1
|
Tse MCL, Pang BPS, Bi X, Ooi TX, Chan WS, Zhang J, Chan CB. Estrogen Regulates Mitochondrial Activity Through Inducing Brain-Derived Neurotrophic Factor Expression in Skeletal Muscle. J Cell Physiol 2025; 240:e31483. [PMID: 39530291 DOI: 10.1002/jcp.31483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Estrogen is an essential hormone for the development and functional activities of reproductive organs. Recent studies showed that estrogen signaling is also an important regulator of lipid and glucose metabolism in a number of tissues, but the molecular mechanism is not fully understood. We report here that estrogen is a stimulator of brain-derived neurotrophic factor (BDNF) synthesis in the skeletal muscle. Estradiol (E2), but not testosterone, induces a dose- and time-dependent BDNF production in cultured myotubes. Estrogen depletion in ovariectomized mice significantly reduced Bdnf expression in the glycolytic myofibers, which could be rescued after E2 administration. Mechanistically, E2 stimulation triggered the tethering of estrogen receptor (ER) α, but not ERβ, to the estrogen-responsive element on promoter VI of the Bdnf gene in skeletal muscle. When Bdnf production was inhibited by shRNA in C2C12 myotubes, E2-induced mitochondria activation and pyruvate dehydrogenase kinase 4 expressions were jeopardized. Collectively, our results demonstrate that BDNF is an underrecognized effector of estrogen in regulating mitochondrial activity and fuel metabolism in the skeletal muscle.
Collapse
Affiliation(s)
- Margaret Chui Ling Tse
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Teresa Xinci Ooi
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing Suen Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
3
|
Gillespie B, Dunn A, Sundram S, Hill RA. Investigating 7,8-Dihydroxyflavone to combat maternal immune activation effects on offspring gene expression and behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111078. [PMID: 38950841 DOI: 10.1016/j.pnpbp.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Infection during pregnancy is a substantial risk factor for the unborn child to develop autism or schizophrenia later in life, and is thought to be driven by maternal immune activation (MIA). MIA can be modelled by exposing pregnant mice to Polyinosinic: polycytidylic acid (Poly-I:C), a viral mimetic that induces an immune response and recapitulates in the offspring many neurochemical features of ASD and schizophrenia, including altered BDNF-TrkB signalling and disruptions to excitatory/inhibitory balance. Therefore, we hypothesised that a BDNF mimetic, 7,8-Dihydroxyflavone (7,8-DHF), administered prophylactically to the dam may prevent the neurobehavioural sequelae of disruptions induced by MIA. Dams were treated with 7,8-DHF in the drinking water (0.08 mg/ML) from gestational day (GD) 9-20 and were exposed to Poly-I:C at GD17 (20 mg/kg, i.p.). Foetal brains were collected 6 h post Poly-I:C exposure for RT-qPCR analysis of BDNF, cytokine, GABAergic and glutamatergic gene targets. A second adult cohort were tested in a battery of behavioural tests relevant to schizophrenia and the prefrontal cortex and ventral hippocampus dissected for RT-qPCR analysis. Foetal brains exposed to Poly-I:C showed increased IL-6, but reduced expression of Ntrk2 and multiple GABAergic and glutamatergic markers. Anxiety-like behaviour was observed in adult offspring prenatally exposed to poly-I:C, which was accompanied by altered expression of Gria2 in the prefrontal cortex and Gria4 in the ventral hippocampus. While 7-8 DHF normalised the expression of some glutamatergic (Grm5) and GABAergic (Gabra1) genes in Poly-I:C exposed offspring, it also led to substantial alterations in offspring not exposed to Poly-I:C. Furthermore, mice exposed to 7,8-DHF prenatally showed increased pre-pulse inhibition and reduced working memory in adulthood. These data advance understanding of how 7,8-DHF and MIA prenatal exposure impacts genes critical to excitatory/inhibitory pathways and related behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Ariel Dunn
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
4
|
Zhang MR, Zuo BY, Song YC, Guo DD, Li QL, Lyu JX, Zhu H, Zhao J, Hang PZ. BDNF mimetics recover palmitic acid-induced injury in cardiomyocytes by ameliorating Akt-dependent mitochondrial impairments. Toxicol Appl Pharmacol 2024; 486:116951. [PMID: 38705401 DOI: 10.1016/j.taap.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.
