1
|
Brunetta HS, Jung AS, Valdivieso-Rivera F, de Campos Zani SC, Guerra J, Furino VO, Francisco A, Berçot M, Moraes-Vieira PM, Keipert S, Jastroch M, Martinez LO, Sponton CH, Castilho RF, Mori MA, Bartelt A. IF1 is a cold-regulated switch of ATP synthase hydrolytic activity to support thermogenesis in brown fat. EMBO J 2024; 43:4870-4891. [PMID: 39284909 PMCID: PMC11535227 DOI: 10.1038/s44318-024-00215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 11/06/2024] Open
Abstract
While mechanisms controlling uncoupling protein-1 (UCP1) in thermogenic adipocytes play a pivotal role in non-shivering thermogenesis, it remains unclear whether F1Fo-ATP synthase function is also regulated in brown adipose tissue (BAT). Here, we show that inhibitory factor 1 (IF1, encoded by Atp5if1), an inhibitor of ATP synthase hydrolytic activity, is a critical negative regulator of brown adipocyte energy metabolism. In vivo, IF1 levels are diminished in BAT of cold-adapted mice compared to controls. Additionally, the capacity of ATP synthase to generate mitochondrial membrane potential (MMP) through ATP hydrolysis (the so-called "reverse mode" of ATP synthase) is increased in brown fat. In cultured brown adipocytes, IF1 overexpression results in an inability of mitochondria to sustain the MMP upon adrenergic stimulation, leading to a quiescent-like phenotype in brown adipocytes. In mice, adeno-associated virus-mediated IF1 overexpression in BAT suppresses adrenergic-stimulated thermogenesis and decreases mitochondrial respiration in BAT. Taken together, our work identifies downregulation of IF1 upon cold as a critical event for the facilitation of the reverse mode of ATP synthase as well as to enable energetic adaptation of BAT to effectively support non-shivering thermogenesis.
Collapse
Affiliation(s)
- Henver S Brunetta
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna S Jung
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joel Guerra
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Vanessa O Furino
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | | | - Marcelo Berçot
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
| | - Pedro M Moraes-Vieira
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Laurent O Martinez
- LiMitAging Team, Institute of Metabolic and Cardiovascular Diseases, I2MC UMR1297, IHU HealthAge, INSERM, University of Toulouse, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Carlos H Sponton
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Roger F Castilho
- Department of Pathology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil.
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| |
Collapse
|
2
|
Myers JW, Park WY, Eddie AM, Shinde AB, Prasad P, Murphy AC, Leonard MZ, Pinette JA, Rampy JJ, Montufar C, Shaikh Z, Hickman TT, Reynolds GN, Winn NC, Lantier L, Peck SH, Coate KC, Stein RW, Carrasco N, Calipari ES, McReynolds MR, Zaganjor E. Systemic inhibition of de novo purine biosynthesis prevents weight gain and improves metabolic health by increasing thermogenesis and decreasing food intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620705. [PMID: 39553975 PMCID: PMC11566042 DOI: 10.1101/2024.10.28.620705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Objective Obesity is a major health concern, largely because it contributes to type 2 diabetes mellitus (T2DM), cardiovascular disease, and various malignancies. Increase in circulating amino acids and lipids, in part due to adipose dysfunction, have been shown to drive obesity-mediated diseases. Similarly, elevated purines and uric acid, a degradation product of purine metabolism, are found in the bloodstream and in adipose tissue. These metabolic changes are correlated with metabolic syndrome, but little is known about the physiological effects of targeting purine biosynthesis. Methods To determine the effects of purine biosynthesis on organismal health we treated mice with mizoribine, an inhibitor of inosine monophosphate dehydrogenase 1 and 2 (IMPDH1/2), key enzymes in this pathway. Mice were fed either a low-fat (LFD; 13.5% kcal from fat) or a high-fat (HFD; 60% kcal from fat) diet for 30 days during drug or vehicle treatment. We ascertained the effects of mizoribine on weight gain, body composition, food intake and absorption, energy expenditure, and overall metabolic health. Results Mizoribine treatment prevented mice on a HFD from gaining weight, but had no effect on mice on a LFD. Body composition analysis demonstrated that mizoribine significantly reduced fat mass but did not affect lean mass. Although mizoribine had no effect on lipid absorption, food intake was reduced. Furthermore, mizoribine treatment induced adaptive thermogenesis in skeletal muscle by upregulating sarcolipin, a regulator of muscle thermogenesis. While mizoribine-treated mice exhibited less adipose tissue than controls, we did not observe lipotoxicity. Rather, mizoribine-treated mice displayed improved glucose tolerance and reduced ectopic lipid accumulation. Conclusions Inhibiting purine biosynthesis prevents mice on a HFD from gaining weight, and improves their metabolic health, to a significant degree. We also demonstrated that the purine biosynthesis pathway plays a previously unknown role in skeletal muscle thermogenesis. A deeper mechanistic understanding of how purine biosynthesis promotes thermogenesis and decreases food intake may pave the way to new anti-obesity therapies. Crucially, given that many purine inhibitors have been FDA-approved for use in treating various conditions, our results indicate that they may benefit overweight or obese patients.
