height to crypt depth (P < 0.05). Compared with the corn starch diet, waxy corn starch and tapioca starch diets significantly elevated the AID of Met, Glu, Lys, Arg, Asp, His, Ile, Tyr, Gly, and Val levels (P < 0.05). The carbon metabolomics results revealed that the waxy corn starch diet significantly reduced malic acid and cis-aconitic acid levels (P < 0.05) in the tricarboxylic acid cycle compared to the corn starch diet. It was concluded that a waxy corn starch diet improves the growth performance of broilers by improving intestinal morphology, increasing the absorption and transport of amino acids, reducing the amino acid oxidation for energy supply in the intestinal mucosa, and promoting protein synthesis in muscles, which not only reduces the need for dietary AID Lys but also saves on production costs.
Collapse
Affiliation(s)
- Caiwei Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinping Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Jiang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dafei Yin
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Gang Meng
- Ningxia Eppen Biotech Co., Ltd., Yinchuan 750100, China
| | - Jiwei Wang
- Ningxia Eppen Biotech Co., Ltd., Yinchuan 750100, China
| | - Jing Xu
- Ningxia Eppen Biotech Co., Ltd., Yinchuan 750100, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Visvanathan R, Houghton MJ, Williamson G. Impact of Glucose, Inflammation and Phytochemicals on ACE2, TMPRSS2 and Glucose Transporter Gene Expression in Human Intestinal Cells. Antioxidants (Basel) 2025; 14:253. [PMID: 40227199 PMCID: PMC11939507 DOI: 10.3390/antiox14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Inflammation is associated with the pathophysiology of type 2 diabetes and COVID-19. Phytochemicals have the potential to modulate inflammation, expression of SARS-CoV-2 viral entry receptors (angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2)) and glucose transport in the gut. This study assessed the impact of phytochemicals on these processes. We screened 12 phytochemicals alongside 10 pharmaceuticals and three plant extracts, selected for known or hypothesised effects on the SARS-CoV-2 receptors and COVID-19 risk, for their effects on the expression of ACE2 or TMPRSS2 in differentiated Caco-2/TC7 human intestinal epithelial cells. Genistein, apigenin, artemisinin and sulforaphane were the most promising ones, as assessed by the downregulation of TMPRSS2, and thus they were used in subsequent experiments. The cells were then co-stimulated with pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) for ≤168 h to induce inflammation, which are known to induce multiple pathways, including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Target gene expression (ACE2, TMPRSS2, SGLT1 (sodium-dependent glucose transporter 1) and GLUT2 (glucose transporter 2)) was measured by droplet digital PCR, while interleukin-1 (IL-6), interleukin-1 (IL-8) and ACE2 proteins were assessed using ELISA in both normal and inflamed cells. IL-1β and TNF-α treatment upregulated ACE2, TMPRSS2 and SGLT1 gene expression. ACE2 increased with the duration of cytokine exposure, coupled with a significant decrease in IL-8, SGLT1 and TMPRSS2 over time. Pearson correlation analysis revealed that the increase in ACE2 was strongly associated with a decrease in IL-8 (r = -0.77, p < 0.01). The regulation of SGLT1 gene expression followed the same pattern as TMPRSS2, implying a common mechanism. Although none of the phytochemicals decreased inflammation-induced IL-8 secretion, genistein normalised inflammation-induced increases in SGLT1 and TMPRSS2. The association between TMPRSS2 and SGLT1 gene expression, which is particularly evident in inflammatory conditions, suggests a common regulatory pathway. Genistein downregulated the inflammation-induced increase in SGLT1 and TMPRSS2, which may help lower the postprandial glycaemic response and COVID-19 risk or severity in healthy individuals and those with metabolic disorders.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Michael J. Houghton
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
He J, Zhang F, Fang M, Zhang Y, Zhu C, Xiang S, Yu D, Wu H, Shu Y. Alteration of intestinal microbiota-intestinal barrier interaction interferes with intestinal health after microcystin-LR exposure in Lithobates catesbeianus tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107249. [PMID: 39826206 DOI: 10.1016/j.aquatox.2025.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
There remains uncertainty regarding the influence of microcystin-leucine arginine (MC-LR) on amphibian intestinal health, specifically how MC-LR interferes with intestinal microbiota following exposure to environmental concentrations. In this study, Lithobates catesbeianus tadpoles were exposed to varying MC-LR concentrations (0, 0.5, and 2 µg/L) over a 30-day period. The aim was to investigate how altered interactions between tadpole intestinal microbiota and the intestinal barrier influence intestinal health following MC-LR exposure. Following exposure to the MC-LR at low ambient concentrations, tadpole intestinal tissue was damaged. It had increased permeability, reduced pathogen inhibition capacity, and impaired digestive function. Additionally, there was a significant increase in lipopolysaccharide content and upregulation of downstream response genes, including TLR4, MyD88, and NF-κB, within the intestinal tissue. Therefore, eosinophils' count and pro-inflammatory cytokines' expression increased. In addition, MC-LR exposure induced oxidative stress and mitochondrial structural damage by increasing the levels of reactive oxygen species in intestinal tissue. CytoC and Bax transcription, as well as caspase 9 and caspase 3 activities, increased significantly. Significant downregulation of Bcl-2 transcription promoted apoptosis in tadpole intestinal cells. MC-LR exposure disrupted intestinal microbiota and metabolism in tadpoles. Correlation analysis revealed a strong association between intestinal microbiota and oxidative stress, inflammation, immunity, and tissue damage in the intestine. Conclusively, this study provides the first demonstration that MC-LR significantly affects amphibian intestinal microbiota, highlighting tadpoles' susceptibility to environmental risks posed by MC-LR.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Fengqi Zhang
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Minglan Fang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Yuchen Zhang
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Changjing Zhu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Shangfei Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Desheng Yu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
7
|
Klimek K, Chen X, Sasaki T, Groener D, Werner RA, Higuchi T. PET imaging of sodium-glucose cotransporters (SGLTs): Unveiling metabolic dynamics in diabetes and oncology. Mol Metab 2024; 90:102055. [PMID: 39454827 PMCID: PMC11570752 DOI: 10.1016/j.molmet.2024.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporters (SGLTs) play a crucial role in glucose regulation and are essential therapeutic targets for diabetes management. Recent advancements have leveraged SGLT-targeted PET imaging to examine these transporters' roles in both health and disease. SCOPE OF REVIEW This review highlights recent innovations in PET imaging targeting SGLTs, with a particular focus on SGLT-specific radiotracers, such as alpha-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). It emphasizes the advantages of these radiotracers over conventional 18F-2-fluoro-2-deoxy-d-glucose (2-FDG) imaging, especially in assessing SGLT activity. Additionally, the review addresses their potential in evaluating the pharmacodynamics of SGLT inhibitors, investigating metabolic changes in diabetes, and staging cancers. MAJOR CONCLUSIONS SGLT-targeted PET imaging offers promising improvements in diagnostic accuracy and therapeutic planning. The findings underscore the physiological and pathological significance of SGLTs, indicating that this imaging approach could shape future diagnostic and therapeutic strategies in metabolic and oncologic fields.
Collapse
Affiliation(s)
- Konrad Klimek
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Takanori Sasaki
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daniel Groener
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
| | - Rudolf A Werner
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; The Russell H Morgan Department of Radiology and Radiological Sciences, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, United States; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
8
|
Wang W, Chen S, Jiang Y, Ji J, Cong R. Expression of the C-allele of intronic rs8192675 in SLC2A2 is associated with improved glucose response to metformin. Genet Mol Biol 2024; 47:e20230281. [PMID: 39535164 PMCID: PMC11559485 DOI: 10.1590/1678-4685-gmb-2023-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/30/2024] [Indexed: 11/16/2024] Open
Abstract
Glucose is a critical nutrient for energy metabolism. The SLC2A2 gene is essential for glucose sensing and homeostasis, as it encodes the facilitated glucose transporter GLUT2. During diabetes treatment, the C-allele of rs8192675 in SLC2A2 has been found to regulate the action of metformin and reduce the absolute level of HbA1c more effectively than the T-allele. In this study, stable HEK293T cell lines carrying the CC, CT, and TT genotypes of rs8192675 in SLC2A2 were generated using CRISPR/Cas9-mediated genome editing. GLUT2 mRNA and protein levels were elevated in cell clones with the TC genotype compared to those with the CC genotype but were reduced relative to the TT genotype. Additionally, high concentrations of glucose or fructose induced more GLUT2 protein production in CT-genotype cells than that induced in CC-genotype cells, yet less than that induced in TT-genotype cells. Metformin induced a greater increase in GLUT2 expression and a smaller increase in activated AMPK protein expression in CC-genotype cells than those induced in TT-genotype cells, resulting in a remarkable reduction in activated mTOR and S6 levels. This study directly supports the biological mechanism linking the C-allele of rs8192675 with improved treatment outcomes in metformin therapy for diabetes.
