1
|
Gibbons E, Taya M, Wu H, Lopa SH, Moss J, Henske EP, McCormack FX, Hammes SR. Glycoprotein non-metastatic melanoma protein B promotes tumor growth and is a biomarker for lymphangioleiomyomatosis. Endocr Relat Cancer 2024; 31:e230312. [PMID: 38614127 PMCID: PMC11103253 DOI: 10.1530/erc-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, progressive cystic lung disease affecting almost exclusively female-sexed individuals. The cysts represent regions of lung destruction caused by smooth muscle tumors containing mutations in one of the two tuberous sclerosis (TSC) genes. mTORC1 inhibition slows but does not stop LAM advancement. Furthermore, monitoring disease progression is hindered by insufficient biomarkers. Therefore, new treatment options and biomarkers are needed. LAM cells express melanocytic markers, including glycoprotein non-metastatic melanoma protein B (GPNMB). The function of GPNMB in LAM is currently unknown; however, GPNMB's unique cell surface expression on tumor versus benign cells makes GPNMB a potential therapeutic target, and persistent release of its extracellular ectodomain suggests potential as a serum biomarker. Here, we establish that GPNMB expression is dependent on mTORC1 signaling, and that GPNMB regulates TSC2-null tumor cell invasion in vitro. Further, we demonstrate that GPNMB enhances TSC2-null xenograft tumor growth in vivo, and that ectodomain release is required for this xenograft growth. We also show that GPNMB's ectodomain is released from the cell surface of TSC2-null cells by proteases ADAM10 and 17, and we identify the protease target sequence on GPNMB. Finally, we demonstrate that GPNMB's ectodomain is present at higher levels in LAM patient serum compared to healthy controls and that ectodomain levels decrease with mTORC1 inhibition, making it a potential LAM biomarker.
Collapse
Affiliation(s)
- Erin Gibbons
- Department of Microbiology and Immunology University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Manisha Taya
- Division of Hematology and Oncology, UT Southwestern, Dallas, TX 75390, USA
| | - Huixing Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Samia H Lopa
- Department of Biostatistics and Computational Biology, University of Rochester
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Stephen R Hammes
- Department of Microbiology and Immunology University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Lami I, Wiemer AJ. Antibody-Drug Conjugates in the Pipeline for Treatment of Melanoma: Target and Pharmacokinetic Considerations. Drugs R D 2024; 24:129-144. [PMID: 38951479 PMCID: PMC11315830 DOI: 10.1007/s40268-024-00473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Melanoma is an aggressive, rapidly developing form of skin cancer that affects about 22 per 100,000 individuals. Treatment options for melanoma patients are limited and typically involve surgical excision of moles and chemotherapy. Survival has been improved in recent years through targeted small molecule inhibitors and antibody-based immunotherapies. However, the long-term side effects that arise from taking chemotherapies can negatively impact the lives of patients because they lack specificity and impact healthy cells along with the cancer cells. Antibody-drug conjugates are a promising new class of drugs for the treatment of melanoma. This review focuses on the development of antibody-drug conjugates for melanoma and discusses the existing clinical trials of antibody-drug conjugates and their use as a melanoma treatment. So far, the antibody-drug conjugates have struggled from efficacy problems, with modest effects at best, leading many to be discontinued for melanoma. At the same time, conjugates such as AMT-253, targeting melanoma cell adhesion molecule, and mecbotamab vedotin targeting AXL receptor tyrosine kinase, are among the most exciting for melanoma treatment in the future.
Collapse
Affiliation(s)
- Ina Lami
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT, 06269, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT, 06269, USA.
| |
Collapse
|
3
|
Zhao T, Zhu G, Dubey HV, Flaherty P. Identification of significant gene expression changes in multiple perturbation experiments using knockoffs. Brief Bioinform 2023; 24:bbad084. [PMID: 36892174 PMCID: PMC10025447 DOI: 10.1093/bib/bbad084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Large-scale multiple perturbation experiments have the potential to reveal a more detailed understanding of the molecular pathways that respond to genetic and environmental changes. A key question in these studies is which gene expression changes are important for the response to the perturbation. This problem is challenging because (i) the functional form of the nonlinear relationship between gene expression and the perturbation is unknown and (ii) identification of the most important genes is a high-dimensional variable selection problem. To deal with these challenges, we present here a method based on the model-X knockoffs framework and Deep Neural Networks to identify significant gene expression changes in multiple perturbation experiments. This approach makes no assumptions on the functional form of the dependence between the responses and the perturbations and it enjoys finite sample false discovery rate control for the selected set of important gene expression responses. We apply this approach to the Library of Integrated Network-Based Cellular Signature data sets which is a National Institutes of Health Common Fund program that catalogs how human cells globally respond to chemical, genetic and disease perturbations. We identified important genes whose expression is directly modulated in response to perturbation with anthracycline, vorinostat, trichostatin-a, geldanamycin and sirolimus. We compare the set of important genes that respond to these small molecules to identify co-responsive pathways. Identification of which genes respond to specific perturbation stressors can provide better understanding of the underlying mechanisms of disease and advance the identification of new drug targets.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Information Systems and Analytics, College of Business, Bryant University, Smithfield, 02917, RI, USA
- Center for Health and Behavioral Sciences, Bryant University, Smithfield, 02917, RI, USA
| | - Guangyu Zhu
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, 02881, RI, USA
| | - Harsh Vardhan Dubey
- Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, 01003, MA, USA
| | - Patrick Flaherty
- Department of Mathematics & Statistics, University of Massachusetts Amherst, Amherst, 01003, MA, USA
| |
Collapse
|
4
|
Li Z, Belitzky E, Blaha O, Cavaliere A, Katz SR, Aboian M, Melegari L, Rajabimoghadam K, Kurpiewski S, Zhu X, Marquez-Nostra B. ImmunoPET Imaging Identifies the Optimal Timepoint for Combination Therapy in Xenograft Models of Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:1589. [PMID: 36900378 PMCID: PMC10001369 DOI: 10.3390/cancers15051589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Purpose: The glycoprotein non-metastatic melanoma B (gpNMB) is a type 1 transmembrane protein that is overexpressed in numerous cancers, including triple-negative breast cancer (TNBC). Its overexpression is associated with lower overall survival of patients with TNBC. Tyrosine kinase inhibitors such as dasatinib can upregulate gpNMB expression, which has the potential to enhance therapeutic targeting with anti-gpNMB antibody drug conjugates such as glembatumumab vedotin (CDX-011). Our primary aim is to quantify the degree and identify the timeframe of gpNMB upregulation in xenograft models of TNBC after treatment with the Src tyrosine kinase inhibitor, dasatinib, by longitudinal positron emission tomography (PET) imaging with the 89Zr-labeled anti-gpNMB antibody ([89Zr]Zr-DFO-CR011). The goal is to identify the timepoint at which to administer CDX-011 after treatment with dasatinib to enhance therapeutic efficacy using noninvasive imaging. (2) Methods: First, TNBC cell lines that either express gpNMB (MDA-MB-468) or do not express gpNMB (MDA-MB-231) were treated with 2 μM of dasatinib in vitro for 48 h, followed by Western blot analysis of cell lysates to determine