Collapse
Affiliation(s)
- Jacob W. Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander M. Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abhijit B. Shinde
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael Z. Leonard
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Julia A. Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jessica J. Rampy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tara T. Hickman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Garrett N. Reynolds
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Sun H. Peck
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Katie C. Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nancy Carrasco
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Musiol E, Fromme T, Hau J, Di Pizio A, Klingenspor M. Comparative functional analysis reveals differential nucleotide sensitivity between human and mouse UCP1. Acta Physiol (Oxf) 2024; 240:e14209. [PMID: 39072954 DOI: 10.1111/apha.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
AIM Mitochondrial uncoupling protein 1 (UCP1) is a unique protein of brown adipose tissue. Upon activation by free fatty acids, UCP1 facilitates a thermogenic net proton flux across the mitochondrial inner membrane. Non-complexed purine nucleotides inhibit this fatty acid-induced activity of UCP1. The most available data have been generated from rodent model systems. In light of its role as a putative pharmacological target for treating metabolic disease, in-depth analyses of human UCP1 activity, regulation, and structural features are essential. METHODS In the present study, we established a doxycycline-regulated cell model with inducible human or murine UCP1 expression and conducted functional studies using respirometry comparing wild-type and mutant variants of human UCP1. RESULTS We demonstrate that human and mouse UCP1 exhibit similar specific fatty acid-induced activity but a different inhibitory potential of purine nucleotides. Mutagenesis of non-conserved residues in human UCP1 revealed structural components in α-helix 56 and α-helix 6 crucial for uncoupling function. CONCLUSION Comparative studies of human UCP1 with other orthologs can provide new insights into the structure-function relationship for this mitochondrial carrier and will be instrumental in searching for new activators.
Collapse
Affiliation(s)
- Eva Musiol
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hau
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Molecular Modeling Group, Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship of Chemoinformatics and Protein Modelling, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Hemmati M, Wudy SI, Hackbarth F, Mittermeier-Kleßinger VK, Coleman OI, Haller D, Ludwig C, Dawid C, Kleigrewe K. Development of a Global Metabo-Lipid-Prote-omics Workflow to Compare Healthy Proximal and Distal Colonic Epithelium in Mice. J Proteome Res 2024; 23:3124-3140. [PMID: 39052308 DOI: 10.1021/acs.jproteome.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A multimetabo-lipid-prote-omics workflow was developed to characterize the molecular interplay within proximal (PC) and distal (DC) colonic epithelium of healthy mice. This multiomics data set lays the foundation to better understand the two tissue types and can be used to study, for example, colon-related diseases like colorectal cancer or inflammatory bowel disease. First, the methyl tert-butyl ether extraction method was optimized, so that from a single tissue biopsy >350 reference-matched metabolites, >1850 reference-matched lipids, and >4500 proteins were detected by using targeted and untargeted metabolomics, untargeted lipidomics, and proteomics. Next, each omics-data set was analyzed individually and then merged with the additional omics disciplines to generate a deep understanding of the underlying complex regulatory network within the colon. Our data demonstrates, for example, differences in mucin formation, detected on substrate level as well as on enzyme level, and altered lipid metabolism by the detection of phospholipases hydrolyzing sphingomyelins to ceramides. In conclusion, the combination of the three mass spectrometry-based omics techniques can better entangle the functional and regional differences between PC and DC tissue compared to each single omics technique.
