1
|
Yan R, Zhang L, Chen Y, Zheng Y, Xu P, Xu Z. Therapeutic potential of gut microbiota modulation in epilepsy: A focus on short-chain fatty acids. Neurobiol Dis 2025; 209:106880. [PMID: 40118219 DOI: 10.1016/j.nbd.2025.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025] Open
Abstract
According to the criteria established by the International League Against Epilepsy (ILAE), epilepsy is defined as a disorder characterized by at least two unprovoked seizures occurring more than 24 h apart. Its pathogenesis is closely related to various physiological and pathological factors. Advances in high-throughput metagenomic sequencing have increasingly highlighted the role of gut microbiota dysbiosis in epilepsy. Short-chain fatty acids (SCFAs), the major metabolites of the gut microbiota and key regulators of the gut-brain axis, support physiological homeostasis through multiple mechanisms. Recent studies have indicated that SCFAs not only regulate seizures by maintaining intestinal barrier integrity and modulating intestinal immune responses, but also affect the structure and function of the blood-brain barrier (BBB) and regulate neuroinflammation. This review, based on current literatures, explores the relationship between SCFAs and epilepsy, emphasizing how SCFAs affect epilepsy by modulating the intestinal barrier and BBB. In-depth studies on SCFAs may reveal their therapeutic potential and inform the development of gut microbiota-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Rong Yan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ya Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongsu Zheng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi, China.
| |
Collapse
|
2
|
Russo A, D'Alessandro A, Di Paola M, Cerasuolo B, Renzi S, Meriggi N, Conti L, Costa J, Pogni R, Martellini T, Cincinelli A, Ugolini A, Cavalieri D. On the role of bacterial gut microbiota from supralittoral amphipod Talitrus saltator (Montagu, 1808) in bioplastic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179109. [PMID: 40086306 DOI: 10.1016/j.scitotenv.2025.179109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Despite the promise of a reduced environmental impact, bioplastics are subjected to dispersion and accumulation similarly to traditional plastics, especially in marine and coastal environments. The environmental impact of bioplastics is attracting increasing attention due to the growing market demand. The ability of the supralittoral amphipod Talitrus saltator to ingest and survive on pristine starch-based bioplastic has already been assessed. However, the involvement of the gut microbiota of this key coastal species in making bioplastics a dietary supplement, remains unknown. In this study, we investigated the modification of T. saltator gut microbiota following bioplastic ingestion and the effect of this change on the modification of their chemical composition. Groups of adult amphipods were fed with: 1 - two different kinds of starch-based bioplastic; 2 - a 50 %/50 % chitosan-starch mixture; and 3 - paper and dry-fish-food. Freshly collected, unfed individuals were used as control group. Faecal pellets from the amphipods were collected and characterized using ATR-FTIR spectroscopy. DNA was extracted from gut samples for metagenomic analysis. Spectroscopic investigation suggested a partial digestion of polysaccharide components in the experimental polymeric materials. The analysis of the gut microbiota revealed that bioplastic feeding induced modification of sandhopper's gut microbial communities, shifting the abundance of specific microbial genera already present in the gut, towards bacterial genera associated with plastic/bioplastic degradation, especially in groups fed with starch-based bioplastics. Overall, our results highlight the involvement of T. saltator's gut microbiota in bioplastic modification, providing new insights into the potential role of microbial consortia associated to sandhoppers in bioplastic management.
Collapse
Affiliation(s)
- Alessandro Russo
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Aldo D'Alessandro
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Monica Di Paola
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Benedetta Cerasuolo
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Renzi
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Niccolò Meriggi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Luca Conti
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Jessica Costa
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena, Italy
| | - Rebecca Pogni
- University of Siena, Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena, Italy
| | - Tania Martellini
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessandra Cincinelli
- University of Florence, Dept. of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alberto Ugolini
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Duccio Cavalieri
- University of Florence, Dept. of Biology, via Madonna del Piano 6, 50019 Sesto Fiorentino, Florence, Italy; CIB-Interuniversity Consortium for Biotechnologies, Via Flavia 23/1, 34148 Trieste, Italy.
| |
Collapse
|
3
|
Russo RC, Togbe D, Couillin I, Segueni N, Han L, Quesniaux VFJ, Stoeger T, Ryffel B. Ozone-induced lung injury and inflammation: Pathways and therapeutic targets for pulmonary diseases caused by air pollutants. ENVIRONMENT INTERNATIONAL 2025; 198:109391. [PMID: 40121788 DOI: 10.1016/j.envint.2025.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Exposure to ambient Ozone (O3) air pollution directly causes by its oxidative properties, respiratory epithelial cell injury, and cell death, which promote inflammation and hyperreactivity, posing a significant public health concern. Recent clinical and experimental studies have made strides in elucidating the mechanisms underlying O3-induced epithelial cell injury, inflammation, and airway hyperreactivity, which are discussed herein. The current data suggest that O3-induced oxidative stress is a central event-inducing oxeiptotic cell death pathway. O3-induced epithelial barrier damage and cell death, triggering the release of alarmins and damage-associated molecular patterns (DAMPs), with subsequent endogenous activation of Toll-like receptors (TLRs), DNA sensing pathways, and inflammasomes, activating interleukin-1-Myd88 inflammatory pathway with the production of a range of chemokines and cytokines. This cascade orchestrates lung tissue-resident cell activation in response to O3 in leukocyte and non-leukocyte populations, driving sterile innate immune response. Chronic inflammatory response to O3, by repeated exposures, supports a mixed phenotype combining asthma and emphysema, in which their exacerbation by other particulate pollutants potentially culminates in respiratory failure. We use data from lung single-cell transcriptomics to map genes of O3-damage sensing and signaling pathways to lung cells and thereby highlight potential hotspots of O3 responses. Deeper insights into these pathological pathways might be helpful for the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Dieudonnée Togbe
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | - Isabelle Couillin
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | | | - Lianyong Han
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, and Member of the German Center of Lung Research (DZL), Germany
| | - Valérie F J Quesniaux
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, and Member of the German Center of Lung Research (DZL), Germany
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France; ArtImmune SAS, 13 Avenue Buffon, Orleans, France.
| |
Collapse
|
4
|
Jayasinghe T, Jenkins J, Medara N, Choowong P, Dharmarathne G, Kong F, Cho H, Kim SH, Zhang Y, Franco-Duarte R, Eberhard J, Spahr A. Dietary Fibre Modulates Body Composition, Blood Glucose, Inflammation, Microbiome, and Metabolome in a Murine Model of Periodontitis. Nutrients 2025; 17:1146. [PMID: 40218904 PMCID: PMC11990244 DOI: 10.3390/nu17071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Dietary fibre plays a crucial role in metabolic regulation, inflammation, and microbiome composition. However, its impact on systemic and oral health, particularly in periodontitis, remains unclear. This study investigated the effects of high- and low-fibre diets on body composition, glycaemic control, inflammation, microbiome, and metabolome in a murine model of experimental periodontitis. Methods: Thirty-six male C57BL/6 mice were randomised to a high-fibre (40% fibre) or low-fibre (5% fibre) diet for eight weeks. Body weight, fat mass, lean mass, fasting blood glucose, serum inflammatory markers, alveolar bone loss, and root length were assessed. Oral and faecal microbiome composition was analysed using 16S rRNA sequencing. Metabolomic and short-chain fatty acid (SCFA) profiling was conducted using liquid chromatography-mass spectrometry (LC-MS). Results: Mice on the high-fibre diet exhibited significantly lower body weight (p < 0.0001), fat mass (p = 0.0007), and lean mass (p < 0.0001) compared to the low-fibre group. Fasting blood glucose levels were significantly lower in the high-fibre group (p = 0.0013). TNF-α and IFN-γ levels were significantly elevated in the low-fibre group (p < 0.0001), suggesting a heightened pro-inflammatory state. While alveolar bone loss and root length did not differ significantly, microbiome analysis revealed distinct bacterial compositions (PERMANOVA, p < 0.05), with fibre-fermenting taxa enriched in high-fibre-fed mice. Metabolomic analysis identified 19 significantly altered metabolites, indicating dietary adaptations. Conclusions: A high-fibre diet improves glycaemic control, reduces systemic inflammation, and alters microbial and metabolic profiles in experimental periodontitis. These findings highlight dietary fibre's role in modulating metabolic and inflammatory pathways relevant to periodontal and systemic diseases.
