1
|
Riedinger CJ, Sakach J, Maples JM, Fulton J, Chippior J, O'Donnell B, O'Malley DM, Chambers LM. Glucagon-like peptide-1 (GLP-1) receptor agonists for weight management: A review for the gynecologic oncologist. Gynecol Oncol 2024; 190:1-10. [PMID: 39116625 DOI: 10.1016/j.ygyno.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
The use of glucagon-like peptide-1 receptor agonists (GLP-1RA) has experienced rapid growth amidst the obesity epidemic in the United States. While originally developed for glucose control in Type 2 Diabetes Mellitus, the scope of these agents now extends to encompass weight loss and cardiovascular risk reduction. GLP-1RAs have the potential to induce significant weight loss, in combination with lifestyle modifications, among adults who are overweight or obese. Furthermore, these agents demonstrate efficacy in ameliorating hyperglycemia, enhancing insulin sensitivity, regulating blood pressure, improving cardiometabolic parameters, mitigating kidney dysfunction, and potentially reducing the risk of several obesity-related cancers. Drug-related toxicity is primarily gastrointestinal and active management can prevent drug discontinuation. Obesity is associated both with an increased incidence of malignancy but also with decreased survival. More research is needed to evaluate the potential use of GLP-1RA to modify the endocrine function of adipocytes, regulate the chronic inflammatory state associated with obesity, and prospective applications in oncology. These agents can impact patients with gynecologic malignancies both through their direct mechanism of action as well as potential drug toxicity.
Collapse
Affiliation(s)
- Courtney J Riedinger
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Julia Sakach
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jill M Maples
- Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Jessica Fulton
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Jessica Chippior
- Department of Internal Medicine, Division of Endocrinology Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin O'Donnell
- Department of Internal Medicine, Division of Endocrinology Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - David M O'Malley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA
| | - Laura M Chambers
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA.
| |
Collapse
|
2
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
Saheki T, Imachi H, Fukunaga K, Sato S, Kobayashi T, Yoshimura T, Saheki N, Murao K. NMDA Suppresses Pancreatic ABCA1 Expression through the MEK/ERK/LXR Pathway in Pancreatic Beta Cells. Nutrients 2024; 16:2865. [PMID: 39275180 PMCID: PMC11396903 DOI: 10.3390/nu16172865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Dysfunction or loss of pancreatic β cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is associated with pancreatic β cell lipotoxicity, resulting in abnormal insulin synthesis and secretion. Increased glutamate release can cause glucotoxicity in β cells, though the detailed mechanisms remain unclear. This study investigated the effect of N-methyl-D-aspartic acid (NMDA) on ABCA1 expression in INS-1 cells and primary pancreatic islets to elucidate the signaling mechanisms that suppress insulin secretion. Using Western blotting, microscopy, and biochemical analyses, we found that NMDA activated the mitogen-activated protein kinase (MEK)-dependent pathway, suppressing ABCA1 protein and mRNA expression. The MEK-specific inhibitor PD98059 restored ABCA1 promoter activity, indicating the involvement of the extracellular signal-regulated kinase (MEK/ERK) pathway. Furthermore, we identified the liver X receptor (LXR) as an effector transcription factor in NMDA regulation of ABCA1 transcription. NMDA treatment increased cholesterol and triglyceride levels while decreasing insulin secretion, even under high-glucose conditions. These effects were abrogated by treatment with PD98059. This study reveals that NMDA suppresses ABCA1 expression via the MEK/ERK/LXR pathway, providing new insights into the pathological suppression of insulin secretion in pancreatic β cells and emphasizing the importance of investigating the role of NMDA in β cell dysfunction.
Collapse
Affiliation(s)
- Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun 761-0793, Japan; (H.I.); (K.F.); (S.S.); (T.K.); (T.Y.); (N.S.); (K.M.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ozkan-Nikitaras T, Grzesik DJ, Romano LEL, Chapple JP, King PJ, Shoulders CC. N-SREBP2 Provides a Mechanism for Dynamic Control of Cellular Cholesterol Homeostasis. Cells 2024; 13:1255. [PMID: 39120286 PMCID: PMC11311687 DOI: 10.3390/cells13151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells. Unexpectedly, we found that the transcriptionally active fragment of SREBP2 (N-SREBP2) was produced constitutively. Moreover, in the absence of an exogenous cholesterol supply, nuclear N-SREBP2 became resistant to proteasome-mediated degradation. This resistance was paired with increased occupancy at the HMGCR promoter and HMGCR expression. Inhibiting nuclear N-SREBP2 degradation did not increase HMGCR RNA levels; this increase required cholesterol depletion. Our findings, combined with previous physiological and biophysical investigations, suggest a new model of SREBP2-mediated regulation of cholesterol biosynthesis in the organ that handles large and rapid fluctuations in the dietary supply of this key lipid. Specifically, in the nucleus, cholesterol and the ubiquitin-proteasome system provide a short-loop system that modulates the rate of cholesterol biosynthesis via regulation of nuclear N-SREBP2 turnover and HMGCR expression. Our findings have important implications for maintaining cellular cholesterol homeostasis and lowering blood cholesterol via the SREBP2-HMGCR axis.