Collapse
Affiliation(s)
- Man-Ru Zhang
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Bang-Yun Zuo
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Yu-Chen Song
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; Medical College, Yangzhou University, Yangzhou 225009, China
| | - Dan-Dan Guo
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; Medical College, Yangzhou University, Yangzhou 225009, China
| | - Qing-Liu Li
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; Medical College, Yangzhou University, Yangzhou 225009, China
| | - Jin-Xiu Lyu
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Hua Zhu
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| | - Jing Zhao
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| | - Peng-Zhou Hang
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
5
|
Chanana V, Zafer D, Kintner DB, Chandrashekhar JH, Eickhoff J, Ferrazzano PA, Levine JE, Cengiz P. TrkB-mediated neuroprotection in female hippocampal neurons is autonomous, estrogen receptor alpha-dependent, and eliminated by testosterone: a proposed model for sex differences in neonatal hippocampal neuronal injury. Biol Sex Differ 2024; 15:30. [PMID: 38566248 PMCID: PMC10988865 DOI: 10.1186/s13293-024-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.
Collapse
Affiliation(s)
- Vishal Chanana
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Dila Zafer
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Douglas B Kintner
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Jayadevi H Chandrashekhar
- Waisman Center, University of Wisconsin, Madison, WI, USA
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jens Eickhoff
- Department of Statistics and Bioinformatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter A Ferrazzano
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Pelin Cengiz
- Waisman Center, University of Wisconsin, Madison, WI, USA.
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Wisconsin, 1500 Highland Ave - T505, Madison, WI, 53705-9345, USA.
| |
Collapse
|
6
|
Xiang G, Guo S, Xing N, Du Q, Qin J, Gao H, Zhang Y, Wang S. Mangiferin, a Potential Supplement to Improve Metabolic Syndrome: Current Status and Future Opportunities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:355-386. [PMID: 38533569 DOI: 10.1142/s0192415x24500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Metabolic syndrome (MetS) represents a considerable clinical and public health burden worldwide. Mangiferin (MF), a flavonoid compound present in diverse species such as mango (Mangifera indica L.), papaya (Pseudocydonia sinensis (Thouin) C. K. Schneid.), zhimu (Anemarrhena asphodeloides Bunge), and honeybush tea (Cyclopia genistoides), boasts a broad array of pharmacological effects. It holds promising uses in nutritionally and functionally targeted foods, particularly concerning MetS treatment. It is therefore pivotal to systematically investigate MF's therapeutic mechanism for MetS and its applications in food and pharmaceutical sectors. This review, with the aid of a network pharmacology approach complemented by this experimental studies, unravels possible mechanisms underlying MF's MetS treatment. Network pharmacology results suggest that MF treats MetS effectively through promoting insulin secretion, targeting obesity and inflammation, alleviating insulin resistance (IR), and mainly operating via the phosphatidylinositol 3 kinase (PI3K)/Akt, nuclear factor kappa-B (NF-[Formula: see text]B), microtubule-associated protein kinase (MAPK), and oxidative stress signaling pathways while repairing damaged insulin signaling. These insights provide a comprehensive framework to understand MF's potential mechanisms in treating MetS. These, however, warrant further experimental validation. Moreover, molecular docking techniques confirmed the plausibility of the predicted outcomes. Hereafter, these findings might form the theoretical bedrock for prospective research into MF's therapeutic potential in MetS therapy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jing Qin
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Huimin Gao
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, P. R. China
| | - Yi Zhang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Shaohui Wang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, P. R. China
| |
Collapse