differences in gpNMB expression. MDA-MB-468 xenografted mice were also treated with 10 mg/kg of dasatinib every other day for 21 days. Subgroups of mice were euthanized at 0-, 7-, 14-, and 21-days post treatment, and tumors were harvested for Western blot analysis of tumor cell lysates for gpNMB expression. In a different cohort of MDA-MB-468 xenograft models, longitudinal PET imaging with [89Zr]Zr-DFO-CR011 was performed before treatment at 0 (baseline) and at 14 and 28 days after treatment with (1) dasatinib alone (2) CDX-011 (10 mg/kg) alone, or (3) sequential treatment of dasatinib for 14 days then CDX-011 to determine changes in gpNMB expression in vivo relative to baseline. As a gpNMB-negative control, MDA-MB-231 xenograft models were imaged 21 days after treatment with dasatinib, combination of CDX-011 and dasatinib, and vehicle control. (3) Results: Western blot analysis of MDA-MB-468 cell and tumor lysates showed that dasatinib increased expression of gpNMB in vitro and in vivo at 14 days post treatment initiation. In PET imaging studies of different cohorts of MDA-MB-468 xenografted mice, [89Zr]Zr-DFO-CR011 uptake in tumors (SUVmean = 3.2 ± 0.3) was greatest at 14 days after treatment initiation with dasatinib (SUVmean = 4.9 ± 0.6) or combination of dasatinib and CDX-011 (SUVmean= 4.6 ± 0.2) compared with that at baseline (SUVmean = 3.2 ± 0.3). The highest tumor regression after treatment was observed in the combination-treated group with a percent change in tumor volume relative to baseline (%CTV) of -54 ± 13 compared with the vehicle control-treated group (%CTV = +102 ± 27), CDX-011 group (%CTV = -25 ± 9.8), and dasatinib group (%CTV = -23 ± 11). In contrast, the PET imaging of MDA-MB-231 xenografted mice indicated no significant difference in the tumor uptake of [89Zr]Zr-DFO-CR011 between treated (dasatinib alone or in combination with CDX-011) and vehicle-control groups. (4) Conclusions: Dasatinib upregulated gpNMB expression in gpNMB-positive MDA-MB-468 xenografted tumors at 14 days post treatment initiation, which can be quantified by PET imaging with [89Zr]Zr-DFO-CR011. Furthermore, combination therapy with dasatinib and CDX-011 appears to be a promising therapeutic strategy for TNBC and warrants further investigation.
Collapse
Affiliation(s)
- Ziqi Li
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Erika Belitzky
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Ondrej Blaha
- Yale Center for Analytical Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA
| | - Alessandra Cavaliere
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Samantha R. Katz
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Mariam Aboian
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Lindy Melegari
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | | | - Stephen Kurpiewski
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bernadette Marquez-Nostra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
5
|
Yazdi SI, Sadeghi M, Saeedzadeh E, Jalilifar M. Radiation dosimetry of 89Zr labeled antibody estimated using the MIRD method and MCNP code. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Goodman R, Johnson DB. Antibody-Drug Conjugates for Melanoma and Other Skin Malignancies. Curr Treat Options Oncol 2022; 23:1428-1442. [PMID: 36125618 DOI: 10.1007/s11864-022-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT While most skin malignancies are successfully treated with surgical excision, advanced and metastatic skin malignancies still often have poor long-term outcomes despite therapeutic advances. Antibody-drug conjugates (ADCs) serve as a potentially promising novel therapeutic approach to treat advanced skin cancers as they combine antibody-associated antigen specificity with cytotoxic anti-tumor effects, thereby maximizing efficacy and minimizing systemic toxicity. While no ADCs have gained regulatory approval for advanced skin cancers, several promising agents are undergoing preclinical and clinical investigation. In addition to identifying and validating skin cancer antigen targets, the key to maximizing therapeutic success is the careful development of each component of the ADC complex: antibodies, cytotoxic drugs, and linkers. It is the optimization of each of these components that will be integral in overcoming resistance, maximizing safety, and improving long-term clinical outcomes.
Collapse
Affiliation(s)
- Rachel Goodman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, 1161 21st Ave S, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Biondini M, Kiepas A, El-Houjeiri L, Annis MG, Hsu BE, Fortier AM, Morin G, Martina JA, Sirois I, Aguilar-Mahecha A, Gruosso T, McGuirk S, Rose AAN, Tokat UM, Johnson RM, Sahin O, Bareke E, St-Pierre J, Park M, Basik M, Majewski J, Puertollano R, Pause A, Huang S, Keler T, Siegel PM. HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene 2022; 41:1701-1717. [PMID: 35110681 DOI: 10.1038/s41388-022-02206-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
Abstract
Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.
Collapse
Affiliation(s)
- Marco Biondini
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alex Kiepas
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Matthew G Annis
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Brian E Hsu
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Fortier
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Geneviève Morin
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Isabelle Sirois
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada
| | - Tina Gruosso
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shawn McGuirk
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - April A N Rose
- Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Unal M Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Eric Bareke
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Morag Park
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada.,Department of Oncology and Surgery, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Genome Québec Innovation Center, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Arnim Pause
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sidong Huang
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Han CL, Chen XR, Lan A, Hsu YL, Wu PS, Hung PF, Hung CL, Pan SH. N-glycosylated GPNMB ligand independently activates mutated EGFR signaling and promotes metastasis in NSCLC. Cancer Sci 2021; 112:1911-1923. [PMID: 33706413 PMCID: PMC8088973 DOI: 10.1111/cas.14872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related death worldwide. As well as the identified role of epidermal growth factor receptor (EGFR), its association with driver mutations has improved the therapeutics for patients with lung cancer harboring EGFR mutations. These patients usually display shorter overall survival and a higher tendency to develop distant metastasis compared with those carrying the wild‐type EGFR. Nevertheless, the way to control mutated EGFR signaling remains unclear. Here, we performed membrane proteomic analysis to determine potential components that may act with EGFR mutations to promote lung cancer malignancy. Expression of transmembrane glycoprotein non‐metastatic melanoma protein B (GPNMB) was positively correlated with the status of mutated EGFR in non‐small‐cell lung cancer (NSCLC). This protein was not only overexpressed but also highly glycosylated in EGFR‐mutated, especially EGFR‐L858R mutated, NSCLC cells. Further examination showed that GPNMB could activate mutated EGFR without ligand stimulation and could bind to the C‐terminus of EGFR, assist phosphorylation at Y845, turn on downstream STAT3 signaling, and promote cancer metastasis. Moreover, we also found that Asn134 (N134) glycosylation of GPNMB played a crucial role in this ligand‐independent regulation. Depleting N134‐glycosylation on GPNMB could dramatically inhibit binding of GPNMB to mutated EGFR, blocking its downstream signaling, and ultimately inhibiting cancer metastasis in NSCLC. Clarifying the role of N‐glycosylated GPNMB in regulating the ligand‐independent activation of mutated EGFR may soon give new insight into the development of novel therapeutics for NSCLC.