Collapse
Affiliation(s)
- Tozen Ozkan-Nikitaras
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Dominika J. Grzesik
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Lisa E. L. Romano
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - J. P. Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Peter J. King
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Carol C. Shoulders
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| |
Collapse
|
5
|
Zhang X, Li Z, Hu R, Liu X, Yang W, Wu Y, Zhang L, Zeng X, Chen R, Liu C, Sun Q. Exposure memory and susceptibility to ambient PM 2.5: A perspective from hepatic cholesterol and bile acid metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116589. [PMID: 38878334 DOI: 10.1016/j.ecoenv.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Both epidemiological and experimental studies increasingly show that exposure to ambient fine particulate matter (PM2.5) is related to the occurrence and development of chronic diseases, such as metabolic diseases. However, whether PM2.5 has "exposure memory" and how these memories affect chronic disease development like hepatic metabolic homeostasis are unknown. Therefore, we aimed to explore the effects of exposure transition on liver cholesterol and bile acids (BAs) metabolism in mice. In this study, C57BL/6 mice were exposed to concentrated ambient PM2.5 or filtered air (FA) in a whole-body exposure facility for an initial period of 10 weeks, followed by another 8 weeks of exposure switch (PM2.5 to FA and FA to PM2.5) comparing to non-switch groups (FA to FA and PM2.5 to PM2.5), which were finally divided into four groups (FF of FA to FA, PP of PM2.5 to PM2.5, PF of PM2.5 to FA, and FP of FA to PM2.5). Our results showed no significant difference in food intake, body composition, glucose homeostasis, and lipid metabolism between FA and PM2.5 groups after the initial exposure before the exposure switch. At the end of the exposure switch, the mice switched from FA to PM2.5 exposure exhibited a high sensitivity to late-onset PM2.5 exposure, as indicated by significantly elevated hepatic cholesterol levels and disturbed BAs metabolism. However, the mice switched from PM2.5 to FA exposure retained a certain memorial effects of previous PM2.5 exposure in hepatic cholesterol levels, cholesterol metabolism, and BAs metabolism. Furthermore, 18-week PM2.5 exposure significantly increased hepatic free BAs levels, which were completely reversed by the FA exposure switch. Finally, the changes in small heterodimeric partner (SHP) and nuclear receptor subfamily 5 group A member 2 (LRH1) in response to exposure switch mechanistically explained the above alterations. Therefore, mice switching from PM2.5 exposure to FA showed only a weak memory of prior PM2.5 exposure. In contrast, the early FA caused mice to be more susceptible to subsequent PM2.5 exposure.
Collapse
Affiliation(s)
- Xingjia Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Zixin Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Renjie Hu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Xiyu Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Yue Wu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Lina Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Xiang Zeng
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Bu T, Sun Z, Pan Y, Deng X, Yuan G. Glucagon-Like Peptide-1: New Regulator in Lipid Metabolism. Diabetes Metab J 2024; 48:354-372. [PMID: 38650100 PMCID: PMC11140404 DOI: 10.4093/dmj.2023.0277] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 04/25/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.
