1
|
Berdowska I, Matusiewicz M, Fecka I. A Comprehensive Review of Metabolic Dysfunction-Associated Steatotic Liver Disease: Its Mechanistic Development Focusing on Methylglyoxal and Counterbalancing Treatment Strategies. Int J Mol Sci 2025; 26:2394. [PMID: 40141037 PMCID: PMC11942149 DOI: 10.3390/ijms26062394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disorder characterized by excessive lipid accumulation in the liver which dysregulates the organ's function. The key contributor to MASLD development is insulin resistance (IR) which affects many organs (including adipose tissue, skeletal muscles, and the liver), whereas the molecular background is associated with oxidative, nitrosative, and carbonyl stress. Among molecules responsible for carbonyl stress effects, methylglyoxal (MGO) seems to play a major pathological function. MGO-a by-product of glycolysis, fructolysis, and lipolysis (from glycerol and fatty acids-derived ketone bodies)-is implicated in hyperglycemia, hyperlipidemia, obesity, type 2 diabetes, hypertension, and cardiovascular diseases. Its causative effect in the stimulation of prooxidative and proinflammatory pathways has been well documented. Since metabolic dysregulation leading to these pathologies promotes MASLD, the role of MGO in MASLD is addressed in this review. Potential MGO participation in the mechanism of MASLD development is discussed in regard to its role in different signaling routes leading to pathological events accelerating the disorder. Moreover, treatment strategies including approved and potential therapies in MASLD are overviewed and discussed in this review. Among them, medications aimed at attenuating MGO-induced pathological processes are addressed.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Małgorzata Matusiewicz
- Department of Medical Biochemistry, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
2
|
Cely I, Blencowe M, Shu L, Diamante G, Ahn IS, Zhang G, LaGuardia J, Liu R, Saleem Z, Wang S, Davis R, Lusis AJ, Yang X. Glo1 reduction in mice results in age- and sex-dependent metabolic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634754. [PMID: 39896461 PMCID: PMC11785252 DOI: 10.1101/2025.01.24.634754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Objectives Advanced glycation end products (AGEs) have been implicated as an important mediator of metabolic disorders including obesity, insulin resistance, and coronary artery disease. Glyoxalase 1 (Glo1) is a critical enzyme in the clearance of toxic dicarbonyl such as methylglyoxal, precursors of AGEs. The role of AGE-independent mechanisms that underly Glo1-induced metabolic disorders have yet to be elucidated. Methods We performed a longitudinal study of female and male Glo1 heterozygous knockdown (Glo1 +/- ) mice with ~50% gene expression and screened metabolic phenotypes such as body weight, adiposity, glycemic control and plasma lipids. We also evaluated atherosclerotic burden, AGE levels, and gene expression profiles across cardiometabolic tissues (liver, adipose, muscle, kidney and aorta) to identify pathway perturbations and potential regulatory genes of Glo1 actions. Results Partial loss of Glo1 resulted in obesity, hyperglycemia, dyslipidemia, and alterations in lipid metabolism in metabolic tissues in an age- and sex-dependent manner. Glo1 +/- females displayed altered glycemic control and increased plasma triglycerides, which aligned with significant perturbations in genes involved in adipogenesis, PPARg, insulin signaling, and fatty acid metabolism pathways in liver and adipose tissues. Conversely, Glo1 +/- males developed increased skeletal muscle mass and visceral adipose depots along with changes in lipid metabolism pathways. For both cohorts, most phenotypes manifested after 14 weeks of age. Evaluation of methylglyoxal-derived AGEs demonstrated changes in only male skeletal muscle but not in female tissues, which cannot explain the broad metabolic changes observed in Glo1 +/- mice. Transcriptional profiles suggest that altered glucose and lipid metabolism may be partially explained by alternative detoxification of methylglyoxal to metabolites such as pyruvate. Moreover, transcription factor (TF) analysis of the tissue-specific gene expression data identified TFs involved in cardiometabolic diseases such as Hnf4a (all tissues) and Arntl (aorta, liver, and kidney) which are female-biased regulators and whose targets are altered in response to Glo1 +/- . Conclusions Our results indicate that Glo1 reduction perturbs metabolic health and metabolic pathways in a sex- and age-dependent manner without significant changes in AGEs across metabolic tissues. Rather, tissue-specific gene expression analysis suggests that key transcription factors such as Hfn4a and Arntl as well as metabolite changes from alternative methylglyoxal detoxification such as pyruvate, likely contribute to metabolic dysregulation in Glo1 +/- mice.
Collapse
Affiliation(s)
- Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonnby LaGuardia
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruoshui Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard Davis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA, United States of America
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Wen J, Zhang Q, Zhou L. Fluorescent probes for sensing and visualizing methylglyoxal: progress, challenges, and perspectives. RSC Adv 2024; 14:38757-38777. [PMID: 39659598 PMCID: PMC11629108 DOI: 10.1039/d4ra07512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Methylglyoxal (MGO) plays an important role not only in physiological processes but also in pathological conditions, including diabetes, hypertension, and Alzheimer's disease. Therefore, developing accurate quantitative tools for MGO is of great significance for studying pathogenesis. Among the various methods available, the fluorescent probe method has garnered considerable attention due to its noninvasive detection capability, exceptional optical properties, good biocompatibility, and high sensitivity. In this review, we provide a brief overview of recent research on fluorescent probes used for MGO biosensing and bioimaging in living cells, tissues, and animals. Additionally, we summarize the advantages and existing challenges and also discuss future directions for development in this field.
Collapse
Affiliation(s)
- Jing Wen
- School of Food Science and Technology, Hunan Agricultural University Changsha Hunan 410125 China
| | - Qingya Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology Changsha Hunan 410004 China
| |
Collapse
|
4
|
Kumar V, Yildirim AÖ, Nawroth PP. The role of DNA damage in diabetic complications. Nat Rev Endocrinol 2024; 20:629-630. [PMID: 39266727 DOI: 10.1038/s41574-024-01038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Affiliation(s)
- Varun Kumar
- Department of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Institute of Experimental Pneumology, University Hospital, Ludwig-Maximilians University, Munich, Germany.
| | - Ali Önder Yildirim
- Department of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Peter P Nawroth
- Department of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
- Department of Internal Medicine III, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Elwakiel A, Gupta D, Rana R, Manoharan J, Al-Dabet MM, Ambreen S, Fatima S, Zimmermann S, Mathew A, Li Z, Singh K, Gupta A, Pal S, Sulaj A, Kopf S, Schwab C, Baber R, Geffers R, Götze T, Alo B, Lamers C, Kluge P, Kuenze G, Kohli S, Renné T, Shahzad K, Isermann B. Factor XII signaling via uPAR-integrin β1 axis promotes tubular senescence in diabetic kidney disease. Nat Commun 2024; 15:7963. [PMID: 39261453 PMCID: PMC11390906 DOI: 10.1038/s41467-024-52214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin β1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin β1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin β1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medical Laboratory Sciences, School of Science, University of Jordan, Amman, Jordan
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Zhiyang Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Surinder Pal
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Constantin Schwab
- Institute of pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tom Götze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Bekas Alo
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christina Lamers
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Paul Kluge
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
6
|
von Rauchhaupt E, Rodemer C, Kliemank E, Bulkescher R, Campos M, Kopf S, Fleming T, Herzig S, Nawroth PP, Szendroedi J, Zemva J, Sulaj A. Glucose Load Following Prolonged Fasting Increases Oxidative Stress- Linked Response in Individuals With Diabetic Complications. Diabetes Care 2024; 47:1584-1592. [PMID: 38905209 PMCID: PMC11362116 DOI: 10.2337/dc24-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Prolonged catabolic states in type 2 diabetes (T2D), exacerbated by excess substrate flux and hyperglycemia, can challenge metabolic flexibility and antioxidative capacity. We investigated cellular responses to glucose load after prolonged fasting in T2D. RESEARCH DESIGN AND METHODS Glucose-tolerant individuals (CON, n = 10) and individuals with T2D with (T2D+, n = 10) and without (T2D-, n = 10) diabetes complications underwent oral glucose tolerance test before and after a 5-day fasting-mimicking diet. Peripheral blood mononuclear cell (PBMC) resistance to ex vivo dicarbonyl methylglyoxal (MG) exposure after glucose load was assessed. Markers of dicarbonyl detoxification, oxidative stress, and mitochondrial biogenesis were analyzed by quantitative PCR, with mitochondrial complex protein expression assessed by Western blotting. RESULTS T2D+ exhibited decreased PBMC resistance against MG, while T2D- resistance remained unchanged, and CON improved postglucose load and fasting (-19.0% vs. -1.7% vs. 12.6%; all P = 0.017). T2D+ showed increased expression in dicarbonyl detoxification (mRNA glyoxalase-1, all P = 0.039), oxidative stress (mRNA glutathione-disulfide-reductase, all P = 0.006), and mitochondrial complex V protein (all P = 0.004) compared with T2D- and CON postglucose load and fasting. Citrate synthase activity remained unchanged, indicating no change in mitochondrial number. Mitochondrial biogenesis increased in T2D- compared with CON postglucose load and fasting (mRNA HspA9, P = 0.032). T2D-, compared with CON, exhibited increased oxidative stress postfasting, but not postglucose load, with increased mRNA expression in antioxidant defenses (mRNA forkhead box O4, P = 0.036, and glutathione-peroxidase-2, P = 0.034), and compared with T2D+ (glutathione-peroxidase-2, P = 0.04). CONCLUSIONS These findings suggest increased susceptibility to glucose-induced oxidative stress in individuals with diabetes complications after prolonged fasting and might help in diet interventions for diabetes management.