Collapse
Affiliation(s)
- Thilini Jayasinghe
- The Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (J.J.); (P.C.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Josie Jenkins
- The Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (J.J.); (P.C.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Nidhi Medara
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Phannaphat Choowong
- The Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (J.J.); (P.C.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Gangani Dharmarathne
- Australian Laboratory Services Global, Water and Hydrographic, Hume, ACT 2620, Australia;
| | - Fay Kong
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Hanna Cho
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Se Hun Kim
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Yuchen Zhang
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Ricardo Franco-Duarte
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal;
| | - Joerg Eberhard
- The Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (J.J.); (P.C.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| | - Axel Spahr
- School of Dentistry, Faculty of Medicine and Health, University of Sydney, Surry Hills, NSW 2006, Australia; (N.M.); (F.K.); (H.C.); (S.H.K.); (Y.Z.); (A.S.)
| |
Collapse
|
5
|
Pepke ML, Hansen SB, Limborg MT. Unraveling host regulation of gut microbiota through the epigenome-microbiome axis. Trends Microbiol 2024; 32:1229-1240. [PMID: 38839511 DOI: 10.1016/j.tim.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Recent studies of dynamic interactions between epigenetic modifications of a host organism and the composition or activity of its associated gut microbiota suggest an opportunity for the host to shape its microbiome through epigenetic alterations that lead to changes in gene expression and noncoding RNA activity. We use insights from microbiota-induced epigenetic changes to review the potential of the host to epigenetically regulate its gut microbiome, from which a bidirectional 'epigenome-microbiome axis' emerges. This axis embeds environmentally induced variation, which may influence the adaptive evolution of host-microbe interactions. We furthermore present our perspective on how the epigenome-microbiome axis can be understood and investigated within a holo-omic framework with potential applications in the applied health and food sciences.
Collapse
Affiliation(s)
- Michael L Pepke
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark.
| |
Collapse
|
6
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24:577-595. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Vai A, Noberini R, Ghirardi C, Rodrigues de Paula D, Carminati M, Pallavi R, Araújo N, Varga-Weisz P, Bonaldi T. Improved Mass Spectrometry-Based Methods Reveal Abundant Propionylation and Tissue-Specific Histone Propionylation Profiles. Mol Cell Proteomics 2024; 23:100799. [PMID: 38866077 PMCID: PMC11277384 DOI: 10.1016/j.mcpro.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024] Open
Abstract
Histone posttranslational modifications (PTMs) have crucial roles in a multitude of cellular processes, and their aberrant levels have been linked with numerous diseases, including cancer. Although histone PTM investigations have focused so far on methylations and acetylations, alternative long-chain acylations emerged as new dimension, as they are linked to cellular metabolic states and affect gene expression through mechanisms distinct from those regulated by acetylation. Mass spectrometry is the most powerful, comprehensive, and unbiased method to study histone PTMs. However, typical mass spectrometry-based protocols for histone PTM analysis do not allow the identification of naturally occurring propionylation and butyrylation. Here, we present improved state-of-the-art sample preparation and analysis protocols to quantitate these classes of modifications. After testing different derivatization methods coupled to protease digestion, we profiled common histone PTMs and histone acylations in seven mouse tissues and human normal and tumor breast clinical samples, obtaining a map of propionylations and butyrylations found in different tissue contexts. A quantitative histone PTM analysis also revealed a contribution of histone acylations in discriminating different tissues, also upon perturbation with antibiotics, and breast cancer samples from the normal counterpart. Our results show that profiling only classical modifications is limiting and highlight the importance of using sample preparation methods that allow the analysis of the widest possible spectrum of histone modifications, paving the way for deeper insights into their functional significance in cellular processes and disease states.
Collapse
Affiliation(s)
- Alessandro Vai
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Chiara Ghirardi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Dieggo Rodrigues de Paula
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Michele Carminati
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy
| | - Nathália Araújo
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; São Paulo Excellence Chair, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; School of Biological Sciences, University of Essex, Colchester, UK
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCSS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Tang R, Liu R, Zha H, Cheng Y, Ling Z, Li L. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci 2024; 24:2300016. [PMID: 38708414 PMCID: PMC11065334 DOI: 10.1002/elsc.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Rongrong Liu
- Center of Pediatric Hematology‐oncologyPediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang ProvinceNational Clinical Research Center for Child HealthChildren's HospitalZhejiang University School of MedicineHangzhouChina
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
9
|
Kaur H, Kaur G, Ali SA. Postbiotics Implication in the Microbiota-Host Intestinal Epithelial Cells Mutualism. Probiotics Antimicrob Proteins 2024; 16:443-458. [PMID: 36933160 DOI: 10.1007/s12602-023-10062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
To sustain host health and provide the microbial community with a nutrient-rich environment, the host and gut microbiota must interact with one another. These interactions between commensal bacterial and intestinal epithelial cells (IECs) serve as the first line of defense against gut microbiota in preserving intestinal homeostasis. In this microenvironment, the post-biotics and similar molecules such as p40 exert several beneficial effects through regulation of IECs. Importantly, post-biotics were discovered to be transactivators of the EGF receptor (EGFR) in IECs, inducing protective cellular responses and alleviating colitis. The transient exposure to post-biotics such as p40 during the neonatal period reprograms IECs by upregulation of a methyltransferase, Setd1β, leading to a sustained increase in TGF- β release for the expansion of regulatory T cells (Tregs) in the intestinal lamina propria and durable protection against colitis in adulthood. This crosstalk between the IECs and post-biotic secreted factors was not reviewed previously. Therefore, this review describes the role of probiotic-derived factors in the sustainability of intestinal health and improving gut homeostasis via certain signaling pathways. In the era of precision medicine and targeted therapies, more basic, preclinical, and clinical evidence is needed to clarify the efficacy of probiotics released as functional factors in maintaining intestinal health and preventing and treating disease.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, Karnal, 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal, 132001, India.