Collapse
Affiliation(s)
- Tong Bu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ziyan Sun
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Fu J, Liang Y, Shi Y, Yu D, Wang Y, Chen P, Liu S, Lu F. HuangQi ChiFeng decoction maintains gut microbiota and bile acid homeostasis through FXR signaling to improve atherosclerosis. Heliyon 2023; 9:e21935. [PMID: 38034657 PMCID: PMC10685252 DOI: 10.1016/j.heliyon.2023.e21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Huangqi Chifeng Decoction (HQCFT), a traditional Chinese medicine preparation, has long been used to treat cardiovascular and cerebrovascular diseases. However, the mechanism of the beneficial effect of HQCFT on atherosclerosis remains to be explored. In this work, to investigate the effects of HQCFT on bile acid (BA) metabolism and the gut microbiome in atherosclerosis, ApoE-/- mice were fed a with high-fat diet for 16 weeks to establish the AS model. HQCFT(1.95 g kg-1 and 3.9 g kg-1 per day) was administered intragastrically for 8 weeks to investigate the regulatory effects of HQCFT on gut microbiota and bile acid metabolism and to inhibit the occurrence and development of AS induced by a high-fat diet. Histopathology, liver function and blood lipids were used to assess whether HQCFT can reduce plaque area, regulate lipid levels and alleviate liver steatosis in AS mice. In addition, 16S rDNA sequencing was used to screen the gut microbiota structure, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS) was used to determine the bile acid profile. The mRNA and protein expression levels of bile acid metabolism were detected by RT‒PCR and WB to find the potential correlation. Results: HQCFT can regulate gut microbiota disorders, which was achieved by increasing gut microbiota diversity and altering Proteobacteria, Desulfobacterota, Deferribacteres, Rodentibacter, Parasutterella, and Mucispirillum interference abundance to improve AS-induced gut microbiota. HQCFT can also adjust the content of bile acids (TCA, LCA, DCA, TDCA, TLCA, UDCA, etc.), regulate bile acid metabolism, relieve liver fat accumulation, and inhibit the process of AS. In addition, HQCFT can restore the abnormal metabolism of bile acid caused by AS by regulating the expression of farnesoid X receptor (FXR), liver X receptor α (LXRα), ABCA1, ABCG1 and CYP7A1. Conclusion: HQCFT may play a part in the prevention of atherosclerosis by inhibiting the FXR/LXRα axis, increasing the expression of CYP7A1 in the liver, and regulating the interaction between the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yuqin Liang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yunhe Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Zaidi A, Rashid A, Majeed A, Naeem A, Akram W, Baig ZA. Expression analysis of ABCA1 in type 2 diabetic Pakistani patients with and without dyslipidemia and correlation with glycemic index and lipid profile. Sci Rep 2023; 13:17249. [PMID: 37821518 PMCID: PMC10567704 DOI: 10.1038/s41598-023-43460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetes Mellitus type II, earlier considered as an endocrinological disorder is now more regarded as an inflammatory disorder along with lipid aberrations. It demands for regular monitoring, healthy dietary habits and lifestyle modification. This study was focused on gene expression of ATP binding cassette protein 1 (ABCA1) in diabetic dyslipidemia patients in comparison with control groups of only diabetics and healthy individuals. Blood samples and data were collected from recruited 390 patients who were further divided into three groups (130 each). Glycemic index and lipid profile was assessed. Delta Delta Ct method was used that revealed downregulation of the studied gene more in diabetic dyslipidemia patients as compared to only diabetics and healthy controls. The Ct values of ABCA1 were associated with glycemic index and lipid profile using Pearson's correlation. A negative correlation with fasting blood sugar and a positive correlation with HbA1cwas observed in only diabetics group. While in diabetic dyslipidemia and normal healthy controls, a negative correlation was found with both. As far as the lipid profile is concerned a positive correlation was observed among only diabetics with whole lipid profile. In diabetics with dyslipidemia, a negative correlation with all parameters except the TAGs was observed. A positive correlation with all except HDL was observed in healthy controls. The Ct values and fold change were compared among diseased and healthy individuals by applying independent t test. The cycle threshold in only diabetics was p = 0.000018 and in diabetic dyslipdemia individuals was p = 0.00251 while fold change in only diabetics (p = 0.000230) and in diabetics with dyslipidemia (p = 0.001137) was observed to be as statistically significant.
Collapse
Affiliation(s)
- Amber Zaidi
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Amir Rashid
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Asifa Majeed
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Ayesha Naeem
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Wajeeha Akram
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Zunaira Ali Baig
- Department of Biochemistry and Molecular Biology, Army Medical College, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| |
Collapse
|
9
|
Petrovic A, Igrec D, Rozac K, Bojanic K, Kuna L, Kolaric TO, Mihaljevic V, Sikora R, Smolic R, Glasnovic M, Wu GY, Smolic M. The Role of GLP1-RAs in Direct Modulation of Lipid Metabolism in Hepatic Tissue as Determined Using In Vitro Models of NAFLD. Curr Issues Mol Biol 2023; 45:4544-4556. [PMID: 37367037 PMCID: PMC10296833 DOI: 10.3390/cimb45060288] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been shown to improve glucose and lipid homeostasis, promote weight loss, and reduce cardiovascular risk factors. They are a promising therapeutic option for non-alcoholic fatty liver disease (NAFLD), the most common liver disease, associated with T2DM, obesity, and metabolic syndrome. GLP-1RAs have been approved for the treatment of T2DM and obesity, but not for NAFLD. Most recent clinical trials have suggested the importance of early pharmacologic intervention with GLP-1RAs in alleviating and limiting NAFLD, as well as highlighting the relative scarcity of in vitro studies on semaglutide, indicating the need for further research. However, extra-hepatic factors contribute to the GLP-1RA results of in vivo studies. Cell culture models of NAFLD can be helpful in eliminating extrahepatic effects on the alleviation of hepatic steatosis, modulation of lipid metabolism pathways, reduction of inflammation, and prevention of the progression of NAFLD to severe hepatic conditions. In this review article, we discuss the role of GLP-1 and GLP-1RA in the treatment of NAFLD using human hepatocyte models.