Collapse
Affiliation(s)
- Ekaterina von Rauchhaupt
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Claus Rodemer
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Elisabeth Kliemank
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Ruben Bulkescher
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
| | - Marta Campos
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Peter P. Nawroth
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Johanna Zemva
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- Joint Practice for Endocrinology, Diabetology and Nuclear Medicine Heidelberg, Heidelberg, Germany
| | - Alba Sulaj
- Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine I), University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
7
|
Miranda ER, Varshney P, Mazo CE, Shadiow J, Ludlow AT, Haus JM. Loss of NAMPT and SIRT2 but not SIRT1 attenuate GLO1 expression and activity in human skeletal muscle. Redox Biol 2024; 75:103300. [PMID: 39142179 PMCID: PMC11367650 DOI: 10.1016/j.redox.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Glyoxalase I (GLO1) is the primary enzyme for detoxification of the reactive dicarbonyl methylglyoxal (MG). Loss of GLO1 promotes accumulation of MG resulting in a recapitulation of diabetic phenotypes. We previously demonstrated attenuated GLO1 protein in skeletal muscle from individuals with type 2 diabetes (T2D). However, whether GLO1 attenuation occurs prior to T2D and the mechanisms regulating GLO1 abundance in skeletal muscle are unknown. GLO1 expression and activity were determined in skeletal muscle tissue biopsies from 15 lean healthy individuals (LH, BMI: 22.4 ± 0.7) and 5 individuals with obesity (OB, BMI: 32.4 ± 1.3). GLO1 protein was attenuated by 26 ± 0.3 % in OB compared to LH skeletal muscle (p = 0.019). Similar reductions for GLO1 activity were observed (p = 0.102). NRF2 and Keap1 expression were equivocal between groups despite a 2-fold elevation in GLO1 transcripts in OB skeletal muscle (p = 0.008). GLO1 knock-down (KD) in human immortalized myotubes promoted downregulation of muscle contraction and organization proteins indicating the importance of GLO1 expression for skeletal muscle function. SIRT1 KD had no effect on GLO1 protein or activity whereas, SIRT2 KD attenuated GLO1 protein by 28 ± 0.29 % (p < 0.0001) and GLO1 activity by 42 ± 0.12 % (p = 0.0150). KD of NAMPT also resulted in attenuation of GLO1 protein (28 ± 0.069 %, p = 0.003), activity (67 ± 0.09 %, p = 0.011) and transcripts (50 ± 0.13 %, p = 0.049). Neither the provision of the NAD+ precursors NR nor NMN were able to prevent this attenuation in GLO1 protein. However, NR did augment GLO1 specific activity (p = 0.022 vs NAMPT KD). These perturbations did not alter GLO1 acetylation status. SIRT1, SIRT2 and NAMPT protein levels were all equivocal in skeletal muscle tissue biopsies from individuals with obesity and lean individuals. These data implicate NAD+-dependent regulation of GLO1 in skeletal muscle independent of altered GLO1 acetylation and provide rationale for exploring NR supplementation to rescue attenuated GLO1 abundance and activity in conditions such as obesity.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Pallavi Varshney
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Corey E Mazo
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Hurben AK, Zhang Q, Galligan JJ, Tretyakova N, Erber L. Endogenous Cellular Metabolite Methylglyoxal Induces DNA-Protein Cross-Links in Living Cells. ACS Chem Biol 2024; 19:1291-1302. [PMID: 38752800 PMCID: PMC11353540 DOI: 10.1021/acschembio.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Methylglyoxal (MGO) is an electrophilic α-oxoaldehyde generated endogenously through metabolism of carbohydrates and exogenously due to autoxidation of sugars, degradation of lipids, and fermentation during food and drink processing. MGO can react with nucleophilic sites within proteins and DNA to form covalent adducts. MGO-induced advanced glycation end-products such as protein and DNA adducts are thought to be involved in oxidative stress, inflammation, diabetes, cancer, renal failure, and neurodegenerative diseases. Additionally, MGO has been hypothesized to form toxic DNA-protein cross-links (DPC), but the identities of proteins participating in such cross-linking in cells have not been determined. In the present work, we quantified DPC formation in human cells exposed to MGO and identified proteins trapped on DNA upon MGO exposure using mass spectrometry-based proteomics. A total of 265 proteins were found to participate in MGO-derived DPC formation including gene products engaged in telomere organization, nucleosome assembly, and gene expression. In vitro experiments confirmed DPC formation between DNA and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as well as histone proteins H3.1 and H4. Collectively, our study provides the first evidence for MGO-mediated DNA-protein cross-linking in living cells, prompting future studies regarding the relevance of these toxic lesions in cancer, diabetes, and other diseases linked to elevated MGO levels.
Collapse
Affiliation(s)
- Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Present Address: Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Qi Zhang
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James J. Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Luke Erber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Hajdú N, Rácz R, Tordai DZ, Békeffy M, Vági OE, Istenes I, Körei AE, Kempler P, Putz Z. Genetic Variants Influence the Development of Diabetic Neuropathy. Int J Mol Sci 2024; 25:6429. [PMID: 38928135 PMCID: PMC11203776 DOI: 10.3390/ijms25126429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The exact mechanism by which diabetic neuropathy develops is still not fully known, despite our advances in medical knowledge. Progressing neuropathy may occur with a persistently favorable metabolic status in some patients with diabetes mellitus, while, in others, though seldom, a persistently unfavorable metabolic status is not associated with significant neuropathy. This might be significantly due to genetic differences. While recent years have brought compelling progress in the understanding of the pathogenetic background-in particular, accelerated progress is being made in understanding molecular biological mechanisms-some aspects are still not fully understood. A comparatively small amount of information is accessible on this matter; therefore, by summarizing the available data, in this review, we aim to provide a clearer picture of the current state of knowledge, identify gaps in the previous studies, and possibly suggest directions for future studies. This could help in developing more personalized approaches to the prevention and treatment of diabetic neuropathy, while also taking into account individual genetic profiles.
Collapse
|
10
|
Dobariya P, Xie W, Rao SP, Xie J, Seelig DM, Vince R, Lee MK, More SS. Deletion of Glyoxalase 1 Exacerbates Acetaminophen-Induced Hepatotoxicity in Mice. Antioxidants (Basel) 2024; 13:648. [PMID: 38929087 PMCID: PMC11200933 DOI: 10.3390/antiox13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Acetaminophen (APAP) overdose triggers a cascade of intracellular oxidative stress events, culminating in acute liver injury. The clinically used antidote, N-acetylcysteine (NAC), has a narrow therapeutic window, and early treatment is essential for a satisfactory therapeutic outcome. For more versatile therapies that can be effective even at late presentation, the intricacies of APAP-induced hepatotoxicity must be better understood. Accumulation of advanced glycation end products (AGEs) and the consequent activation of the receptor for AGEs (RAGE) are considered one of the key mechanistic features of APAP toxicity. Glyoxalase 1 (Glo-1) regulates AGE formation by limiting the levels of methylglyoxal (MEG). In this study, we studied the relevance of Glo-1 in the APAP-mediated activation of RAGE and downstream cell death cascades. Constitutive Glo-1-knockout mice (GKO) and a cofactor of Glo-1, ψ-GSH, were used as tools. Our findings showed elevated oxidative stress resulting from the activation of RAGE and hepatocyte necrosis through steatosis in GKO mice treated with high-dose APAP compared to wild-type controls. A unique feature of the hepatic necrosis in GKO mice was the appearance of microvesicular steatosis as a result of centrilobular necrosis, rather than the inflammation seen in the wild type. The GSH surrogate and general antioxidant ψ-GSH alleviated APAP toxicity irrespective of the Glo-1 status, suggesting that oxidative stress is the primary driver of APAP toxicity. Overall, the exacerbation of APAP hepatotoxicity in GKO mice suggests the importance of this enzyme system in antioxidant defense against the initial stages of APAP overdose.
Collapse
Affiliation(s)
- Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Swetha Pavani Rao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, MN 55108, USA;
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| |
Collapse
|
11
|
Peter A, Schleicher E, Kliemank E, Szendroedi J, Königsrainer A, Häring HU, Nawroth PP, Fleming T. Accumulation of Non-Pathological Liver Fat Is Associated with the Loss of Glyoxalase I Activity in Humans. Metabolites 2024; 14:209. [PMID: 38668337 PMCID: PMC11051733 DOI: 10.3390/metabo14040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The underlying molecular mechanisms for the development of non-alcoholic fatty liver (NAFL) and its progression to advanced liver diseases remain elusive. Glyoxalase 1 (Glo1) loss, leading to elevated methylglyoxal (MG) and dicarbonyl stress, has been implicated in various diseases, including obesity-related conditions. This study aimed to investigate changes in the glyoxalase system in individuals with non-pathological liver fat. Liver biopsies were obtained from 30 individuals with a narrow range of BMI (24.6-29.8 kg/m2). Whole-body insulin sensitivity was assessed using HOMA-IR. Liver biopsies were analyzed for total triglyceride content, Glo1 and Glo2 mRNA, protein expression, and activity. Liquid chromatography-tandem mass spectrometry determined liver dicarbonyl content and oxidation and glycation biomarkers. Liver Glo1 activity showed an inverse correlation with HOMA-IR and liver triglyceride content, but not BMI. Despite reduced Glo1 activity, no associations were found with elevated liver dicarbonyls or glycation markers. A sex dimorphism was observed in Glo1, with females exhibiting significantly lower liver Glo1 protein expression and activity, and higher liver MG-H1 content compared to males. This study demonstrates that increasing liver fat, even within a non-pathological range, is associated with reduced Glo1 activity.
Collapse
Affiliation(s)
- Andreas Peter
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72016 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72016 Tübingen, Germany
| | - Erwin Schleicher
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Elisabeth Kliemank
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
| | - Julia Szendroedi
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, Eberhard-Karls-University Tübingen, 72016 Tübingen, Germany
| | - Hans-Ulrich Häring
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72016 Tübingen, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls-University Tübingen, 72016 Tübingen, Germany
| | - Peter P. Nawroth
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, 69120 Heidelberg, Germany
| | - Thomas Fleming
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
13
|
Harrer P, Inderhees J, Zhao C, Schormair B, Tilch E, Gieger C, Peters A, Jöhren O, Fleming T, Nawroth PP, Berger K, Hermesdorf M, Winkelmann J, Schwaninger M, Oexle K. Phenotypic and genome-wide studies on dicarbonyls: major associations to glomerular filtration rate and gamma-glutamyltransferase activity. EBioMedicine 2024; 101:105007. [PMID: 38354534 PMCID: PMC10875252 DOI: 10.1016/j.ebiom.2024.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The dicarbonyl compounds methylglyoxal (MG), glyoxal (GO) and 3-deoxyglucosone (3-DG) have been linked to various diseases. However, disease-independent phenotypic and genotypic association studies with phenome-wide and genome-wide reach, respectively, have not been provided. METHODS MG, GO and 3-DG were measured by LC-MS in 1304 serum samples of two populations (KORA, n = 482; BiDirect, n = 822) and assessed for associations with genome-wide SNPs (GWAS) and with phenome-wide traits. Redundancy analysis (RDA) was used to identify major independent trait associations. FINDINGS Mutual correlations of dicarbonyls were highly significant, being stronger between MG and GO (ρ = 0.6) than between 3-DG and MG or GO (ρ = 0.4). Significant phenotypic results included associations of all dicarbonyls with sex, waist-to-hip ratio, glomerular filtration rate (GFR), gamma-glutamyltransferase (GGT), and hypertension, of MG and GO with age and C-reactive protein, of GO and 3-DG with glucose and antidiabetics, of MG with contraceptives, of GO with ferritin, and of 3-DG with smoking. RDA revealed GFR, GGT and, in case of 3-DG, glucose as major contributors to dicarbonyl variance. GWAS did not identify genome-wide significant loci. SNPs previously associated with glyoxalase activity did not reach nominal significance. When multiple testing was restricted to the lead SNPs of GWASs on the traits selected by RDA, 3-DG was found to be associated (p = 2.3 × 10-5) with rs1741177, an eQTL of NF-κB inhibitor NFKBIA. INTERPRETATION This large-scale, population-based study has identified numerous associations, with GFR and GGT being of pivotal importance, providing unbiased perspectives on dicarbonyls beyond the current state. FUNDING Deutsche Forschungsgemeinschaft, Helmholtz Munich, German Centre for Cardiovascular Research (DZHK), German Federal Ministry of Research and Education (BMBF).