|
7
|
Chen Y, Xia G, Wang C, Wu H, Xu X, Mao G, Wu J, Zhao Z. Impact of dietary plant flavonoids on 7,8-dihydroxyflavone transepithelial transport in human intestinal Caco-2 cells. Food Sci Nutr 2023; 11:6888-6898. [PMID: 37970375 PMCID: PMC10630842 DOI: 10.1002/fsn3.3581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 11/17/2023] Open
Abstract
7,8-dihydroxyflavone (7,8-DHF) is a biologically active flavone with various physiological activities, including neuroprotection, anti-inflammation, and weight loss. Previous studies have found that the efflux protein P-glycoprotein (P-gp) significantly affects the transepithelial transport of 7,8-DHF in the intestine, resulting in its low oral bioavailability. Based on this, in this study, a Caco-2 monolayer cell model was used to investigate 14 dietary plant flavonoids as potential P-gp inhibitors, and their effects on the transepithelial transport and in vitro digestion of 7,8-DHF were explored. The results showed that among the 14 plant flavonoids, hesperetin, epigallocatechin gallate, fisetin, kaempferol, quercetin, and isoorientin increased and the apparent permeability coefficients (P app) of 7,8-DHF at AP → BL direction and lowered P app value at BL → AP direction to varying degrees, reducing the efflux ratio of 7,8-DHF less than 1.5. In particular, kaempferol and quercetin exhibited the best effect on promoting the transepithelial transport of 7,8-DHF, especially when used at molar concentration ratios of 1:1 and 1:2 with 7,8-DHF. This is beneficial for improving the oral bioavailability of 7,8-DHF. Meanwhile, 7,8-DHF was found to maintain structural stability in simulated saliva, gastric juice, and intestinal juice, and its stability was not affected by the coexistence of quercetin and kaempferol. Overall, this study provided a theoretical basis for seeking natural and safe P-gp inhibitors to improve the oral absorption of natural products.
Collapse
Affiliation(s)
- Yufeng Chen
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro‐Food Processing, Zhejiang Engineering Center for Food Technology and EquipmentZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
- Ningbo Today Food Co LtdNingboChina
| | - Guobin Xia
- Section of Neonatology, Department of PediatricsBaylor College of MedicineHoustonTexasUSA
| | - Chunfeng Wang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | | | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | - Jiong Wu
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| | - Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of GeriatricsZhejiang HospitalHangzhouChina
| |
Collapse
|
8
|
Wang L, Yan Y, Wu L, Peng J. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development. Pharmacol Res 2023; 196:106925. [PMID: 37714392 DOI: 10.1016/j.phrs.2023.106925] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
9
|
Zhao Z, Gao W, Ding X, Xu X, Xiao C, Mao G, Xing W. The association between dietary intake of flavonoids and its subclasses and the risk of metabolic syndrome. Front Nutr 2023; 10:1195107. [PMID: 37476404 PMCID: PMC10354435 DOI: 10.3389/fnut.2023.1195107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Background The healthiest way to prevent metabolic syndrome (MetS) is through behavioral and nutritional adjustments. We examined the relationship between total flavonoids intake, flavonoid subclasses, and clinically manifest MetS. Methods A cross-sectional analysis was conducted among 28,719 individuals from the National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2007-2011 and 2017-2018. Two 24-h reviews were conducted to determine flavonoids intake and subclasses. The link between flavonoids intake and MetS was investigated using a multivariate logistic regression model. Results Q2 and Q3 of total flavonoids intake were associated with 20 and 19% lower risk of incident MetS after adjusting age and sex. Anthocyanidins and flavanones intake in Q2 and Q3 substantially reduced the MetS risk compared to Q1. MetS risk decreased steadily as the total intake of flavonoids increased to 237.67 mg/d. Flavanones and anthocyanidins also displayed V-shaped relationship curves (34.37 and 23.13 mg/d). Conclusion MetS was adversely linked with total flavonoids intake, flavanones, and anthocyanidins. Moreover, the most effective doses of total flavonoids, flavanones, and anthocyanidins were 237.67, 34.37, and 23.13 mg/d, respectively, potentially preventing MetS.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoli Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Changqian Xiao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