Collapse
Affiliation(s)
- Maryam Hemmati
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Susanne I Wudy
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Franziska Hackbarth
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Verena K Mittermeier-Kleßinger
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Olivia I Coleman
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Corinna Dawid
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
5
|
Kreiter J, Tyschuk T, Pohl EE. Uncoupling Protein 3 Catalyzes the Exchange of C4 Metabolites Similar to UCP2. Biomolecules 2023; 14:21. [PMID: 38254621 PMCID: PMC10813146 DOI: 10.3390/biom14010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Uncoupling protein 3 (UCP3) belongs to the mitochondrial carrier protein superfamily SLC25 and is abundant in brown adipose tissue (BAT), the heart, and muscles. The expression of UCP3 in tissues mainly dependent on fatty acid oxidation suggests its involvement in cellular metabolism and has drawn attention to its possible transport function beyond the transport of protons in the presence of fatty acids. Based on the high homology between UCP2 and UCP3, we hypothesized that UCP3 transports C4 metabolites similar to UCP2. To test this, we measured the transport of substrates against phosphate (32Pi) in proteoliposomes reconstituted with recombinant murine UCP3 (mUCP3). We found that mUCP3 mainly transports aspartate and sulfate but also malate, malonate, oxaloacetate, and succinate. The transport rates calculated from the exchange of 32Pi against extraliposomal aspartate and sulfate were 23.9 ± 5.8 and 17.5 ± 5.1 µmol/min/mg, respectively. Using site-directed mutagenesis, we revealed that mutation of R84 resulted in impaired aspartate/phosphate exchange, demonstrating its critical role in substrate transport. The difference in substrate preference between mUCP2 and mUCP3 may be explained by their different tissue expression patterns and biological functions in these tissues.
Collapse
Affiliation(s)
| | | | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (T.T.)
| |
Collapse
|
6
|
Nicholls DG. Fifty years on: How we uncovered the unique bioenergetics of brown adipose tissue. Acta Physiol (Oxf) 2023; 237:e13938. [PMID: 36692160 DOI: 10.1111/apha.13938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Exactly 50 years ago, I was a post-doc in the laboratory of Olov Lindberg in Stockholm measuring fatty acid oxidation by mitochondria isolated from thermogenic brown adipose tissue, when we noticed a curious nonlinearity in the respiration rate. This initiated a convoluted chain of experiments revealing that the mitochondria were textbook demonstrations of the then novel and highly controversial "chemiosmotic hypothesis" of Peter Mitchell and that thermogenesis was regulated by a proton short-circuit, mediated by a 32 kDa "uncoupling protein," UCP1, activated by fatty acid. This review is a personal account of the research into the bioenergetics of isolated brown adipocytes and isolated mitochondria, which led, after fifteen years of investigation, to what is still accepted as the "canonical" UCP1-mediated mechanism of nonshivering thermogenesis, uniting whole animal physiology with mitochondrial bioenergetics.
Collapse
|
7
|
Tang G, Ma C, Li L, Zhang S, Li F, Wu J, Yin Y, Zhu Q, Liang Y, Wang R, Huang H, Zhao TJ, Yang H, Li P, Chen FJ. PITPNC1 promotes the thermogenesis of brown adipose tissue under acute cold exposure. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2287-2300. [PMID: 36166181 DOI: 10.1007/s11427-022-2157-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Brown adipose tissue (BAT) plays an essential role in non-shivering thermogenesis. The phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) is identified as a lipid transporter that reciprocally transfers phospholipids between intracellular membrane structures. However, the physiological significance of PITPNC1 and its regulatory mechanism remain unclear. Here, we demonstrate that PITPNC1 is a key player in thermogenesis of BAT. While Pitpnc1-/- mice do not differ with wildtype mice in body weight and insulin sensitivity on either chow or high-fat diet, they develop hypothermia when subjected to acute cold exposure at 4°C. The Pitpnc1-/- brown adipocytes exhibit defective β-oxidation and abnormal thermogenesis-related metabolism pathways in mitochondria. The deficiency of lipid mobilization in Pitpnc1-/- brown adipocytes might be the result of excessive accumulation of phosphatidylcholine and a reduction of phosphatidic acid. Our findings have uncovered significant roles of PITPNC1 in mitochondrial phospholipid homeostasis and BAT thermogenesis.