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, 69120, Germany.
| |
Collapse
|
10
|
Fernandes MF, Vinolo MAR. Histone acylations as a mechanism for regulation of intestinal epithelial cells. DIGESTIVE MEDICINE RESEARCH 2024; 7:4. [PMID: 39399394 PMCID: PMC11469631 DOI: 10.21037/dmr-23-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Histone post-translational modifications are reversible epigenetic mechanisms that regulate chromatin structure and gene transcription. In recent years, in addition to the well-characterized histone acetylation, new acylations such as propionylation, crotonylation, butyrylation and beta-hydroxybutyrylation have been described and explored in different cell types at contexts of health and disease. Understanding how histone acylations contribute to gene expression regulation is especially important in intestinal epithelial cells (IECs) because they receive many different signals from other cells and the external environment and must adapt to maintain essential functions such as nutrient and water absorption, maintenance of tolerance and protection against pathogens. In this review, we describe how cells regulate these modifications, how they are recognized by other proteins and impact gene expression. We summarize recent studies that explored the role of these distinct epigenetic marks in the regulation of IECs and discuss their biological importance for the intestinal epithelium's adaptations to changes in metabolism and to respond to environmental signals provided, for example, by the diet, components of the intestinal microbiota and pathogens. Finally, we discuss how the histone acylations are affected by inflammatory signals and how this knowledge may provide new targets for treatment of pathologies such as the inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
11
|
Gutierrez-Martinez VD, León-Del-Río A, Camacho-Luis A, Ayala-Garcia VM, Lopez-Rodriguez AM, Ruiz-Baca E, Meneses-Morales I. Uncovering a novel mechanism: Butyrate induces estrogen receptor alpha activation independent of estrogen stimulation in MCF-7 breast cancer cells. Genet Mol Biol 2024; 47:e20230110. [PMID: 38488523 PMCID: PMC10941730 DOI: 10.1590/1678-4685-gmb-2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024] Open
Abstract
Butyrate is a promising candidate for an antitumoral drug, as it promotes cancer cell apoptosis and reduces hormone receptor activity, while promoting differentiation and proliferation in normal cells. However, the effects of low-dose butyrate on breast cancer cell cultures are unclear. We explored the impact of sub-therapeutic doses of butyrate on estrogen receptor alpha (ERα) transcriptional activity in MCF-7 cells, using RT-qPCR, Western blot, wound-healing assays, and chromatin immunoprecipitation. Our results showed that sub-therapeutic doses of sodium butyrate (0.1 - 0.2 mM) increased the transcription of ESR1, TFF1, and CSTD genes, but did not affect ERα protein levels. Moreover, we observed an increase in cell migration in wound-healing assays. ChIP assays revealed that treatment with 0.1 mM of sodium butyrate resulted in estrogen-independent recruitment of ERα at the pS2 promoter and loss of NCoR. Appropriate therapeutic dosage of butyrate is essential to avoid potential adverse effects on patients' health, especially in the case of estrogen receptor-positive breast tumors. Sub-therapeutic doses of butyrate may induce undesirable cell processes, such as migration due to low-dose butyrate-mediated ERα activation. These findings shed light on the complex effects of butyrate in breast cancer and provide insights for research in the development of antitumoral drugs.
Collapse
Affiliation(s)
| | - Alfonso León-Del-Río
- Universidad Nacional Autónoma de México, Instituto de
Investigaciones Biomédicas, Ciudad de México, México
| | - Abelardo Camacho-Luis
- Universidad Juárez del Estado de Durango, Facultad de Medicina y
Nutrición, Centro de Investigación en Alimentos y Nutrición, Durango, México
| | | | | | - Estela Ruiz-Baca
- Universidad Juárez del Estado de Durango, Facultad de Ciencias
Químicas, Durango, México
| | - Ivan Meneses-Morales
- Universidad Juárez del Estado de Durango, Facultad de Ciencias
Químicas, Durango, México
| |
Collapse
|
12
|
Tao Z, Wang Y. The health benefits of dietary short-chain fatty acids in metabolic diseases. Crit Rev Food Sci Nutr 2024; 65:1579-1592. [PMID: 38189336 DOI: 10.1080/10408398.2023.2297811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Short-chain fatty acids (SCFAs) are a subset of fatty acids that play crucial roles in maintaining normal physiology and developing metabolic diseases, such as obesity, diabetes, cardiovascular disease, and liver disease. Even though dairy products and vegetable oils are the direct dietary sources of SCFAs, their quantities are highly restricted. SCFAs are produced indirectly through microbial fermentation of fibers. The biological roles of SCFAs in human health and metabolic diseases are mainly due to their receptors, GPR41 and GPR43, FFAR2 and FFAR3. Additionally, it has been demonstrated that SCFAs modulate DNMTs and HDAC activities, inhibit NF-κB-STAT signaling, and regulate G(i/o)βγ-PLC-PKC-PTEN signaling and PPARγ-UCP2-AMPK autophagic signaling, thus mitigating metabolic diseases. Recent studies have uncovered that SCFAs play crucial roles in epigenetic modifications of DNAs, RNAs, and post-translational modifications of proteins, which are critical regulators of metabolic health and diseases. At the same time, dietary recommendations for the purpose of SCFAs have been proposed. The objective of the review is to summarize the most recent research on the role of dietary SCFAs in metabolic diseases, especially the signal transduction of SCFAs in metabolic diseases and their functional efficacy in different backgrounds and models of metabolic diseases, at the same time, to provide dietary and nutritional recommendations for using SCFAs as food ingredients to prevent metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Nutrition Sciences, Texas Woman's University, Denton, Texas, USA
| | - Yao Wang
- Diabetes Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Rehan M, Al-Bahadly I, Thomas DG, Young W, Cheng LK, Avci E. Smart capsules for sensing and sampling the gut: status, challenges and prospects. Gut 2023; 73:186-202. [PMID: 37734912 PMCID: PMC10715516 DOI: 10.1136/gutjnl-2023-329614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Smart capsules are developing at a tremendous pace with a promise to become effective clinical tools for the diagnosis and monitoring of gut health. This field emerged in the early 2000s with a successful translation of an endoscopic capsule from laboratory prototype to a commercially viable clinical device. Recently, this field has accelerated and expanded into various domains beyond imaging, including the measurement of gut physiological parameters such as temperature, pH, pressure and gas sensing, and the development of sampling devices for better insight into gut health. In this review, the status of smart capsules for sensing gut parameters is presented to provide a broad picture of these state-of-the-art devices while focusing on the technical and clinical challenges the devices need to overcome to realise their value in clinical settings. Smart capsules are developed to perform sensing operations throughout the length of the gut to better understand the body's response under various conditions. Furthermore, the prospects of such sensing devices are discussed that might help readers, especially health practitioners, to adapt to this inevitable transformation in healthcare. As a compliment to gut sensing smart capsules, significant amount of effort has been put into the development of robotic capsules to collect tissue biopsy and gut microbiota samples to perform in-depth analysis after capsule retrieval which will be a game changer for gut health diagnosis, and this advancement is also covered in this review. The expansion of smart capsules to robotic capsules for gut microbiota collection has opened new avenues for research with a great promise to revolutionise human health diagnosis, monitoring and intervention.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Electronic Engineering, Sir Syed University of Engineering & Technology, Karachi, Pakistan
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch Ltd, Palmerston North, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
14
|
Chiodi V, Rappa F, Lo Re O, Chaldakov GN, Lelouvier B, Micale V, Domenici MR, Vinciguerra M. Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice. Sci Rep 2023; 13:19123. [PMID: 37926763 PMCID: PMC10625986 DOI: 10.1038/s41598-023-46304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Obesity has a major socio-economic health impact. There are profound sex differences in adipose tissue deposition and obesity-related conditions. The underlying mechanisms driving sexual dimorphism in obesity and its associated metabolic disorders remain unclear. Histone variant macroH2A1.1 is a candidate epigenetic mechanism linking environmental and dietary factors to obesity. Here, we used a mouse model genetically depleted of macroH2A1.1 to investigate its potential epigenetic role in sex dimorphic obesity, metabolic disturbances and gut dysbiosis. Whole body macroH2A1 knockout (KO) mice, generated with the Cre/loxP technology, and their control littermates were fed a high fat diet containing 60% of energy derived from fat. The diet was administered for three months starting from 10 to 12 weeks of age. We evaluated the progression in body weight, the food intake, and the tolerance to glucose by means of a glucose tolerance test. Gut microbiota composition, visceral adipose and liver tissue morphology were assessed. In addition, adipogenic gene expression patterns were evaluated in the visceral adipose tissue. Female KO mice for macroH2A1.1 had a more pronounced weight gain induced by high fat diet compared to their littermates, while the increase in body weight in male mice was similar in the two genotypes. Food intake was generally increased upon KO and decreased by high fat diet in both sexes, with the exception of KO females fed a high fat diet that displayed the same food intake of their littermates. In glucose tolerance tests, glucose levels were significantly elevated upon high fat diet in female KO compared to a standard diet, while this effect was absent in male KO. There were no differences in hepatic histology. Upon a high fat diet, in female adipocyte cross-sectional area was larger in KO compared to littermates: activation of proadipogenic genes (ACACB, AGT, ANGPT2, FASN, RETN, SLC2A4) and downregulation of antiadipogenic genes (AXIN1, E2F1, EGR2, JUN, SIRT1, SIRT2, UCP1, CCND1, CDKN1A, CDKN1B, EGR2) was detected. Gut microbiota profiling showed increase in Firmicutes and a decrease in Bacteroidetes in females, but not males, macroH2A1.1 KO mice. MacroH2A1.1 KO mice display sexual dimorphism in high fat diet-induced obesity and in gut dysbiosis, and may represent a useful model to investigate epigenetic and metabolic differences associated to the development of obesity-associated pathological conditions in males and females.