Collapse
Affiliation(s)
- Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert Lan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Pei-Fang Hung
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Anderson TS, Wooster AL, La-Beck NM, Saha D, Lowe DB. Antibody-drug conjugates: an evolving approach for melanoma treatment. Melanoma Res 2021; 31:1-17. [PMID: 33165241 DOI: 10.1097/cmr.0000000000000702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma continues to be an aggressive and deadly form of skin cancer while therapeutic options are continuously developing in an effort to provide long-term solutions for patients. Immunotherapeutic strategies incorporating antibody-drug conjugates (ADCs) have seen varied levels of success across tumor types and represent a promising approach for melanoma. This review will explore the successes of FDA-approved ADCs to date compared to the ongoing efforts of melanoma-targeting ADCs. The challenges and opportunities for future therapeutic development are also examined to distinguish how ADCs may better impact individuals with malignancies such as melanoma.
Collapse
Affiliation(s)
| | | | - Ninh M La-Beck
- Departments of Immunotherapeutics and Biotechnology
- Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | | | - Devin B Lowe
- Departments of Immunotherapeutics and Biotechnology
| |
Collapse
|
10
|
A Phase II Study of Glembatumumab Vedotin for Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12082270. [PMID: 32823698 PMCID: PMC7465139 DOI: 10.3390/cancers12082270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Glembatumumab vedotin (CDX-011, GV) is a fully human Immunoglobulin G2 monoclonal antibody directed against glycoprotein NMB coupled via a peptide linker to monomethyl auristatin E (MMAE), a potent cytotoxic microtubule inhibitor. This phase II study evaluated the overall response rate and safety of GV, glycoprotein NMB (GPNMB) expression, and survival in patients with metastatic uveal melanoma. Eligible patients with metastatic uveal melanoma who had not previously been treated with chemotherapy received GV 1.9 mg/kg every three weeks. The primary endpoint was the objective response rate (ORR). Secondary endpoints included GPNMB expression, progression-free survival (PFS), overall survival (OS), and toxicity analysis. GPNMB expression was assessed pre- and post-treatment via immunohistochemistry for patients with available tumor tissue. Out of 35 patients who received treatment, two patients had confirmed partial responses (PRs; 6%), and 18 patients had a stable disease (SD; 51%) as the best objective response. 38% of the patients had stable disease >100 days. The grade 3 or 4 toxicities that occurred in two or more patients were neutropenia, rash, hyponatremia, and vomiting. The median progression-free survival was 3.1 months (95% CI: 1.5–5.6), and the median overall survival was 11.9 months (95% CI 9.0–16.9) in the evaluable study population. GV is well-tolerated in metastatic uveal melanoma. The disease control rate was 57% despite a low objective response rate. Exploratory immune correlation studies are underway to provide insight into target saturation, combination strategies, and antigen release.
Collapse
|
11
|
Kumari K, Das B, Adhya AK, Rath AK, Mishra SK. Genome-wide expression analysis reveals six contravened targets of EZH2 associated with breast cancer patient survival. Sci Rep 2019; 9:1974. [PMID: 30760814 PMCID: PMC6374476 DOI: 10.1038/s41598-019-39122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/27/2018] [Indexed: 01/31/2023] Open
Abstract
Several pioneering work have established that apart from genetic alterations, epigenetic modifications contribute significantly in tumor progression. Remarkable role of EZH2 in cancer highlights the importance of identifying its targets. Although much emphasis has been placed in recent years in designing drugs and inhibitors targeting EZH2, less effort has been given in exploring its existing targets that will help in understanding the oncogenic role of EZH2 in turn which may provide a more stringent method of targeting EZH2. In the present study, we validated six direct targets of EZH2 that are GPNMB, PMEPA1, CoL5A1, VGLL4, POMT2 and SUMF1 associated with cancer related pathways. Upon EZH2 knockdown, more than two fold increase in the target gene expression was evident. CHIP-qPCR performed in both MCF-7 and MDA-MDA-231 confirmed the in-vivo binding of EZH2 on its identified target. Thirty invasive breast carcinoma cases with their adjacent normal tissues were included in the study. Immunohistochemistry in primary breast tumor tissue array showed tumor dependent expression of EZH2. Array of MERAV expression database revealed the strength of association of EZH2 with its target genes. Real time PCR performed with RNA extracted from breast tumor tissues further authenticated the existing negative correlation between EZH2 and its target genes. Pearson correlation coefficient & statistical significance computed using the matrix provided in the database strengthened the negative correlation between identified target genes and EZH2. KM plotter analysis showed improved relapse-free survival with increased expression of PMEPA1, POMT2, VGLL4 and SUMF1 in breast cancer patients indicating their therapeutic potential. While investigating the relevance of these target genes, different mutations of them were found in breast cancer patients. Seeking the clinical relevance of our study, following our recent publication that reports the role of EZH2 in nicotine-mediated breast cancer development and progression, we observed significant reduced expression of SUMF1 in breast cancer patient samples with smoking history in comparison to never-smoked patient samples.
Collapse
Affiliation(s)
- Kanchan Kumari
- Cancer Biology Laboratory, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Utkal University, Bhubaneswar, Odisha, India
| | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Department of Translational Research, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Manipal University, Manipal, Karnataka, India
| | - Amit K Adhya
- Department of Pathology, AIIMS, Bhubaneswar, Odisha, India
| | - Arabinda K Rath
- Hemalata Hospitals and Research Centre, Chandrashekharpur, Bhubaneswar, Odisha, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Ott PA, Pavlick AC, Johnson DB, Hart LL, Infante JR, Luke JJ, Lutzky J, Rothschild NE, Spitler LE, Cowey CL, Alizadeh AR, Salama AK, He Y, Hawthorne TR, Bagley RG, Zhang J, Turner CD, Hamid O. A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma. Cancer 2019; 125:1113-1123. [PMID: 30690710 DOI: 10.1002/cncr.31892] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/23/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glembatumumab vedotin is an antibody-drug conjugate that produced preliminary clinical activity against advanced melanoma in a phase 1 dose-escalation trial. The objective of the current study was to investigate further the antitumor activity of glembatumumab vedotin at the recommended phase 2 dose in heavily pretreated patients with melanoma. METHODS This single-arm, phase 2 study enrolled patients with stage IV melanoma who were refractory to checkpoint inhibition and to B-raf proto-oncogene, serine/threonine kinase (BRAF)/mitogen-activated protein kinase kinase (MEK) inhibition (in the presence of a BRAF valine mutation at codon 600). Patients received 1.9 mg/kg glembatumumab vedotin intravenously every 3 weeks until they developed disease progression or intolerance. The primary endpoint was objective response rate (ORR), which was determined according to Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary endpoints included progression-free survival (PFS), duration of response, overall survival (OS), safety, and clinical efficacy versus tumor glycoprotein NMB (gpNMB) expression. Tumor expression of gpNMB was assessed using immunohistochemistry. RESULTS In total, 62 patients received treatment. The ORR was 11% and the median response duration was 6.0 months (95% confidence interval [CI], 4.1 months to not reached). The median PFS was 4.4 months (95% CI, 2.6-5.5 months), and the median OS was 9.0 months (95% CI, 6.1-11.7 months). For patients who developed rash during the first cycle versus those who did not, the ORR was 21% versus 7%, respectively, and there was an overall improvement in PFS (hazard ratio, 0.43; P = .013) and OS (hazard ratio, 0.43; P = .017). The most frequent adverse events were alopecia, neuropathy, rash, fatigue, and neutropenia. With one exception, all evaluable tumors were positive for gpNMB, and 46 of 59 tumors (76%) had 100% gpNMB-positive epithelial cells. CONCLUSIONS Glembatumumab vedotin had modest activity and an acceptable safety profile in patients with advanced melanoma who were refractory to checkpoint inhibitors and MEK/BRAF inhibition. Treatment-related rash may be associated with response.