Collapse
Affiliation(s)
- Guoqing Tang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chengxin Ma
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Liangkui Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shaoyan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Fengsheng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Jin Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yesheng Yin
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qing Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yan Liang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - He Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
- Shanghai Qi Zhi Institute, Shanghai, 200030, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shanghai Qi Zhi Institute, Shanghai, 200030, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Shanghai Qi Zhi Institute, Shanghai, 200030, China.
| |
Collapse
|
8
|
Human Milk Metabolomics Are Related to Maternal Adiposity, Infant Growth Rate and Allergies: The Chinese Human Milk Project. Nutrients 2022; 14:nu14102097. [PMID: 35631238 PMCID: PMC9144552 DOI: 10.3390/nu14102097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolomic profiles of Chinese human milk have been poorly documented. The objective of the study was to explore associations between human milk metabotypes, maternal adiposity, infant growth patterns, and risk of allergies. Two hundred mother−infant dyads from seven cities were randomly selected from the Chinese Human Milk Project (CHMP). Untargeted human milk metabolomic profiles were determined using HPLC-MS/MS. Two human milk metabotypes were identified using principal component analysis. Principal component (PC) 1 was characterized by high linoleic acid metabolites with low purine nucleosides and metabolites of glutamate and glutathione metabolism. PC 2 was characterized by high glycerophospholipids and sphingomyelins content. Higher PC1 scores were associated with slower infant growth rate and higher ambient temperature (p < 0.05). Higher PC 2 scores were related to higher maternal BMI and increased risk of infant allergies (p < 0.05). Future work is needed to understand the biologic mechanisms of these human milk metabotypes.
Collapse
|
9
|
Li Y, Fromme T. Uncoupling Protein 1 Does Not Produce Heat without Activation. Int J Mol Sci 2022; 23:2406. [PMID: 35269549 PMCID: PMC8910648 DOI: 10.3390/ijms23052406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial uncoupling protein 1 (UCP1) is the crucial mechanistic component of heat production in classical brown fat and the newly identified beige or brite fat. Thermogenesis inevitably comes at a high energetic cost and brown fat, ultimately, is an energy-wasting organ. A constrained strategy that minimizes brown fat activity unless obligate will have been favored during natural selection to safeguard metabolic thriftiness. Accordingly, UCP1 is constitutively inhibited and is inherently not leaky without activation. It follows that increasing brown adipocyte number or UCP1 abundance genetically or pharmacologically does not lead to an automatic increase in thermogenesis or subsequent metabolic consequences in the absence of a plausible route of concomitant activation. Despite its apparent obviousness, this tenet is frequently ignored. Consequently, incorrect conclusions are often drawn from increased BAT or brite/beige depot mass, e.g., predicting or causally linking beneficial metabolic effects. Here, we highlight the inherently inactive nature of UCP1, with a particular emphasis on the molecular brakes and releases of UCP1 activation under physiological conditions. These controls of UCP1 activity represent potential targets of therapeutic interventions to unlock constraints and efficiently harness the energy-expending potential of brown fat to prevent and treat obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| |
Collapse
|
10
|
Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications. Rev Physiol Biochem Pharmacol 2022; 186:135-176. [PMID: 35915363 DOI: 10.1007/112_2022_73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.