Collapse
Affiliation(s)
- Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- International Clinical Research Center (FNUSA-ICRC), St'Anne University Hospital, Brno, Czech Republic
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
| | | | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Maria Rosaria Domenici
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.
- International Clinical Research Center (FNUSA-ICRC), St'Anne University Hospital, Brno, Czech Republic.
- Liverpool Centre for Cardiovascular Science (LCCS), Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
15
|
Zhang L, Shi X, Qiu H, Liu S, Yang T, Li X, Liu X. Protein modification by short-chain fatty acid metabolites in sepsis: a comprehensive review. Front Immunol 2023; 14:1171834. [PMID: 37869005 PMCID: PMC10587562 DOI: 10.3389/fimmu.2023.1171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Sepsis is a major life-threatening syndrome of organ dysfunction caused by a dysregulated host response due to infection. Dysregulated immunometabolism is fundamental to the onset of sepsis. Particularly, short-chain fatty acids (SCFAs) are gut microbes derived metabolites serving to drive the communication between gut microbes and the immune system, thereby exerting a profound influence on the pathophysiology of sepsis. Protein post-translational modifications (PTMs) have emerged as key players in shaping protein function, offering novel insights into the intricate connections between metabolism and phenotype regulation that characterize sepsis. Accumulating evidence from recent studies suggests that SCFAs can mediate various PTM-dependent mechanisms, modulating protein activity and influencing cellular signaling events in sepsis. This comprehensive review discusses the roles of SCFAs metabolism in sepsis associated inflammatory and immunosuppressive disorders while highlights recent advancements in SCFAs-mediated lysine acylation modifications, such as substrate supplement and enzyme regulation, which may provide new pharmacological targets for the treatment of sepsis.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xinhui Shi
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Ting Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Yang YL, Huang YH, Wang FS, Tsai MC, Chen CH, Lian WS. MicroRNA-29a Compromises Hepatic Adiposis and Gut Dysbiosis in High Fat Diet-Fed Mice via Downregulating Inflammation. Mol Nutr Food Res 2023; 67:e2200348. [PMID: 37118999 DOI: 10.1002/mnfr.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/19/2023] [Indexed: 04/30/2023]
Abstract
SCOPE miR-29a expression patterns influence numerous physiological phenomena. Of note, upregulation of miR-29a ameliorates high-fat diet (HFD)-induced liver dysfunctions in mice. However, the miR-29a effect on gut microbiome composition and HFD-induced gut microbiota changes during metabolic disturbances remains unclear. The study provides compelling evidence for the protective role of miR-29a in gut barrier dysfunction and steatohepatitis. METHODS AND RESULTS miR-29a overexpressed mice (miR-29aTg) are bred to characterize intestinal, serum biochemical, and fecal microbiota profiling features compared to wild-type mice (WT). Mice are fed an HFD for 8 months to induce steatohepatitis, and intestinal dysfunction is determined via histopathological analysis. miR-29aTg has better lipid metabolism capability that decreases total cholesterol and triglyceride levels in serum than WT of the same age. The study further demonstrates that miR-29aTg contributes to intestinal integrity by maintaining periodic acid Schiff positive cell numbers and diversity of fecal microorganisms. HFD-induced bacterial community disturbance and steatohepatitis result in more severe WT than miR-29aTg. Gut microorganism profiling reveals Lactobacillus, Ruminiclostridium_9, and Lachnoclostridium enrichment in miR-29aTg and significantly decreases interleukin-6 expression in the liver and intestinal tract. CONCLUSION This study provides new evidence that sheds light on the host genetic background of miR-29a, which protects against steatohepatitis and other intestinal disorders.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Ying-Hsien Huang
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital Chang, Kaohsiung, 833, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Ming-Chao Tsai
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chien-Hung Chen
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| |
Collapse
|
17
|
Fenton CG, Ray MK, Meng W, Paulssen RH. Methylation-Regulated Long Non-Coding RNA Expression in Ulcerative Colitis. Int J Mol Sci 2023; 24:10500. [PMID: 37445676 DOI: 10.3390/ijms241310500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a role in the pathogenesis of ulcerative colitis (UC). Although epigenetic processes such as DNA methylation and lncRNA expression are well studied in UC, the importance of the interplay between the two processes has not yet been fully explored. It is, therefore, believed that interactions between environmental factors and epigenetics contribute to disease development. Mucosal biopsies from 11 treatment-naïve UC patients and 13 normal controls were used in this study. From each individual sample, both whole-genome bisulfite sequencing data (WGBS) and lncRNA expression data were analyzed. Correlation analysis between lncRNA expression and upstream differentially methylated regions (DMRs) was used to identify lncRNAs that might be regulated by DMRs. Furthermore, proximal protein-coding genes associated with DMR-regulated lncRNAs were identified by correlating their expression. The study identified UC-associated lncRNAs such as MIR4435-2HG, ZFAS1, IL6-AS1, and Pvt1, which may be regulated by DMRs. Several genes that are involved in inflammatory immune responses were found downstream of DMR-regulated lncRNAs, including SERPINB1, CCL18, and SLC15A4. The interplay between lncRNA expression regulated by DNA methylation in UC might improve our understanding of UC pathogenesis.
Collapse
Affiliation(s)
- Christopher G Fenton
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
- Genomic Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mithlesh Kumar Ray
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Wei Meng
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ruth H Paulssen
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
- Genomic Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
18
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
19
|
Jarmakiewicz-Czaja S, Sokal A, Ferenc K, Motyka E, Helma K, Filip R. The Role of Genetic and Epigenetic Regulation in Intestinal Fibrosis in Inflammatory Bowel Disease: A Descending Process or a Programmed Consequence? Genes (Basel) 2023; 14:1167. [PMID: 37372347 DOI: 10.3390/genes14061167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic diseases characterized by recurring periods of exacerbation and remission. Fibrosis of the intestine is one of the most common complications of IBD. Based on current analyses, it is evident that genetic factors and mechanisms, as well as epigenetic factors, play a role in the induction and progression of intestinal fibrosis in IBD. Key genetic factors and mechanisms that appear to be significant include NOD2, TGF-β, TLRs, Il23R, and ATG16L1. Deoxyribonucleic acid (DNA) methylation, histone modification, and ribonucleic acid (RNA) interference are the primary epigenetic mechanisms. Genetic and epigenetic mechanisms, which seem to be important in the pathophysiology and progression of IBD, may potentially be used in targeted therapy in the future. Therefore, the aim of this study was to gather and discuss selected mechanisms and genetic factors, as well as epigenetic factors.