Collapse
Affiliation(s)
- Philip Harrer
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lubeck, Lubeck, Germany; Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Germany; German Centre for Cardiovascular Research (DZHK), Hamburg-Lübeck-Kiel, Germany
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Tilch
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Munich, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lubeck, Lubeck, Germany; Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - Thomas Fleming
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Centre for Mental Health (DZPG), Munich-Augsburg, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lubeck, Lubeck, Germany; German Centre for Cardiovascular Research (DZHK), Hamburg-Lübeck-Kiel, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
| |
Collapse
|
14
|
Alhujaily M. Molecular Assessment of Methylglyoxal-Induced Toxicity and Therapeutic Approaches in Various Diseases: Exploring the Interplay with the Glyoxalase System. Life (Basel) 2024; 14:263. [PMID: 38398772 PMCID: PMC10890012 DOI: 10.3390/life14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG) and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl metabolite, takes center stage, becoming a principal player in the development of AGEs and contributing to cell and tissue dysfunction. The dual facets of GLO I-activation and inhibition-unfold as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease, and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering new possibilities in diseases associated with inflammation and multidrug resistance. The symphony of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG regulation. From natural compounds to synthetic drugs, each element contributes to a molecular orchestra, promising novel interventions and personalized approaches in the pursuit of health and wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to validate these findings and acknowledges the importance of individual variability in the complex landscape of health.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
15
|
Dobariya P, Xie W, Rao SP, Xie J, Seelig DM, Vince R, Lee MK, More SS. Deletion of Glyoxalase 1 exacerbates acetaminophen-induced hepatotoxicity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572856. [PMID: 38187538 PMCID: PMC10769331 DOI: 10.1101/2023.12.21.572856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Acetaminophen (APAP) overdose triggers a cascade of intracellular oxidative stress events culminating in acute liver injury. The clinically used antidote, N-acetylcysteine (NAC) has a narrow therapeutic window and early treatment is essential for satisfactory therapeutic outcome. For more versatile therapies that can be effective even at late-presentation, the intricacies of APAP-induced hepatotoxicity must be better understood. Accumulation of advanced glycation end-products (AGEs) and consequent activation of the receptor for AGEs (RAGE) are considered one of the key mechanistic features of APAP toxicity. Glyoxalase-1 (Glo-1) regulates AGE formation by limiting the levels of methylglyoxal (MEG). In this study, we studied the relevance of Glo-1 in APAP mediated activation of RAGE and downstream cell-death cascades. Constitutive Glo-1 knockout mice (GKO) and a cofactor of Glo-1, ψ-GSH, were employed as tools. Our findings show elevated oxidative stress, activation of RAGE and hepatocyte necrosis through steatosis in GKO mice treated with high-dose APAP compared to wild type controls. A unique feature of the hepatic necrosis in GKO mice is the appearance of microvesicular steatosis as a result of centrilobular necrosis, rather than inflammation seen in wild type. The GSH surrogate and general antioxidant, ψ-GSH alleviated APAP toxicity irrespective of Glo-1 status, suggesting that oxidative stress being the primary driver of APAP toxicity. Overall, exacerbation of APAP hepatotoxicity in GKO mice suggests the importance of this enzyme system in antioxidant defense against initial stages of APAP overdose.
Collapse
Affiliation(s)
- Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Swetha Pavani Rao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, Minnesota 55108, USA
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
17
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
18
|
Trujillo MN, Galligan JJ. Reconsidering the role of protein glycation in disease. Nat Chem Biol 2023; 19:922-927. [PMID: 37430113 PMCID: PMC10807257 DOI: 10.1038/s41589-023-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Protein glycation has long-been considered a toxic consequence of carbohydrate metabolism. Yet recent evidence demonstrates tight regulation for these non-enzymatic post-translational modifications, pointing to a broader role in cell biology rather than simply serving as a biomarker for toxicity.
Collapse
Affiliation(s)
- Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
19
|
Amaro A, Sousa D, Sá-Rocha M, Ferreira-Júnior MD, Barra C, Monteiro T, Mathias P, Gomes RM, Baptista FI, Matafome P. Sex-specificities in offspring neurodevelopment and behaviour upon maternal glycation: Putative underlying neurometabolic and synaptic changes. Life Sci 2023; 321:121597. [PMID: 36948389 DOI: 10.1016/j.lfs.2023.121597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
AIM Lactation is an important programming window for metabolic disease and neuronal alterations later in life. We aimed to study the effect of maternal glycation during lactation on offspring neurodevelopment and behaviour, assessing possible sex differences and underpinning molecular players. METHODS Female Wistar rats were treated with the Glyoxalase-1 inhibitor S-p-Bromobenzylguthione cyclopentyl diester (BBGC 5 mg/kg). A control and vehicle group treated with dimethyl sulfoxide were considered. Male and female offspring were tested at infancy for neurodevelopment hallmarks. After weaning, triglycerides and total antioxidant capacity were measured in breast milk. At adolescence, offspring were tested for locomotor ability, anxious-like behaviour, and recognition memory. Metabolic parameters were assessed, and the hippocampus and prefrontal cortex were collected for molecular analysis. KEY FINDINGS Maternal glycation reduced triglycerides and total antioxidant capacity levels in breast milk. At infancy, both male and female offspring presented an anticipation on the achievement of neurodevelopmental milestones. At adolescence, male offspring exposed to maternal glycation presented hyperlocomotion, whereas offspring of both sexes presented a risk-taking phenotype, accompanied by GABAA receptor upregulation in the hippocampus. Females also demonstrated GABAA and PSD-95 changes in prefrontal cortex. Furthermore, lower levels of GLO1 and consequently higher accumulation of AGES were also observed in both male and female offspring hippocampus. SIGNIFICANCE Early exposure to maternal glycation induces changes in milk composition leading to neurodevelopment changes at infancy, and sex-specific behavioural and neurometabolic changes at adolescence, further evidencing that lactation period is a critical metabolic programming window and in sculpting behaviour.
Collapse
Affiliation(s)
- Andreia Amaro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Diana Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Mariana Sá-Rocha
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Marcos D Ferreira-Júnior
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
| | - Cátia Barra
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Tamaeh Monteiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Mathias
- Department of Physiological Sciences (DCiF), Institute of Biological Sciences, University Federal of Goiás (UFG), Goiânia, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
| |
Collapse
|
20
|
de Almeida GRL, Szczepanik JC, Selhorst I, Cunha MP, Dafre AL. The expanding impact of methylglyoxal on behavior-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110635. [PMID: 36103947 DOI: 10.1016/j.pnpbp.2022.110635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl compound formed as a byproduct of glycolysis. MGO is a major cell-permeant precursor of advanced glycation end products (AGEs), since it readily reacts with basic phospholipids and nucleotides, as well as amino acid residues of proteins, such as arginine, cysteine, and lysine. The AGEs production induced by MGO are widely associated with several pathologies, including neurodegenerative diseases. However, the impact of MGO metabolism and AGEs formation in the central nervous system (particularly in neurons, astrocytes and oligodendrocytes) on behavior and psychiatric diseases is not fully understood. Here, we briefly present background information on the biological activity of MGO in the central nervous system. It was gathered the available information on the role of MGO metabolism at the physiological processes, as well as at the neurobiology of psychiatry diseases, especially pain-related experiences, anxiety, depression, and cognition impairment-associated diseases. To clarify the role of MGO on behavior and associated diseases, we reviewed primarily the main findings at preclinical studies focusing on genetic and pharmacological approaches. Since monoamine neurotransmitter systems are implicated as pivotal targets on the pathophysiology and treatment of psychiatry and cognitive-related diseases, we also reviewed how MGO affects these neurotransmission systems and the implications of this phenomenon for nociception and pain; learning and cognition; and mood. In summary, this review highlights the pivotal role of glyoxalase 1 (Glo1) and MGO levels in modulating behavioral phenotypes, as well as related cellular and molecular signaling. Conclusively, this review signals dopamine as a new neurochemical MGO target, as well as highlights how MGO metabolism can modulate the pathophysiology and treatment of pain, psychiatric and cognitive-related diseases.
Collapse
Affiliation(s)
- Gudrian R L de Almeida
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Jozimar C Szczepanik
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Basic Sciences of Life, Federal University of Juiz de Fora, 35010-177 Governador Valadares, MG, Brazil.