Collapse
Affiliation(s)
- Wanjun Wang
- Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Suying Chen
- Affiliated Hospital 2 of Nantong University, Department of Radiology, No.666 Shengli Road, Nantong, Jiangsu Province, China
| | - Yilei Jiang
- Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Jianhong Ji
- Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Intensive Care Unit, Nantong, People's Republic of China
| | - Ruochen Cong
- Affiliated Hospital 2 of Nantong University, Department of Radiology, No.666 Shengli Road, Nantong, Jiangsu Province, China
| |
Collapse
|
9
|
Guo TY, Kuo WT, Tsai YS, Yu LCH, Huang CY. Glucose-Stimulated Mucus Secretion by Goblet Cells Mitigates Intestinal Barrier Dysfunction in a Rat Model of Mesenteric Ischemia/Reperfusion Injury. Curr Dev Nutr 2024; 8:104431. [PMID: 39263224 PMCID: PMC11388543 DOI: 10.1016/j.cdnut.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Background Superior mesenteric ischemia/reperfusion (I/R) causes barrier dysfunction and facilitates bacterial translocation (BT) in the small intestine, which can even lead to systemic sepsis. Our previous research showed that luminal administration of glucose and its anaerobic glycolytic metabolites exerted cytoprotective effects on epithelial cells and ameliorated I/R-induced BT in the liver and spleen. Notably, the reduction of BT occurs over the whole intestinal tract, not only restricted in the ligated glucose-containing loop. Objectives In this study, we hypothesized that local jejunal glucose-contacting might confer on the remote intestinal epithelium regeneration potential, fortify their barrier function and goblet cell secretory activity. Methods Two 10-cm jejunal segments were isolated in Wistar rats. One segment was ligatured at both ends and infused with Krebs buffer containing 0- or 50-mM glucose (local loop), whereas the adjacent segment was left unaltered and not exposed to glucose (remote loop). The rats then underwent either a sham operation or I/R challenge by occlusion of the superior mesenteric artery for 20 min, followed by reperfusion for 1 h. Results Enteral addition of glucose in the local jejunum loop alleviated ischemia-induced barrier defects, histopathological scores, cell death, and mucosal inflammation (myeloperoxidase and inflammatory cytokine production) in the remote jejunum. After ischemia, goblet cells in the remote jejunum showed cavitation of mucin granules and low MUC2 expression. Local addition of glucose enhanced MUC2 synthesis and stimulated a jet-like mucus secretion in the remote jejunum, which was accompanied by the restoration of crypt activity. Conclusions Our results showed local enteral glucose effectively mitigates I/R-induced barrier dysfunction, suggesting that local glucose-stimulated mucus secretion by remote goblet cells may serve to mitigate mucosal inflammation and BT. We provide a more precise barrier protection role of enteral glucose upon I/R challenge, presenting new opportunities for future therapeutic potential.
Collapse
Affiliation(s)
- Ting-You Guo
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Ting Kuo
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Syuan Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Romaní-Pérez M, Bullich-Vilarrubias C, López-Almela I, Sanz Y. The Ablation of Sensory Neurons Expressing the Nav1.8 Sodium Channel Improves Glucose Homeostasis and Amplifies the GLP-1 Signaling in Obese Female Mice. Mol Nutr Food Res 2024; 68:e2300474. [PMID: 38038153 DOI: 10.1002/mnfr.202300474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/16/2023] [Indexed: 12/02/2023]
Abstract
SCOPE Sensory neurons expressing the sodium channel Nav1.8 contain a repertoire of receptors for nutrient, hormonal, and inflammatory ligands. However, their function in key regulators of energy homeostasis control is not well understood and is completely unexplored in females. METHODS AND RESULTS Mice lacking neurons expressing the sodium channel Nav1.8 were generated using an ablation strategy based on cre recombinase-mediated expression of diphtheria toxin fragment A (DTA) (Nav1.8-cre/DTA mice) to investigate whether these neurons modulate body weight, food intake, gut hormone secretion, gastrointestinal transit, and glucose tolerance in response to nutrient challenges in a sex-dependent manner. Male Nav1.8-cre/DTA mice show resistance to gain weight in response to high-fat high-sugar diet (HFHSD), whereas females lacking Nav1.8+ neurons have improved oral glucose tolerance accompanied by higher insulin levels and attenuated glucagon secretion after an oral glucose load. Female Nav1.8-cre/DTA mice also show higher fasting and postprandial glucagon like peptide-1 (GLP-1) levels with an increased number of GLP-1-positive cells. Finally, ablation of Nav1.8-expressing neurons accelerates the gastrointestinal transit in female mice under HFHSD. CONCLUSION This data demonstrates sex-dependent differences in the Nav1.8-mediated regulation of energy metabolism, and provides new insights that may help in the design of sex-specific neuromodulation therapies for metabolic disorders induced by diets rich in fats and simple sugars.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
11
|
Barreto-Peixoto JA, Silva C, Costa ASG, Álvarez-Rivera G, Cifuentes A, Ibáñez E, Oliveira MBPP, Alves RC, Martel F, Andrade N. A Prunus avium L. Infusion Inhibits Sugar Uptake and Counteracts Oxidative Stress-Induced Stimulation of Glucose Uptake by Intestinal Epithelial (Caco-2) Cells. Antioxidants (Basel) 2023; 13:59. [PMID: 38247483 PMCID: PMC10812648 DOI: 10.3390/antiox13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Sweet cherry (Prunus avium L.) is among the most valued fruits due to its organoleptic properties and nutritional worth. Cherry stems are rich in bioactive compounds, known for their anti-inflammatory and antioxidant properties. Innumerable studies have indicated that some bioactive compounds can modulate sugar absorption in the small intestine. In this study, the phenolic profile of a cherry stem infusion was investigated, as well as its capacity to modulate intestinal glucose and fructose transport in Caco-2 cells. Long-term (24 h) exposure to cherry stem infusion (25%, v/v) significantly reduced glucose (3H-DG) and fructose (14C-FRU) apical uptake, reduced the apical-to-basolateral Papp to 3H-DG, and decreased mRNA expression levels of the sugar transporters SGLT1, GLUT2 and GLUT5. Oxidative stress (induced by tert-butyl hydroperoxide) caused an increase in 3H-DG uptake, which was abolished by the cherry stem infusion. These findings suggest that cherry stem infusion can reduce the intestinal absorption of both glucose and fructose by decreasing the gene expression of their membrane transporters. Moreover, this infusion also appears to be able to counteract the stimulatory effect of oxidative stress upon glucose intestinal uptake. Therefore, it can be a potentially useful compound for controlling hyperglycemia, especially in the presence of increased intestinal oxidative stress levels.
Collapse
Affiliation(s)
- Juliana A. Barreto-Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Cláudia Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, 4200-135 Porto, Portugal
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
12
|
Morrice N, Vainio S, Mikkola K, van Aalten L, Gallagher JR, Ashford MLJ, McNeilly AD, McCrimmon RJ, Grosfeld A, Serradas P, Koffert J, Pearson ER, Nuutila P, Sutherland C. Metformin increases the uptake of glucose into the gut from the circulation in high-fat diet-fed male mice, which is enhanced by a reduction in whole-body Slc2a2 expression. Mol Metab 2023; 77:101807. [PMID: 37717665 PMCID: PMC10550722 DOI: 10.1016/j.molmet.2023.101807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVES Metformin is the first line therapy recommended for type 2 diabetes. However, the precise mechanism of action remains unclear and up to a quarter of patients show some degree of intolerance to the drug, with a similar number showing poor response to treatment, limiting its effectiveness. A better understanding of the mechanism of action of metformin may improve its clinical use. SLC2A2 (GLUT2) is a transmembrane facilitated glucose transporter, with important roles in the liver, gut and pancreas. Our group previously identified single nucleotide polymorphisms in the human SLC2A2 gene, which were associated with reduced transporter expression and an improved response to metformin treatment. The aims of this study were to model Slc2a2 deficiency and measure the impact on glucose homoeostasis and metformin response in mice. METHODS We performed extensive metabolic phenotyping and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography (PET) analysis of gut glucose uptake in high-fat diet-fed (HFD) mice with whole-body reduced Slc2a2 (Slc2a2+/-) and intestinal Slc2a2 KO, to assess the impact of metformin treatment. RESULTS Slc2a2 partial deficiency had no major impact on body weight and insulin sensitivity, however mice with whole-body reduced Slc2a2 expression (Slc2a2+/-) developed an age-related decline in glucose homoeostasis (as measured by glucose tolerance test) compared to wild-type (Slc2a2+/+) littermates. Glucose uptake into the gut from the circulation was enhanced by metformin exposure in Slc2a2+/+ animals fed HFD and this action of the drug was significantly higher in Slc2a2+/- animals. However, there was no effect of specifically knocking-out Slc2a2 in the mouse intestinal epithelial cells. CONCLUSIONS Overall, this work identifies a differential metformin response, dependent on expression of the SLC2A2 glucose transporter, and also adds to the growing evidence that metformin efficacy includes modifying glucose transport in the gut. We also describe a novel and important role for this transporter in maintaining efficient glucose homoeostasis during ageing.
Collapse
Affiliation(s)
- Nicola Morrice
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Susanne Vainio
- Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Lidy van Aalten
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Jennifer R Gallagher
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Michael L J Ashford
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Alison D McNeilly
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Alexandra Grosfeld
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Patricia Serradas
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic approaches, NutriOmics, Research group, F-75013, Paris, France
| | - Jukka Koffert
- Turku PET Centre, University of Turku, Turku, Finland; Department of Gastroenterology, Turku University Hospital, Turku, Finland
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Calum Sutherland
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, UK.
| |
Collapse
|
13
|
Song A, Mao Y, Wei H. GLUT5: structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1519-1538. [PMID: 37674366 PMCID: PMC10582729 DOI: 10.3724/abbs.2023158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 09/08/2023] Open
Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Aqian Song
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Yuanpeng Mao
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| | - Hongshan Wei
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| |
Collapse
|
14
|
Tao E, Wu Y, Hu C, Zhu Z, Ye D, Long G, Chen B, Guo R, Shu X, Zheng W, Zhang T, Jia X, Du X, Fang M, Jiang M. Early life stress induces irritable bowel syndrome from childhood to adulthood in mice. Front Microbiol 2023; 14:1255525. [PMID: 37849921 PMCID: PMC10577190 DOI: 10.3389/fmicb.2023.1255525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Background Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorder. Traditionally, early life stress (ELS) is predisposed to IBS in adult. However, whether ELS induces IBS in early life remains unclear. Methods Separated cohort studies were conducted in neonatal male pups of C57BL/6 mice by maternal separation (MS) model. MS and non-separation mice were scheduled to be evaluated for prime IBS-phenotypes, including visceral hypersensitivity, intestinal motility, intestinal permeability, and anxiety-like behavior. Ileal contents and fecal samples were collected and analyzed by 16S rRNA gene sequencing and bacterial community analyses. Subcellular structures of intestinal epithelial, such as epithelial tight junctions and mitochondria, were observed under transmission electron microscopy. Results MS induced visceral hypersensitivity and decreased total intestinal transit time from childhood to adulthood. In addition, MS induced intestinal hyperpermeability and anxiety-like behavior from adolescence to adulthood. Besides, MS affected intestinal microbial composition from childhood to adulthood. Moreover, MS disrupted intestinal mitochondrial structure from childhood to adulthood. Conclusion The study showed for the first time that MS induced IBS from early life to adulthood in mice. The disrupted intestinal mitochondrial structure and the significant dysbiosis of intestinal microbiota in early life may contribute to the initiation and progress of IBS from early life to adulthood.