Collapse
Affiliation(s)
- Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna C Pavlick
- Department of Medical Oncology, New York University School of Medicine, New York, New York
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Lowell L Hart
- Florida Cancer Specialists and Research Institute, Fort Myers, Florida
| | | | - Jason J Luke
- Department of Hematology/Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Jose Lutzky
- Mount Sinai Comprehensive Cancer Center, Miami Beach, Florida
| | | | | | - C Lance Cowey
- Northern California Melanoma Center, Baylor University Medical Center, Dallas, Texas
| | | | - April K Salama
- Department of Medical Oncology, Duke University, Durham, North Carolina
| | - Yi He
- Celldex Therapeutics, Inc, Hampton, New Jersey
| | | | | | | | | | - Omid Hamid
- The Angeles Clinic and Research Institute, Los Angeles, California
| |
Collapse
|
13
|
Makhlouf A, Hajdu I, Hartimath SV, Alizadeh E, Wharton K, Wasan KM, Badea I, Fonge H. 111In-Labeled Glycoprotein Nonmetastatic b (GPNMB) Targeted Gemini Surfactant-Based Nanoparticles against Melanoma: In Vitro Characterization and in Vivo Evaluation in Melanoma Mouse Xenograft Model. Mol Pharm 2019; 16:542-551. [DOI: 10.1021/acs.molpharmaceut.8b00831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Amal Makhlouf
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, 12411 Cairo, Egypt
| | - Istvan Hajdu
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Siddesh V. Hartimath
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
| | - Elahe Alizadeh
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
| | - Kayla Wharton
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kishor M. Wasan
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
- Department of Medical Imaging, Royal University Hospital Saskatoon, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
| |
Collapse
|
14
|
Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani AH. Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna J Med Biotechnol 2019; 11:3-23. [PMID: 30800238 PMCID: PMC6359697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022] Open
Abstract
The design of Antibody Drug Conjugates (ADCs) as efficient targeting agents for tumor cell is still in its infancy for clinical applications. This approach incorporates the antibody specificity and cell killing activity of chemically conjugated cytotoxic agents. Antibody in ADC structure acts as a targeting agent and a nanoscale carrier to deliver a therapeutic dose of cytotoxic cargo into desired tumor cells. Early ADCs encountered major obstacles including, low blood residency time, low penetration capacity to tumor microenvironment, low payload potency, immunogenicity, unusual off-target toxicity, drug resistance, and the lack of stable linkage in blood circulation. Although extensive studies have been conducted to overcome these issues, the ADCs based therapies are still far from having high-efficient clinical outcomes. This review outlines the key characteristics of ADCs including tumor marker, antibody, cytotoxic payload, and linkage strategy with a focus on technical improvement and some future trends in the pipeline.
Collapse
Affiliation(s)
- Mohammad-Reza Nejadmoghaddam
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Morteza Mahmoudi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| |
Collapse
|
15
|
Chen C, Okita Y, Watanabe Y, Abe F, Fikry MA, Ichikawa Y, Suzuki H, Shibuya A, Kato M. Glycoprotein nmb Is Exposed on the Surface of Dormant Breast Cancer Cells and Induces Stem Cell-like Properties. Cancer Res 2018; 78:6424-6435. [PMID: 30224376 DOI: 10.1158/0008-5472.can-18-0599] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
Abstract
Glycoprotein nmb (GPNMB) is a type I transmembrane protein that contributes to the initiation and malignant progression of breast cancer through induction of epithelial-mesenchymal transition (EMT). Although it is known that EMT is associated with not only cancer invasion but also acquisition of cancer stem cell (CSC) properties, the function of GPNMB in this acquisition of CSC properties has yet to be elucidated. To address this issue, we utilized a three-dimensional (3D) sphere culture method to examine the correlation between GPNMB and CSC properties in breast cancer cells. Three-dimensional sphere cultures induced higher expression of CSC genes and EMT-inducing transcription factor (EMT-TF) genes than the 2D monolayer cultures. Three-dimensional culture also induced cell surface expression of GPNMB on limited numbers of cells in the spheres, whereas the 2D cultures did not. Therefore, we isolated cell surface-GPNMBhigh and -GPNMBlow cells from the spheres. Cell surface-GPNMBhigh cells expressed high levels of CSC genes and EMT-TF genes, had significantly higher sphere-forming frequencies than the cell surface-GPNMBlow cells, and showed no detectable levels of proliferation marker genes. Similar results were obtained from transplanted breast tumors. Furthermore, wild-type GPNMB, but not mutant GPNMB (YF), which lacks tumorigenic activity, induced CSC-like properties in breast epithelial cells. These findings suggest that GPNMB is exposed on the surface of dormant breast cancer cells and its activity contributes to the acquisition of stem cell-like properties.Significance: These findings suggest that cell surface expression of GPNMB could serve as a marker and promising therapeutic target of breast cancer cells with stem cell-like properties. Cancer Res; 78(22); 6424-35. ©2018 AACR.