Collapse
Affiliation(s)
- Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dunja Igrec
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Karla Rozac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Lucija Kuna
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tea Omanovic Kolaric
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljevic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Renata Sikora
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marija Glasnovic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - George Y. Wu
- Department of Medicine, Division of Gastrenterology/Hepatology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
10
|
Wang YD, Wu LL, Qi XY, Wang YY, Liao ZZ, Liu JH, Xiao XH. New insight of obesity-associated NAFLD: Dysregulated "crosstalk" between multi-organ and the liver? Genes Dis 2023; 10:799-812. [PMID: 37396503 PMCID: PMC10308072 DOI: 10.1016/j.gendis.2021.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity plays a crucial role in the development of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism for the pathogenesis of obesity-associated NAFLD remains largely obscure. Although the "multiple hit" theory provides a more accurate explanation of NAFLD pathogenesis, it still cannot fully explain precisely how obesity causes NAFLD. The liver is the key integrator of the body's energy needs, receiving input from multiple metabolically active organs. Thus, recent studies have advocated the "multiple crosstalk" hypothesis, highlighting that obesity-related hepatic steatosis may be the result of dysregulated "crosstalk" among multiple extra-hepatic organs and the liver in obesity. A wide variety of circulating endocrine hormones work together to orchestrate this "crosstalk". Of note, with deepening understanding of the endocrine system, the perception of hormones has gradually risen from the narrow sense (i.e. traditional hormones) to the broad sense of hormones as organokines and exosomes. In this review, we focus on the perspective of organic endocrine hormones (organokines) and molecular endocrine hormones (exosomes), summarizing systematically how the two types of new hormones mediate the dialogue between extra-hepatic organs and liver in the pathogenesis of obesity-related NAFLD.
Collapse
Affiliation(s)
- Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang-Liang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
11
|
Arvanitakis K, Koufakis T, Kotsa K, Germanidis G. How Far beyond Diabetes Can the Benefits of Glucagon-like Peptide-1 Receptor Agonists Go? A Review of the Evidence on Their Effects on Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14194651. [PMID: 36230573 PMCID: PMC9562923 DOI: 10.3390/cancers14194651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by poor survival rate and quality of life, while available treatments remain generally limited. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) originally emerged as drugs for the management of diabetes, but have also been shown to alleviate cardiorenal risk. Furthermore, they have demonstrated a wide range of extraglycemic effects that led to their evaluation as potential therapies for a variety of diseases beyond diabetes, such as obesity, neurogenerative disorders and nonalcoholic fatty liver disease. Given the presence of the GLP-1 receptor in hepatocytes, animal data suggest that GLP-1 RAs could regulate molecular pathways that are deeply involved in the genesis and progression of HCC, including inflammatory responses, tumor cell proliferation and oxidative stress, through direct and indirect effects on liver cells. However, future studies must assess several aspects of the benefit-to-risk ratio of the use of GLP-1 RAs in patients with HCC, including co-administration with approved systemic therapies, the incidence of gastrointestinal side effects in a high-risk population, and weight loss management in individuals with poor nutritional status and high rates of cancer cachexia. In this narrative review, we discuss the potential role of GLP-1 analogs in the treatment of HCC, focusing on the molecular mechanisms that could justify a possible benefit, but also referring to the potential clinical implications and areas for future research.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-231-330-3156; Fax: +30-231-099-4638
| |
Collapse
|
12
|
Chen T, Zhang S, Zhou D, Lu P, Mo X, Tamrakar R, Yang X. Screening of co-pathogenic genes of non-alcoholic fatty liver disease and hepatocellular carcinoma. Front Oncol 2022; 12:911808. [PMID: 36033523 PMCID: PMC9410624 DOI: 10.3389/fonc.2022.911808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a risk factor for hepatocellular carcinoma (HCC). However, its carcinogenic mechanism is still unclear, looking for both diseases’ transcriptome levels, the same changes as we are looking for NAFLD may provide a potential mechanism of action of HCC. Thus, our study aimed to discover the coexisting pathogenic genes of NAFLD and HCC. Methods We performed a variance analysis with public data for both diseases. At the same time, weighted gene correlation network analysis (WGCNA) was used to find highly correlated gene modules in both diseases. The darkturquoise gene module was found to be highly correlated with both diseases. Based on the diagnosis related module genes and the differential genes of the two diseases, we constructed diagnostic and prognostic models by logistic regression, univariate Cox regression, and LASSO regression. Public datasets verified the results. Meanwhile, we built a competing endogenous RNA (ceRNA) network based on the model genes and explored the related pathways and immune correlation involved in the two diseases by using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analyses. Immunohistochemistry was used to verify the different expression of ABCC5 and TUBG1 among the normal liver, NAFLD, and HCC tissues. Sodium palmitate/sodium oleate was used to establish high-fat cell models, and Real Time Quantitative Polymerase Chain Reaction (RT-qPCR) was used to verify the messenger RNA (mRNA) expression of ABCC5 in lipidization cells. Results A total of 26 upregulated genes and 87 downregulated genes were found using limma package identification analysis. According to WGCNA, the darkturquoise gene module was highly correlated with the prognosis of both diseases. The coexisting genes acquired by the two groups were only three central genes, that is, ABCC5, DHODH and TUBG1. The results indicated that the diagnostic and prognostic models constructed by ABCC5 and TUBG1 genes had high accuracy in both diseases. The results of immunohistochemistry showed that ABCC5 and TUBG1 were significantly overexpressed in NAFLD and HCC tissues compared with normal liver tissues. The Oil Red O staining and triglyceride identified the successful construction of HepG2 and LO2 high-fat models using PA/OA. The results of RT-qPCR showed that the lipidization of LO2 and HepG2 increased the mRNA expression of ABCC5. Conclusions The gene model constructed by ABCC5 and TUBG1 has high sensibility and veracity in the diagnosis of NAFLD as well as the diagnosis and prognosis of HCC. ABCC5 and TUBG1 may play an important role in the development of NAFLD to HCC. In addition, lipidization could upregulate the mRNA expression of ABCC5 in HCC.