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
21
|
Kolibabka M, Dannehl M, Oezer K, Murillo K, Huang H, Riemann S, Hoffmann S, Gretz N, Schlotterer A, Feng Y, Hammes HP. Differences in junction-associated gene expression changes in three rat models of diabetic retinopathy with similar neurovascular phenotype. Neurobiol Dis 2023; 176:105961. [PMID: 36526091 DOI: 10.1016/j.nbd.2022.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy, also defined as microvascular complication of diabetes mellitus, affects the entire neurovascular unit with specific aberrations in every compartment. Neurodegeneration, glial activation and vasoregression are observed consistently in models of diabetic retinopathy. However, the order and the severity of these aberrations varies in different models, which is also true in patients. In this study, we analysed rat models of diabetic retinopathy with similar phenotypes to identify key differences in the pathogenesis. For this, we focussed on intercellular junction-associated gene expression, which are important for the communication and homeostasis within the neurovascular unit. Streptozotocin-injected diabetic Wistar rats, methylglyoxal supplemented Wistar rats and polycystin-2 transgenic (PKD) rats were analysed for neuroretinal function, vasoregression and retinal expression of junction-associated proteins. In all three models, neuroretinal impairment and vasoregression were observed, but gene expression profiling of junction-associated proteins demonstrated nearly no overlap between the three models. However, the differently expressed genes were from the main classes of claudins, connexins and integrins in all models. Changes in Rcor1 expression in diabetic rats and Egr1 expression in PKD rats confirmed the differences in upstream transcription factor level between the models. In PKD rats, a possible role for miRNA regulation was observed, indicated by an upregulation of miR-26b-5p, miR-122-5p and miR-300-3p, which was not observed in the other models. In silico allocation of connexins revealed not only differences in regulated subtypes, but also in affected retinal cell types, as well as connexin specific upstream regulators Sox7 and miR-92a-3p. In this study, we demonstrate that, despite their similar phenotype, models for diabetic retinopathy exhibit significant differences in their pathogenic pathways and primarily affected cell types. These results underline the importance for more sensitive diagnostic tools to identify pathogenic clusters in patients as the next step towards a desperately needed personalized therapy.
Collapse
Affiliation(s)
- Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany.
| | - Marcus Dannehl
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| | - Kübra Oezer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Katharina Murillo
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| | - Hongpeng Huang
- Experimental Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13 - 17, 68167 Manheim, Germany
| | - Sarah Riemann
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13 - 17, 68167 Manheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; European Center for Angioscience, Ludolf-Krehl-Strasse 13 - 17, 68167 Mannheim, Germany
| |
Collapse
|
22
|
Tabler CT, Lodd E, Bennewitz K, Middel CS, Erben V, Ott H, Poth T, Fleming T, Morgenstern J, Hausser I, Sticht C, Poschet G, Szendroedi J, Nawroth PP, Kroll J. Loss of glyoxalase 2 alters the glucose metabolism in zebrafish. Redox Biol 2022; 59:102576. [PMID: 36535130 PMCID: PMC9792892 DOI: 10.1016/j.redox.2022.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Glyoxalase 2 is the second enzyme of the glyoxalase system, catalyzing the detoxification of methylglyoxal to d-lactate via SD-Lactoylglutathione. Recent in vitro studies have suggested Glo2 as a regulator of glycolysis, but if Glo2 regulates glucose homeostasis and related organ specific functions in vivo has not yet been evaluated. Therefore, a CRISPR-Cas9 knockout of glo2 in zebrafish was created and analyzed. Consistent with its function in methylglyoxal detoxification, SD-Lactoylglutathione, but not methylglyoxal accumulated in glo2-/- larvae, without altering the glutathione metabolism or affecting longevity. Adult glo2-/- livers displayed a reduced hexose concentration and a reduced postprandial P70-S6 kinase activation, but upstream postprandial AKT phosphorylation remained unchanged. In contrast, glo2-/- skeletal muscle remained metabolically intact, possibly compensating for the dysfunctional liver through increased glucose uptake and glycolytic activity. glo2-/- zebrafish maintained euglycemia and showed no damage of the retinal vasculature, kidney, liver and skeletal muscle. In conclusion, the data identified Glo2 as a regulator of cellular energy metabolism in liver and skeletal muscle, but the redox state and reactive metabolite accumulation were not affected by the loss of Glo2.
Collapse
Affiliation(s)
- Christoph Tobias Tabler
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Elisabeth Lodd
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Chiara Simone Middel
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Vanessa Erben
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Tanja Poth
- CMCP - Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| |
Collapse
|
23
|
Abstract
The glyoxalase gene family consists of six structurally and functionally diverse enzymes with broad roles in metabolism. The common feature that defines this family is based on structural motifs that coordinate divalent cations which are required for activity. These family members have been implicated in a variety of physiological processes, including amino-acid metabolism (4-hydroxyphenylpyruvate dioxygenase; HPD), primary metabolism (methylmalonyl-CoA epimerase; MCEE), and aldehyde detoxication (glyoxalase 1; GLO1) and therefore have significant associations with disease. A central function of this family is the detoxification of reactive dicarbonyls (e.g., methylglyoxal), which react with cellular nucleophiles, resulting in the modification of lipids, proteins, and DNA. These damaging modifications activate canonical stress responses such as heat shock, unfolded protein, antioxidant, and DNA damage responses. Thus, glyoxalases serve an important role in homeostasis, preventing the pathogenesis of metabolic disease states, including obesity, diabetes, cardiovascular disease, renal failure, and aging. This review presents a thorough overview of the literature surrounding this diverse enzyme class. Although extensive literature exists for some members of this family (e.g., GLO1), little is known about the physiological role of glyoxalase domain-containing protein 4 (GLOD4) and 5 (GLOD5), paving the way for exciting avenues for future research.
Collapse
Affiliation(s)
- Dominique O Farrera
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - James J Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| |
Collapse
|
24
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
25
|
Sulaj A, Kopf S, von Rauchhaupt E, Kliemank E, Brune M, Kender Z, Bartl H, Cortizo FG, Klepac K, Han Z, Kumar V, Longo V, Teleman A, Okun JG, Morgenstern J, Fleming T, Szendroedi J, Herzig S, Nawroth PP. Six-Month Periodic Fasting in Patients With Type 2 Diabetes and Diabetic Nephropathy: A Proof-of-Concept Study. J Clin Endocrinol Metab 2022; 107:2167-2181. [PMID: 35661214 PMCID: PMC9282263 DOI: 10.1210/clinem/dgac197] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 12/11/2022]
Abstract
CONTEXT Novel fasting interventions have gained scientific and public attention. Periodic fasting has emerged as a dietary modification promoting beneficial effects on metabolic syndrome. OBJECTIVE Assess whether periodic fasting reduces albuminuria and activates nephropathy-driven pathways. DESIGN/PARTICIPANTS Proof-of-concept study where individuals with type 2 diabetes (n = 40) and increased albumin-to-creatinine ratio (ACR) were randomly assigned to receive a monthly fasting-mimicking diet (FMD) or a Mediterranean diet for 6 months with 3-month follow-up. MAIN OUTCOMES MEASURES Change in ACR was assessed by analysis of covariance adjusted for age, sex, weight loss, and baseline value. Prespecified subgroup analysis for patients with micro- vs macroalbuminuria at baseline was performed. Change in homeostatic model assessment for insulin resistance (HOMA-IR), circulating markers of dicarbonyl detoxification (methylglyoxal-derived hydroimidazolone 1, glyoxalase-1, and hydroxyacetone), DNA-damage/repair (phosphorylated histone H2AX), lipid oxidation (acylcarnitines), and senescence (soluble urokinase plasminogen activator receptor) were assessed as exploratory endpoints. RESULTS FMD was well tolerated with 71% to 95% of the participants reporting no adverse effects. After 6 months, change in ACR was comparable between study groups [110.3 (99.2, 121.5) mg/g; P = 0.45]. FMD led to a reduction of ACR in patients with microalbuminuria levels at baseline [-30.3 (-35.7, -24.9) mg/g; P ≤ 0.05] but not in those with macroalbuminuria [434.0 (404.7, 463.4) mg/g; P = 0.23]. FMD reduced HOMA-IR [-3.8 (-5.6, -2.0); P ≤ 0.05] and soluble urokinase plasminogen activator receptor [-156.6 (-172.9, -140.4) pg/mL; P ≤ 0.05], while no change was observed in markers of dicarbonyl detoxification or DNA-damage/repair. Change in acylcarnitines was related to patient responsiveness to ACR improvement. At follow-up only HOMA-IR reduction [-1.9 (-3.7, -0.1), P ≤ 0.05]) was sustained. CONCLUSIONS Improvement of microalbuminuria and of markers of insulin resistance, lipid oxidation, and senescence suggest the potential beneficial effects of periodic fasting in type 2 diabetes.
Collapse
Affiliation(s)
- Alba Sulaj
- Correspondence: Alba Sulaj, MD, Clinic of Endocrinology, Diabetology, Metabolism and Clinical Chemistry, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Stefan Kopf
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Ekaterina von Rauchhaupt
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Elisabeth Kliemank
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Maik Brune
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Hannelore Bartl
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Fabiola Garcia Cortizo
- German Cancer Research Center (DKFZ), Division of Signal Transduction in Cancer and Metabolism, Heidelberg, Germany
| | - Katarina Klepac
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Zhe Han
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Varun Kumar
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Valter Longo
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- FIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy
| | - Aurelio Teleman
- German Cancer Research Center (DKFZ), Division of Signal Transduction in Cancer and Metabolism, Heidelberg, Germany
| | - Jürgen G Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University HospitalHeidelberg, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Stephan Herzig
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
26
|
Prevenzano I, Leone A, Longo M, Nicolò A, Cabaro S, Collina F, Panarese I, Botti G, Formisano P, Napoli R, Beguinot F, Miele C, Nigro C. Glyoxalase 1 knockdown induces age-related β-cell dysfunction and glucose intolerance in mice. EMBO Rep 2022; 23:e52990. [PMID: 35620868 PMCID: PMC9253754 DOI: 10.15252/embr.202152990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 09/09/2023] Open
Abstract
Tight control of glycemia is a major treatment goal for type 2 diabetes mellitus (T2DM). Clinical studies indicated that factors other than poor glycemic control may be important in fostering T2DM progression. Increased levels of methylglyoxal (MGO) associate with complications development, but its role in the early steps of T2DM pathogenesis has not been defined. Here, we show that MGO accumulation induces an age-dependent impairment of glucose tolerance and glucose-stimulated insulin secretion in mice knockdown for glyoxalase 1 (Glo1KD). This metabolic alteration associates with the presence of insular inflammatory infiltration (F4/80-positive staining), the islet expression of senescence markers, and higher levels of cytokines (MCP-1 and TNF-α), part of the senescence-activated secretory profile, in the pancreas from 10-month-old Glo1KD mice, compared with their WT littermates. In vitro exposure of INS832/13 β-cells to MGO confirms its casual role on β-cell dysfunction, which can be reverted by senolytic treatment. These data indicate that MGO is capable to induce early phenotypes typical of T2D progression, paving the way for novel prevention approaches to T2DM.