Collapse
Affiliation(s)
| | - Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD, Clinical Hospital No. 2 im. Św. Jadwigi Królowej, 35-301 Rzeszow, Poland
| |
Collapse
|
20
|
Arzola-Martínez L, Ptaschinski C, Lukacs NW. Trained innate immunity, epigenetics, and food allergy. FRONTIERS IN ALLERGY 2023; 4:1105588. [PMID: 37304168 PMCID: PMC10251748 DOI: 10.3389/falgy.2023.1105588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years the increased incidence of food allergy in Western culture has been associated with environmental factors and an inappropriate immune phenotype. While the adaptive immune changes in food allergy development and progression have been well-characterized, an increase in innate cell frequency and activation status has also recently received greater attention. Early in prenatal and neonatal development of human immunity there is a reliance on epigenetic and metabolic changes that stem from environmental factors, which are critical in training the immune outcomes. In the present review, we discuss how trained immunity is regulated by epigenetic, microbial and metabolic factors, and how these factors and their impact on innate immunity have been linked to the development of food allergy. We further summarize current efforts to use probiotics as a potential therapeutic approach to reverse the epigenetic and metabolic signatures and prevent the development of severe anaphylactic food allergy, as well as the potential use of trained immunity as a diagnostic and management strategy. Finally, trained immunity is presented as one of the mechanisms of action of allergen-specific immunotherapy to promote tolerogenic responses in allergic individuals.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Xue X, Li X, Liu J, Zhu L, Zhou L, Jia J, Wang Z. Field-realistic dose of cefotaxime enhances potential mobility of β-lactam resistance genes in the gut microbiota of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106459. [PMID: 36857871 DOI: 10.1016/j.aquatox.2023.106459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/17/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
With large amounts of cephalosporin end up in natural ecosystems, water has been acknowledged as the large reservoir of β-lactam resistance over the past decades. However, there is still insufficient knowledge available on the function of the living organisms to the transmission of antibiotic resistance. For this reason, in this study, using adult zebrafish (Danio rerio) as animal model, exposing them to environmentally relevant dose of cefotaxime for 150 days, we asked whether cefotaxime contamination accelerated β-lactam resistance in gut microbiota as well as its potential transmission. Results showed that some of β-lactam resistance genes (βRGs) were intrinsic embedded in intestinal microbiome of zebrafish even without antibiotic stressor. Across cefotaxime treatment, the abundance of most βRGs in fish gut microbiome decreased apparently in the short term firstly, and then increased with the prolonged exposure, forming distinctly divergent βRG profiles with antibiotic-untreated zebrafish. Meanwhile, with the rising concentration of cefotaxime, the range of βRGs' host-taxa expanded and the co-occurrence relationships of mobile genetics elements (MGEs) with βRGs intensified, indicating the enhancement of βRGs' mobility in gut microbiome when the fish suffered from cefotaxime contamination. Furthermore, the path of partial least squares path modeling (PLS-PM) gave an integral assessment on the specific causality of cefotaxime treatment to βRG profiles, showing that cefotaxime-mediated βRGs variation was most ascribed to the alteration of MGEs under cefotaxime stress, followed by bacterial community, functioning both direct influence as βRG-hosts and indirect effects via affecting MGEs. Finally, pathogenic bacteria Aeromonas was identified as the critical host for multiple βRGs in fish guts, and its β-lactam resistance increased over the duration time of cefotaxime exposure, suggesting the potential spreading risks for the antibiotic-resistant pathogens from environmental ecosystems to clinic. Overall, our finding emphasized cefotaxime contamination in aquatic surroundings could enhance the β-lactam resistance and its transmission mobility in fish bodies.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Linjun Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Garcia JA, Chen R, Xu M, Comerford SA, Hammer RE, Melton SD, Feagins LA. Acss2/HIF-2 signaling facilitates colon cancer growth and metastasis. PLoS One 2023; 18:e0282223. [PMID: 36862715 PMCID: PMC9980813 DOI: 10.1371/journal.pone.0282223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
The microenvironment of solid tumors is characterized by oxygen and glucose deprivation. Acss2/HIF-2 signaling coordinates essential genetic regulators including acetate-dependent acetyl CoA synthetase 2 (Acss2), Creb binding protein (Cbp), Sirtuin 1 (Sirt1), and Hypoxia Inducible Factor 2α (HIF-2α). We previously shown in mice that exogenous acetate augments growth and metastasis of flank tumors derived from fibrosarcoma-derived HT1080 cells in an Acss2/HIF-2 dependent manner. Colonic epithelial cells are exposed to the highest acetate levels in the body. We reasoned that colon cancer cells, like fibrosarcoma cells, may respond to acetate in a pro-growth manner. In this study, we examine the role of Acss2/HIF-2 signaling in colon cancer. We find that Acss2/HIF-2 signaling is activated by oxygen or glucose deprivation in two human colon cancer-derived cell lines, HCT116 and HT29, and is crucial for colony formation, migration, and invasion in cell culture studies. Flank tumors derived from HCT116 and HT29 cells exhibit augmented growth in mice when supplemented with exogenous acetate in an Acss2/HIF-2 dependent manner. Finally, Acss2 in human colon cancer samples is most frequently localized in the nucleus, consistent with it having a signaling role. Targeted inhibition of Acss2/HIF-2 signaling may have synergistic effects for some colon cancer patients.
Collapse
Affiliation(s)
- Joseph A. Garcia
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
- Research & Development, James J. Peters Veterans Affairs Medical Center, New York, New York, United States of America
| | - Rui Chen
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Min Xu
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shelby D. Melton
- Pathology & Laboratory Medicine, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Linda A. Feagins
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
23
|
Sheth VG, Sharma N, Kabeer SW, Tikoo K. Lactobacillus rhamnosus supplementation ameliorates high fat diet-induced epigenetic alterations and prevents its intergenerational inheritance. Life Sci 2022; 311:121151. [DOI: 10.1016/j.lfs.2022.121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
24
|
Modoux M, Rolhion N, Lefevre JH, Oeuvray C, Nádvorník P, Illes P, Emond P, Parc Y, Mani S, Dvorak Z, Sokol H. Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes 2022; 14:2105637. [PMID: 35895845 PMCID: PMC9336500 DOI: 10.1080/19490976.2022.2105637] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a critical player in the crosstalk between the gut microbiota and its host. However, factors regulating AhR within the gut, which is a complex metabolomic environment, are poorly understood. This study investigates the effect of a combination of metabolites on the activation mechanism of AhR. AhR activity was evaluated using both a luciferase reporter system and mRNA levels of AhR target genes on human cell lines and human colonic explants. AhR activation was studied by radioligand-binding assay, nuclear translocation of AhR by immuofluorescence and protein co-immunoprecipitation of AhR with ARNT. Indirect activation of AhR was evaluated using several tests and inhibitors. The promoter of the target gene CYP1A1 was studied both by chromatin immunoprecipitation and by using an histone deacetylase HDAC inhibitor (iHDAC). Short-chain fatty acids, and butyrate in particular, enhance AhR activity mediated by endogenous tryptophan metabolites without binding to the receptor. This effect was confirmed in human intestinal explants and did not rely on activation of receptors targeted by SCFAs, inhibition of AhR degradation or clearance of its ligands. Butyrate acted directly on AhR target gene promoter to reshape chromatin through iHDAC activity. Our findings revealed that butyrate is not an AhR ligand but acts as iHDAC leading to an increase recruitment of AhR to the target gene promoter in the presence of tryptophan-derived AhR agonists. These data contribute to a novel understanding of the complex regulation of AhR activation by gut microbiota-derived metabolites.