Collapse
Affiliation(s)
- Ting Chen
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Siwen Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- *Correspondence: Xi Yang, ; Siwen Zhang,
| | - Dongmei Zhou
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rashi Tamrakar
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
- *Correspondence: Xi Yang, ; Siwen Zhang,
| |
Collapse
|
13
|
Ahmadi A, Bagheri Ekta M, Sahebkar A. Mechanisms of antidiabetic drugs and cholesterol efflux: A clinical perspective. Drug Discov Today 2022; 27:1679-1688. [PMID: 35182734 DOI: 10.1016/j.drudis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Reverse cholesterol transport (RCT) is a physiological process that reduces excess cholesterol in the body. Cholesterol efflux (CE), an important step in RCT, is mainly mediated by ATP-binding cassette transporters A1 and G1 and has a significant role in atheroprotection. Moreover, impairments in CE can lead to the development of diabetes and fatty liver disease. In this review, we summarize the possible effects of hypoglycemic agents on CE and how this might influence atherosclerosis and dyslipidemia-related pathologies. Newer antidiabetic agents could have significant potential for targeting CE and preventing or alleviating atherosclerosis, obesity, and liver steatosis, and simultaneously improving insulin secretion. However, more research is warranted to interpret the clinical relevance of these data.
Collapse
Affiliation(s)
- Ali Ahmadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russian Federation
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, WA, Australia; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Errafii K, Khalifa O, Al-Akl NS, Arredouani A. Comparative Transcriptome Analysis Reveals That Exendin-4 Improves Steatosis in HepG2 Cells by Modulating Signaling Pathways Related to Lipid Metabolism. Biomedicines 2022; 10:1020. [PMID: 35625757 PMCID: PMC9138370 DOI: 10.3390/biomedicines10051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
No therapy exists for non-alcoholic fatty liver disease (NAFLD). However, glucagon-like peptide receptor agonists (GLP-1RAs) showed a beneficial effect on NAFLD, although the underpinning mechanisms remain unclear due to their pleiotropic effects. We examined the implicated signaling pathways using comparative transcriptomics in a cell model of steatosis to overcome pleiotropy. We treated steatotic HepG2 cells with the GLP-1RA Exendin-4 (Ex-4). We compared the transcriptome profiles of untreated steatotic, and Ex-4-treated steatotic cells, and used Ingenuity Pathway Analysis (IPA) to identify the signaling pathways and associated genes involved in the protective effect of Ex-4. Ex-4 treatment significantly reduces steatosis. RNA-seq analysis revealed 209 differentially expressed genes (DEGs) between steatotic and untreated cells, with farnesoid X receptor/retinoid X receptor (FXR/RXR) (p = 8.9 × 10-7) activation being the top regulated canonical pathway identified by IPA. Furthermore, 1644 DEGs were identified between steatotic cells and Ex-4-treated cells, with liver X receptor/retinoid X receptor (LXR/RXR) (p = 2.02 × 10-7) and FXR/RXR (p = 3.28 × 10-7) activation being the two top canonical pathways. The top molecular and cellular functions between untreated and steatotic cells were lipid metabolism, molecular transport, and small molecular biochemistry, while organismal injury and abnormalities, endocrine system disorders, and gastrointestinal disease were the top three molecular and cellular functions between Ex-4-treated and steatotic cells. Genes overlapping steatotic cells and Ex-4-treated cells were associated with several lipid metabolism processes. Unique transcriptomic differences exist between steatotic cells and Ex-4-treated steatotic cells, providing an important resource for understanding the mechanisms that underpin the protective effect of GLP-1RAs on NAFLD and for the identification of novel therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Khaoula Errafii
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (O.K.); (N.S.A.-A.)