Collapse
Affiliation(s)
- Chen Chen
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Department of General Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yukari Okita
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan. .,Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumie Abe
- Laboratory of Immunology, Life Science Center for Survival Dynamics of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Muhammad Ali Fikry
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yumu Ichikawa
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Suzuki
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Laboratory of Immunology, Life Science Center for Survival Dynamics of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Taya M, Hammes SR. Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB) and Cancer: A Novel Potential Therapeutic Target. Steroids 2018; 133:102-107. [PMID: 29097143 PMCID: PMC6166407 DOI: 10.1016/j.steroids.2017.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane protein enriched on the cell surface of cancer cells, including melanoma, glioblastoma, and triple-negative breast cancer. There is growing evidence identifying GPNMB as a tumor-promoter; however, despite its biological and clinical significance, the molecular mechanisms engaged by GPNMB to promote tumorigenesis are not well understood. GPNMB promotes aggressive behaviors such as tumor cell proliferation, migration, and invasion. The extracellular domain of GPNMB shed from the cell surface interacts with integrins to facilitate in the recruitment of immune-suppressive and pro-angiogenic cells to the tumor microenvironment, thereby enhancing tumor migration and invasion. GPNMB also modulates receptor tyrosine kinases and integrin signaling in a cell autonomous fashion, leading to downstream kinase signaling that in turn triggers the expression and secretion of tumorigenic factors such as matrix metalloproteinases (MMPs) and cytokines. Therefore, GPNMB exerts its pro-tumorigenic role both intracellularly and in a paracrine fashion through shedding its extracellular domain. This review highlights the importance of GPNMB in cancer progression and discusses molecular mediators of GPNMB-induced tumor growth and invasion.
Collapse
Affiliation(s)
- Manisha Taya
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Hanemaaijer SH, van Gijn SE, Oosting SF, Plaat BEC, Moek KL, Schuuring EM, van der Laan BFAM, Roodenburg JLN, van Vugt MATM, van der Vegt B, Fehrmann RSN. Data-Driven prioritisation of antibody-drug conjugate targets in head and neck squamous cell carcinoma. Oral Oncol 2018; 80:33-39. [PMID: 29706186 DOI: 10.1016/j.oraloncology.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/11/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND For patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) palliative treatment options that improve overall survival are limited. The prognosis in this group remains poor and there is an unmet need for new therapeutic options. An emerging class of therapeutics, targeting tumor-specific antigens, are antibodies bound to a cytotoxic agent, known as antibody-drug conjugates (ADCs). The aim of this study was to prioritize ADC targets in HNSCC. METHODS With a systematic search, we identified 55 different ADC targets currently targeted by registered ADCs and ADCs under clinical evaluation. For these 55 ADC targets, protein overexpression was predicted in a dataset containing 344 HNSCC mRNA expression profiles by using a method called functional genomic mRNA profiling. The ADC target with the highest predicted overexpression was validated by performing immunohistochemistry (IHC) on an independent tissue microarray containing 414 HNSCC tumors. RESULTS The predicted top 5 overexpressed ADC targets in HNSCC were: glycoprotein nmb (GPNMB), SLIT and NTRK-like family member 6, epidermal growth factor receptor, CD74 and CD44. IHC validation showed combined cytoplasmic and membranous GPNMB protein expression in 92.0% of the cases. Strong expression was seen in 65.9% of the cases. In addition, 86.5% and 67.7% of cases showed ≥5% and >25% GPNMB positive tumor cells, respectively. CONCLUSIONS This study provides a data-driven prioritization of ADCs targets that will facilitate clinicians and drug developers in deciding which ADC should be taken for further clinical evaluation in HNSCC. This might help to improve disease outcome of HNSCC patients.
Collapse
Affiliation(s)
- Saskia H Hanemaaijer
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Stephanie E van Gijn
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Sjoukje F Oosting
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Boudewijn E C Plaat
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Kirsten L Moek
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Ed M Schuuring
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands
| | - Bernard F A M van der Laan
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck surgery, Groningen, The Netherlands
| | - Jan L N Roodenburg
- University of Groningen, University Medical Center Groningen, Department of Oral and Maxillofacial Surgery, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands
| | - Bert van der Vegt
- University of Groningen, University Medical Center Groningen, Department of Pathology, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, The Netherlands.
| |
Collapse
|
18
|
Tajima JY, Futamura M, Gaowa S, Mori R, Tanahashi T, Tanaka Y, Matsuhashi N, Takahashi T, Yamaguchi K, Miyazaki T, Yoshida K. Clinical Significance of Glycoprotein Non-metastatic B and Its Association with EGFR/HER2 in Gastrointestinal Cancer. J Cancer 2018; 9:358-366. [PMID: 29344282 PMCID: PMC5771343 DOI: 10.7150/jca.20266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Glycoprotein non-metastatic B (GPNMB), a type I transmembrane glycoprotein, is overexpressed in melanoma and breast cancer and promotes cancer-cell invasion and motility. We previously reported cross-talk between GPNMB and human epidermal growth factor receptor 2 (HER2) in breast cancer, suggesting that GPNMB might play an important role in resistance to anti-HER2 therapy in breast cancer. Here, we clarified the association between GPNMB and HER-family proteins in gastrointestinal cancer by examining their relationships using gastric and colorectal cancer cell lines. We found that GPNMB depletion of by small-interfering RNA increased epidermal growth factor receptor (EGFR) expression and phosphorylation through AKT8 virus oncogene cellular homolog (AKT) and mitogen-activated protein kinase (MAPK) pathways. Additionally, treatment with cetuximab (CTX) also increased GPNMB expression, and combination therapy consisting of GPNMB depletion and CTX treatment significantly suppressed cell growth in colorectal cancer cell lines, but not in gastric cancer cell lines. Furthermore, we also evaluated changes in GPNMB expression in vivo, with immunohistochemistry detecting GPNMB overexpression in a colorectal cancer patient following anti-EGFR therapy. These results suggested possible cross-talk between GPNMB and EGFR, and that GPNMB might play an important role in resistance to anti-EGFR therapy in gastrointestinal cancer.
Collapse
Affiliation(s)
- Jesse Yu Tajima
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Siqin Gaowa
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ryutaro Mori
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Tanahashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yoshihiro Tanaka
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takao Takahashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuya Yamaguchi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | | | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
19
|
Osteoactivin (GPNMB) ectodomain protein promotes growth and invasive behavior of human lung cancer cells. Oncotarget 2017; 7:13932-44. [PMID: 26883195 PMCID: PMC4924689 DOI: 10.18632/oncotarget.7323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/23/2016] [Indexed: 12/21/2022] Open
Abstract
The potential application of GPNMB/OA as a therapeutic target for lung cancer will require a greater understanding of the impact of GPNMB/OA ectodomain (ECD) protein shedding into tumor tissues. Thus, in this work we characterized GPNMB/OA expression and extent of shedding of its ECD protein while evaluating the impact on lung cancer progression using three non-small cell lung cancer (NSCLC) cell lines: A549, SK-MES-1 and calu-6. We observed a direct correlation (R2 = 0.89) between GPNMB/OA expression on NSCLC cells and the extent of GPNMB/OA ECD protein shedding. Meanwhile, siRNA-mediated knockdown of GPNMB/OA in cancer cells significantly reduced GPNMB/OA ECD protein shedding, migration, invasion and adhesion to extracellular matrix materials. Also, exogenous treatment of cancer cells (expressing low GPNMB/OA) with recombinant GPNMB/OA protein (rOA) significantly facilitated cell invasion and migration, but the effects of rOA was negated by inclusion of a selective RGD peptide. Further studies in athymic (nu/nu) mice-bearing calu-6 showed that intratumoral supplementation with rOA effectively facilitated in vivo tumor growth as characterized by a high number of proliferating cells (Ki67 staining) coupled with a low number of apoptotic cells. Taken together, our results accentuate the relevance of GPNMB/OA ECD protein shedding to progression of lung cancer. Thus, strategies that suppress GPNMB/OA expression on lung cancer cells as well as negate shedding of GPNMB/OA ECD protein are worthy of consideration in lung cancer therapeutics.