Collapse
Affiliation(s)
- Immacolata Prevenzano
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Alessia Leone
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Michele Longo
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Antonella Nicolò
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Serena Cabaro
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Francesca Collina
- Pathology UnitIstituto Nazionale Tumori‐IRCCS‐Fondazione G.PascaleNaplesItaly
| | - Iacopo Panarese
- Unità di Anatomia PatologicaDipartimento di Salute Mentale e Fisica e Medicina PreventivaUniversità degli Studi della Campania "L. Vanvitelli"NaplesItaly
| | - Gerardo Botti
- Scientific DirectionIstituto Nazionale Tumori‐IRCCS‐Fondazione G.PascaleNaplesItaly
| | - Pietro Formisano
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Raffaele Napoli
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Francesco Beguinot
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Claudia Miele
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| | - Cecilia Nigro
- URT Genomics of Diabetes‐IEOSCNR & Department of Translational Medicine – Federico IIUniversity of NaplesNaplesItaly
| |
Collapse
|
27
|
Metabolic Shades of S-D-Lactoylglutathione. Antioxidants (Basel) 2022; 11:antiox11051005. [PMID: 35624868 PMCID: PMC9138017 DOI: 10.3390/antiox11051005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
S-D-lactoylglutathione (SDL) is an intermediate of the glutathione-dependent metabolism of methylglyoxal (MGO) by glyoxalases. MGO is an electrophilic compound that is inevitably produced in conjunction with glucose breakdown and is essentially metabolized via the glyoxalase route. In the last decades, MGO metabolism and its cytotoxic effects have been under active investigation, while almost nothing is known about SDL. This article seeks to fill the gap by presenting an overview of the chemistry, biochemistry, physiological role and clinical importance of SDL. The effects of intracellular SDL are investigated in three main directions: as a substrate for post-translational protein modifications, as a reservoir for mitochondrial reduced glutathione and as an energy currency. In essence, all three approaches point to one direction, namely, a metabolism-related regulatory role, enhancing the cellular defense against insults. It is also suggested that an increased plasma concentration of SDL or its metabolites may possibly serve as marker molecules in hemolytic states, particularly when the cause of hemolysis is a disturbance of the pay-off phase of the glycolytic chain. Finally, SDL could also represent a useful marker in such metabolic disorders as diabetes mellitus or ketotic states, in which its formation is expected to be enhanced. Despite the lack of clear-cut evidence underlying the clinical and experimental findings, the investigation of SDL metabolism is a promising field of research.
Collapse
|
28
|
Koschmieder J, Alseekh S, Shabani M, Baltenweck R, Maurino VG, Palme K, Fernie AR, Hugueney P, Welsch R. Color recycling: metabolization of apocarotenoid degradation products suggests carbon regeneration via primary metabolic pathways. PLANT CELL REPORTS 2022; 41:961-977. [PMID: 35064799 PMCID: PMC9035014 DOI: 10.1007/s00299-022-02831-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Analysis of carotenoid-accumulating roots revealed that oxidative carotenoid degradation yields glyoxal and methylglyoxal. Our data suggest that these compounds are detoxified via the glyoxalase system and re-enter primary metabolic pathways. Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation. We recently identified redox enzymes previously known to be involved in the detoxification of fatty acid-derived reactive carbonyl species which were able to convert apocarotenoids into corresponding alcohols and carboxylic acids. However, their subsequent metabolization pathways remain unresolved. Interestingly, we found that carotenoid-accumulating roots have increased levels of glutathione, suggesting apocarotenoid glutathionylation to occur. In vitro and in planta investigations did not, however, support the occurrence of non-enzymatic or enzymatic glutathionylation of β-apocarotenoids. An alternative breakdown pathway is the continued oxidative degradation of primary apocarotenoids or their derivatives into the shortest possible oxidation products, namely glyoxal and methylglyoxal, which also accumulated in carotenoid-accumulating roots. In fact, combined transcriptome and metabolome analysis suggest that the high levels of glutathione are most probably required for detoxifying apocarotenoid-derived glyoxal and methylglyoxal via the glyoxalase pathway, yielding glycolate and D-lactate, respectively. Further transcriptome analysis suggested subsequent reactions involving activities associated with photorespiration and the peroxisome-specific glycolate/glyoxylate transporter. Finally, detoxified primary apocarotenoid degradation products might be converted into pyruvate which is possibly re-used for the synthesis of carotenoid biosynthesis precursors. Our findings allow to envision carbon recycling during carotenoid biosynthesis, degradation and re-synthesis which consumes energy, but partially maintains initially fixed carbon via re-introducing reactive carotenoid degradation products into primary metabolic pathways.
Collapse
Affiliation(s)
| | - Saleh Alseekh
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Marzieh Shabani
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Veronica G Maurino
- Department of Molecular Plant Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Klaus Palme
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Philippe Hugueney
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000, Colmar, France
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
29
|
Radmehr V, Ahangarpour A, Mard SA, Khorsandi L. Crocin ameliorates MicroRNAs-associated ER stress in type 2 diabetes induced by methylglyoxal. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:179-186. [PMID: 35655590 PMCID: PMC9124542 DOI: 10.22038/ijbms.2022.60493.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Methylglyoxal (MG) provokes endoplasmic reticulum (ER) stress in β-cells and triggers pancreatic β-cell dysfunction. Crocin has anti-diabetic properties. The present study investigated whether crocin prevented pancreas damages induced by MG. MATERIALS AND METHODS Diabetes was induced by MG administration (600 mg/kg/day, PO). On the fourteenth day, after proving hyperglycemia, crocin (15, 30, and 60 mg/kg) and metformin (MT) (150 mg/kg) were used for detoxification of MG until the end of the experiment. The animals were divided into 6 groups: 1) control, 2) diabetic by MG, 3) MG + crocin 15 mg/kg, 4) MG + crocin 30 mg/kg, 5) MG + crocin 60 mg/kg, and 6) MG + MT. The data were analyzed by one-way analysis of variance and significant differences were compared by Tukey and Bonferroni tests (P<0.05). Biochemical assays, antioxidant evaluation, and microRNAs expression associated with ER stress were assessed. RESULTS MG induced hyperglycemia, insulin resistance, and dyslipidemia (P<0.001). Crocin and MT significantly ameliorated β-cell function through reduction of fasting blood glucose, malondialdehyde levels (P<0.001), and significant elevation of anti-oxidant enzyme activity accompanied by regulation of glutathione and glyoxalase1-Nrf2 in MG induced diabetic mice. Crocin and MT significantly down-regulated microRNAs 204, 216b, 192, and 29a expression (P<0.001). Crocin (60 mg/kg) (P<0.01) and MT (P<0.001) could improve diameter of pancreatic islets in MG treated mice. CONCLUSION Crocin prevents the progression of diabetes through modulating ER stress-associated microRNAs and GLO1 activity with the helpful effects of glutathione and Nrf2.
Collapse
Affiliation(s)
- Vahid Radmehr
- Student Research Committee, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Akram Ahangarpour. Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-61-357-15794;
| | - Seyyed Ali Mard
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
30
|
Cortizo FG, Pfaff D, Wirth A, Schlotterer A, Medert R, Morgenstern J, Weber T, Hammes HP, Fleming T, Nawroth PP, Freichel M, Teleman AA. The activity of glyoxylase 1 is regulated by glucose-responsive phosphorylation on Tyr136. Mol Metab 2022; 55:101406. [PMID: 34838714 PMCID: PMC8715127 DOI: 10.1016/j.molmet.2021.101406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that glycates proteins. MG has been linked to the development of diabetic complications: MG is the major precursor of advanced glycation end products (AGEs), a risk marker for diabetic complications in humans. Furthermore, flies and fish with elevated MG develop insulin resistance, obesity, and hyperglycemia. MG is detoxified in large part through the glyoxalase system, whose rate-limiting enzyme is glyoxalase I (Glo1). Hence, we aimed to study how Glo1 activity is regulated. METHODS We studied the regulation and effect of post-translational modifications of Glo1 in tissue culture and in mouse models of diabetes. RESULTS We show that Glo1 activity is promoted by phosphorylation on Tyrosine 136 via multiple kinases. We find that Glo1 Y136 phosphorylation responds in a bimodal fashion to glucose levels, increasing in cell culture from 0 mM to 5 mM (physiological) glucose, and then decreasing at higher glucose concentrations, both in cell culture and in mouse models of hyperglycemia. CONCLUSIONS These data, together with published findings that elevated MG leads to hyperglycemia, suggest the existence of a deleterious positive feedback loop whereby hyperglycemia leads to reduced Glo1 activity, contributing to elevated MG levels, which in turn promote hyperglycemia. Hence, perturbations elevating either glucose or MG have the potential to start an auto-amplifying feedback loop contributing to diabetic complications.
Collapse
Affiliation(s)
- Fabiola Garcia Cortizo
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany
| | - Daniel Pfaff
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany
| | - Angela Wirth
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebekka Medert
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tobias Weber
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Accumulation of acetaldehyde in aldh2.1 zebrafish causes increased retinal angiogenesis and impaired glucose metabolism. Redox Biol 2022; 50:102249. [PMID: 35114580 PMCID: PMC8818574 DOI: 10.1016/j.redox.2022.102249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 01/22/2023] Open
Abstract
Reactive carbonyl species (RCS) are spontaneously formed in the metabolism and modify and impair the function of DNA, proteins and lipids leading to several organ complications. In zebrafish, knockout of the RCS detoxifying enzymes glyoxalase 1 (Glo 1), aldehyde dehydrogenase 3a1 (Aldh3a1) and aldo-ketoreductase 1a1a (Akr1a1a) showed a signature of elevated RCS which specifically regulated glucose metabolism, hyperglycemia and diabetic organ damage. aldh2.1 was compensatory upregulated in glo1−/− animals and therefore this study aimed to investigate the detoxification ability for RCS by Aldh2.1 in zebrafish independent of ethanol exposure. aldh2.1 knockout zebrafish were generated using CRISPR/Cas9 and subsequently analyzed on a histological, metabolomic and transcriptomic level. aldh2.1−/− zebrafish displayed increased endogenous acetaldehyde (AA) inducing an increased angiogenesis in retinal vasculature. Expression and pharmacological interventional studies identified an imbalance of c-Jun N-terminal kinase (JNK) and p38 MAPK induced by AA, which mediate an activation of angiogenesis. Moreover, increased AA in aldh2.1−/− zebrafish did not induce hyperglycemia, instead AA inhibited the expression of glucokinase (gck) and glucose-6-phosphatase (g6pc), which led to an impaired glucose metabolism. In conclusion, the data have identified AA as the preferred substrate for Aldh2.1's detoxification ability, which subsequently causes microvascular organ damage and impaired glucose metabolism. ALDH2.1 was compensatory upregulated in glyoxalase 1 zebrafish mutants. Loss of ALDH2.1 increases acetaldehyde leading to vascular retinal alterations. Acetaldehyde controls glucose metabolism via glucose-6-phosphate and glucokinase. Altered JNK and p38 cause microvascular complications.