10
|
Liu S, Liu Z, Wang P, Li W, Zhao S, Liu Y, Chu M. Estrogen-mediated oar-miR-485-5p targets PPP1R13B to regulate myoblast proliferation in sheep. Int J Biol Macromol 2023; 236:123987. [PMID: 36906210 DOI: 10.1016/j.ijbiomac.2023.123987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/19/2023] [Indexed: 03/11/2023]
Abstract
Ovaries are important endocrine organs in female animals that secrete various steroid hormones, which are involved in multiple physiological functions. Estrogen, one of the hormones secreted by ovaries, is essential for the overall maintenance of muscle growth and development. However, the molecular mechanisms that affect muscle growth and development in sheep following ovariectomy remain unclear. In this study, we identified 1662 differentially expressed mRNAs (DEGs) and 40 differentially expressed miRNAs (DEMs) in sheep that underwent ovariectomy compared with those that underwent sham surgery. A total of 178 DEG-DEM pairs were negatively correlated. GO and KEGG analysis showed that PPP1R13B was involved in the PI3K-Akt signaling pathway, which was essential for muscle development. Using in vitro experiments, we examined the effect of PPP1R13B on myoblast proliferation and found that overexpression or inhibition of PPP1R13B increased or decreased the expression of myoblast proliferation markers, respectively. PPP1R13B was identified as a functional downstream target of miR-485-5p. Our results suggested that miR-485-5p promoted myoblast proliferation by regulating proliferation factors in myoblasts by targeting PPP1R13B. Notably, exogenous estradiol supplementation to myoblasts regulated the expression of oar-miR-485-5p and PPP1R13B and promoted myoblast proliferation. These results provided new insights into the molecular mechanism by which ovaries influence muscle growth and development in sheep.
Collapse
Affiliation(s)
- Siqi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ziyi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Zafer D, Adams T, Olson E, Stenman L, Taparli O, Eickhoff J, Cengiz P, Mezu-Ndubuisi OJ. Retinal vascular recovery revealed by retinal imaging following neonatal hypoxia ischemia in mice: Is there a role for tyrosine kinase receptor modulation? Brain Res 2022; 1796:148093. [PMID: 36116486 PMCID: PMC10013450 DOI: 10.1016/j.brainres.2022.148093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Hypoxic ischemic encephalopathy (HIE) secondary to perinatal asphyxia leads to long-term visual disabilities. Dilated retinal exams in human newborns with HIE is an emerging diagnostic tool, but phenotypes of hypoxia ischemia (HI) related retinal vascular injury are unclear. 7,8-Dihydroxyflavone (7,8-DHF) is a TrkB agonist with protective effects on HI-related brain damage. We studied retinal vessels in a mouse model of neonatal HIE and the efficacy of 7,8-DHF in ameliorating HI-related retinal vascular injury. METHODS C57BL6/J mice at post-natal day (P) 9 received unilateral left carotid artery ligation followed by exposure to 10 % oxygen for 50 min. Phosphate buffered saline or 7,8-DHF (5 mg/kg) were administered daily for 7 days intraperitoneally. Control groups of naïve or carotid artery ligation only mice were studied. Fluorescein angiography was performed in acute (two weeks post-exposure) and chronic (four weeks post-exposure) time points. Retinal artery width, retinal vein width, and collateral vessel length were quantified. RESULTS Ligation of the common carotid artery alone caused retinal artery dilation in acute and chronic time points, but had no effect on retinal veins. At acute time point, HI caused increased retinal artery vasodilation, but was reversed by 7,8-DHF. HI caused short collateral vessel formation in ipsilateral eyes, rescued by 7,8-DHF treatment. CONCLUSION Retinal artery vasodilation and collateral vessel formation due to HI were rescued by 7,8-DHF treatment. Retinal and collateral vessel monitoring could be diagnostic biomarkers for HI severity. Studies to elucidate mechanisms of 7,8-DHF action on retinal vessels could aid development of therapies for neonatal HI.