Collapse
|
11
|
Jung SM, Doxsey WG, Le J, Haley JA, Mazuecos L, Luciano AK, Li H, Jang C, Guertin DA. In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate. Cell Rep 2021; 36:109459. [PMID: 34320357 PMCID: PMC8369932 DOI: 10.1016/j.celrep.2021.109459] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022] Open
Abstract
Active brown adipose tissue (BAT) consumes copious amounts of glucose, yet how glucose metabolism supports thermogenesis is unclear. By combining transcriptomics, metabolomics, and stable isotope tracing in vivo, we systematically analyze BAT glucose utilization in mice during acute and chronic cold exposure. Metabolite profiling reveals extensive temperature-dependent changes in the BAT metabolome and transcriptome upon cold adaptation, discovering unexpected metabolite markers of thermogenesis, including increased N-acetyl-amino acid production. Time-course stable isotope tracing further reveals rapid incorporation of glucose carbons into glycolysis and TCA cycle, as well as several auxiliary pathways, including NADPH, nucleotide, and phospholipid synthesis pathways. Gene expression differences inconsistently predict glucose fluxes, indicating that posttranscriptional mechanisms also govern glucose utilization. Surprisingly, BAT swiftly generates fatty acids and acyl-carnitines from glucose, suggesting that lipids are rapidly synthesized and immediately oxidized. These data reveal versatility in BAT glucose utilization, highlighting the value of an integrative-omics approach to understanding organ metabolism.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Will G Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lorena Mazuecos
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amelia K Luciano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Shinde AB, Song A, Wang QA. Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Front Endocrinol (Lausanne) 2021; 12:651763. [PMID: 33953697 PMCID: PMC8092391 DOI: 10.3389/fendo.2021.651763] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
Brown adipocyte in brown adipose tissue (BAT) specializes in expending energy through non-shivering thermogenesis, a process that produces heat either by uncoupling protein 1 (UCP1) dependent uncoupling of mitochondrial respiration or by UCP1 independent mechanisms. Apart from this, there is ample evidence suggesting that BAT has an endocrine function. Studies in rodents point toward its vital roles in glucose and lipid homeostasis, making it an important therapeutic target for treating metabolic disorders related to morbidities such as obesity and type 2 diabetes. The rediscovery of thermogenically active BAT depots in humans by several independent research groups in the last decade has revitalized interest in BAT as an even more promising therapeutic intervention. Over the last few years, there has been overwhelming interest in understanding brown adipocyte's developmental lineages and how brown adipocyte uniquely utilizes energy beyond UCP1 mediated uncoupling respiration. These new discoveries would be leveraged for designing novel therapeutic interventions for metabolic disorders.
Collapse
Affiliation(s)
- Abhijit Babaji Shinde
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| | - Qiong A. Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
13
|
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148428. [PMID: 33798544 DOI: 10.1016/j.bbabio.2021.148428] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
Collapse
|
14
|
Zhong Y, Ding Y, Li L, Ge M, Ban G, Yang H, Dai J, Zhang L. Effects and Mechanism of Chlorogenic Acid on Weight Loss. Curr Pharm Biotechnol 2020; 21:1099-1106. [PMID: 32188382 DOI: 10.2174/1389201021666200318124922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
Background:
Chlorogenic Acid (CA) has diverse, recognized health effects.
Objective:
This study aimed to explore the effects of CA on fat reduction and the underlying mechanism
of these effects.
Materials and Methods:
First, we established a Monosodium Glutamate (MSG)-induced obesity
mouse model and subjected the mice to 4 weeks of CA gavage. Then, we established an oleic acidinduced
model of human fatty liver in HepG2 cells, and administered a CA intervention to the cells for
48 h. Finally, we used Oil red O staining, biochemical detection kits, RT-PCR and Western blot analysis
to evaluate the effects of CA on fat reduction and on related pathways.
Results:
The CA treatment could reduce fat accumulation in the liver and reduce blood lipid levels. In
addition, CA decreased the mRNA and protein levels of peroxisome proliferator-activated receptor
gamma, coactivator 1 α (PGC-1α) and Uncoupling Protein 1 (UCP1) in the MSG-induced obesity
mouse model and the oleic acid-induced HepG2 cells.
Conclusion:
Based on the above results, we deduced that CA could reduce body weight and fat deposition
in vitro and in vivo and that the mechanism may be related to the PGC-1α/UCP-1 pathway. CA
can be developed as a drug to lower blood lipids and to treat obesity.