Collapse
|
32
|
Toriumi K, Miyashita M, Suzuki K, Tabata K, Horiuchi Y, Ishida H, Itokawa M, Arai M. Role of glyoxalase 1 in methylglyoxal detoxification-the broad player of psychiatric disorders. Redox Biol 2021; 49:102222. [PMID: 34953453 PMCID: PMC8718652 DOI: 10.1016/j.redox.2021.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MG) is a highly reactive α-ketoaldehyde formed endogenously as a byproduct of the glycolytic pathway. To remove MG, various detoxification systems work together in vivo, including the glyoxalase system, which enzymatically degrades MG using glyoxalase 1 (GLO1) and GLO2. Recently, numerous reports have shown that GLO1 expression and MG accumulation in the brain are involved in the pathogenesis of psychiatric disorders, such as anxiety disorder, depression, autism, and schizophrenia. Furthermore, it has been reported that GLO1 inhibitors may be promising drugs for the treatment of psychiatric disorders. In this review, we discuss the recent findings of the effects of altered GLO1 function on mental behavior, especially focusing on results obtained from animal models.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan; Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, 192-0005, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroaki Ishida
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
33
|
Li X, Fargue S, Challa AK, Poore W, Knight J, Wood KD. Generation of a GLO-2 deficient mouse reveals its effects on liver carbonyl and glutathione levels. Biochem Biophys Rep 2021; 28:101138. [PMID: 34584990 PMCID: PMC8453187 DOI: 10.1016/j.bbrep.2021.101138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hydroxyacylglutathione hydrolase (aka as GLO-2) is a component of the glyoxalase pathway involved in the detoxification of the reactive oxoaldehydes, glyoxal and methylglyoxal. These reactive metabolites have been linked to a variety of pathological conditions, including diabetes, cancer and heart disease and may be involved in the aging process. The objective of this study was to generate a mouse model deficient in GLO-2 to provide insight into the function of GLO-2 and to determine if it is potentially linked to endogenous oxalate synthesis which could influence urinary oxalate excretion. METHODS A GLO-2 knock out mouse was generated using CRISPR/Cas 9 techniques. Tissue and 24-h urine samples were collected under baseline conditions from adult male and female animals for biochemical analyses, including chromatographic measurement of glycolate, oxalate, glyoxal, methylglyoxal, D-lactate, ascorbic acid and glutathione levels. RESULTS The GLO-2 KO animals developed normally and there were no changes in 24-h urinary oxalate excretion, liver levels of methylglyoxal, glyoxal, ascorbic acid and glutathione, or plasma d-lactate levels. GLO-2 deficient males had lower plasma glycolate levels than wild type males while this relationship was not observed in females. CONCLUSIONS The lack of a unique phenotype in a GLO-2 KO mouse model under baseline conditions is consistent with recent evidence, suggesting a functional glyoxalase pathway is not required for optimal health. A lower plasma glycolate in male GLO-2 KO animals suggests glyoxal production may be a significant contributor to circulating glycolate levels, but not to endogenous oxalate synthesis.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sonia Fargue
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Anil Kumar Challa
- Department of Genetics University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William Poore
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kyle D. Wood
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
34
|
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100275. [PMID: 34319011 PMCID: PMC8456215 DOI: 10.1002/advs.202100275] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Indexed: 05/06/2023]
Abstract
Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.
Collapse
Affiliation(s)
- Sevgican Demir
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Peter P. Nawroth
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| |
Collapse
|
35
|
Wouters K, Cento AS, Gaens KH, Teunissen M, Scheijen JLJM, Barutta F, Chiazza F, Collotta D, Aragno M, Gruden G, Collino M, Schalkwijk CG, Mastrocola R. Deletion of RAGE fails to prevent hepatosteatosis in obese mice due to impairment of other AGEs receptors and detoxifying systems. Sci Rep 2021; 11:17373. [PMID: 34462492 PMCID: PMC8405685 DOI: 10.1038/s41598-021-96859-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation endproducts (AGEs) are involved in several diseases, including NAFLD and NASH. RAGE is the main receptor mediating the pro-inflammatory signalling induced by AGEs. Therefore, targeting of RAGE has been proposed for prevention of chronic inflammatory diseases. However, the role of RAGE in the development of NAFLD and NASH remains poorly understood. We thus aimed to analyse the effect of obesity on AGEs accumulation, AGE-receptors and AGE-detoxification, and whether the absence of RAGE might improve hepatosteatosis and inflammation, by comparing the liver of lean control, obese (LeptrDb-/-) and obese RAGE-deficient (RAGE-/- LeptrDb-/-) mice. Obesity induced AGEs accumulation and RAGE expression with hepatosteatosis and inflammation in LeptrDb-/-, compared to lean controls. Despite the genetic deletion of RAGE in the LeptrDb-/- mice, high levels of intrahepatic AGEs were maintained accompanied by decreased expression of the protective AGE-receptor-1, impaired AGE-detoxifying system glyoxalase-1, and increased expression of the alternative AGE-receptor galectin-3. We also found sustained hepatosteatosis and inflammation as determined by persistent activation of the lipogenic SREBP1c and proinflammatory NLRP3 signalling pathways. Thus, RAGE targeting is not effective in the prevention of NAFLD in conditions of obesity, likely due to the direct liver specific crosstalk of RAGE with other AGE-receptors and AGE-detoxifying systems.
Collapse
Affiliation(s)
- Kristiaan Wouters
- grid.412966.e0000 0004 0480 1382Department of Internal Medicine, MUMC, Maastricht, Limburg The Netherlands ,grid.5012.60000 0001 0481 6099Cardiovascular Research Institute Maastricht, Maastricht, Limburg The Netherlands
| | - Alessia S. Cento
- grid.7605.40000 0001 2336 6580Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Katrien H. Gaens
- grid.412966.e0000 0004 0480 1382Department of Internal Medicine, MUMC, Maastricht, Limburg The Netherlands ,grid.5012.60000 0001 0481 6099Cardiovascular Research Institute Maastricht, Maastricht, Limburg The Netherlands
| | - Margee Teunissen
- grid.412966.e0000 0004 0480 1382Department of Internal Medicine, MUMC, Maastricht, Limburg The Netherlands
| | - Jean L. J. M. Scheijen
- grid.412966.e0000 0004 0480 1382Department of Internal Medicine, MUMC, Maastricht, Limburg The Netherlands ,grid.5012.60000 0001 0481 6099Cardiovascular Research Institute Maastricht, Maastricht, Limburg The Netherlands
| | - Federica Barutta
- grid.7605.40000 0001 2336 6580Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fausto Chiazza
- grid.16563.370000000121663741Department of Drug Sciences, University of Eastern Piedmont, Novara, Italy
| | - Debora Collotta
- grid.7605.40000 0001 2336 6580Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Manuela Aragno
- grid.7605.40000 0001 2336 6580Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Gabriella Gruden
- grid.7605.40000 0001 2336 6580Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Collino
- grid.7605.40000 0001 2336 6580Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Casper G. Schalkwijk
- grid.412966.e0000 0004 0480 1382Department of Internal Medicine, MUMC, Maastricht, Limburg The Netherlands ,grid.5012.60000 0001 0481 6099Cardiovascular Research Institute Maastricht, Maastricht, Limburg The Netherlands
| | - Raffaella Mastrocola
- grid.412966.e0000 0004 0480 1382Department of Internal Medicine, MUMC, Maastricht, Limburg The Netherlands ,grid.7605.40000 0001 2336 6580Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
36
|
The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy. Cells 2021; 10:cells10081852. [PMID: 34440621 PMCID: PMC8393707 DOI: 10.3390/cells10081852] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
The glyoxalase system is critical for the detoxification of advanced glycation end-products (AGEs). AGEs are toxic compounds resulting from the non-enzymatic modification of biomolecules by sugars or their metabolites through a process called glycation. AGEs have adverse effects on many tissues, playing a pathogenic role in the progression of molecular and cellular aging. Due to the age-related decline in different anti-AGE mechanisms, including detoxifying mechanisms and proteolytic capacities, glycated biomolecules are accumulated during normal aging in our body in a tissue-dependent manner. Viewed in this way, anti-AGE detoxifying systems are proposed as therapeutic targets to fight pathological dysfunction associated with AGE accumulation and cytotoxicity. Here, we summarize the current state of knowledge related to the protective mechanisms against glycative stress, with a special emphasis on the glyoxalase system as the primary mechanism for detoxifying the reactive intermediates of glycation. This review focuses on glyoxalase 1 (GLO1), the first enzyme of the glyoxalase system, and the rate-limiting enzyme of this catalytic process. Although GLO1 is ubiquitously expressed, protein levels and activities are regulated in a tissue-dependent manner. We provide a comparative analysis of GLO1 protein in different tissues. Our findings indicate a role for the glyoxalase system in homeostasis in the eye retina, a highly oxygenated tissue with rapid protein turnover. We also describe modulation of the glyoxalase system as a therapeutic target to delay the development of age-related diseases and summarize the literature that describes the current knowledge about nutritional compounds with properties to modulate the glyoxalase system.