Collapse
Affiliation(s)
- Dila Zafer
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Thao Adams
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Ellie Olson
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Lauren Stenman
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.
| | - Onur Taparli
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA.
| | - Jens Eickhoff
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA.
| | - Olachi J Mezu-Ndubuisi
- Department of Pediatrics, University of Rochester, Rochester, NY, USA; Department of Ophthalmology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
12
|
Sharma P, Silva C, Pfreundschuh S, Ye H, Sampath H. Metabolic protection by the dietary flavonoid 7,8-dihydroxyflavone requires an intact gut microbiome. Front Nutr 2022; 9:987956. [PMID: 36061902 PMCID: PMC9428675 DOI: 10.3389/fnut.2022.987956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background 7,8-dihydroxyflavone (DHF) is a naturally occurring flavonoid found in Godmania, Tridax, and Primula species that confers protection against high-fat diet (HFD) induced metabolic pathologies selectively in female mice. We have previously reported that this metabolic protection is associated with early and stable remodeling of the intestinal microbiome, evident in female but not male DHF-supplemented mice. Early changes in the gut microbiome in female DHF-fed mice were highly predictive of subsequent metabolic protection, suggesting a causative association between the gut microbiome and the metabolic effects of DHF. Objective To investigate a causal association between the gut microbiome and the metabolic effects of DHF using a model of antibiotic-induced gut microbiome ablation. Materials and methods Age-matched male and female C57Bl6/J mice were given ad libitum access to HFD and drinking water containing vehicle or DHF for 12 weeks. For antibiotic (Abx) treatment, female mice were given drinking water containing a cocktail of antibiotics for 2 weeks prior to HFD feeding and throughout the feeding period. Metabolic phenotyping consisted of longitudinal assessments of body weights, body composition, food, and water intake, as well as measurement of energy expenditure, glucose tolerance, and plasma and hepatic lipids. Protein markers mediating the cellular effects of DHF were assessed in brown adipose tissue (BAT) and skeletal muscle. Results Metabolic protection conferred by DHF in female HFD-fed mice was only apparent in the presence of an intact gut microbiome. Abx-treated mice were not protected from HFD-induced obesity by DHF administration. Further, tissue activation of the tropomyosin-related kinase receptor B (TrkB) receptor, which has been attributed to the biological activity of DHF, was lost upon gut microbiome ablation, indicating a requirement for microbial “activation” of DHF for its systemic effects. In addition, we report for the first time that DHF supplementation significantly activates TrkB in BAT of female, but not male, mice uncovering a novel target tissue of DHF. DHF supplementation also increased uncoupling protein 1 (UCP1) and AMP-activated protein kinase (AMPK) protein in BAT, consistent with protection from diet-induced obesity. Conclusion These results establish for the first time a requirement for the gut microbiome in mediating the metabolic effects of DHF in female mice and uncover a novel target tissue that may mediate these sexually-dimorphic protective effects.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| | - Camila Silva
- Department of Biotechnology, Rutgers University, New Brunswick, NJ, United States
| | - Sarah Pfreundschuh
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Hong Ye
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Harini Sampath,
| |
Collapse
|
13
|
Xiong J, Liao J, Liu X, Zhang Z, Adams J, Pacifici R, Ye K. A TrkB agonist prodrug prevents bone loss via inhibiting asparagine endopeptidase and increasing osteoprotegerin. Nat Commun 2022; 13:4820. [PMID: 35973996 PMCID: PMC9381595 DOI: 10.1038/s41467-022-32435-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B receptor (TrkB) are expressed in human osteoblasts and mediate fracture healing. BDNF/TrkB signaling activates Akt that phosphorylates and inhibits asparagine endopeptidase (AEP), which regulates the differentiation fate of human bone marrow stromal cells (hBMSC) and is altered in postmenopausal osteoporosis. Here we show that R13, a small molecular TrkB receptor agonist prodrug, inhibits AEP and promotes bone formation. Though both receptor activator of nuclear factor kappa-Β ligand (RANK-L) and osteoprotegerin (OPG) induced by ovariectomy (OVX) remain comparable between WT and BDNF+/− mice, R13 treatment significantly elevates OPG in both mice without altering RANKL, blocking trabecular bone loss. Strikingly, both R13 and anti-RANK-L exhibit equivalent therapeutic efficacy. Moreover, OVX increases RANK-L and OPG in WT and AEP KO mice with RANK-L/OPG ratio lower in the latter than the former, attenuating bone turnover. 7,8-DHF, released from R13, activates TrkB and its downstream effector CREB, which is critical for OPG augmentation. Consequently, 7,8-DHF represses C/EBPβ/AEP pathway, inhibiting RANK-L-induced RAW264.7 osteoclastogenesis. Therefore, our findings support that R13 exerts its therapeutic efficacy toward osteoporosis via inhibiting AEP and escalating OPG. BDNS and TrkB are involved in bone fracture healing by inhibiting AEP. Here the authors show that a TrkB agonist prodrug can inhibit AEP and promote bone formation in osteoporotic mice.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jianming Liao
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology (SIAT) Shenzhen, Guangdong, PR China.