Collapse
|
20
|
Marquez-Nostra BV, Lee S, Laforest R, Vitale L, Nie X, Hyrc K, Keler T, Hawthorne T, Hoog J, Li S, Dehdashti F, Ma CX, Lapi SE. Preclinical PET imaging of glycoprotein non-metastatic melanoma B in triple negative breast cancer: feasibility of an antibody-based companion diagnostic agent. Oncotarget 2017; 8:104303-104314. [PMID: 29262642 PMCID: PMC5732808 DOI: 10.18632/oncotarget.22228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
High levels of expression of glycoprotein non-metastatic B (gpNMB) in triple negative breast cancer (TNBC) and its association with metastasis and recurrence make it an attractive target for therapy with the antibody drug conjugate, glembatumumab vedotin (CDX-011). This report describes the development of a companion PET-based diagnostic imaging agent using 89Zr-labeled glembatumumab ([89Zr]DFO-CR011) to potentially aid in the selection of patients most likely to respond to targeted treatment with CDX-011. [89Zr]DFO-CR011 was characterized for its pharmacologic properties in TNBC cell lines. Preclinical studies determined that [89Zr]DFO-CR011 binds specifically to gpNMB with high affinity (Kd = 25 ± 5 nM), immunoreactivity of 2.2-fold less than the native CR011, and its cellular uptake correlates with gpNMB expression (r = 0.95). In PET studies at the optimal imaging timepoint of 7 days p.i., the [89Zr]DFO-CR011 tumor uptake in gpNMB-expressing MDA-MB-468 xenografts had a mean SUV of 2.9, while significantly lower in gpNMB-negative MDA-MB-231 tumors with a mean SUV of 1.9. [89Zr]DFO-CR011 was also evaluated in patient-derived xenograft models of TNBC, where tumor uptake in vivo had a positive correlation with total gpNMB protein expression via ELISA (r = 0.79), despite the heterogeneity of gpNMB expression within the same group of PDX mice. Lastly, the radiation dosimetry calculated from biodistribution studies in MDA-MB-468 xenografts determined the effective dose for human use would be 0.54 mSv/MBq. Overall, these studies demonstrate that [89Zr]DFO-CR011 is a potential companion diagnostic imaging agent for CDX-011 which targets gpNMB, an emerging biomarker for TNBC.
Collapse
Affiliation(s)
- Bernadette V Marquez-Nostra
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Supum Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Xingyu Nie
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Krzysztof Hyrc
- The Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Jeremy Hoog
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Farrokh Dehdashti
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia X Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Abstract
Oncogene-targeted therapy is a major component of precision oncology, and although patients with metastatic melanoma have experienced improved outcomes with this strategy, there are a number of potential therapeutic targets currently under study that may further increase the drug armamentarium for this patient population. In this review, we discuss the landscape of targeted therapies for patients with advanced melanoma, focusing on oncogene mutation-specific targets. In patients with typical BRAF V600-mutant melanoma, combination BRAF and MEK inhibition has surpassed outcomes compared with monotherapy with BRAF or MEK inhibition alone, and current strategies seek to address inevitable resistance mechanisms. For patients with NRAS-mutant melanoma, MEK inhibitor monotherapy and combined MEK and CDK4/6 inhibition are burgeoning strategies; for patients with KIT-mutant melanoma, tyrosine kinase inhibition is being leveraged, and for NF-1-mutant melanoma, mTOR and MEK inhibition is being actively evaluated. In patients with atypical, non-V600 BRAF-mutant melanoma, MEK inhibitor monotherapy is the potential novel targeted approach on the horizon. For advanced uveal melanoma, novel targets such as IMCgp100 and glembatumumab have shown activity in early studies. We review additional strategies that remain in the preclinical and early clinical pipeline, so there is much hope for the future of targeted agents for distinct molecular cohorts of patients with advanced melanoma.
Collapse
|
22
|
Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther 2017; 179:127-141. [PMID: 28546082 DOI: 10.1016/j.pharmthera.2017.05.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GPNMB has emerged as an immunomodulator and an important positive mediator of tumor progression and metastasis in numerous solid cancers. Tumor intrinsic GPNMB-mediated effects on cellular signaling, coupled with the ability of GPNMB to influence the primary tumor and metastatic microenvironments in a non-cell autonomous fashion, combine to augment malignant cancer phenotypes. In addition, GPNMB is often overexpressed in a variety of cancers, making it an attractive therapeutic target. In this regard, glembatumumab vedotin, an antibody-drug conjugate (ADC) that targets GPNMB, is currently in clinical trials as a single agent in multiple cancers. In this review, we will describe the physiological functions of GPNMB in normal tissues and summarize the processes through which GPNMB augments tumor growth and metastasis. We will review the pre-clinical and clinical development of glembatumumab vedotin, evaluate on-going clinical trials, explore emerging opportunities for this agent in new disease indications and discuss exciting possibilities for this ADC in the context of combination therapies.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
23
|
Rose AAN, Annis MG, Frederick DT, Biondini M, Dong Z, Kwong L, Chin L, Keler T, Hawthorne T, Watson IR, Flaherty KT, Siegel PM. MAPK Pathway Inhibitors Sensitize BRAF-Mutant Melanoma to an Antibody-Drug Conjugate Targeting GPNMB. Clin Cancer Res 2016; 22:6088-6098. [PMID: 27515299 PMCID: PMC6168941 DOI: 10.1158/1078-0432.ccr-16-1192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine if BRAF and/or MEK inhibitor-induced GPNMB expression renders melanomas sensitive to CDX-011, an antibody-drug conjugate targeting GPNMB. EXPERIMENTAL DESIGN The Cancer Genome Atlas melanoma dataset was interrogated for a panel of MITF-regulated melanosomal differentiation antigens, including GPNMB. BRAF-mutant melanoma cell lines treated with BRAF or MEK inhibitors were assessed for GPNMB expression by RT-qPCR, immunoblot, and FACS analyses. Transient siRNA-mediated knockdown approaches were used to determine if MITF is requirement for treatment-induced GPNMB upregulation. GPNMB expression was analyzed in serial biopsies and serum samples from patients with melanoma taken before, during, and after disease progression on MAPK inhibitor treatment. Subcutaneous injections were performed