Collapse
Affiliation(s)
- Morgane Modoux
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Jeremie H. Lefevre
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France,Sorbonne Université, Department of Digestive Surgery, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Cyriane Oeuvray
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Petr Nádvorník
- Departments of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic
| | - Peter Illes
- Departments of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, Centre-Val de Loire, France
| | - Yann Parc
- Sorbonne Université, Department of Digestive Surgery, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Sridhar Mani
- Departments of Molecular Pharmacology, Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zdenek Dvorak
- Departments of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France,INRAe, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France,CONTACT Harry Sokol Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, ParisF-75012, France
| |
Collapse
|
25
|
Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer 2022; 10:jitc-2021-004147. [PMID: 35882448 PMCID: PMC9330349 DOI: 10.1136/jitc-2021-004147] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
The gut microbiota and its metabolites have been shown to play a pivotal role in the regulation of metabolic, endocrine and immune functions. Though the exact mechanism of action remains to be fully elucidated, available knowledge supports the ability of microbiota-fermented short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, to influence epigenetic and metabolic cascades controlling gene expression, chemotaxis, differentiation, proliferation, and apoptosis in several non-immune and immune cell subsets. While used as preferred metabolic substrates and sources of energy by colonic gut epithelial cells, most recent evidence indicates that these metabolites regulate immune functions, and in particular fine-tune T cell effector, regulatory and memory phenotypes, with direct in vivo consequences on the efficacy of chemotherapy, radiotherapy and immunotherapy. Most recent data also support the use of these metabolites over the course of T cell manufacturing, paving the way for refined adoptive T cell therapy engineering. Here, we review the most recent advances in the field, highlighting in vitro and in vivo evidence for the ability of SCFAs to shape T cell phenotypes and functions.
Collapse
Affiliation(s)
- Priya Rangan
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Anna Mondino
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
26
|
Lei J, Xie Y, Sheng J, Song J. Intestinal microbiota dysbiosis in acute kidney injury: novel insights into mechanisms and promising therapeutic strategies. Ren Fail 2022; 44:571-580. [PMID: 35350960 PMCID: PMC8967199 DOI: 10.1080/0886022x.2022.2056054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the clinical impact of intestinal microbiota–kidney interaction has been emerging. Experimental evidence highlighted a bidirectional evolutionary correlation between intestinal microbiota and kidney diseases. Nonetheless, acute kidney injury (AKI) is still a global public health concern associated with high morbidity, mortality, healthcare costs, and limited efficient therapy. Several studies on the intestinal microbiome have improved the knowledge and treatment of AKI. Therefore, the present review outlines the concept of the gut–kidney axis and data about intestinal microbiota dysbiosis in AKI to improve the understanding of the mechanisms of the intestinal microbiome on the modification of kidney function and response to kidney injury. We also introduced the future directions and research areas, emphasizing the intervention approaches and recent research advances of intestinal microbiota dysbiosis during AKI, thereby providing a new perspective for future clinical trials.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
27
|
Zhuo R, Xu M, Wang X, Zhou B, Wu X, Leone V, Chang EB, Zhong X. The regulatory role of N 6 -methyladenosine modification in the interaction between host and microbes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1725. [PMID: 35301791 DOI: 10.1002/wrna.1725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023]
Abstract
N6 -methyladenosine (m6 A) is the most prevalent posttranscriptional modification in eukaryotic mRNAs. Dynamic and reversible m6 A modification regulates gene expression to control cellular processes and diverse biological functions. Growing evidence indicated that m6 A modification is involved in the homeostasis of host and microbes (mostly viruses and bacteria). Disturbance of m6 A modification affects the life cycles of viruses and bacteria, however, these microbes could in turn change host m6 A modification leading to human disease including autoimmune diseases and cancer. Thus, we raise the concept that m6 A could be a "messenger" molecule to participate in the interactions between host and microbes. In this review, we summarize the regulatory mechanisms of m6 A modification on viruses and commensal microbiota, highlight the roles of m6 A methylation in the interaction of host and microbes, and finally discuss drugs development targeting m6 A modification. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Ruhao Zhuo
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Menghui Xu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin Zhou
- Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Shen J, Zhang B, Chen J, Cheng J, Wang J, Zheng X, Lan Y, Zhang X. SAHA Alleviates Diarrhea-Predominant Irritable Bowel Syndrome Through Regulation of the p-STAT3/SERT/5-HT Signaling Pathway. J Inflamm Res 2022; 15:1745-1756. [PMID: 35300211 PMCID: PMC8923685 DOI: 10.2147/jir.s331303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Irritable bowel syndrome (IBS) is characterized by abdominal pain, bloating, and stool irregularity. However, its pathophysiological mechanisms, which trigger intestinal motility disorders and diarrhea leading to diarrhea-predominant IBS (D-IBS), remain largely unknown. Methods In the present study, we established a D-IBS rat model by mother–infant separation combined with restraint stress. Then we exposed the modelled rats to suberoylanilide hydroxamic acid (SAHA) treatment, followed by determination of their visceral sensitivity. Toluidine blue staining served to reveal the effects of SAHA treatment on mast cells of D-IBS model rats. Then we measured the expression of serotonin (5-hydroxytryptamine; 5-HT) and its receptors by ELISA. Results Construction of short hairpin RNA (sh)-serotonin transporter (SERT) lentivirus vectors verified the regulation of the 5-HT signaling pathway by phosphorylated (p)-STAT/SERT. SAHA treatment of D-IBS model rats reduced the fecal water content, electromyography integral change rate, abdominal withdrawal reflex score, and number of mast cells, as well as the expression of 5-HT type 3A (5-HT3AR), 3B receptor (5-HT3BR), and 4 receptor (5-HT4R) receptors. The treatment also elevated the expression of signal transducer and activator for transcription 3 (STAT3) and SERT. Activation of p-STAT3 may reverse the inhibitory effect of SAHA on the elevated visceral sensitivity of D-IBS model rats. Moreover, SAHA promoted the transcription of SERT through repression of the p-STAT3/5-HT signaling, thereby inhibiting the visceral sensitivity of D-IBS model rats. Conclusion This study highlights that SAHA treatment can alleviate D-IBS through regulation of the p-STAT3/SERT/5-HT signaling pathway.
Collapse
Affiliation(s)
- Jian Shen
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, People’s Republic of China
- Correspondence: Jian Shen Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, People’s Republic of ChinaTel +86-21-53821650 Email
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital (The First People’s Hospital Affiliated to Shanghai Jiaotong University), Shanghai, 200080, People’s Republic of China
| | - Jianjie Chen
- Department of Internal Medicine, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, People’s Republic of China
| | - Jiazheng Cheng
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, People’s Republic of China
| | - Jiali Wang
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, People’s Republic of China
| | - Xianhui Zheng
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, People’s Republic of China
| | - Yu Lan
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, People’s Republic of China
| | - Xiaowen Zhang
- Department of Pediatrics, Shuguang Hospital Affiliated to Shanghai Traditional Chinese Medical University, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
29
|
Gnodi E, Meneveri R, Barisani D. Celiac disease: From genetics to epigenetics. World J Gastroenterol 2022; 28:449-463. [PMID: 35125829 PMCID: PMC8790554 DOI: 10.3748/wjg.v28.i4.449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CeD) is a multifactorial autoimmune disorder spread worldwide. The exposure to gluten, a protein found in cereals like wheat, barley and rye, is the main environmental factor involved in its pathogenesis. Even if the genetic predisposition represented by HLA-DQ2 or HLA-DQ8 haplotypes is widely recognised as mandatory for CeD development, it is not enough to explain the total predisposition for the disease. Furthermore, the onset of CeD comprehend a wide spectrum of symptoms, that often leads to a delay in CeD diagnosis. To overcome this deficiency and help detecting people with increased risk for CeD, also clarifying CeD traits linked to disease familiarity, different studies have tried to make light on other predisposing elements. These were in many cases genetic variants shared with other autoimmune diseases. Since inherited traits can be regulated by epigenetic modifications, also induced by environmental factors, the most recent studies focused on the potential involvement of epigenetics in CeD. Epigenetic factors can in fact modulate gene expression with many mechanisms, generating more or less stable changes in gene expression without affecting the DNA sequence. Here we analyze the different epigenetic modifications in CeD, in particular DNA methylation, histone modifications, non-coding RNAs and RNA methylation. Special attention is dedicated to the additional predispositions to CeD, the involvement of epigenetics in developing CeD complications, the pathogenic pathways modulated by epigenetic factors such as microRNAs and the potential use of epigenetic profiling as biomarker to discriminate different classes of patients.