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43151, Morocco
| | - Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (O.K.); (N.S.A.-A.)
| | - Neyla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (O.K.); (N.S.A.-A.)
| | - Abdelilah Arredouani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (O.K.); (N.S.A.-A.)
| |
Collapse
|
15
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
16
|
Ibata T, Lyu J, Imachi H, Fukunaga K, Sato S, Kobayashi T, Saheki T, Yoshimura T, Murao K. Effects of 2-Methoxyestradiol, a Main Metabolite of Estradiol on Hepatic ABCA1 Expression in HepG2 Cells. Nutrients 2022; 14:nu14020288. [PMID: 35057469 PMCID: PMC8779252 DOI: 10.3390/nu14020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a key regulator of lipid efflux, and the absence of ABCA1 induces hepatic lipid accumulation, which is one of the major causes of fatty liver. 2-Methoxyestradiol (2-ME2) has been demonstrated to protect against fatty liver. In this study, we investigated the effects of 2-ME2 on the hepatic lipid content and ABCA1 expression. We found that 2-ME2 dose-dependently increased ABCA1 expression, and therefore, the lipid content was significantly decreased in HepG2 cells. 2-ME2 enhanced the ABCA1 promoter activity; however, this effect was reduced after the inhibition of the PI3K pathway. The overexpression of Akt or p110 induced ABCA1 promoter activity, while dominant-negative Akt diminished the ability of 2-ME2 on ABCA1 promoter activity. Further, 2-ME2 stimulated the rapid phosphorylation of Akt and FoxO1 and reduced the nuclear accumulation of FoxO1. Chromatin immunoprecipitation confirmed that FoxO1 bonded to the ABCA1 promoter region. The binding was reduced by 2-ME2, which facilitated ABCA1 gene transcription. Furthermore, mutating FoxO1-binding sites in the ABCA1 promoter region or treatment with FoxO1-specific siRNA disrupted the effect of 2-ME2 on ABCA1 expression. All of our results demonstrated that 2-ME2 might upregulate ABCA1 expression via the PI3K/Akt/FoxO1 pathway, which thus reduces the lipid content in hepatocytes.
Collapse
Affiliation(s)
- Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
| | - Jingya Lyu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou 510632, China
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
| | - Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
| | - Takafumi Yoshimura
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kagawa, Japan; (T.I.); (J.L.); (H.I.); (K.F.); (S.S.); (T.K.); (T.S.); (T.Y.)
- Correspondence:
| |
Collapse
|
17
|
Lei Z, Wu H, Yang Y, Hu Q, Lei Y, Liu W, Nie Y, Yang L, Zhang X, Yang C, Lin T, Tong F, Zhu J, Guo J. Dihydroartemisinin improves hypercholesterolemia in ovariectomized mice via enhancing vectorial transport of cholesterol and bile acids from blood to bile. Bioorg Med Chem 2022; 53:116520. [PMID: 34847494 DOI: 10.1016/j.bmc.2021.116520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
The increase of concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum of postmenopausal women is the important risk factor of the high morbidity of cardiovascular diseases of old women worldwide. To test the anti-hypercholesterolemia function of dihydroartemisinin (DHA) in postmenopausal women, ovariectomized (OVX) mice were generated, and DHA were administrated to OVX mice for 4 weeks. The blood and liver tissues were collected for biochemical and histological tests respectively. The mRNA and protein expression levels of genes related to metabolism and transport of cholesterol, bile acid and fatty acid in the liver or ileum were checked through qPCR and western blot. DHA could significantly reduce the high concentrations of TC and LDL-C in the serum and the lipid accumulation in the liver of ovariectomized mice. The expression of ABCG5/8 was reduced in liver of OVX mice, and DHA could up-regulate the expression of them. Genes of transport proteins for bile salt transport from blood to bile, including Slc10a1, Slco1b2 and Abcb11, were also significantly up-regulated by DHA. DHA also down-regulated the expression of Slc10a2 in the ileum of OVX mice to reduce the absorption of bile salts. Genes required for fatty acid synthesis and uptake, such as Fasn and CD36, were reduced in the liver of OVX mice, and DHA administration could significantly up-regulate the expression of them. These results demonstrated that DHA could improve hypercholesterolemia in OVX mice through enhancing the vectorial transport of cholesterol and bile acid from blood to bile.