| |
Collapse
|
14
|
Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function. Sports Med 2022; 52:2853-2869. [PMID: 35907119 DOI: 10.1007/s40279-022-01733-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 10/16/2022]
Abstract
Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.
Collapse
|
15
|
Yang S, Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 2022; 20:1479-1497. [PMID: 34525922 PMCID: PMC9881092 DOI: 10.2174/1570159x19666210915122820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China,Address correspondence to this author at the Anhui University of Chinese Medicine, Meishan Road 103, Hefei 230038, China; E-mail:
| |
Collapse
|
16
|
Li Y, Peng Y, Shen Y, Zhang Y, Liu L, Yang X. Dietary polyphenols: regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 63:9816-9842. [PMID: 35587161 DOI: 10.1080/10408398.2022.2076064] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Advanced glycation end products (AGEs) are formed in non-enzymatic reaction, oxidation, rearrangement and cross-linking between the active carbonyl groups of reducing sugars and the free amines of amino acids. The Maillard reaction is related to sensory characteristics in thermal processed food, while AGEs are formed in food matrix in this process. AGEs are a key link between carbonyl stress and neurodegenerative disease. AGEs can interact with receptors for AGEs (RAGE), causing oxidative stress, inflammation response and signal pathways activation related to neurodegenerative diseases. Neurodegenerative diseases are closely related to gut microbiota imbalance and intestinal inflammation. Polyphenols with multiple hydroxyl groups showed a powerful ability to scavenge ROS and capture α-dicarbonyl species, which led to the formation of mono- and di- adducts, thereby inhibiting AGEs formation. Neurodegenerative diseases can be effectively prevented by inhibiting AGEs production, and interaction with RAGEs, or regulating the microbiota-gut-brain axis. These strategies include polyphenols multifunctional effects on AGEs inhibition, RAGE-ligand interactions blocking, and regulating the abundance and diversity of gut microbiota, and intestinal inflammation alleviation to delay or prevent neurodegenerative diseases progress. It is a wise and promising strategy to supplement dietary polyphenols for preventing neurodegenerative diseases via AGEs-RAGE axis and microbiota-gut-brain axis regulation.