Collapse
Affiliation(s)
- Yanchun Zhong
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yueling Ding
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Laiqing Li
- Department of Research, Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, 510663, China
| | - Meina Ge
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guangguo Ban
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongxia Yang
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jun Dai
- College of Chinese Materia Medica, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Licheng Zhang
- Department of Oncology, Southern Hospital District of Weihai Municipal Hospital, Huancui District, 264200, Weihai, China
| |
Collapse
|
15
|
Maurer S, Harms M, Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J 2020; 288:3628-3646. [PMID: 32621398 DOI: 10.1111/febs.15470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Collapse
Affiliation(s)
- Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Hussain MF, Roesler A, Kazak L. Regulation of adipocyte thermogenesis: mechanisms controlling obesity. FEBS J 2020; 287:3370-3385. [PMID: 32301220 DOI: 10.1111/febs.15331] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Adipocyte biology has been intensely researched in recent years due to the emergence of obesity as a serious global health concern and because of the realization that adipose tissue is more than simply a cell type that stores and releases lipids. The plasticity of adipose tissues, to rapidly adapt to altered physiological states of energy demand, is under neuronal and endocrine control. The capacity for white adipocytes to store chemical energy in lipid droplets is key for protecting other organs from the toxic effects of ectopic lipid deposition. In contrast, thermogenic (brown and beige) adipocytes combust macronutrients to generate heat. The thermogenic activity of adipocytes allows them to protect themselves and other tissues from lipid overaccumulation. Advances in brown fat biology have uncovered key molecular players involved in adipocyte determination, differentiation, and thermogenic activation. It is now, well appreciated that three distinct adipocyte types exist: white, beige, and brown. Moreover, functional differences are present within adipocyte subtypes located in anatomically distinct locations. Adding to this complexity is the recent realization from single-cell sequencing studies that adipocyte progenitors are also heterogeneous. Understanding the molecular details of how to increase the number of thermogenic fat cells and their activation may delineate some of the pathophysiological basis of obesity and obesity-related diseases. Here, we review recent advances that have extended our understanding of the central role that adipose tissue plays in energy balance and the mechanisms that control their amount and function.
Collapse
Affiliation(s)
- Mohammed Faiz Hussain
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anna Roesler
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Turchi R, Tortolici F, Guidobaldi G, Iacovelli F, Falconi M, Rufini S, Faraonio R, Casagrande V, Federici M, De Angelis L, Carotti S, Francesconi M, Zingariello M, Morini S, Bernardini R, Mattei M, La Rosa P, Piemonte F, Lettieri-Barbato D, Aquilano K. Frataxin deficiency induces lipid accumulation and affects thermogenesis in brown adipose tissue. Cell Death Dis 2020; 11:51. [PMID: 31974344 PMCID: PMC6978516 DOI: 10.1038/s41419-020-2253-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
Decreased expression of mitochondrial frataxin (FXN) causes Friedreich's ataxia (FRDA), a neurodegenerative disease with type 2 diabetes (T2D) as severe comorbidity. Brown adipose tissue (BAT) is a mitochondria-enriched and anti-diabetic tissue that turns excess energy into heat to maintain metabolic homeostasis. Here we report that the FXN knock-in/knock-out (KIKO) mouse shows hyperlipidemia, reduced energy expenditure and insulin sensitivity, and elevated plasma leptin, recapitulating T2D-like signatures. FXN deficiency leads to disrupted mitochondrial ultrastructure and oxygen consumption as well as lipid accumulation in BAT. Transcriptomic data highlights cold intolerance in association with iron-mediated cell death (ferroptosis). Impaired PKA-mediated lipolysis and expression of genes controlling mitochondrial metabolism, lipid catabolism and adipogenesis were observed in BAT of KIKO mice as well as in FXN-deficient T37i brown and primary adipocytes. Significant susceptibility to ferroptosis was observed in adipocyte precursors that showed increased lipid peroxidation and decreased glutathione peroxidase 4. Collectively our data point to BAT dysfunction in FRDA and suggest BAT as promising therapeutic target to overcome T2D in FRDA.
Collapse
Affiliation(s)
- Riccardo Turchi
- Department Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, Italy
| | - Flavia Tortolici
- Department Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, Italy
| | - Giulio Guidobaldi
- Department Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, Italy
| | - Federico Iacovelli
- Department Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, Italy
| | - Mattia Falconi
- Department Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, Italy
| | - Stefano Rufini
- Department Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo De Angelis
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Simone Carotti
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Maria Francesconi
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Sergio Morini
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Roberta Bernardini
- Interdepartmental Service Center-Station for Animal Technology (STA), University of Rome Tor Vergata, Rome, Italy
| | - Maurizio Mattei
- Interdepartmental Service Center-Station for Animal Technology (STA), University of Rome Tor Vergata, Rome, Italy
| | - Piergiorgio La Rosa
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, Italy.