Collapse
|
37
|
Toriumi K, Berto S, Koike S, Usui N, Dan T, Suzuki K, Miyashita M, Horiuchi Y, Yoshikawa A, Asakura M, Nagahama K, Lin HC, Sugaya Y, Watanabe T, Kano M, Ogasawara Y, Miyata T, Itokawa M, Konopka G, Arai M. Combined glyoxalase 1 dysfunction and vitamin B6 deficiency in a schizophrenia model system causes mitochondrial dysfunction in the prefrontal cortex. Redox Biol 2021; 45:102057. [PMID: 34198071 PMCID: PMC8253914 DOI: 10.1016/j.redox.2021.102057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a reactive and cytotoxic α-dicarbonyl byproduct of glycolysis. Our bodies have several bio-defense systems to detoxify MG, including an enzymatic system by glyoxalase (GLO) 1 and GLO2. We identified a subtype of schizophrenia patients with novel mutations in the GLO1 gene that results in reductions of enzymatic activity. Moreover, we found that vitamin B6 (VB6) levels in peripheral blood of the schizophrenia patients with GLO1 dysfunction are significantly lower than that of healthy controls. However, the effects of GLO1 dysfunction and VB6 deficiency on the pathophysiology of schizophrenia remains poorly understood. Here, we generated a novel mouse model for this subgroup of schizophrenia patients by feeding Glo1 knockout mice VB6-deficent diets (KO/VB6(−)) and evaluated the combined effects of GLO1 dysfunction and VB6 deficiency on brain function. KO/VB6(−) mice accumulated homocysteine in plasma and MG in the prefrontal cortex (PFC), hippocampus, and striatum, and displayed behavioral deficits, such as impairments of social interaction and cognitive memory and a sensorimotor deficit in the prepulse inhibition test. Furthermore, we found aberrant gene expression related to mitochondria function in the PFC of the KO/VB6(−) mice by RNA-sequencing and weighted gene co-expression network analysis (WGCNA). Finally, we demonstrated abnormal mitochondrial respiratory function and subsequently enhanced oxidative stress in the PFC of KO/VB6(−) mice in the PFC. These findings suggest that the combination of GLO1 dysfunction and VB6 deficiency may cause the observed behavioral deficits via mitochondrial dysfunction and oxidative stress in the PFC. A combination of Glo1 KO and VB6 deficiency induces MG accumulation in the brain. Glo1 KO/VB6(−) mice exhibit schizophrenia-like behavioral deficits. Gene expression related to mitochondria is impaired in the PFC of the Glo1 KO/VB6(−). Mitochondria in the PFC of the Glo1 KO/VB6(−) mice show respiratory dysfunction. Oxidative stress is enhanced in the PFC of the Glo1 KO/VB6(−).
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Akane Yoshikawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Mai Asakura
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hsiao-Chun Lin
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
38
|
Jana GA, Krishnamurthy P, Kumar PP, Yaish MW. Functional characterization and expression profiling of glyoxalase III genes in date palm grown under abiotic stresses. PHYSIOLOGIA PLANTARUM 2021; 172:780-794. [PMID: 33034392 DOI: 10.1111/ppl.13239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Methylglyoxal (MG), a by-product of various metabolic processes, including glycolysis, is a highly reactive cytotoxic metabolite. The level of MG in the cell is maintained at a non-toxic level via MG detoxification pathways such as the universal glyoxalase system, including glyoxalase I/II/III enzymes. Glyoxalase III (DJ-1) can breakdown MG to d-lactate in a single step without reducing glutathione (GSH). Elucidating the function of the DJ-1 gene family may provide further knowledge about its role in plants under abiotic stresses. Here, we characterize four glyoxalase III genes (PdDJ-1B1, PdDJ-1B2, PdDJ-1C, and PdDJ-1D) encoding the conserved DJ-1 domain in the genome of the date palm, a crop with high drought and salinity tolerance. The expression level of the PdDJ-1 genes increased in date palm leaves upon salinity treatment. In addition, overexpression of PdDJ-1 genes in Escherichia coli and the complementation in yeast hsp31Δ knockout mutant cells enhanced their growth rate and reduced the accumulation of reactive oxygen species (ROS) under MG and oxidative stress conditions as shown by the flow cytometry assay. Subcellular localization using confocal microscopy revealed the accumulation of PdDJ-1B1, PdDJ-1C, and PdDJ-1D in the chloroplast, whereas PdDJ-1B2 was localized to the cytosol. Remarkably, constitutive expression of the PdDJ-1C gene in Arabidopsis thaliana Columbia (Col-0) resulted in the generation of non-viable albino plants implying that PdDJ-1C plays a critical function in chloroplast development. These findings suggest that PdDJ-1 protein has an important function in MG-detoxification and maintaining the redox balance in date palm plants under abiotic stress conditions.
Collapse
Affiliation(s)
- Gerry A Jana
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Pannaga Krishnamurthy
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mahmoud W Yaish
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
39
|
Morgenstern J, Katz S, Krebs-Haupenthal J, Chen J, Saadatmand A, Cortizo FG, Moraru A, Zemva J, Campos MC, Teleman A, Backs J, Nawroth P, Fleming T. Phosphorylation of T107 by CamKIIδ Regulates the Detoxification Efficiency and Proteomic Integrity of Glyoxalase 1. Cell Rep 2021; 32:108160. [PMID: 32966793 DOI: 10.1016/j.celrep.2020.108160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023] Open
Abstract
The glyoxalase system is a highly conserved and ubiquitously expressed enzyme system, which is responsible for the detoxification of methylglyoxal (MG), a spontaneous by-product of energy metabolism. This study is able to show that a phosphorylation of threonine-107 (T107) in the (rate-limiting) Glyoxalase 1 (Glo1) protein, mediated by Ca2+/calmodulin-dependent kinase II delta (CamKIIδ), is associated with elevated catalytic efficiency of Glo1 (lower KM; higher Vmax). Additionally, we observe proteasomal degradation of non-phosphorylated Glo1 via ubiquitination does occur more rapidly as compared with native Glo1. The absence of CamKIIδ is associated with poor detoxification capacity and decreased protein content of Glo1 in a murine CamKIIδ knockout model. Therefore, phosphorylation of T107 in the Glo1 protein by CamKIIδ is a quick and precise mechanism regulating Glo1 activity, which is experimentally linked to an altered Glo1 status in cancer, diabetes, and during aging.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany.
| | - Sylvia Katz
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Jutta Krebs-Haupenthal
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Jessy Chen
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Alireza Saadatmand
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | | | - Alexandra Moraru
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Johanna Zemva
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Marta Campos Campos
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Aurelio Teleman
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Johannes Backs
- Department Molecular Cardiology and Epigenetics, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| |
Collapse
|
40
|
Maasen K, Hanssen NMJ, van der Kallen CJH, Stehouwer CDA, van Greevenbroek MMJ, Schalkwijk CG. Polymorphisms in Glyoxalase I Gene Are Not Associated with Glyoxalase I Expression in Whole Blood or Markers of Methylglyoxal Stress: The CODAM Study. Antioxidants (Basel) 2021; 10:antiox10020219. [PMID: 33540757 PMCID: PMC7913097 DOI: 10.3390/antiox10020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Glyoxalase 1 (Glo1) is the rate-limiting enzyme in the detoxification of methylglyoxal (MGO) into D-lactate. MGO is a major precursor of advanced glycation endproducts (AGEs), and both are associated with development of age-related diseases. Since genetic variation in GLO1 may alter the expression and/or the activity of Glo1, we examined the association of nine SNPs in GLO1 with Glo1 expression and markers of MGO stress (MGO in fasting plasma and after an oral glucose tolerance test, D-lactate in fasting plasma and urine, and MGO-derived AGEs CEL and MG-H1 in fasting plasma and urine). We used data of the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM, n = 546, 60 ± 7 y, 25% type 2 diabetes). Outcomes were compared across genotypes using linear regression, adjusted for age, sex, and glucose metabolism status. We found that SNP4 (rs13199033) was associated with Glo1 expression (AA as reference, standardized beta AT = −0.29, p = 0.02 and TT = −0.39, p = 0.3). Similarly, SNP13 (rs3799703) was associated with Glo1 expression (GG as reference, standardized beta AG = 0.17, p = 0.14 and AA = 0.36, p = 0.005). After correction for multiple testing these associations were not significant. For the other SNPs, we observed no consistent associations over the different genotypes. Thus, polymorphisms of GLO1 were not associated with Glo1 expression or markers of MGO stress, suggesting that these SNPs are not functional, although activity/expression might be altered in other tissues.
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Nordin M. J. Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Carla J. H. van der Kallen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Coen D. A. Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Marleen M. J. van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
- Correspondence: ; Tel.: +31-43-388-2186
| |
Collapse
|
41
|
de Almeida GRL, Szczepanik JC, Selhorst I, Schmitz AE, Dos Santos B, Cunha MP, Heinrich IA, de Paula GC, De Bem AF, Leal RB, Dafre AL. Methylglyoxal-Mediated Dopamine Depletion, Working Memory Deficit, and Depression-Like Behavior Are Prevented by a Dopamine/Noradrenaline Reuptake Inhibitor. Mol Neurobiol 2021; 58:735-749. [PMID: 33011857 DOI: 10.1007/s12035-020-02146-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer's disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.
Collapse
Affiliation(s)
| | - Jozimar Carlos Szczepanik
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ariana Ern Schmitz
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Bárbara Dos Santos
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Maurício Peña Cunha
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Isabella Aparecida Heinrich
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gabriela Cristina de Paula
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Andreza Fabro De Bem
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Physiological Science, Institute for Biological Sciences, University of Brasília, Brasília, Brazil
| | - Rodrigo Bainy Leal
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Alcir Luiz Dafre
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
42
|
Morgenstern J, Kliemank E, Campos MC, Nawroth P, Fleming T. Michaelis-Menten Kinetics Measurements of Aldo-Keto Reductases for Various Substrates in Murine Tissue. STAR Protoc 2020; 1:100206. [PMID: 33377100 PMCID: PMC7757668 DOI: 10.1016/j.xpro.2020.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aldo-keto reductases (AKRs) are responsible for the detoxification of harmful aldehydes. Due to the large number of isotypes, the physiological relevance of AKRs cannot be obtained using mRNA or protein quantification, but only through the use of enzymatic assays to demonstrate functionality. Here, we present a fast and simple protocol to determine the important Michaelis-Menten kinetics of AKRs, which includes various aldehyde substrates of interest such as 4-hydroxynonenal, methylglyoxal, and malondialdehyde. For complete details on the use and execution of this protocol, please refer to Morgenstern et al. (2017) and Schumacher et al. (2018). Mild and efficient extraction/lysis of mouse tissue Monitoring of aldo-keto reductase catalyzed reactions for various substrates Comprehensive explanations in order to determine Michaelis-Menten kinetics
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
- Corresponding author
| | - Elisabeth Kliemank
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Marta Campos Campos
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| |
Collapse
|
43
|
Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease. Essays Biochem 2020; 64:97-110. [PMID: 31939602 DOI: 10.1042/ebc20190057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.