Collapse
Affiliation(s)
- Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yao Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, PR China
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, PR China
| | - Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang, PR China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, PR China
| |
Collapse
|
17
|
Chang YH, Hung HY. Recent advances in natural anti-obesity compounds and derivatives based on in vivo evidence: A mini-review. Eur J Med Chem 2022; 237:114405. [PMID: 35489224 DOI: 10.1016/j.ejmech.2022.114405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Obesity is not only viewed as a chronic aggressive disorder but is also associated with an increased risk for various diseases. Nonetheless, new anti-obesity drugs are an urgent need since few pharmacological choices are available on the market. Natural compounds have served as templates for drug discovery, whereas modified molecules from the leads identified based on in vitro models often reveal noncorresponding bioactivity between in vitro and in vivo studies. Therefore, to provide inspiration for the exploration of innovative anti-obesity agents, recent discoveries of natural anti-obesity compounds with in vivo evidence have been summarized according to their chemical structures, and the comparable efficacy of these compounds is categorized using animal models. In addition, several synthetic derivatives optimized from the phytochemicals are also provided to discuss medicinal chemistry achievements guided by natural sources.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
18
|
Ahuja P, Ng CF, Pang BPS, Chan WS, Tse MCL, Bi X, Kwan HLR, Brobst D, Herlea-Pana O, Yang X, Du G, Saengnipanthkul S, Noh HL, Jiao B, Kim JK, Lee CW, Ye K, Chan CB. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy 2021; 18:1367-1384. [PMID: 34689722 DOI: 10.1080/15548627.2021.1985257] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial remodeling is dysregulated in metabolic diseases but the underlying mechanism is not fully understood. We report here that BDNF (brain derived neurotrophic factor) provokes mitochondrial fission and clearance in skeletal muscle via the PRKAA/AMPK-PINK1-PRKN/Parkin and PRKAA-DNM1L/DRP1-MFF pathways. Depleting Bdnf expression in myotubes reduced fatty acid-induced mitofission and mitophagy, which was associated with mitochondrial elongation and impaired lipid handling. Muscle-specific bdnf knockout (MBKO) mice displayed defective mitofission and mitophagy, and accumulation of dysfunctional mitochondria in the muscle when they were fed with a high-fat diet (HFD). These animals also have exacerbated body weight gain, increased intramyocellular lipid deposition, reduced energy expenditure, poor metabolic flexibility, and more insulin resistance. In contrast, consuming a BDNF mimetic (7,8-dihydroxyflavone) increased mitochondrial content, and enhanced mitofission and mitophagy in the skeletal muscles. Hence, BDNF is an essential myokine to maintain mitochondrial quality and function, and its repression in obesity might contribute to impaired metabolism.Abbreviation: 7,8-DHF: 7,8-dihydroxyflavone; ACACA/ACC: acetyl Coenzyme A carboxylase alpha; ACAD: acyl-Coenzyme A dehydrogenase family; ACADVL: acyl-Coenzyme A dehydrogenase, very long chain; ACOT: acyl-CoA thioesterase; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; BDNF: brain derived neurotrophic factor; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CCL2/MCP-1: chemokine (C-C motif) ligand 2; CCL5: chemokine (C-C motif) ligand 5; CNS: central nervous system; CPT1B: carnitine palmitoyltransferase 1b, muscle; Cpt2: carnitine palmitoyltransferase 2; CREB: cAMP responsive element binding protein; DNM1L/DRP1: dynamin 1-like; E2: estrogen; EHHADH: enoyl-CoenzymeA hydratase/3-hydroxyacyl CoenzymeA dehydrogenase; ESR1/ER-alpha: estrogen receptor 1 (alpha); FA: fatty acid; FAO: fatty acid oxidation; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FFA: free fatty acids; FGF21: fibroblast growth factor 21; FUNDC1: FUN14 domain containing 1; HADHA: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; HFD: high-fat diet; iWAT: inguinal white adipose tissues; MAP1LC3A/LC3A: microtubule-associated protein 1 light chain 3 alpha; MBKO; muscle-specific bdnf knockout; IL6/IL-6: interleukin 6; MCEE: methylmalonyl CoA epimerase; MFF: mitochondrial fission factor; NTRK2/TRKB: neurotrophic tyrosine kinase, receptor, type 2; OPTN: optineurin; PA: palmitic acid; PARL: presenilin associated, rhomboid-like; PDH: pyruvate dehydrogenase; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PRKAA/AMPK: protein kinase, AMP-activated, alpha 2 catalytic subunit; ROS: reactive oxygen species; TBK1: TANK-binding kinase 1; TG: triacylglycerides; TNF/TNFα: tumor necrosis factor; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Chun Fai Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Wing Suen Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Daniel Brobst