Collapse
Affiliation(s)
- Enfu Tao
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Yuhao Wu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Diya Ye
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Gao Long
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Wei Zheng
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ting Zhang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xinyi Jia
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xiao Du
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
15
|
Sun B, Chen H, Xue J, Li P, Fu X. The role of GLUT2 in glucose metabolism in multiple organs and tissues. Mol Biol Rep 2023; 50:6963-6974. [PMID: 37358764 PMCID: PMC10374759 DOI: 10.1007/s11033-023-08535-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
The glucose transporter family has an important role in the initial stage of glucose metabolism; Glucose transporters 2 (GLUTs, encoded by the solute carrier family 2, SLC2A genes) is the major glucose transporter in β-cells of pancreatic islets and hepatocytes but is also expressed in the small intestine, kidneys, and central nervous system; GLUT2 has a relatively low affinity to glucose. Under physiological conditions, GLUT2 transports glucose into cells and allows the glucose concentration to reach balance on the bilateral sides of the cellular membrane; Variation of GLUT2 is associated with various endocrine and metabolic disorders; In this study, we discussed the role of GLUT2 in participating in glucose metabolism and regulation in multiple organs and tissues and its effects on maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Bo Sun
- Endorcrine and Metabolism Department, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Department of Infantile Endocrine Genetic Metabolism, Gansu Maternal and child Health Care Hospital, Lanzhou, 730000, China
| | - Hui Chen
- Endorcrine and Metabolism Department, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Jisu Xue
- EndEnorcrine and Metabolism Department, Shenzhen Bao 'an People's Hospital (Group), Shenzhen, 518100, China
| | - Peiwu Li
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| |
Collapse
|
16
|
Normal β-Cell Glut2 Expression Is not Required for Regulating Glucose-Stimulated Insulin Secretion and Systemic Glucose Homeostasis in Mice. Biomolecules 2023; 13:biom13030540. [PMID: 36979475 PMCID: PMC10046365 DOI: 10.3390/biom13030540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Objective: Glucose transporter 2 (GLUT2) is expressed in the pancreatic β-cell, intestine, liver, and kidney in mice. Although GLUT2 is considered as a major regulator of insulin secretion, in vivo contribution of β-cell Glut2 to glucose-stimulated insulin secretion and systemic glucose homeostasis is undefined. Therefore, the main objective of this study is to determine the role of β-cell Glut2 in regulating insulin secretion and blood glucose levels in mice. Methods: We produced mice in which we can knock down Glut2 at a desired time specifically in β-cells (β-Glut2 KD) by crossing Glut2LoxP/LoxP mice with Ins1CreERT2 mouse strain and using the Cre-Lox recombination technique. We measured fasting blood glucose levels, glucose tolerance, and glucose-stimulated insulin secretion in the β-Glut2 KD mice. We used qRT-PCR and immunofluorescence to validate the deficiency of β-cell Glut2 in β-Glut2 KD mice. Results: We report that both male and female β-Glut2 KD mice have normal glucose-stimulated insulin secretion. Moreover, the β-Glut2 KD mice exhibit normal fasting blood glucose levels and glucose tolerance. The β-Glut2 KD mice have upregulated GLUT1 in islets. Conclusions: Our findings demonstrate that normal β-cell Glut2 expression is not essential for regulating glucose-stimulated insulin secretion and systemic glucose homeostasis in mice. Therefore, the currently assumed role of β-cell GLUT2 in regulating insulin secretion and blood glucose levels needs to be recalibrated. This will allow an opportunity to determine the contribution of other β-cell glucose transporters or factors whose normal expression may be necessary for mediating glucose stimulated insulin secretion.
Collapse
|
17
|
Pan T, Zheng S, Zheng W, Shi C, Ning K, Zhang Q, Xie Y, Xiang H, Xie Q. Christensenella regulated by Huang-Qi-Ling-Hua-San is a key factor by which to improve type 2 diabetes. Front Microbiol 2022; 13:1022403. [PMID: 36312936 PMCID: PMC9597676 DOI: 10.3389/fmicb.2022.1022403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
There is a lot of evidence that oral hypoglycemic drugs work by affecting gut microbes, but the key strains responsible for this effect are not well known. Huang-Qi-Ling-Hua-San (HQLHS), composed of Astragalus Membranaceus, Ganoderma lucidum, Inonotus obliquus, and Momordica charantia L., is a specially designed Chinese medicine formula to treat type 2 diabetes (T2D). In this study, a mouse model of T2D induced by high-fat diet and streptozotocin was used to explore the mechanism of HQLHS in improving hyperglycemia and hyperlipidemia through multiple rounds of animal experiments, such as HQLHS feeding, fecal microbiota transplantation (FMT), and live bacteria feeding, so as to explore the potential target intestinal flora in its hypoglycemic effect. Results show that such specific taxa as Bifidobacterium, Turicibacter, Alistipes, Romboutsia, and Christensenella were identified to be preferably enriched by HQLHS and then assumed to be the target microbes. Herein, FMT was used to test if the upregulated beneficial bacteria by HQLHS play a therapeutic role. The strain Christensenella minuta DSM 22607 and the strain Christensenella timonensis DSM 102800 were selected to test the beneficial effect of Christensenella taxa on T2D. Diabetic animals supplemented with these strains showed the improvement in blood glucose and lipid metabolism, the promotion of GLP-1 secretion, the increase in antioxidant capacity, the inhibition of hepatic gluconeogenesis, the suppression of intestinal glucose absorption, the enhancement of intestinal barrier, reduced LPS-induced inflammation, and the reduction of branched amino acids (BCAAs) content in the liver. Overall, these data demonstrate that Christensenella plays a beneficial role in T2D and is a target for the action of HQLHS therapy.
Collapse
Affiliation(s)
- Tong Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Shujun Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Chao Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Ke Ning
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Qinghui Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Yanbo Xie
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Hongyu Xiang, ; Qiuhong Xie, ; Yanbo Xie
| | - Hongyu Xiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- *Correspondence: Hongyu Xiang, ; Qiuhong Xie, ; Yanbo Xie
| | - Qiuhong Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- *Correspondence: Hongyu Xiang, ; Qiuhong Xie, ; Yanbo Xie
| |
Collapse
|
18
|
Dietary Epidermal Growth Factor Supplementation Alleviates Intestinal Injury in Piglets with Intrauterine Growth Retardation via Reducing Oxidative Stress and Enhancing Intestinal Glucose Transport and Barrier Function. Animals (Basel) 2022; 12:ani12172245. [PMID: 36077965 PMCID: PMC9454730 DOI: 10.3390/ani12172245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
EGF plays an important role in the intestinal repair and nutrients transport of animals. However, the effect of EGF on the intestinal health of piglets with IUGR has not been reported. Thus, the present study was performed to investigate the effects of EGF on the intestinal morphology, glucose absorption, antioxidant capacity, and barrier function of piglets with IUGR. A total of 6 NBW piglets and 12 IUGR piglets were randomly divided into three treatments: NC group (NBW piglets fed with basal diet, n = 6), IC group (IUGR piglets fed with basal diet, n = 6), and IE group (IUGR piglets fed with basal diet supplemented with 2 mg/kg EGF, n = 6). Growth performance, serum biochemical profile, jejunum histomorphology, jejunum glucose absorption and antioxidant capacity, and jejunal barrier function were measured. The results showed that EGF supplementation significantly increased the final body weight (FBW), average daily gain (ADG), and average daily feed intake (ADFI) of piglets with IUGR; EGF supplementation significantly increased the total protein (TP), glucose (GLU), and immunoglobulin G (IgG) levels compared with the IUGR piglets in the IC group; EGF administration effectively exhibited an increased jejunum villus height (VH) and the villus-height-to-crypt-depth ratio (V/C) of IUGR piglets compared with the IC group; EGF supplementation significantly increased sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, intestinal alkaline phosphatase (AKP) activity, glucose transporter sodium/glucose cotransporter 1 (SGLT1), glucose transporter 2 (GLUT2), and AMP-activated protein kinase α1 (AMPK-α1) mRNA expressions in the jejunum of IUGR piglets compared with the IC group; EGF supplementation exhibited increased superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) levels, tended to increase glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and tended to decrease the malondialdehyde (MDA) level in the jejunum of IUGR piglets compared with the IC group; EGF supplementation significantly increased ZO-1, Claudin-1, Occludin, and MUC2 mRNA expressions and improved secreted immunoglobulin A (sIgA) secretion in the jejunum of IUGR piglets compared with the IC group and tended to decrease the interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) levels in the jejunum of IUGR piglets compared with the IC group. Pearson’s correlation analysis further showed that EGF can promote intestinal development and nutrient absorption by promoting intestinal barrier function, thus improving the growth performance of IUGR piglets.