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.
| | - Katia Aquilano
- Department Biology, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, Italy.
| |
Collapse
|
18
|
Bast-Habersbrunner A, Fromme T. Purine Nucleotides in the Regulation of Brown Adipose Tissue Activity. Front Endocrinol (Lausanne) 2020; 11:118. [PMID: 32210919 PMCID: PMC7076073 DOI: 10.3389/fendo.2020.00118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 01/06/2023] Open
Abstract
Non-shivering thermogenesis in mammalian brown adipose tissue is a powerful mechanism to defend normothermia in cold climates. To minimize the loss of chemical energy, the central functional component, mitochondrial uncoupling protein 1, UCP1, must be tightly regulated. The canonical pathway of UCP1 activation includes lipolytic release of free fatty acids in response to an adrenergic signal. Activating fatty acids overcome constitutive inhibition of UCP1 by the di- and triphosphate forms of purine nucleotides, i.e., ATP, ADP, GTP, and GDP. Cellular concentrations of inhibitory, free nucleotides are subject to significant, adrenergically induced alterations. The regulatory components involved may constitute novel drug targets to manipulate brown fat thermogenesis and thereby organismic energy balance. We here review evidence for and against a dominant role of nucleotides in thermogenic control, describe conceptual routes to endogenously and pharmacologically alter free nucleotide pool size, speculate on a signaling role of degradation products released from active brown fat, and highlight gaps in our understanding of signaling and metabolic pathways involved.
Collapse
Affiliation(s)
- Andrea Bast-Habersbrunner
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Tobias Fromme
| |
Collapse
|
19
|
Abstract
Adipose tissue possesses the remarkable capacity to control its size and function in response to a variety of internal and external cues, such as nutritional status and temperature. The regulatory circuits of fuel storage and oxidation in white adipocytes and thermogenic adipocytes (brown and beige adipocytes) play a central role in systemic energy homeostasis, whereas dysregulation of the pathways is closely associated with metabolic disorders and adipose tissue malfunction, including obesity, insulin resistance, chronic inflammation, mitochondrial dysfunction, and fibrosis. Recent studies have uncovered new regulatory elements that control the above parameters and provide new mechanistic opportunities to reprogram fat cell fate and function. In this Review, we provide an overview of the current understanding of adipocyte metabolism in physiology and disease and also discuss possible strategies to alter fuel utilization in fat cells to improve metabolic health.
Collapse
Affiliation(s)
- Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Shingo Kajimura
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA.
- UCSF Diabetes Center, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA.
| |
Collapse
|
20
|
Abstract
Brown and beige adipocytes can catabolize stored energy to generate heat, and this distinct capacity for thermogenesis could be leveraged as a therapy for metabolic diseases like obesity and type 2 diabetes. Thermogenic adipocytes drive heat production through close coordination of substrate supply with the mitochondrial oxidative machinery and effectors that control the rate of substrate oxidation. Together, this apparatus affords these adipocytes with tremendous capacity to drive thermogenesis. The best characterized thermogenic effector is uncoupling protein 1 (UCP1). Importantly, additional mechanisms for activating thermogenesis beyond UCP1 have been identified and characterized to varying extents. Acute regulation of these thermogenic pathways has been an active area of study, and numerous regulatory factors have been uncovered in recent years. Here we will review the evidence for regulators of heat production in thermogenic adipocytes in the context of the thermodynamic and kinetic principles that govern their therapeutic utility.