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19(#), Yue-Xiu District, Guangzhou 510080, PR China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Zhou X, Guo W, Yin H, Chen J, Ma L, Yang Q, Zhao Y, Li S, Liu W, Li H. Whole Exome Sequencing Study in a Family with Type 2 Diabetes Mellitus. Int J Gen Med 2021; 14:8217-8229. [PMID: 34815695 PMCID: PMC8605871 DOI: 10.2147/ijgm.s335090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by β cell decline in the pancreas and insulin resistance. This study aimed to investigate the possible pathogenic gene mutation sites of T2DM patients using whole exome sequencing. Materials and Methods We recruited a Chinese family with 3-generation history of diabetes. The whole blood genomic DNA of seven members of the family was extracted and sent for whole exome sequencing. Biological information was analyzed with in silico prediction methods, including significance analysis of single nucleotide polymorphism (SNP)/Indel site, and analysis of specific SNP/Indel proteins and their potential mechanisms. Results Six out of seven members of the family were diagnosed with diabetes. All DNA samples (23 kb) met quality requirements of library construction. Clean reads of each sample demonstrated high Q20 and Q30 (>80%), indicating good sequencing quality of sequencing data. A total of 130,693 SNPs and 15,928 Indels were found in DNA samples. A total of 22 significant SNPs and Indel mutation sites located on 19 genes were obtained, including ZCCHC3, SYN2, RPL14, SRRD, AMD1, CAMKK2, ZNF787, RNF157, NPIPB15, ALG3, KIAA0040, MAST2, ESRRA, C8orf58, PNLIPRP1, DACH1, MACC1, CAPN9 and DMKN. An rs2305205 mutation of PNLIPRP1 gene and an rs778701848 mutation of CAMKK2 gene may be associated with the pathogenesis of T2DM in this family. Conclusion Exons of these diabetic patients demonstrated an rs2305205 mutation in PNLIPRP1 gene and an rs778701848 mutation in CAMKK2 gene. These two mutations might promote T2DM occurrence through reducing sensitivity of peripheral tissue to insulin and reducing insulin secretion.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Weichang Guo
- Department of Physical Education, Kunming Medical University, Kunming, People's Republic of China
| | - Hejia Yin
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jie Chen
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Liju Ma
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Qiuping Yang
- Department of Geriatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yan Zhao
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Shaoyou Li
- Department of NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Weijun Liu
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Huifang Li
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
19
|
Lyu J, Fukunaga K, Imachi H, Sato S, Kobayashi T, Saheki T, Ibata T, Yoshimura T, Iwama H, Murao K. Oxidized LDL Downregulates ABCA1 Expression via MEK/ERK/LXR Pathway in INS-1 Cells. Nutrients 2021; 13:nu13093017. [PMID: 34578896 PMCID: PMC8465850 DOI: 10.3390/nu13093017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Impaired insulin secretion is one of the main causes of type 2 diabetes. Cholesterol accumulation-induced lipotoxicity contributes to impaired insulin secretion in pancreatic beta cells. However, the detailed mechanism in this process remains unclear. In this study, we proved that oxidized low-density lipoprotein (OxLDL) reduced insulin content, decreased PDX-1 expression, and impaired glucose-stimulated insulin secretion (GSIS) in INS-1 cells, which were rescued by addition of high-density lipoprotein (HDL). OxLDL receptors and cholesterol content were increased by OxLDL. Consistently, OxLDL suppressed cholesterol transporter ABCA1 expression and transcription in a dose-dependent and time-dependent manner. Inhibition of MEK by its specific inhibitor, PD98059, altered the effect of OxLDL on ABCA1 transcription and activation of ERK. Next, chromatin immunoprecipitation assay demonstrated that liver X receptor (LXR) could directly bind to ABCA1 promoter and this binding was inhibited by OxLDL. Furthermore, OxLDL decreased the nuclear LXR expression, which was prevented by HDL. LXR-enhanced ABCA1 transcription was suppressed by OxLDL, and the effect was cancelled by mutation of the LXR-binding sites. In summary, our study shows that OxLDL down-regulates ABCA1 expression by MEK/ERK/LXR pathway, leading to cholesterol accumulation in INS-1 cells, which may result in impaired insulin synthesis and GSIS.