Collapse
|
19
|
Portincasa P, Celano G, Serale N, Vitellio P, Calabrese FM, Chira A, David L, Dumitrascu DL, De Angelis M. Clinical and Metabolomic Effects of Lactiplantibacillus plantarum and Pediococcus acidilactici in Fructose Intolerant Patients. Nutrients 2022; 14:2488. [PMID: 35745219 PMCID: PMC9231202 DOI: 10.3390/nu14122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Fructose intolerance (FI) is a widespread non-genetic condition in which the incomplete absorption of fructose leads to gastro-intestinal disorders. The crucial role of microbial dysbiosis on the onset of these intolerance symptoms together with their persistence under free fructose diets are driving the scientific community towards the use of probiotics as a novel therapeutic approach. In this study, we evaluated the prevalence of FI in a cohort composed of Romanian adults with Functional Grastrointestinal Disorders (FGIDs) and the effectiveness of treatment based on the probiotic formulation EQBIOTA® (Lactiplantibacillus plantarum CECT 7484 and 7485 and Pediococcus acidilactici CECT 7483). We evaluated the impact of a 30-day treatment both on FI subjects and healthy volunteers. The gastrointestinal symptoms and fecal volatile metabolome were evaluated. A statistically significant improvement of symptoms (i.e., bloating, and abdominal pain) was reported in FI patient after treatment. On the other hand, at the baseline, the content of volatile metabolites was heterogeneously distributed between the two study arms, whereas the treatment led differences to decrease. From our analysis, how some metabolomics compounds were correlated with the improvement and worsening of clinical symptoms clearly emerged. Preliminary observations suggested how the improvement of gastrointestinal symptoms could be induced by the increase of anti-inflammatory and protective substrates. A deeper investigation in a larger patient cohort subjected to a prolonged treatment would allow a more comprehensive evaluation of the probiotic treatment effects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Nadia Serale
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Paola Vitellio
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Francesco Maria Calabrese
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Alexandra Chira
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Liliana David
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| |
Collapse
|
20
|
Liu Y, Han X, Cai M, Jin S, Yan Z, Lu H, Chen Q. Jianpi Qinghua Fomula alleviates insulin resistance via restraining of MAPK pathway to suppress inflammation of the small intestine in DIO mice. BMC Complement Med Ther 2022; 22:129. [PMID: 35534842 PMCID: PMC9088054 DOI: 10.1186/s12906-022-03595-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Jianpi Qinghua Fomula (JPQHF), a clinically proven prescription,has been applied to cure insulin resistance(IR) and type 2 diabetes (T2DM) for more than 20 years. Here, we will unravel the underlying molecular mechanisms relevant to the therapeutic actions of JPQHF. Methods High-fat(HF)diet-induced obesity(DIO)mouse were established in our research, along with insulin resistance. After the administration of JPQHF 5 or 6 weeks, the parameters of the glucose and lipid metabolism were measured. Flow cytometry and Luminex were utilized to assess the inflammation in small intestine,whilst Western blot was used to determine the relative expression levels of the MAPK pathway-related proteins. The glucose and lipid transporter of small intestine was assessed by immunofluorescence and ELISA, and the expression of insulin signaling pathway was detected by Western blot. Results The metabolic phenotypes of DIO mouse were ameliorated after 6-week oral administration of JPQHF; Meanwhile,JPQHF downregulated levels of IL-1β,IL-6, TNF-α and IFN-γ but upregulated the ratio of M2/M1 macrophages in the small intestine. The elevated expressions of p-P38 MAPK/P38 MAPK、p-JNK/JNK and p-ERK1/2/ERK1/2 were reversed by JPQHF. Moreover, JPQHF enhanced expression of PI3K,p-AKT/AKT, p-IRS1/ IRS1, p-IRS2/ IRS2 and apoB48 in small intestine, and facilitated the translocation of GLUT2 to the basal side of small intestine epithelial cells. Conclusion JPQHF alleviates insulin resistance in DIO mice, and this effect may be associated with its restraining of inflammation of small intestine via attenuating MAPK pathway, and then diminishes small intestinal glucose and lipid absorption. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03595-0.
Collapse
Affiliation(s)
- Yahua Liu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjie Cai
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shenyi Jin
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zihui Yan
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qingguang Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
L’intestin un organe endocrine : de la physiologie aux implications thérapeutiques en nutrition. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Taneva I, Grumann D, Schmidt D, Taneva E, von Arnim U, Ansorge T, Wex T. Gene variants of the SLC2A5 gene encoding GLUT5, the major fructose transporter, do not contribute to clinical presentation of acquired fructose malabsorption. BMC Gastroenterol 2022; 22:167. [PMID: 35387598 PMCID: PMC8985300 DOI: 10.1186/s12876-022-02244-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background While role of ALDOB-related gene variants for hereditary fructose intolerance is well established, contribution of gene variants for acquired fructose malabsorption (e.g. SLC2A5, GLUT5) is not well understood. Methods Patients referred to fructose breath test were further selected to identify those having acquired fructose malabsorption. Molecular analysis of genomic DNA included (I) exclusion of 3 main ALDOB gene variants causing hereditary fructose intolerance and (II) sequencing analysis of SLC2A5 gene comprising complete coding region, at least 20 bp of adjacent intronic regions and 700 bp of proximal promoter. Results Among 494 patients, 35 individuals with acquired fructose malabsorption were identified based on pathological fructose-breath test and normal lactose-breath test. Thirty four of them (97%) had negative tissue anti-transglutaminase and/or deamidated gliadin antibodies in their medical records. Molecular analysis of SLC2A5 gene of all 35 subjects identified 5 frequent and 5 singular gene variants mostly in noncoding regions (promoter and intron). Allele frequencies of gene variants were similar to those reported in public databases strongly implying that none of them was associated with acquired fructose malabsorption. Conclusions Gene variants of coding exons, adjacent intronic regions and proximal promoter region of SLC2A5 gene are unlikely to contribute to genetic predisposition of acquired fructose malabsorption.
Collapse
Affiliation(s)
- Irina Taneva
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany
| | - Dorothee Grumann
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany
| | - Dietmar Schmidt
- Medical Office Internal Medicine and Gastroenterology, Olvenstedter Str. 11, 39108, Magdeburg, Germany
| | - Elina Taneva
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany
| | - Ulrike von Arnim
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Thomas Ansorge
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany
| | - Thomas Wex
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany. .,Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
23
|
Zhou Z, Sun B, Yu D, Zhu C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 12:834485. [PMID: 35242721 PMCID: PMC8886906 DOI: 10.3389/fcimb.2022.834485] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| |
Collapse
|
24
|
Roberts A, Phuah P, Cheng S, Murphy KG. Targeting Enteroendocrine Cells to Treat Metabolic Disease. COMPREHENSIVE PHARMACOLOGY 2022:344-372. [DOI: 10.1016/b978-0-12-820472-6.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Zhang X, Monnoye M, Mariadassou M, Beguet-Crespel F, Lapaque N, Heberden C, Douard V. Glucose but Not Fructose Alters the Intestinal Paracellular Permeability in Association With Gut Inflammation and Dysbiosis in Mice. Front Immunol 2021; 12:742584. [PMID: 35024040 PMCID: PMC8744209 DOI: 10.3389/fimmu.2021.742584] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
A causal correlation between the metabolic disorders associated with sugar intake and disruption of the gastrointestinal (GI) homeostasis has been suggested, but the underlying mechanisms remain unclear. To unravel these mechanisms, we investigated the effect of physiological amounts of fructose and glucose on barrier functions and inflammatory status in various regions of the GI tract and on the cecal microbiota composition. C57BL/6 mice were fed chow diet and given 15% glucose or 15% fructose in drinking water for 9 weeks. We monitored caloric intake, body weight, glucose intolerance, and adiposity. The intestinal paracellular permeability, cytokine, and tight junction protein expression were assessed in the jejunum, cecum, and colon. In the cecum, the microbiota composition was determined. Glucose-fed mice developed a marked increase in total adiposity, glucose intolerance, and paracellular permeability in the jejunum and cecum while fructose absorption did not affect any of these parameters. Fructose-fed mice displayed increased circulation levels of IL6. In the cecum, both glucose and fructose intake were associated with an increase in Il13, Ifnγ, and Tnfα mRNA and MLCK protein levels. To clarify the relationships between monosaccharides and barrier function, we measured the permeability of Caco-2 cell monolayers in response to IFNγ+TNFα in the presence of glucose or fructose. In vitro, IFNγ+TNFα-induced intestinal permeability increase was less pronounced in response to fructose than glucose. Mice treated with glucose showed an enrichment of Lachnospiracae and Desulfovibrionaceae while the fructose increased relative abundance of Lactobacillaceae. Correlations between pro-inflammatory cytokine gene expression and bacterial abundance highlighted the potential role of members of Desulfovibrio and Lachnospiraceae NK4A136 group genera in the inflammation observed in response to glucose intake. The increase in intestinal inflammation and circulating levels of IL6 in response to fructose was observed in the absence of intestinal permeability modification, suggesting that the intestinal permeability alteration does not precede the onset of metabolic outcome (low-grade inflammation, hyperglycemia) associated with chronic fructose consumption. The data also highlight the deleterious effects of glucose on gut barrier function along the GI tract and suggest that Desulfovibrionaceae and Lachnospiraceae play a key role in the onset of GI inflammation in response to glucose.