Collapse
Affiliation(s)
- Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
30
|
Fernández-Millán E, Guillén C. Multi-Organ Crosstalk with Endocrine Pancreas: A Focus on How Gut Microbiota Shapes Pancreatic Beta-Cells. Biomolecules 2022; 12:biom12010104. [PMID: 35053251 PMCID: PMC8773909 DOI: 10.3390/biom12010104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.
Collapse
Affiliation(s)
- Elisa Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
31
|
Begum N, Harzandi A, Lee S, Uhlen M, Moyes DL, Shoaie S. Host-mycobiome metabolic interactions in health and disease. Gut Microbes 2022; 14:2121576. [PMID: 36151873 PMCID: PMC9519009 DOI: 10.1080/19490976.2022.2121576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
Fungal communities (mycobiome) have an important role in sustaining the resilience of complex microbial communities and maintenance of homeostasis. The mycobiome remains relatively unexplored compared to the bacteriome despite increasing evidence highlighting their contribution to host-microbiome interactions in health and disease. Despite being a small proportion of the total species, fungi constitute a large proportion of the biomass within the human microbiome and thus serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their levels prelude changes associated with metabolic diseases and cancer. Given the complexity of microbial interactions, studying the metabolic interplay of the mycobiome with both host and microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic biology can provide an integrative platform that allows elucidation of the multifaceted interactions between mycobiome, microbiome and host. The inferences gained from understanding mycobiome interplay with other organisms can delineate the key role of the mycobiome in pathophysiology and reveal its role in human disease.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Azadeh Harzandi
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Mathias Uhlen
- Science for Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Science for Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
32
|
Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev 2021; 40:1223-1249. [PMID: 34967927 PMCID: PMC8825384 DOI: 10.1007/s10555-021-10013-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer, the most frequent cancer in women, is characterized by pathological changes to the microbiome of breast tissue, the tumor, the gut, and the urinary tract. Changes to the microbiome are determined by the stage, grade, origin (NST/lobular), and receptor status of the tumor. This year is the 50th anniversary of when Hill and colleagues first showed that changes to the gut microbiome can support breast cancer growth, namely that the oncobiome can reactivate excreted estrogens. The currently available human and murine data suggest that oncobiosis is not a cause of breast cancer, but can support its growth. Furthermore, preexisting dysbiosis and the predisposition to cancer are transplantable. The breast's and breast cancer's inherent microbiome and the gut microbiome promote breast cancer growth by reactivating estrogens, rearranging cancer cell metabolism, bringing about a more inflammatory microenvironment, and reducing the number of tumor-infiltrating lymphocytes. Furthermore, the gut microbiome can produce cytostatic metabolites, the production of which decreases or blunts breast cancer. The role of oncobiosis in the urinary tract is largely uncharted. Oncobiosis in breast cancer supports invasion, metastasis, and recurrence by supporting cellular movement, epithelial-to-mesenchymal transition, cancer stem cell function, and diapedesis. Finally, the oncobiome can modify the pharmacokinetics of chemotherapeutic drugs. The microbiome provides novel leverage on breast cancer that should be exploited for better management of the disease.
Collapse
Affiliation(s)
- Tünde Kovács
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Heba Yousef
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Viktória Csontos
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
33
|
Cañas JA, Núñez R, Cruz-Amaya A, Gómez F, Torres MJ, Palomares F, Mayorga C. Epigenetics in Food Allergy and Immunomodulation. Nutrients 2021; 13:4345. [PMID: 34959895 PMCID: PMC8708211 DOI: 10.3390/nu13124345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Food allergy (FA) is an increasing problem worldwide and, over recent years, its prevalence is rising in developed countries. Nowadays, the immunological and cellular processes that occur in the allergic reactions are not fully understood, which hampers the development of in vitro diagnostic tools and further treatment options. Moreover, allergic diseases could be reinforced by environmental exposure and genetic modifications. Gene expression can be controlled by different epigenetic mechanisms like DNA methylation, histone modifications, and microRNAs. In addition, several environmental factors such as dietary components (vitamin D, butyrate, folic acid) are able to regulate this epigenetic mechanism. All these factors produce modifications in immune genes that could alter the development and function of immune cells, and therefore the etiology of the disease. Furthermore, these epigenetic mechanisms have also an influence on immunomodulation, which could explain sustained responsiveness or unresponsiveness during immunotherapy due to epigenetic modifications in key genes that induce tolerance in several FA. Thus, in this review we focus on the different epigenetic mechanisms that occur in FA and on the influence of several dietary components in these gene modifications.
Collapse
Affiliation(s)
- José A. Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
| | - Anyith Cruz-Amaya
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
| | - María J. Torres
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
- Medicine Department, Universidad de Málaga-UMA, 29010 Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (J.A.C.); (R.N.); (A.C.-A.); (F.P.)
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
| |
Collapse
|
34
|
Characterization of Tonsil Microbiota and Their Effect on Adenovirus Reactivation in Tonsillectomy Samples. Microbiol Spectr 2021; 9:e0124621. [PMID: 34668748 PMCID: PMC8528100 DOI: 10.1128/spectrum.01246-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The adenoviral DNA is prevalent in adenotonsillectomy specimens from pediatric patients, though the virus seems to be in latent state. The tonsils are at the forefront of airway entry point and are the first line of defense against airway viral and bacterial infections. We hypothesized that tonsil microbiota plays a role in human adenovirus (HAdV) latency and reactivation. In this study, we surveyed the presence of HAdV in tonsillectomy samples from 81 patients and found that HAdV DNA was in 85.2% of the tonsil samples. We then determined the microbiota of the samples. Taxonomic profiling showed that Proteobacteria, Firmicutes, Fusobacteriota, and Bacteroidota accounted for approximately 70% of the total phyla in tonsil samples. A correlation analysis showed that the HAdV-positive samples had significantly higher abundance of Neisseria and Bifidobacterium and lower abundance of Streptococcus, Ochrobactrum, and Lactobacillus than that of the HAdV-negative samples. Culture-based isolation followed by 16S rRNA sequencing identified Staphylococcus aureus, Streptococcus pneumoniae, Veillonella, Prevotella,Capnocytophaga sputigena, Pseudomonas aeruginosa, Neisseria, and Moraxella catarrhalis from the samples. Gas chromatography-mass spectrometry (GC-MS) profiling of short-chain fatty acids in bacterial cultures of minced tonsillectomy tissues or representative isolates showed the cultures contained various amounts of short-chain fatty acids (SCFAs). Treatment of isolated tonsil lymphocytes with bacterial lipopolysaccharide (LPS) or with SCFAs promoted HAdV reactivation. The compounds also promoted HAdV reactivation in a xenograft model with implanted tonsil fragments. This study shows a potential interplay between tonsil microbiota and HAdV reactivation that may lead to recurrent virus infection of respiratory tract disease. IMPORTANCE Human adenovirus infection is common among pediatric patients and can be life-threatening among organ transplant recipients. Adenovirus is transmitted by close contact, but it is believed that a majority of invasive events appear to arise from viral reactivation. The human tonsil is a reservoir for virus latency and has a high prevalence of latently infected adenovirus. Also, tonsils are located at the gateway of the respiratory tracts and are commonly exposed to bacterial pathogens. Here, we uncovered adenoviral DNA-positive and -negative samples that appeared to harbor distinct distribution patterns of microorganisms. SCFAs, primary metabolites of microbiota on tonsils, could induce the adenovirus reactivation in tonsil lymphocytes, resulting in adenovirus replication and production of infectious virions. The study suggests that viral-bacterial interaction plays a role in virus reactivation from latency and could be a contributing factor for recurrent viral infection in pediatric patients.