to test the efficacy of MAPK inhibitors alone, CDX-011 alone, or their combination in suppressing melanoma growth. RESULTS A MITF-dependent melanosomal differentiation signature is associated with poor prognosis in patients with this disease. MITF is increased following BRAF and MEK inhibitor treatment and induces the expression of melanosomal differentiation genes, including GPNMB. GPNMB is expressed at the cell surface in MAPK inhibitor-treated melanoma cells and is also elevated in on-treatment versus pretreatment biopsies from melanoma patients receiving MAPK pathway inhibitors. Combining BRAF and/or MEK inhibitors with CDX-011, an antibody-drug conjugate targeting GPNMB, is effective in causing melanoma regression in preclinical animal models and delays the recurrent melanoma growth observed with MEK or BRAF/MEK inhibitor treatment alone. CONCLUSIONS The combination of MAPK pathway inhibitors with an antibody-drug conjugate targeting GPNMB is an effective therapeutic option for patients with melanoma. Clin Cancer Res; 22(24); 6088-98. ©2016 AACR.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Matthew G Annis
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Zhifeng Dong
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Lawrence Kwong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynda Chin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Ian R Watson
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Keith T Flaherty
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Prizant H, Taya M, Lerman I, Light A, Sen A, Mitra S, Foster TH, Hammes SR. Estrogen maintains myometrial tumors in a lymphangioleiomyomatosis model. Endocr Relat Cancer 2016; 23:265-80. [PMID: 26880751 PMCID: PMC4992946 DOI: 10.1530/erc-15-0505] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease in women. Patients with LAM develop metastatic smooth-muscle cell adenomas within the lungs, resulting in reduced pulmonary function. LAM cells contain mutations in tuberous sclerosis genes (TSC1 or TSC2), leading to up-regulation of mTORC1 activity and elevated proliferation. The origin of LAM cells remains unknown; however, inactivation of Tsc2 gene in the mouse uterus resulted in myometrial tumors exhibiting LAM features, and approximately 50% of animals developed metastatic myometrial lung tumors. This suggests that LAM tumors might originate from the uterine myometrium, possibly explaining the overwhelming prevalence of LAM in female. Here, we demonstrate that mouse Tsc2-null myometrial tumors exhibit nearly all the features of LAM, including mTORC1/S6K activation, as well as expression of melanocytic markers and matrix metalloproteinases (MMPs). Estrogen ablation reduces S6K signaling and results in Tsc2-null myometrial tumor regression. Thus, even without TSC2, estradiol is required to maintain tumors and mTORC1/S6K signaling. Additionally, we find that MMP-2 and -9, as well as neutrophil elastase (NE), are overexpressed in Tsc2-null myometrial tumors in an estrogen-dependent fashion. In vivo fluorescent imaging using MMP- or NE-sensitive optical biomarkers confirms that protease activity is specific to myometrial tumors. Similar to LAM cells, uterine Tsc2-null myometrial cells also overexpress melanocytic markers in an estrogen-dependent fashion. Finally, we identify glycoprotein NMB (GPNMB) as a melanocytic marker up-regulated in Tsc2-null mouse uteri and human LAM samples. Our data highlight the potential importance of estradiol in LAM cells, suggesting that anti-estrogen therapy may be a treatment modality. Furthermore, proteases and GPNMB might be useful LAM biomarkers.
Collapse
Affiliation(s)
- Hen Prizant
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Manisha Taya
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Irina Lerman
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison Light
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Aritro Sen
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Soumya Mitra
- Department of Imaging SciencesUniversity of Rochester Medical Center, Rochester, New York, USA
| | - Thomas H Foster
- Department of Imaging SciencesUniversity of Rochester Medical Center, Rochester, New York, USA
| | - Stephen R Hammes
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
25
|
Frara N, Abdelmagid SM, Tytell M, Amin M, Popoff SN, Safadi FF, Barbe MF. Growth and repair factors, osteoactivin, matrix metalloproteinase and heat shock protein 72, increase with resolution of inflammation in musculotendinous tissues in a rat model of repetitive grasping. BMC Musculoskelet Disord 2016; 17:34. [PMID: 26781840 PMCID: PMC4717665 DOI: 10.1186/s12891-016-0892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expression of the growth factor osteoactivin (OA) increases during tissue degeneration and regeneration, fracture repair and after denervation-induced disuse atrophy, concomitant with increased matrix metalloproteinases (MMPs). However, OA's expression with repetitive overuse injuries is unknown. The aim of this study was to evaluate: 1) OA expression in an operant rat model of repetitive overuse; 2) expression of MMPs; 3) inflammatory cytokines indicative of injury or inflammation; and 4) the inducible form of heat shock protein 70 (HSPA1A/HSP72) as the latter is known to increase during metabolic stress and to be involved in cellular repair. Young adult female rats performed a high repetition negligible force (HRNF) food retrieval task for up to 6 weeks and were compared to control rats. METHODS Flexor digitorum muscles and tendons were collected from 22 young adult female rats performing a HRNF reaching task for 3 to 6 weeks, and 12 food restricted control (FRC) rats. OA mRNA levels were assessed by quantitative polymerase chain reaction (qPCR). OA, MMP-1, -2, -3, and -13 and HSP72 protein expression was assayed using Western blotting. Immunohistochemistry and image analysis was used to evaluate OA and HSP72 expression. ELISA was performed for HSP72 and inflammatory cytokines. RESULTS Flexor digitorum muscles and tendons from 6-week HRNF rats showed increased OA mRNA and protein expression compared to FRC rats. MMP-1, -2 and -3 progressively increased in muscles whereas MMP-1 and -3 increased in tendons with HRNF task performance. HSP72 increased in 6-week HRNF muscles and tendons, compared to controls, and co-localized with OA in the myofiber sarcolemma. IL-1alpha and beta increased transiently in tendons or muscles in HRNF week 3 before resolving in week 6. CONCLUSION The simultaneous increases of OA with factors involved in tissue repair (MMPs and HSP72) supports a role of OA in tissue regeneration after repetitive overuse.