Collapse
Affiliation(s)
- Xufei Zhang
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | | | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Christine Heberden
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Veronique Douard
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| |
Collapse
|
26
|
Chang CS, Liao YC, Huang CT, Lin CM, Cheung CHY, Ruan JW, Yu WH, Tsai YT, Lin IJ, Huang CH, Liou JS, Chou YH, Chien HJ, Chuang HL, Juan HF, Huang HC, Chan HL, Liao YC, Tang SC, Su YW, Tan TH, Bäumler AJ, Kao CY. Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Rep 2021; 37:110016. [PMID: 34818535 DOI: 10.1016/j.celrep.2021.110016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Strengthening the gut epithelial barrier is a potential strategy for management of gut microbiota-associated illnesses. Here, we demonstrate that dual-specificity phosphatase 6 (Dusp6) knockout enhances baseline colon barrier integrity and ameliorates dextran sulfate sodium (DSS)-induced colonic injury. DUSP6 mutation in Caco-2 cells enhances the epithelial feature and increases mitochondrial oxygen consumption, accompanied by altered glucose metabolism and decreased glycolysis. We find that Dusp6-knockout mice are more resistant to DSS-induced dysbiosis, and the cohousing and fecal microbiota transplantation experiments show that the gut/fecal microbiota derived from Dusp6-knockout mice also confers protection against colitis. Further culturomics and mono-colonialization experiments show that one gut microbiota member in the genus Duncaniella confers host protection from DSS-induced injury. We identify Dusp6 deficiency as beneficial for shaping the gut microbiota eubiosis necessary to protect against gut barrier-related diseases.
Collapse
Affiliation(s)
- Cherng-Shyang Chang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Chu Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chih-Ting Huang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chiao-Mei Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | | | - Jhen-Wei Ruan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wen-Hsuan Yu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ting Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - I-Jung Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 11571, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan; Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
27
|
Yang M, Chen Y, Vagionitis S, Körtvely E, Ueffing M, Schmachtenberg O, Hu Z, Jiao K, Paquet-Durand F. Expression of glucose transporter-2 in murine retina: Evidence for glucose transport from horizontal cells to photoreceptor synapses. J Neurochem 2021; 160:283-296. [PMID: 34726780 DOI: 10.1111/jnc.15533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023]
Abstract
The retina has the highest relative energy consumption of any tissue, depending on a steady supply of glucose from the bloodstream. Glucose uptake is mediated by specific transporters whose regulation and expression are critical for the pathogenesis of many diseases, including diabetes and diabetic retinopathy. Here, we used immunofluorescence to show that glucose transporter-2 (GLUT2) is expressed in horizontal cells of the mouse neuroretina in proximity to inner retinal capillaries. To study the function of GLUT2 in the murine retina, we used organotypic retinal explants, cultivated under entirely controlled, serum-free conditions and exposed them to streptozotocin, a cytotoxic drug transported exclusively by GLUT2. Contrary to our expectations, streptozotocin did not measurably affect horizontal cell viability, while it ablated rod and cone photoreceptors in a concentration-dependent manner. Staining for poly-ADP-ribose (PAR) indicated that the detrimental effect of streptozotocin on photoreceptors may be associated with DNA damage. The negative effect of streptozotocin on the viability of rod photoreceptors was counteracted by co-administration of either the inhibitor of connexin-formed hemi-channels meclofenamic acid or the blocker of clathrin-mediated endocytosis dynasore. Remarkably, cone photoreceptors were not protected from streptozotocin-induced degeneration by neither of the two drugs. Overall, these data suggest the existence of a GLUT2-dependent glucose transport shuttle, from horizontal cells into photoreceptor synapses. Moreover, our study points at different glucose uptake mechanisms in rod and cone photoreceptors.
Collapse
Affiliation(s)
- Ming Yang
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China.,1st Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiyi Chen
- Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, Germany
| | - Stavros Vagionitis
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Elöd Körtvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O), Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, Germany
| | - Oliver Schmachtenberg
- CINV, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Zhulin Hu
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China
| | - Kangwei Jiao
- Affiliated Hospital of Yunnan University & 2nd People's Hospital of Yunnan Province, Kunming, China.,Yunnan Eye Institute & Key Laboratory of Yunnan Province, Kunming, China
| | | |
Collapse
|
28
|
Sequeira IR. Higher doses of ascorbic acid may have the potential to promote nutrient delivery via intestinal paracellular absorption. World J Gastroenterol 2021; 27:6750-6756. [PMID: 34790005 PMCID: PMC8567472 DOI: 10.3748/wjg.v27.i40.6750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
The significance of plasma ascorbic acid (AA) is underscored by its enzymatic and antioxidant properties as well as involvement in many aspects of health including the synthesis of biomolecules during acute illness, trauma and chronic health conditions. Dietary intake supports maintenance of optimal levels with supplementation at higher doses more likely pursued. Transient increased intestinal paracellular permeability following high dose AA may be utilised to enhance delivery of other micronutrients across the intestinal lumen. The potential mechanism following dietary intake however needs further study but may provide an avenue to increase small intestinal nutrient co transport and absorption, including in acute and chronic illness.
Collapse
Affiliation(s)
- Ivana Roosevelt Sequeira
- Human Nutrition Unit, School of Biological Science, University of Auckland, Auckland 1024, New Zealand
| |
Collapse
|
29
|
Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci Rep 2021; 11:13751. [PMID: 34215797 PMCID: PMC8253845 DOI: 10.1038/s41598-021-93063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.
Collapse
|
30
|
Tang J, Feng Y, Zhang B, Wu Y, Guo Z, Liang S, Zhou Z, Xie M, Hou S. Severe pantothenic acid deficiency induces alterations in the intestinal mucosal proteome of starter Pekin ducks. BMC Genomics 2021; 22:491. [PMID: 34193047 PMCID: PMC8246668 DOI: 10.1186/s12864-021-07820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pantothenic acid deficiency (PAD) results in growth depression and intestinal hypofunction of animals. However, the underlying molecular mechanisms remain to be elucidated. Mucosal proteome might reflect dietary influences on physiological processes. RESULTS A total of 128 white Pekin ducks of one-day-old were randomly assigned to two groups, fed either a PAD or a pantothenic acid adequate (control, CON) diet. After a 16-day feeding period, two ducks from each replicate were sampled to measure plasma parameters, intestinal morphology, and mucosal proteome. Compared to the CON group, high mortality, growth retardation, fasting hypoglycemia, reduced plasma insulin, and oxidative stress were observed in the PAD group. Furthermore, PAD induced morphological alterations of the small intestine indicated by reduced villus height and villus surface area of duodenum, jejunum, and ileum. The duodenum mucosal proteome of ducks showed that 198 proteins were up-regulated and 223 proteins were down-regulated (> 1.5-fold change) in the PAD group compared to those in the CON group. Selected proteins were confirmed by Western blotting. Pathway analysis of these proteins exhibited the suppression of glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and intestinal absorption in the PAD group, indicating impaired energy generation and abnormal intestinal absorption. We also show that nine out of eleven proteins involved in regulation of actin cytoskeleton were up-regulated by PAD, probably indicates reduced intestinal integrity. CONCLUSION PAD leads to growth depression and intestinal hypofunction of ducks, which are associated with impaired energy generation, abnormal intestinal absorption, and regulation of actin cytoskeleton processes. These findings provide insights into the mechanisms of intestinal hypofunction induced by PAD.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yulong Feng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, Guizhou, China
| | - Bo Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongbao Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Suyun Liang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
31
|
Effects of underwater and semi-aquatic environments on gut tissue and microbiota of the mudskipper Boleophthalmus pectinirostris. J Comp Physiol B 2021; 191:741-753. [PMID: 34057562 DOI: 10.1007/s00360-021-01380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 01/16/2023]
Abstract
In both underwater and semi-aquatic environments, the gut microbiota is of particular physiological importance for amphibious animals, given that the gut tract is among those organs in direct communication with the external environment. In this study, we examined the effects of these contrasting environments on the dominant bacteria in the guts of the amphibious mudskipper Boleophthalmus pectinirostris. Compared with the guts of normal mudskippers, in which the dominant bacteria were identified as Vibrio and Faecalibacterium, we found that Acinetobacter, Shigella, and Bacillus predominated in their guts after exposure to the semi-aquatic environment, whereas Escherichia, Bacteroides, and Bacillus were more prevalent in the guts in the underwater environment. The total number of cultured gut bacteria decreased significantly in the semi-aquatic environment. In semi-aquatic mudskippers, we also detected reductions and increases in the length and width of gut villi, respectively, whereas the width of gut villi declined and the number of goblet cells increased significantly in mudskippers maintained underwater. The mRNA expression of multiple gut transporters for glucose, long-chain fatty acids, and amino acids was found to increase markedly in both underwater and semi-aquatic environments, with the expression of most transporters being significantly higher in those mudskippers exposed to an underwater environment. Furthermore, we detected significant increases in the mRNA expression of pro-inflammatory cytokine transcripts in the guts of both underwater and semi-aquatic mudskippers on days 2, 4, and 6 of exposure, whereas the expression of IL-10 and TGFβ mRNA was more pronounced on days 4 and 8, respectively. Comparatively, we found that expression levels of cytokines in the guts of underwater mudskipper were substantially higher than those in the guts of semi-aquatic mudskippers. Collectively, our findings revealed notable differences in the gut microbiota and energy metabolism requirements of mudskippers exposed to underwater and semi-aquatic conditions, thereby providing a theoretical basis explaining the maintenance of a homeostatic state in mudskippers that constantly transition between these contrasting amphibious habitats.