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Oana Herlea-Pana
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Keqiang Ye
- Department of Pathology, Emory University School of Medicine, Atlanta, USA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
| |
Collapse
|
19
|
Wang D, Yin J, Zhou Z, Tao Y, Jia Y, Jie H, Zhao J, Li R, Li Y, Guo C, Zhu F, Mao H, Zhang L, Wang Q. Oral Spermidine Targets Brown Fat and Skeletal Muscle to Mitigate Diet-Induced Obesity and Metabolic Disorders. Mol Nutr Food Res 2021; 65:e2100315. [PMID: 34363644 DOI: 10.1002/mnfr.202100315] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/29/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Obesity causes many life-threatening diseases. It is important to develop effective approaches for obesity treatment. Oral supplementation with spermidine retards age-related processes, but its influences on obesity and various metabolic tissues remain largely unknow. This study aims to investigate the effects of oral spermidine on brown adipose tissue (BAT) and skeletal muscle as well as its roles in counteracting obesity and metabolic disorders. METHODS AND RESULTS Spermidine is orally administrated into high-fat diet (HFD)-fed mice. The weight gain, insulin resistance, and hepatic steatosis are attenuated by oral spermidine in HFD-fed mice, accompanied by an alleviation of white adipose tissue inflammation. Oral spermidine promotes BAT activation and metabolic adaptation of skeletal muscle in HFD-fed mice, evidenced by UCP-1 induction and CREB activation in both tissues. Notably, oral spermidine upregulates tyrosine hydroxylase in hypothalamus of HFD-fed mice; spermidine treatment increases tyrosine hydroxylase expression and norepinephrine production in neurocytes, which leads to CREB activation and UCP-1 induction in brown adipocytes and myotubes. Spermidine also directly promotes UCP-1 and PGC-1α expression in brown adipocytes and myotubes. CONCLUSION Spermidine serves as an oral supplement to attenuate obesity and metabolic disorders through hypothalamus-dependent or -independent BAT activation and skeletal muscle adaptation.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jilong Yin
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Jia
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haipeng Jie
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruiyu Li
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Li
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
20
|
Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. eLife 2021; 10:e64872. [PMID: 34227467 PMCID: PMC8285109 DOI: 10.7554/elife.64872] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Imbalances in bone formation and resorption cause osteoporosis. Mounting evidence supports that brain-derived neurotrophic factor (BDNF) implicates in this process. 7,8-Dihydroxyflavone (7,8-DHF), a plant-derived small molecular TrkB agonist, mimics the functions of BDNF. We show that both BDNF and 7,8-DHF promoted the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. These effects might be attributed to the activation of the Wnt/β-catenin signaling pathway as the expression of cyclin D1, phosphorylated-glycogen synthase kinase-3β (p-GSK3β), β-catenin, Runx2, Osterix, and osteoprotegerin (OPG) was all significantly up-regulated. Knockdown of β-catenin restrained the up-regulation of Runx2 and Osterix stimulated by 7,8-DHF. In particular, blocking TrkB by its specific inhibitor K252a suppressed 7,8-DHF-induced osteoblastic proliferation, differentiation, and expression of osteoblastogenic genes. Moreover, BDNF and 7,8-DHF repressed osteoclastic differentiation of RAW264.7 cells. The transcription factor c-fos and osteoclastic genes such as tartrate-resistant acid phosphatase (TRAP), matrix metalloprotein-9 (MMP-9), Adamts5 were inhibited by 7,8-DHF. More importantly, 7,8-DHF attenuated bone loss, improved trabecular microarchitecture, tibial biomechanical properties, and bone biochemical indexes in an ovariectomy (OVX) rat model. The current work highlights the dual regulatory effects that 7,8-DHF exerts on bone remodeling.
Collapse
Affiliation(s)
- Fan Xue
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Zhenlei Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Yanpei Gu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Jianxin Han
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of MedicineAtlantaUnited States
| | - Ying Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang UniversityHangzhouChina
| |
Collapse
|