Collapse
Affiliation(s)
- Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Gao Y, Cao Y, Cui X, Wang X, Zhou Y, Huang F, Wang X, Wen J, Xie K, Xu P, Guo X, You L, Ji C. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway. Mol Cell Endocrinol 2018; 476:155-164. [PMID: 29753771 DOI: 10.1016/j.mce.2018.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Recent discoveries of functional brown adipocytes in mammals illuminates their therapeutic potential for combating obesity and its associated diseases. However, on account of the limited amount and activity in adult humans of brown adipocyte depots, identification of miRNAs and characterization their regulatory roles in human brown adipogenesis are urgently needed. This study focused on the role of microRNA (miR)-199a-3p in human brown adipocyte differentiation and thermogenic capacity. A decreased expression pattern of miR-199a-3p was consistently observed during the differentiation course of brown adipocytes in mice and humans. Conversely, its level was induced during the differentiation course of human white pre-adipocytes derived from visceral fat. miR-199a-3p expression was relatively abundant in interscapular BAT (iBAT) and differentially regulated in the activated and aging BAT in mice. Additionally, miR-199a-3p expression level in human brown adipocytes was observed decreased upon thermogenic activation and increased by aging-related stimuli. Using primary pre-adipocytes, miR-199a-3p over-expression was capable of attenuating lipid accumulation and adipogenic gene expression as well as impairing brown adipocytes' metabolic characteristics as revealed by decreased mitochondrial DNA content and respiration. Suppression of miR-199a-3p by a locked nucleic acid (LNA) modified-anti-miR led to increased differentiation and thermogenesis in human brown adipocytes. By combining target prediction and examination, we identified mechanistic target of rapamycin kinase (mTOR) as a direct target of miR-199a-3p that affected brown adipogenesis and thermogenesis. Our results point to a novel role for miR-199a-3p and its downstream effector mTOR in human brown adipocyte differentiation and maintenance of thermogenic characteristics, which can be manipulated as therapeutic targets against obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Yao Gao
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xingyun Wang
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yahui Zhou
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Fangyan Huang
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xirong Guo
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| |
Collapse
|
22
|
Comeglio P, Cellai I, Mello T, Filippi S, Maneschi E, Corcetto F, Corno C, Sarchielli E, Morelli A, Rapizzi E, Bani D, Guasti D, Vannelli GB, Galli A, Adorini L, Maggi M, Vignozzi L. INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function. J Endocrinol 2018; 238:107-127. [PMID: 29945982 DOI: 10.1530/joe-17-0557] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
The bile acid receptors, farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5), regulate multiple pathways, including glucose and lipid metabolism. In a rabbit model of high-fat diet (HFD)-induced metabolic syndrome, long-term treatment with the dual FXR/TGR5 agonist INT-767 reduces visceral adipose tissue accumulation, hypercholesterolemia and nonalcoholic steatohepatitis. INT-767 significantly improves the hallmarks of insulin resistance in visceral adipose tissue (VAT) and induces mitochondrial and brown fat-specific markers. VAT preadipocytes isolated from INT-767-treated rabbits, compared to preadipocytes from HFD, show increased mRNA expression of brown adipogenesis markers. In addition, INT-767 induces improved mitochondrial ultrastructure and dynamic, reduced superoxide production and improved insulin signaling and lipid handling in preadipocytes. Both in vivo and in vitro treatments with INT-767 counteract, in preadipocytes, the HFD-induced alterations by upregulating genes related to mitochondrial biogenesis and function. In preadipocytes, INT-767 behaves mainly as a TGR5 agonist, directly activating dose dependently the cAMP/PKA pathway. However, in vitro experiments also suggest that FXR activation by INT-767 contributes to the insulin signaling improvement. INT-767 treatment counteracts HFD-induced liver histological alterations and normalizes the increased pro-inflammatory genes. INT-767 also induces a significant reduction of fatty acid synthesis and fibrosis markers, while increasing lipid handling, insulin signaling and mitochondrial markers. In conclusion, INT-767 significantly counteracts HFD-induced liver and fat alterations, restoring insulin sensitivity and prompting preadipocytes differentiation toward a metabolically healthy phenotype.
Collapse
Affiliation(s)
- Paolo Comeglio
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Ilaria Cellai
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Tommaso Mello
- Gastroenterology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of ReproductionDepartment of NEUROFARBA, University of Florence, Florence, Italy
| | - Elena Maneschi
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Francesca Corcetto
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Chiara Corno
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio'University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | | | - Andrea Galli
- Gastroenterology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | | | - Mario Maggi
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
- I.N.B.B. - Istituto Nazionale Biostrutture e BiosistemiRome, Italy
| | - Linda Vignozzi
- Sexual Medicine and Andrology UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
- I.N.B.B. - Istituto Nazionale Biostrutture e BiosistemiRome, Italy
- Gynecologic Endocrinology Research UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| |
Collapse
|