Collapse
|
35
|
Sipos A, Ujlaki G, Mikó E, Maka E, Szabó J, Uray K, Krasznai Z, Bai P. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 2021; 27:33. [PMID: 33794773 PMCID: PMC8017782 DOI: 10.1186/s10020-021-00295-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is characterized by dysbiosis, referred to as oncobiosis in neoplastic diseases. In ovarian cancer, oncobiosis was identified in numerous compartments, including the tumor tissue itself, the upper and lower female genital tract, serum, peritoneum, and the intestines. Colonization was linked to Gram-negative bacteria with high inflammatory potential. Local inflammation probably participates in the initiation and continuation of carcinogenesis. Furthermore, local bacterial colonies in the peritoneum may facilitate metastasis formation in ovarian cancer. Vaginal infections (e.g. Neisseria gonorrhoeae or Chlamydia trachomatis) increase the risk of developing ovarian cancer. Bacterial metabolites, produced by the healthy eubiome or the oncobiome, may exert autocrine, paracrine, and hormone-like effects, as was evidenced in breast cancer or pancreas adenocarcinoma. We discuss the possible involvement of lipopolysaccharides, lysophosphatides and tryptophan metabolites, as well as, short-chain fatty acids, secondary bile acids and polyamines in the carcinogenesis of ovarian cancer. We discuss the applicability of nutrients, antibiotics, and probiotics to harness the microbiome and support ovarian cancer therapy. The oncobiome and the most likely bacterial metabolites play vital roles in mediating the effectiveness of chemotherapy. Finally, we discuss the potential of oncobiotic changes as biomarkers for the diagnosis of ovarian cancer and microbial metabolites as possible adjuvant agents in therapy.
Collapse
Affiliation(s)
- Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Eszter Maka
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Zoárd Krasznai
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
36
|
Oltra E. Epigenetics of muscle disorders. MEDICAL EPIGENETICS 2021:279-308. [DOI: 10.1016/b978-0-12-823928-5.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci 2020; 21:E9580. [PMID: 33339172 PMCID: PMC7765661 DOI: 10.3390/ijms21249580] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota is well known as playing a critical role in inflammation and asthma development. The very low-calorie ketogenic diet (VLCKD) is suggested to affect gut microbiota; however, the effects of VLCKD during pregnancy and lactation on the infant gut microbiota are unclear. The VLCKD appears to be more effective than caloric/energy restriction diets for the treatment of several diseases, such as obesity and diabetes. However, whether adherence to VLCKD affects the infant gut microbiota and the protective effects thereof on asthma remains uncertain. The exact mechanisms underlying this process, and in particular the potential role of short chain fatty acids (SCFAs), are still to be unravelled. Thus, the aim of this review is to identify the potential role of SCFAs that underlie the effects of VLCKD during pregnancy and lactation on the infant gut microbiota, and explore whether it incurs significant implications for reducing asthma.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
38
|
Wu J, Zhao Y, Wang X, Kong L, Johnston LJ, Lu L, Ma X. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit Rev Food Sci Nutr 2020; 62:783-797. [PMID: 33043708 DOI: 10.1080/10408398.2020.1828813] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jianmin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Lingchang Kong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Centre, University of Minnesota, Morris, Minnesota, USA
| | - Lin Lu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Luu M, Monning H, Visekruna A. Exploring the Molecular Mechanisms Underlying the Protective Effects of Microbial SCFAs on Intestinal Tolerance and Food Allergy. Front Immunol 2020; 11:1225. [PMID: 32612610 PMCID: PMC7308428 DOI: 10.3389/fimmu.2020.01225] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
A body of evidence suggests that food allergy (FA) has increased in prevalence over the past few decades. Novel findings support the hypothesis that some commensal bacteria and particularly microbial metabolites might contribute to development of oral tolerance and prevention from FA. Recently, beneficial effects of short-chain fatty acids (SCFAs), the main class of gut microbiota-derived metabolites, on FA have been proposed. The intestinal SCFAs are major end products during bacterial fermentation of complex and non-digestible carbohydrates such as dietary fiber. The multifaceted mechanisms underlying beneficial effects of SCFAs on the mucosal immune system comprise the regulation of diverse cellular pathways in epithelial, dendritic, and T cells, as well as the impact on the immunometabolism and epigenetic status of regulatory lymphocytes. Of note, SCFAs are effective inhibitors of histone deacetylases (HDACs). As a consequence, SCFAs appear to be implicated in attenuation of intestinal inflammation and autoimmune diseases. In this review, we will discuss the recent development in this research area by highlighting the role of the individual SCFAs acetate, propionate, butyrate, and pentanoate in promoting the differentiation of regulatory T and B cells and their potential beneficial effects on the prevention of FA. In this context, targeted alterations in the gut microbiota in favor of SCFA producers or supplementation of medicinal food enriched in SCFAs could be a novel therapeutic concept for FA.
Collapse
Affiliation(s)
- Maik Luu
- Biomedical Research Center, Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Heide Monning
- Biomedical Research Center, Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Biomedical Research Center, Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
40
|
Oncobiosis and Microbial Metabolite Signaling in Pancreatic Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12051068. [PMID: 32344895 PMCID: PMC7281526 DOI: 10.3390/cancers12051068] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal cancers in both men and women, with a median five-year survival of around 5%. Therefore, pancreatic adenocarcinoma represents an unmet medical need. Neoplastic diseases, such as pancreatic adenocarcinoma, often are associated with microbiome dysbiosis, termed oncobiosis. In pancreatic adenocarcinoma, the oral, duodenal, ductal, and fecal microbiome become dysbiotic. Furthermore, the pancreas frequently becomes colonized (by Helicobacter pylori and Malassezia, among others). The oncobiomes from long- and short-term survivors of pancreatic adenocarcinoma are different and transplantation of the microbiome from long-term survivors into animal models of pancreatic adenocarcinoma prolongs survival. The oncobiome in pancreatic adenocarcinoma modulates the inflammatory processes that drive carcinogenesis. In this review, we point out that bacterial metabolites (short chain fatty acids, secondary bile acids, polyamines, indole-derivatives, etc.) also have a role in the microbiome-driven pathogenesis of pancreatic adenocarcinoma. Finally, we show that bacterial metabolism and the bacterial metabolome is largely dysregulated in pancreatic adenocarcinoma. The pathogenic role of additional metabolites and metabolic pathways will be identified in the near future, widening the scope of this therapeutically and diagnostically exploitable pathogenic pathway in pancreatic adenocarcinoma.
Collapse
|