Collapse
|
32
|
Wei T, Jia Y, Xue W, Ma M, Wu W. Nutritional Effects of the Enteral Nutritional Formula on Regulation of Gut Microbiota and Metabolic Level in Type 2 Diabetes Mellitus Mice. Diabetes Metab Syndr Obes 2021; 14:1855-1869. [PMID: 33953585 PMCID: PMC8089093 DOI: 10.2147/dmso.s301454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Due to the adverse effects of antidiabetic drugs, nowadays, nutraceuticals have been of much interest to investigators. Therefore, the present study aimed to explore the potential effects of enteral nutritional (EN) formulas on the gut microbiota and metabolic regulation of type 2 diabetes mellitus (T2DM) mice and compare the differences between whey protein and soy protein. METHODS EN formulas made of whey protein or soy protein were administered for five weeks and then mice tissue samples were obtained to examine the metabolic parameters and histopathology of the pancreas, liver, jejunum and colon. 16S rRNA V3-V4 region gene sequencing was used to analyze the changes in the gut microbiota. RESULTS After the five-week intervention, the alpha diversity had recovered slightly, and the soy protein group (SPG) achieved a better effect than the whey protein group (LPG). The overall composition of gut microbiota was regulated. The abundance of Bacteroidetes and TM7 had raised significantly and the abundance of Firmicutes and Deferribacteres had declined after treatment, with no significant difference between the LPG and SPG. The types of beneficial bacteria were increased at the genus and species level. The level of hexokinase (HK) and pyruvate kinase (PK) had significantly recovered and inhibited the level of α-glucosidase. In addition, the EN formulas treatment reduced the levels of inflammatory factor (TNF-α) in liver and muscle. The level of glucose transporter type 2 (GLUT-2) levels in the liver and intestine also significantly increased. Moreover, the metabolism regulation of the SPG was better than that of the LPG. The EN formulas treatment improved the pancreas, liver, jejunum and colon histology. CONCLUSION The EN formulas regulated the overall structure of the gut microbiota and improved the metabolic level in streptozotocin/high-fat diet (STZ/HFD) diabetic mice. Therefore, EN formula may potentially become an effective nutritional adjunctive therapy for T2DM.
Collapse
Affiliation(s)
- Ting Wei
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
| | - Ye Jia
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
| | - Wei Xue
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
| | - Ming Ma
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
- Correspondence: Ming Ma; Wenhui Wu College of Food Science and Engineering, Shanghai Ocean University, No. 999, Huchenghuan Road, Nanhui New City, Shanghai, 201306, People’s Republic of ChinaTel +86-21-61900296 Email ;
| | - Wenhui Wu
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, People’s Republic of China
| |
Collapse
|
33
|
Exploring the impact of intestinal ion transport on the gut microbiota. Comput Struct Biotechnol J 2020; 19:134-144. [PMID: 33425246 PMCID: PMC7773683 DOI: 10.1016/j.csbj.2020.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota and the host are intimately connected. The host physiology dictates the intestinal environment through regulation of pH, ion concentration, mucus production, etc., all of which exerts a selective pressure on the gut microbiota. Since different regions of the gastrointestinal tract are characterized by their own physicochemical conditions, distinct microbial communities are present in these locations. While it is widely accepted that the intestinal microbiome influences the host (tight junctions, cytokine/immune responses, diarrhea, etc.), the reciprocal interaction of the host on the microbiome is under-explored. This review aims to address these gaps in knowledge by focusing on how the host intestinal ion transport influences the luminal environment and thereby modulates the gut microbiota composition.
Collapse
Key Words
- CFTR
- CFTR, cystic fibrosis transmembrane regulator
- ClC, chloride channel
- DRA
- DRA, down-regulated in adenoma
- ENaC, epithelial Na+ channel
- GI, gastrointestinal
- GLUT2
- GLUT2, glucose transporter 2
- Gastrointestinal
- Ion transport
- Microbiome
- Microbiota
- NHE2
- NHE2, sodium-hydrogen exchanger isoform 2
- NHE3
- NHE3, sodium-hydrogen exchanger isoform 3
- NKCC1, Na+-K+-2Cl− co-transporter
- OTUs, operational taxonomic units
- SGLT1, sodium glucose co-transporter 1
Collapse
|
34
|
Zhang HY, Tian JX, Lian FM, Li M, Liu WK, Zhen Z, Liao JQ, Tong XL. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomed Pharmacother 2020; 133:110857. [PMID: 33197760 DOI: 10.1016/j.biopha.2020.110857] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes mellitus, and hyperlipidemia are associated with the dysfunction of gut microbiota. Traditional Chinese medicines (TCMs) have shown considerable effects in the treatment of metabolic disorders by regulating the gut microbiota. However, the underlying mechanisms are unclear. Studies have shown that TCMs significantly affect glucose and lipid metabolism by modulating the gut microbiota, particularly mucin-degrading bacteria, bacteria with anti-inflammatory properties, lipopolysaccharide- and short-chain fatty acid (SCFA)-producing bacteria, and bacteria with bile-salt hydrolase activity. In this review, we explored potential mechanisms by which TCM improved metabolic disorders via regulating gut microbiota composition and functional structure. In particular, we focused on the protection of the intestinal barrier function, modulation of metabolic endotoxemia and inflammatory responses, regulation of the effects of SCFAs, modulation of the gut-brain axis, and regulation of bile acid metabolism and tryptophan metabolism as therapeutic mechanisms of TCMs in metabolic diseases.
Collapse
Affiliation(s)
- Hai-Yu Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Jia-Xing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Feng-Mei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wen-Ke Liu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhong Zhen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiang-Quan Liao
- Department of National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
35
|
Huang W, Yu J, Liu T, Tudor G, Defnet AE, Zalesak S, Kumar P, Booth C, Farese AM, MacVittie TJ, Kane MA. Proteomic Evaluation of the Natural History of the Acute Radiation Syndrome of the Gastrointestinal Tract in a Non-human Primate Model of Partial-body Irradiation with Minimal Bone Marrow Sparing Includes Dysregulation of the Retinoid Pathway. HEALTH PHYSICS 2020; 119:604-620. [PMID: 32947489 PMCID: PMC7541663 DOI: 10.1097/hp.0000000000001351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Exposure to ionizing radiation results in injuries of the hematopoietic, gastrointestinal, and respiratory systems, which are the leading causes responsible for morbidity and mortality. Gastrointestinal injury occurs as an acute radiation syndrome. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the proteome of jejunum from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Jejunum was analyzed by liquid chromatography-tandem mass spectrometry, and pathway and gene ontology analysis were performed. A total of 3,245 unique proteins were quantified out of more than 3,700 proteins identified in this study. Also a total of 289 proteins of the quantified proteins showed significant and consistent responses across at least three time points post-irradiation, of which 263 proteins showed strong upregulations while 26 proteins showed downregulations. Bioinformatic analysis suggests significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. Canonical pathways altered by radiation included GP6 signaling pathway, acute phase response signaling, LXR/RXR activation, and intrinsic prothrombin activation pathway. Additionally, we observed dysregulation of proteins of the retinoid pathway and retinoic acid, an active metabolite of vitamin A, as quantified by liquid chromatography-tandem mass spectrometry. Correlation of changes in protein abundance with a well-characterized histological endpoint, corrected crypt number, was used to evaluate biomarker potential. These data further define the natural history of the gastrointestinal acute radiation syndrome in a non-human primate model of partial body irradiation with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Amy E Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Stephanie Zalesak
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | - Praveen Kumar
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
| | | | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, USA
- Correspondence: Maureen A. Kane, University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N. Pine Street, Room N731, Baltimore, MD 21201, Phone: (410) 706-5097, Fax: (410) 706-0886,
| |
Collapse
|
36
|
Niu Y, Zhao Y, He J, Shen M, Gan Z, Zhang L, Wang T. Dietary dihydroartemisinin supplementation improves growth, intestinal digestive function and nutrient transporters in weaned piglets with intrauterine growth retardation. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Zhao L, Xuan Z, Song W, Zhang S, Li Z, Song G, Zhu X, Xie H, Zheng S, Song P. A novel role for farnesoid X receptor in the bile acid-mediated intestinal glucose homeostasis. J Cell Mol Med 2020; 24:12848-12861. [PMID: 33029898 PMCID: PMC7686993 DOI: 10.1111/jcmm.15881] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
The farnesoid X receptor (FXR), as a bile acid (BA) sensor, plays an important role in the regulation of lipid metabolism. However, the effects and underlying molecular mechanisms of FXR on intestinal glucose homeostasis remain elusive. Herein, we demonstrated that FXR and glucose transporter 2 (GLUT2) are essential for BA‐mediated glucose homeostasis in the intestine. BA‐activated FXR enhanced glucose uptake in intestinal epithelial cells by increasing the expression of GLUT2, which depended on ERK1/2 phosphorylation via S1PR2. However, it also reduced the cell energy generation via inhibition of oxidative phosphorylation, which is crucial for intestinal glucose transport. Moreover, BA‐activated FXR signalling potently inhibited specific glucose flux through the intestinal epithelium to the circulation, which reduced the increase in blood glucose levels in mice following oral glucose administration. This trend was supported by the changed ratio of GLUT2 to SGLT1 in the brush border membrane (BBM), including especially decreased GLUT2 abundance in the BBM. Furthermore, impaired intestinal FXR signalling was observed in the patients with intestinal bile acid deficiency (IBAD). These findings uncover a novel function by which FXR sustains the intestinal glucose homeostasis and provide a rationale for FXR agonists in the treatment of IBAD‐related hyperglycaemia.