Collapse
Affiliation(s)
- Jingya Lyu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou 510632, China;
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Takafumi Yoshimura
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
- Correspondence:
| |
Collapse
|
20
|
Wang H, Wang L, Li Y, Luo S, Ye J, Lu Z, Li X, Lu H. The HIF-2α/PPARα pathway is essential for liraglutide-alleviated, lipid-induced hepatic steatosis. Biomed Pharmacother 2021; 140:111778. [PMID: 34062416 DOI: 10.1016/j.biopha.2021.111778] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Liraglutide has been demonstrated to alleviate hepatic steatosis in clinical practice, but the underlying mechanism remains unclear. Our previous study indicated that the HIF-2α/PPARα pathway was involved in hepatic lipid accumulation induced by hypoxia.We aimed to investigate whether liraglutide could alleviate lipid-induced hepatic steatosis via the HIF-2α/PPARα pathway. Whole-body HIF-2α heterozygous knockout (HIF-2α+/-) mice and littermate wild-type (WT) mice were successfully established. Male mice challenged with a high-fat diet were treated with liraglutide (0.6 mg/kg/d) or normal saline by intraperitoneal injection for 4 weeks. We observed that, compared with WT mice, many indicators of HIF-2α+/- mice improved, including GTT, ITT, fasting blood glucose, body weight, liver weight, and lipid profile in serum or liver lipid deposition, and the expression level of PPARα, mitochondrial function genes, and fatty acid oxidation genes were upregulated, while those of HIF-2α and lipogenesis genes were downregulated significantly. After liraglutide treatment in WT mice, we found that significant improvements were observed in the fat mass, GTT, ITT, fasting blood glucose, body weight, liver weight, lipid profile in serum or liver lipid deposition; the β-oxidation genes were upregulated and the lipogenesis genes were downregulated; and the abundance of intestinal Akkermansia muciniphila increased significantly. However, the effects of liraglutide on WT mice were not observed in HIF-2α+/- mice. In addition, in the HepG2 steatotic hepatocyte model, liraglutide alleviated lipid deposits by repressing lipid synthesis and enhancing fatty acid β-oxidation, which were substantially suppressed by the HIF-2α modulators. Therefore, the HIF-2α/PPARα pathway is essential for liraglutide-alleviated lipid-induced hepatic steatosis.
Collapse
Affiliation(s)
- Hou Wang
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lingling Wang
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yun Li
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Shunkui Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jianfang Ye
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Zhanjin Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, Guangdong, China.
| | - Hongyun Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Department of Endocrinology & Metabolism, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, Guangdong, China.
| |
Collapse
|
21
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
22
|
Fang Y, Ji L, Zhu C, Xiao Y, Zhang J, Lu J, Yin J, Wei L. Liraglutide Alleviates Hepatic Steatosis by Activating the TFEB-Regulated Autophagy-Lysosomal Pathway. Front Cell Dev Biol 2020; 8:602574. [PMID: 33330497 PMCID: PMC7729067 DOI: 10.3389/fcell.2020.602574] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has been demonstrated to alleviate non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism has not been fully elucidated. Increasing evidence suggests that autophagy is involved in the pathogenesis of hepatic steatosis. In this study, we examined whether liraglutide could alleviate hepatic steatosis through autophagy-dependent lipid degradation and investigated the underlying mechanisms. Herein, the effects of liraglutide on NAFLD were evaluated in a high-fat diet (HFD)-induced mouse model of NAFLD as well as in mouse primary and HepG2 hepatocytes exposed to palmitic acid (PA). The expression of the GLP-1 receptor (GLP-1R) was measured in vivo and in vitro. Oil red O staining was performed to detect lipid accumulation in hepatocytes. Electron microscopy was used to observe the morphology of autophagic vesicles and autolysosomes. Autophagic flux activity was measured by infecting HepG2 cells with mRFP-GFP-LC3 adenovirus. The roles of GLP-1R and transcription factor EB (TFEB) in autophagy-lysosomal activation were explored using small interfering RNA. Liraglutide treatment alleviated hepatic steatosis in vivo and in vitro. In models of hepatic steatosis, microtubule-associated protein 1B light chain-3-II (LC3-II) and SQSTM1/P62 levels were elevated in parallel to blockade of autophagic flux. Liraglutide treatment restored autophagic activity by improving lysosomal function. Furthermore, treatment with autophagy inhibitor chloroquine weakened liraglutide-induced autophagy activation and lipid degradation. TFEB has been identified as a key regulator of lysosome biogenesis and autophagy. The protein levels of nuclear TFEB and its downstream targets CTSB and LAMP1 were decreased in hepatocytes treated with PA, and these decreases were reversed by liraglutide treatment. Knockdown of TFEB expression compromised the effects of liraglutide on lysosome biogenesis and hepatic lipid accumulation. Mechanistically, GLP-1R expression was decreased in HFD mouse livers as well as PA-stimulated hepatocytes, and liraglutide treatment reversed the downregulation of GLP-1R expression in vivo and in vitro. Moreover, GLP-1R inhibition could mimic the effect of the TFEB downregulation-mediated decrease in lysosome biogenesis. Thus, our findings suggest that liraglutide attenuated hepatic steatosis via restoring autophagic flux, specifically the GLP-1R-TFEB-mediated autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Yunyun Fang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Linlin Ji
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chaoyu Zhu
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanyuan Xiao
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingjing Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junxi Lu
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Yin
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Eighth People's Hospital, Shanghai, China
| | - Li Wei
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|