Collapse
|
44
|
Šilhavý J, Malínská H, Hüttl M, Marková I, Oliyarnyk O, Mlejnek P, Šimáková M, Liška F, Kazdová L, Moravcová R, Novotný J, Pravenec M. Downregulation of the Glo1 Gene Is Associated with Reduced Adiposity and Ectopic Fat Accumulation in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9121179. [PMID: 33255888 PMCID: PMC7759780 DOI: 10.3390/antiox9121179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Methylglyoxal (MG), a potent precursor of advanced glycation end-products (AGE), is increased in metabolic disorders such as diabetes and obesity. MG and other dicarbonyl metabolites are detoxified by the glyoxalase system in which glyoxalase 1, coded by the Glo1 gene, serves as the rate-limiting enzyme. In this study, we analyzed the effects of Glo1 downregulation on glucose and lipid metabolism parameters in spontaneously hypertensive rats (SHR) by targeting the Glo1 gene (SHR-Glo1+/− heterozygotes). Compared to SHR wild-type animals, SHR-Glo1+/− rats showed significantly reduced Glo1 expression and lower GLO1 activity in tissues associated with increased MG levels. In contrast to SHR controls, SHR-Glo1+/− rats exhibited lower relative weight of epididymal fat, reduced ectopic fat accumulation in the liver and heart, and decreased serum triglycerides. In addition, compared to controls, SHR-Glo1+/− rats showed reduced serum insulin and increased basal and insulin stimulated incorporation of glucose into white adipose tissue lipids (lipogenesis). Reduced ectopic fat accumulation in the heart was associated with significantly increased pAMPK/AMPK ratio and GLUT4 activity. These results provide evidence that Glo1 downregulation in SHR is associated with reduced adiposity and ectopic fat accumulation, most likely mediated by AMPK activation in the heart.
Collapse
Affiliation(s)
- Jan Šilhavý
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
| | - Miroslava Šimáková
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
| | - František Liška
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 12800 Prague, Czech Republic
| | - Ludmila Kazdová
- Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (H.M.); (M.H.); (I.M.); (O.O.); (L.K.)
| | - Radka Moravcová
- Department of Physiology, Faculty of Science, Charles University, 12843 Prague, Czech Republic; (R.M.); (J.N.)
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, 12843 Prague, Czech Republic; (R.M.); (J.N.)
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.Š.); (P.M.); (M.Š.); (F.L.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 12800 Prague, Czech Republic
- Correspondence: ; Tel.: +420-241-062-297; Fax: +420-244-472-269
| |
Collapse
|
45
|
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E. Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9111062. [PMID: 33143048 PMCID: PMC7692619 DOI: 10.3390/antiox9111062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, a defining characteristic of diabetes, combined with oxidative stress, results in the formation of advanced glycation end products (AGEs). AGEs are toxic compounds that have adverse effects on many tissues including the retina and lens. AGEs promote the formation of reactive oxygen species (ROS), which, in turn, boost the production of AGEs, resulting in positive feedback loops, a vicious cycle that compromises tissue fitness. Oxidative stress and the accumulation of AGEs are etiologically associated with the pathogenesis of multiple diseases including diabetic retinopathy (DR). DR is a devastating microvascular complication of diabetes mellitus and the leading cause of blindness in working-age adults. The onset and development of DR is multifactorial. Lowering AGEs accumulation may represent a potential therapeutic approach to slow this sight-threatening diabetic complication. To set DR in a physiological context, in this review we first describe relations between oxidative stress, formation of AGEs, and aging in several tissues of the eye, each of which is associated with a major age-related eye pathology. We summarize mechanisms of AGEs generation and anti-AGEs detoxifying systems. We specifically feature the potential of the glyoxalase system in the retina in the prevention of AGEs-associated damage linked to DR. We provide a comparative analysis of glyoxalase activity in different tissues from wild-type mice, supporting a major role for the glyoxalase system in the detoxification of AGEs in the retina, and present the manipulation of this system as a therapeutic strategy to prevent the onset of DR.
Collapse
Affiliation(s)
- Gemma Aragonès
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
| | - Sarah G Francisco
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Wenxin Yang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| |
Collapse
|
46
|
Morgenstern J, Campos Campos M, Nawroth P, Fleming T. The Glyoxalase System-New Insights into an Ancient Metabolism. Antioxidants (Basel) 2020; 9:antiox9100939. [PMID: 33019494 PMCID: PMC7600140 DOI: 10.3390/antiox9100939] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The glyoxalase system was discovered over a hundred years ago and since then it has been claimed to provide the role of an indispensable enzyme system in order to protect cells from a toxic byproduct of glycolysis. This review gives a broad overview of what has been postulated in the last 30 years of glyoxalase research, but within this context it also challenges the concept that the glyoxalase system is an exclusive tool of detoxification and that its substrate, methylglyoxal, is solely a detrimental burden for every living cell due to its toxicity. An overview of consequences of a complete loss of the glyoxalase system in various model organisms is presented with an emphasis on the role of alternative detoxification pathways of methylglyoxal. Furthermore, this review focuses on the overlooked posttranslational modification of Glyoxalase 1 and its possible implications for cellular maintenance under various (patho-)physiological conditions. As a final note, an intriguing point of view for the substrate methylglyoxal is offered, the concept of methylglyoxal (MG)-mediated hormesis.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- Correspondence:
| | - Marta Campos Campos
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute for Diabetes and Cancer at Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
47
|
Donato L, Scimone C, Alibrandi S, Nicocia G, Rinaldi C, Sidoti A, D’Angelo R. Discovery of GLO1 New Related Genes and Pathways by RNA-Seq on A2E-Stressed Retinal Epithelial Cells Could Improve Knowledge on Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:416. [PMID: 32413970 PMCID: PMC7278727 DOI: 10.3390/antiox9050416] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Endogenous antioxidants protect cells from reactive oxygen species (ROS)-related deleterious effects, and an imbalance in the oxidant/antioxidant systems generates oxidative stress. Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis whose excess can produce oxidative stress. In retinitis pigmentosa, one of the most diffuse cause of blindness, oxidative damage leads to photoreceptor death. To clarify the role of GLO1 in retinitis pigmentosa onset and progression, we treated human retinal pigment epithelium cells by the oxidant agent A2E. Transcriptome profiles between treated and untreated cells were performed by RNA-Seq, considering two time points (3 and 6 h), after the basal one. The exposure to A2E highlighted significant expression differences and splicing events in 370 GLO1 first-neighbor genes, and 23 of them emerged from pathway clustered analysis as main candidates to be associated with retinitis pigmentosa. Such a hypothesis was corroborated by the involvement of previously analyzed genes in specific cellular activities related to oxidative stress, such as glyoxylate and dicarboxylate metabolism, glycolysis, axo-dendritic transport, lipoprotein activity and metabolism, SUMOylation and retrograde transport at the trans-Golgi network. Our findings could be the starting point to explore unclear molecular mechanisms involved in retinitis pigmentosa etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Giacomo Nicocia
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| |
Collapse
|
48
|
Sanlialp A, Schumacher D, Kiper L, Varma E, Riechert E, Ho TC, Hofmann C, Kmietczyk V, Zimmermann F, Dlugosz S, Wirth A, Gorska AA, Burghaus J, Camacho Londoño JE, Katus HA, Doroudgar S, Freichel M, Völkers M. Saraf-dependent activation of mTORC1 regulates cardiac growth. J Mol Cell Cardiol 2020; 141:30-42. [PMID: 32173353 DOI: 10.1016/j.yjmcc.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Pathological cardiac hypertrophy is an independent risk for heart failure (HF) and sudden death. Deciphering signaling pathways regulating intracellular Ca2+ homeostasis that control adaptive and pathological cardiac growth may enable identification of novel therapeutic targets. The objective of the present study is to determine the role of the store-operated calcium entry-associated regulatory factor (Saraf), encoded by the Tmem66 gene, on cardiac growth control in vitro and in vivo. Saraf is a single-pass membrane protein located at the sarco/endoplasmic reticulum and regulates intracellular calcium homeostasis. We found that Saraf expression was upregulated in the hypertrophied myocardium and was sufficient for cell growth in response to neurohumoral stimulation. Increased Saraf expression caused cell growth, which was associated with dysregulation of calcium-dependent signaling and sarcoplasmic reticulum calcium content. In vivo, Saraf augmented cardiac myocyte growth in response to angiotensin II and resulted in increased cardiac remodeling together with worsened cardiac function. Mechanistically, Saraf activated mTORC1 (mechanistic target of rapamycin complex 1) and increased protein synthesis, while mTORC1 inhibition blunted Saraf-dependent cell growth. In contrast, the hearts of Saraf knockout mice and Saraf-deficient myocytes did not show any morphological or functional alterations after neurohumoral stimulation, but Saraf depletion resulted in worsened cardiac function after acute pressure overload. SARAF knockout blunted transverse aortic constriction cardiac myocyte hypertrophy and impaired cardiac function, demonstrating a role for SARAF in compensatory myocyte growth. Collectively, these results reveal a novel link between sarcoplasmic reticulum calcium homeostasis and mTORC1 activation that is regulated by Saraf.
Collapse
Affiliation(s)
- Ayse Sanlialp
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Dagmar Schumacher
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Leon Kiper
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Eshita Varma
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Eva Riechert
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Thanh Cao Ho
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Christoph Hofmann
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Vivien Kmietczyk
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Frank Zimmermann
- Interfacultary Biomedical Faculty (IBF), University of Heidelberg, Im Neuenheimer Feld 347, 69120 Heidelberg, Germany
| | - Sascha Dlugosz
- Interfacultary Biomedical Faculty (IBF), University of Heidelberg, Im Neuenheimer Feld 347, 69120 Heidelberg, Germany
| | - Angela Wirth
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Agnieszka A Gorska
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Jana Burghaus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Juan E Camacho Londoño
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Marc Freichel
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Institute of Pharmacology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Dimitropoulos A, Rosado CJ, Thomas MC. Dicarbonyl-mediated AGEing and diabetic kidney disease. J Nephrol 2020; 33:909-915. [DOI: 10.1007/s40620-020-00718-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
|
50
|
Kold-Christensen R, Johannsen M. Methylglyoxal Metabolism and Aging-Related Disease: Moving from Correlation toward Causation. Trends Endocrinol Metab 2020; 31:81-92. [PMID: 31757593 DOI: 10.1016/j.tem.2019.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MG) is a ubiquitous metabolite that spontaneously reacts with biopolymers forming advanced glycation end-products (AGEs). AGEs are strongly associated with aging-related diseases, including cancer, neurodegenerative diseases, and diabetes. As the formation of AGEs is nonenzymatic, the damage caused by MG and AGEs has been regarded as unspecific. This may have resulted in the field generally been regarded as unappealing by many researchers, as detailed mechanisms have been difficult to probe. However, accumulating evidence highlighting the importance of MG in human metabolism and disease, as well as data revealing how MG can elicit its signaling function via specific protein AGEs, could change the current mindset, accelerating the field to the forefront of future research.
Collapse
Affiliation(s)
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|