Collapse
Affiliation(s)
- Long Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Zefeng Xuan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Wenfeng Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shiyu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Guangyuan Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xingxin Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHCPRC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
38
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
39
|
Ren Y, Zhao Z, Zhao G, Liu Q, Wang Z, Liu R. Sleeve Gastrectomy Surgery Improves Glucose Metabolism by Downregulating the Intestinal Expression of Sodium-Glucose Cotransporter-3. J INVEST SURG 2020; 35:14-22. [PMID: 32835540 DOI: 10.1080/08941939.2020.1810370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Sleeve gastrectomy (SG) has been proven effective in the treatment of obesity and type 2 diabetes. We hypothesized that SGLT3 may play an important role in the mechanism of glucose control and weight loss after SG. MATERIALS AND METHODS Daily body weight and food intake were measured in SG and sham-operated mice. Glucose tolerance test, SGLT3 agonist (αMG), and SGLT1 inhibitor (phlorizin) perfusion experiments were used to detect changes in intestinal SGLT3 and SGLT1 activity following SG. Expression of SGLT3a and SGLT1 was assessed at 2 weeks, 1 month after surgery by quantitative PCR and fluorescence immunoassay. Hematoxylin and eosin staining was used to detect morphological changes in the villi. SGLT3 and SGLT1 expression was measured after stimulation of human intestinal epithelial cells (HIEC). RESULTS Both the body weight and daily food intake of the SG-treated mice decreased within 30 days after surgery. Oral glucose absorption was significantly reduced at 30 days. The intestinal stimulation proved that SG can improve glucose metabolism, which can be reversed by αMG and enhanced by phlorizin. Villus height and surface area of the intestine in SG mice decreased after surgery. mRNA expression of SGLT3a and SGLT1 decreased at 2 weeks and 1 month after SG, immunofluorescence also confirmed these changes. HIEC stimulation confirmed that αMG could increase the expression of SGLT3 and SGLT1, but the expression of SGLT1 was down regulated when phlorizin was added to the medium. CONCLUSION The results suggest that reducing SGLT3 expression might contribute to lowering blood glucose and controlling body weight after SG.
Collapse
Affiliation(s)
- Yixing Ren
- Department of Hepatopancreatobiliary Surgical Oncology, The First Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Zhiming Zhao
- Department of Hepatopancreatobiliary Surgical Oncology, The First Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Guodong Zhao
- Department of Hepatopancreatobiliary Surgical Oncology, The First Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Qu Liu
- Department of Hepatopancreatobiliary Surgical Oncology, The First Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Zizheng Wang
- Department of Hepatopancreatobiliary Surgical Oncology, The First Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Rong Liu
- Department of Hepatopancreatobiliary Surgical Oncology, The First Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
40
|
Deng D, Yan X, Zhao W, Qin C, Yang G, Nie G. Glucose transporter 2 in common carp (Cyprinus carpio L.): molecular cloning, tissue expression, and the responsiveness to glucose, insulin, and glucagon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1207-1218. [PMID: 32212006 DOI: 10.1007/s10695-020-00782-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Glucose transporter 2 (glut2) has been studied in mammals, aves, and several fish, while the comparative studies of glut2 in common carp are still lacking. In this study, glut2 was firstly isolated and characterized from the liver of common carp. The full-length cDNA of glut2 was 2351 bp with an open reading frame (ORF) of 1512 bp, encoding 503 amino acids. Alignment of glut2 amino acid sequences from different species revealed that common carp glut2 showed higher sequence identity with teleosts, and lower homology with mammals and amphibians. Tissue distribution demonstrated that glut2 mRNA level was mainly expressed in liver, foregut, and midgut. To investigate the actions of glut2 on glucose metabolism, the level of glut2 mRNA was detected after intraperitoneal injection of glucose, human insulin and glucagon (100 ng/g), respectively. Following glucose administration, glut2 gene expression was significantly upregulated at 3 h in the foregut. However, no change was found in hepatic glut2 mRNA level, indicating that glut2 may have a role in intestinal glucose uptake rather than in the liver. Following insulin treatment, the expression of glut2 was markedly downregulated at 3 h and 6 h in the liver, and at 3 h in the foregut, respectively. Furthermore, glut2 mRNA expression was unaffected by glucagon injection in the liver and foregut. These results suggested that the expression of glut2 regulated by pancreatic hormones was different. Taken together, our studies firstly revealed the structure of the glut2 gene and its potential functions in glucose metabolism of common carp.
Collapse
Affiliation(s)
- Dapeng Deng
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Wenli Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
41
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
42
|
Zhao C, Wan X, Zhou S, Cao H. Natural Polyphenols: A Potential Therapeutic Approach to Hypoglycemia. EFOOD 2020. [DOI: 10.2991/efood.k.200302.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
43
|
Wang N, Lv B, Guan L, Qiao H, Sun B, Luo X, Jia R, Chen K, Yan J. Maternal low protein exposure alters glucose tolerance and intestinal nutrient-responsive receptors and transporters expression of rat offspring. Life Sci 2019; 243:117216. [PMID: 31884096 DOI: 10.1016/j.lfs.2019.117216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
Abstract
AIMS Maternal protein malnutrition during perinatal period has long-term consequences on the offspring's metabolic phenotype. Here we determined the effects of maternal protein-restricted (PR) diet on offspring's metabolism in 3- and 12-week-old. MAIN METHODS Sprague-Dawley rats were fed with standard chow diet or PR diet during pregnancy and lactation. Food intake and body weight of offspring were measured weekly. The oral glucose tolerance tests were underwent, the pancreases were collected for histochemical staining, and the duodenum, jejunum and ileum were collected for gene and protein expression analysis in 3- and 12-week-old offspring. KEY FINDINGS PR offspring had significant lower body weight and persisted till 12-week-old. From 3- to 12-week-old, PR offspring presented considerably impaired glucose tolerance, while no marked change was shown in control rats. Additionally, the average islet size of PR offspring decreased significantly in 12-week-old. The mRNA and protein expression of nutrient-responsive receptors and transporters T1R3, SGLT1 and GLUT2 increased significantly in the intestine of 3-week-old PR offspring. And from 3- and 12-week-old, the increase tendency of expression subdued. SIGNIFICANCE These results suggest that maternal PR diet during critical developmental windows influences offspring metabolism, which may be subdued partially, but not be reversed completely by chow diet after weaning.
Collapse
Affiliation(s)
- Nan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Bo Lv
- School of Humanities, Xidian University, Xi'an, Shaanxi 710126, China
| | - Limin Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi 710000, China
| | - Hu Qiao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi 710000, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Ru Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi 710000, China
| | - Ke Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
44
|
Houbrechts AM, Beckers A, Vancamp P, Sergeys J, Gysemans C, Mathieu C, Darras VM. Age-Dependent Changes in Glucose Homeostasis in Male Deiodinase Type 2 Knockout Zebrafish. Endocrinology 2019; 160:2759-2772. [PMID: 31504428 DOI: 10.1210/en.2019-00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (THs) are crucial regulators of glucose metabolism and insulin sensitivity. Moreover, inactivating mutations in type 2 deiodinase (DIO2), the major TH-activating enzyme, have been associated with type 2 diabetes mellitus in both humans and mice. We studied the link between Dio2 deficiency and glucose homeostasis in fasted males of two different Dio2 knockout (KO) zebrafish lines. Young adult Dio2KO zebrafish (6 to 9 months) were hyperglycemic. Both insulin and glucagon expression were increased, whereas β and α cell numbers in the main pancreatic islet were similar to those in wild-types. Insulin receptor expression in skeletal muscle was decreased at 6 months, accompanied by a strong downregulation of hexokinase and pyruvate kinase expression. Blood glucose levels in Dio2KO zebrafish, however, normalized around 1 year of age. Older mutants (18 to 24 months) were normoglycemic, and increased insulin and glucagon expression was accompanied by a prominent increase in pancreatic islet size and β and α cell numbers. Older Dio2KO zebrafish also showed strongly decreased expression of glucagon receptors in the gastrointestinal system as well as decreased expression of glucose transporters GLUT2 and GLUT12, glucose-6-phosphatase, and glycogen synthase 2. This study shows that Dio2KO zebrafish suffer from transient hyperglycemia, which is counteracted with increasing age by a prominent hyperplasia of the endocrine pancreas together with decreases in hepatic glucagon sensitivity and intestinal glucose uptake. Further research on the mechanisms allowing compensation in older Dio2KO zebrafish may help to identify new therapeutic targets for (TH deficiency-related) hyperglycemia.
Collapse
Affiliation(s)
- Anne M Houbrechts
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jurgen Sergeys
- Laboratory of Neural Circuit Development and Regeneration, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Aging, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Aging, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
A Transcriptome Analysis Identifies Biological Pathways and Candidate Genes for Feed Efficiency in DLY Pigs. Genes (Basel) 2019; 10:genes10090725. [PMID: 31540540 PMCID: PMC6771153 DOI: 10.3390/genes10090725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Feed cost accounts for approximately 65–75% of overall commercial pork production costs. Therefore, improving the feed efficiency of pig production is important. In this study, 12 individuals with either extremely high (HE) or low (LE) feed efficiency were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs. After the pigs were slaughtered, we collected small intestine mucosal tissue. Next, RNA sequencing (RNA-seq) analysis was used to reveal the presence and quantity of genes expressed between these extremely HE- and LE-groups. We found 433 significantly differentially expressed genes (DEGs) between the HE- and LE-groups. Of these, 389 and 44 DEGs were upregulated and downregulated in the HE-group, respectively. An enrichment analysis showed that the DEGs were mainly enriched in functions related to apical plasma membrane composition, transporter activity, transport process and hormone regulation of digestion and absorption. Protein network interaction and gene function analyses revealed that SLC2A2 was an important candidate gene for FE in pigs, which may give us a deeper understanding of the mechanism of feed efficiency. Furthermore, some significant DEGs identified in the current study could be incorporated into artificial selection programs for increased feeding efficiency in pigs.
Collapse
|
46
|
The median eminence as the hypothalamic area involved in rapid transfer of glucose to the brain: functional and cellular mechanisms. J Mol Med (Berl) 2019; 97:1085-1097. [PMID: 31129757 DOI: 10.1007/s00109-019-01799-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Our data proposes that glucose is transferred directly to the cerebrospinal fluid (CSF) of the hypothalamic ventricular cavity through a rapid "fast-track-type mechanism" that would efficiently stimulate the glucosensing areas. This mechanism would occur at the level of the median eminence (ME), a periventricular hypothalamic zone with no blood-brain barrier. This "fast-track" mechanism would involve specific glial cells of the ME known as β2 tanycytes that could function as "inverted enterocytes," expressing low-affinity glucose transporters GLUT2 and GLUT6 in order to rapidly transfer glucose to the CSF. Due to the large size of tanycytes, the presence of a high concentration of mitochondria and the expression of low-affinity glucose transporters, it would be expected that these cells accumulate glucose in the endoplasmic reticulum (ER) by sequestering glucose-6-phosphate (G-6-P), in a similar way to that recently demonstrated in astrocytes. Glucose could diffuse through the cells by micrometric distances to be released in the apical region of β2 tanycytes, towards the CSF. Through this mechanism, levels of glucose would increase inside the hypothalamus, stimulating glucosensing mechanisms quickly and efficiently. KEY MESSAGES: • Glucose diffuses through the median eminence cells (β2 tanycytes), towards the hypothalamic CSF. • Glucose is transferred through a rapid "fast-track-type mechanism" via GLUT2 and GLUT6. • Through this mechanism, hypothalamic glucose levels increase, stimulating glucosensing.
Collapse
|
47
|
Mukhopadhya A, O'Doherty JV, Sweeney T. A combination of yeast beta-glucan and milk hydrolysate is a suitable alternative to zinc oxide in the race to alleviate post-weaning diarrhoea in piglets. Sci Rep 2019; 9:616. [PMID: 30679612 PMCID: PMC6346036 DOI: 10.1038/s41598-018-37004-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] Open
Abstract
Zinc oxide (ZnO) is currently used as a dietary supplement to support gut homeostasis during the standard ‘abrupt’ weaning practices in commercial pig production. However, a replacement is urgently required as a ban on ZnO usage is imminent. The objective of this study was to explore the potential of a bovine casein hydrolysate (5kDaR) and yeast β-glucan, and their combination, as an alternative to ZnO. Eighty 21d old male piglets received a basal diet or supplemented with 5kDaR and yeast β-glucan alone or in combination, or ZnO from the day of weaning and were monitored for 10 days (n = 8/group; dietary groups: control diet; control diet + 5kDaR; control diet + yeast β-glucan; control diet + 5kDaR + yeast β-glucan; control diet + ZnO). Individually, supplement yeast β-glucan or 5kDaR did not improve gut health. In contrast, the yeast β-glucan + 5kDaR combination supplement supported a healthy gut, indicated by healthy faecal scores and improved growth parameters; similar to ZnO inclusion (P > 0.05). There was no negative effect on the gut microbiota with yeast β-glucan + 5kDaR supplementation; while ZnO negatively affected the Bifidobacterium spp. abundance (P < 0.05). The inflammatory NFκB pathway was suppressed by yeast β-glucan + 5kDaR supplementation, similar to ZnO (P > 0.05). In conclusion, the dietary supplement yeast β-glucan + 5kDaR restored homeostasis of the newly weaned piglet gut similar to the widely used ZnO, and can potentially replace ZnO.
Collapse
Affiliation(s)
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
48
|
Smith K, Karimian Azari E, LaMoia TE, Hussain T, Vargova V, Karolyi K, Veldhuis PP, Arnoletti JP, de la Fuente SG, Pratley RE, Osborne TF, Kyriazis GA. T1R2 receptor-mediated glucose sensing in the upper intestine potentiates glucose absorption through activation of local regulatory pathways. Mol Metab 2018; 17:98-111. [PMID: 30201274 PMCID: PMC6197762 DOI: 10.1016/j.molmet.2018.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
Objective Beyond the taste buds, sweet taste receptors (STRs; T1R2/T1R3) are also expressed on enteroendocrine cells, where they regulate gut peptide secretion but their regulatory function within the intestine is largely unknown. Methods Using T1R2-knock out (KO) mice we evaluated the role of STRs in the regulation of glucose absorption in vivo and in intact intestinal preparations ex vivo. Results STR signaling enhances the rate of intestinal glucose absorption specifically in response to the ingestion of a glucose-rich meal. These effects were mediated specifically by the regulation of GLUT2 transporter trafficking to the apical membrane of enterocytes. GLUT2 translocation and glucose transport was dependent and specific to glucagon-like peptide 2 (GLP-2) secretion and subsequent intestinal neuronal activation. Finally, high-sucrose feeding in wild-type mice induced rapid downregulation of STRs in the gut, leading to reduced glucose absorption. Conclusions Our studies demonstrate that STRs have evolved to modulate glucose absorption via the regulation of its transport and to prevent the development of exacerbated hyperglycemia due to the ingestion of high levels of sugars. The intestinal T1R2 receptor enhances glucose absorption in vivo and ex vivo. Pharmacological inhibition of STRs reduces glucose flux in human intestinal preparations. T1R2 regulates glucose absorption dependent on GLUT2 activity in enterocytes. GLP-2 mediates the effects of T1R2 signaling through activation of enteric neurons. High sucrose diet rapidly downregulates STRs leading to reduced glucose absorption.
Collapse
Affiliation(s)
- Kathleen Smith
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Elnaz Karimian Azari
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Traci E LaMoia
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Tania Hussain
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Veronika Vargova
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Katalin Karolyi
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Paula P Veldhuis
- Institute for Surgical Advancement, Florida Hospital, Orlando, FL, USA
| | | | | | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Timothy F Osborne
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - George A Kyriazis
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA; Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA; Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
49
|
Sala‐Rabanal M, Ghezzi C, Hirayama BA, Kepe V, Liu J, Barrio JR, Wright EM. Intestinal absorption of glucose in mice as determined by positron emission tomography. J Physiol 2018; 596:2473-2489. [PMID: 29707805 PMCID: PMC6023830 DOI: 10.1113/jp275934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS The goal was to determine the importance of the sodium-glucose cotransporter SGLT1 and the glucose uniporter GLUT2 in intestinal glucose absorption during oral glucose tolerance tests (OGTTs) in mice. Glucose absorption was determined in mice using positron emission tomography and three non-metabolizable glucose probes: one specific for SGLTs, one specific for GLUTs, and one a substrate for both SGLTs and GLUTs. Absorption was determined in wild-type, Sglt1-/- and Glut2-/- mice. Gastric emptying was a rate-limiting step in absorption. SGLT1, but not GLUT2, was important in fast glucose absorption. In the absence of SGLT1 or GLUT2, the oral glucose load delivered to the small intestine was slowly absorbed. Oral phlorizin only inhibited the fast component of glucose absorption, but it contributed to decreasing blood glucose levels by inhibiting renal reabsorption. ABSTRACT The current model of intestinal absorption is that SGLT1 is responsible for transport of glucose from the lumen into enterocytes across the brush border membrane, and GLUT2 for the downhill transport from the epithelium into blood across the basolateral membrane. Nevertheless, questions remain about the importance of these transporters in vivo. To address these questions, we have developed a non-invasive imaging method, positron emission tomography (PET), to monitor intestinal absorption of three non-metabolized glucose tracers during standard oral glucose tolerance tests (OGTTs) in mice. One tracer is specific for SGLTs (α-methyl-4-[18 F]fluoro-4-deoxy-d-glucopyranoside; Me-4FDG), one is specific for GLUTs (2-deoxy-2-[18 F]fluoro-d-glucose; 2-FDG), and one is a substrate for both SGLTs and GLUTs (4-deoxy-4-[18 F]fluoro-d-glucose; 4-FDG). OGTTs were conducted on adult wild-type, Sglt1-/- and Glut2-/- mice. In conscious mice, OGTTs resulted in the predictable increase in blood glucose that was blocked by phlorizin in both wild-type and Glut2-/- animals. The blood activity of both Me-4FDG and 4-FDG, but not 2-FDG, accompanied the changes in glucose concentration. PET imaging during OGTTs further shows that: (i) intestinal absorption of the glucose load depends on gastric emptying; (ii) SGLT1 is important for the fast absorption; (iii) GLUT2 is not important in absorption; and (iv) oral phlorizin reduces absorption by SGLT1, but is absorbed and blocks glucose reabsorption in the kidney. We conclude that in standard OGTTs in mice, SGLT1 is essential in fast absorption, GLUT2 does not play a significant role, and in the absence of SGLT1 the total load of glucose is slowly absorbed.
Collapse
Affiliation(s)
- Monica Sala‐Rabanal
- Department of PhysiologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1571USA
- Department of Cell Biology and Physiologyand Center for the Investigation of Membrane Excitability Diseases (CIMED)Washington UniversitySt LouisMO63110USA
| | - Chiara Ghezzi
- Department of PhysiologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1571USA
| | - Bruce A. Hirayama
- Department of PhysiologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1571USA
| | - Vladimir Kepe
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1735USA
| | - Jie Liu
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1735USA
| | - Jorge R. Barrio
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1735USA
| | - Ernest M. Wright
- Department of PhysiologyDavid Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCA90095‐1571USA
| |
Collapse
|
50
|
Abstract
Increased understanding of fructose metabolism, which begins with uptake via the intestine, is important because fructose now constitutes a physiologically significant portion of human diets and is associated with increased incidence of certain cancers and metabolic diseases. New insights in our knowledge of intestinal fructose absorption mediated by the facilitative glucose transporter GLUT5 in the apical membrane and by GLUT2 in the basolateral membrane are reviewed. We begin with studies related to structure as well as ligand binding, then revisit the controversial proposition that apical GLUT2 is the main mediator of intestinal fructose absorption. The review then describes how dietary fructose may be sensed by intestinal cells to affect the expression and activity of transporters and fructolytic enzymes, to interact with the transport of certain minerals and electrolytes, and to regulate portal and peripheral fructosemia and glycemia. Finally, it discusses the potential contributions of dietary fructose to gastrointestinal diseases and to the gut microbiome.
Collapse
Affiliation(s)
- Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07946, USA;
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA;
| | - Chirag R Patel
- Independent Drug Safety Consulting, Wilmington, Delaware 19803, USA;
| |
Collapse
|