Collapse
Affiliation(s)
- Nagat Frara
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Samir M Abdelmagid
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Kanematsu M, Futamura M, Takata M, Gaowa S, Yamada A, Morimitsu K, Morikawa A, Mori R, Hara H, Yoshida K. Clinical significance of glycoprotein nonmetastatic B and its association with HER2 in breast cancer. Cancer Med 2015; 4:1344-55. [PMID: 26077887 PMCID: PMC4567019 DOI: 10.1002/cam4.480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/01/2015] [Accepted: 04/24/2015] [Indexed: 11/15/2022] Open
Abstract
Glycoprotein nonmetastatic B (GPNMB) is a potential oncogene that is particularly expressed in melanoma and breast cancer (BC). To clarify its clinical significance in BC, we measured serum GPNMB in vivo and investigated its cross talk with human epidermal growth factor 2 (HER2). GPNMB was expressed in four of six breast cell lines (SK-BR-3, BT-474, MDA-MD-231, and MDA-MD-157), two of six colorectal cell lines, and two of four gastric cancer (GC) cell lines. We established a GPNMB quantification system using enzyme-linked immunosorbent assay (ELISA) for these cell lines. We measured serum GPNMB in vivo in 162 consecutive BC patients and in 88 controls (50 colorectal cancer [CC] and 38 GC patients). The GPNMB concentration in BC, CC and GC was 8.163, 5.751 and 6.55 ng/mL, respectively. The GPNMB level was significantly higher in BC patients than in CC patients (P = 0.021). The HER2-rich subtype of BC patients had significantly higher GPNMB levels than other subtypes (vs. Luminal; P = 0.038; vs. DCIS; P = 0.0195). These high GPNMB levels decreased after treatment (surgery/chemotherapy). Next, we examined the relationship between GPNMB and HER2 in vitro using SK-BR3 and BT-474 (HER2-positive/GPNMB-positive) cells. GPNMB depletion by small interfering RNA (siRNA) increased both HER2 expression and phosphorylation. Trastuzumab (Tra) in combination with docetaxel promoted cell growth inhibition, and treatment with Tra or an Extracellular signal-related kinase (ERK) inhibitor enhanced GPNMB expression. These results indicate that GPNMB might be a surrogate marker for BC and may cross talk with the HER2 signal pathway. GPNMB may therefore emerge as an important player in anti-HER2 therapy.
Collapse
Affiliation(s)
- Masako Kanematsu
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Manabu Futamura
- Department of Breast and Molecular Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masafumi Takata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Siqin Gaowa
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Atsuko Yamada
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kasumi Morimitsu
- Department of Breast and Molecular Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Akemi Morikawa
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ryutaro Mori
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
27
|
Winnicki K, Żabka A, Bernasińska J, Matczak K, Maszewski J. Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum. PLANT CELL REPORTS 2015; 34:905-17. [PMID: 25652240 PMCID: PMC4427623 DOI: 10.1007/s00299-015-1752-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | | | | | |
Collapse
|
28
|
Gutknecht M, Geiger J, Joas S, Dörfel D, Salih HR, Müller MR, Grünebach F, Rittig SM. The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells. Cell Commun Signal 2015; 13:19. [PMID: 25889792 PMCID: PMC4422548 DOI: 10.1186/s12964-015-0099-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Dendritic cells (DC) are the most potent antigen-presenting cells (APC) with the unique ability to activate naïve T cells and to initiate and maintain primary immune responses. Immunosuppressive and anti-inflammatory stimuli on DC such as the cytokine IL-10 suppress the activity of the transcription factor NF-κB what results in downregulation of costimulatory molecules, MHC and cytokine production. Glycoprotein NMB (GPNMB) is a transmembrane protein, which acts as a coinhibitory molecule strongly inhibiting T cell responses if present on APC. Interestingly, its expression on human monocyte-derived dendritic cells (moDC) is dramatically upregulated upon treatment with IL-10 but also by the BCR-ABL tyrosine kinase inhibitors (TKI) imatinib, nilotinib or dasatinib used for the treatment of chronic myeloid leukemia (CML). However, the molecular mechanisms responsible for GPNMB overexpression are yet unknown. RESULTS The immunosuppressive cytokine IL-10 and the BCR-ABL TKI imatinib or nilotinib, that were examined here, concordantly inhibit the PI3K/Akt signaling pathway, thereby activating the downstream serine/threonine protein kinase GSK3ß, and subsequently the microphthalmia-associated transcription factor (MITF) that is phosphorylated and translocated into the nucleus. Treatment of moDC with a small molecule inhibitor of MITF activity reduced the expression of GPNMB at the level of mRNA and protein, indicating that GPNMB expression is in fact facilitated by MITF activation. In line with these findings, PI3K/Akt inhibition was found to result in GPNMB overexpression accompanied by reduced stimulatory capacity of moDC in mixed lymphocyte reactions (MLR) with allogeneic T cells that could be restored by addition of the GPNMB T cell ligand syndecan-4 (SD-4). CONCLUSIONS In summary, imatinib, nilotinib or IL-10 congruently inhibit the PI3K/Akt signaling pathway thereby activating MITF in moDC, resulting in a tolerogenic phenotype. These findings extend current knowledge on the molecular mechanisms balancing activating and inhibitory signals in human DC and may facilitate the targeted manipulation of T cell responses in the context of DC-based immunotherapeutic interventions.
Collapse
Affiliation(s)
- Michael Gutknecht
- Department of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| | - Julian Geiger
- Department of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| | - Simone Joas
- Department of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| | - Daniela Dörfel
- Department of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| | - Helmut R Salih
- Department of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| | - Martin R Müller
- Department of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| | - Frank Grünebach
- Department of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| | - Susanne M Rittig
- Department of Internal Medicine II, Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| |
Collapse
|
29
|
The potential role of the glycoprotein osteoactivin/glycoprotein nonmetastatic melanoma protein B in pancreatic cancer. Pancreas 2015; 44:302-10. [PMID: 25426614 DOI: 10.1097/mpa.0000000000000250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Pancreatic ductal adenocarcinoma is still one of the deadliest solid cancers so the finding of new therapeutic approaches and novel targets are of utmost importance. Glycoprotein nonmetastatic melanoma protein B (GPNMB), initially termed glycoprotein nonmetastatic gene B and also named osteoactivin (OA), is a type 1 transmembrane protein that has been recently found to play a role in cancer cell proliferation, angiogenesis, and invasion. Due to its potential responsibility in cancer aggressiveness, the main objective of this work was to assess the role of GPNMB/OA in human pancreatic cancer. METHODS Using the human pancreatic cancer cell line Panc-1 in vitro, the effects of GPNMB on growth, proliferation, and invasion were tested by BrdU uptake, cell cycle and Annexin V-FITC analysis, RT-PCR, protein expression, and invasion chamber assays. RESULTS Our results showed that GPNMB/OA protein expression prevents cells from apoptosis-enhancing proliferation and represents a novel modulator of the invasion and metastasis in pancreatic cancer cells. CONCLUSIONS Due to its main membrane localization in cancer cells and its role in the aggressiveness of pancreatic cancer, GPNMB/OA could represent a novel targeted therapy for pancreatic cancer being attractive for antibody-based therapies.
Collapse
|
30
|
Gabriel TL, Tol MJ, Ottenhof R, van Roomen C, Aten J, Claessen N, Hooibrink B, de Weijer B, Serlie MJ, Argmann C, van Elsenburg L, Aerts JMFG, van Eijk M. Lysosomal stress in obese adipose tissue macrophages contributes to MITF-dependent Gpnmb induction. Diabetes 2014; 63:3310-23. [PMID: 24789918 DOI: 10.2337/db13-1720] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In obesity, adipose tissue (AT) contains crown-like structures where macrophages surround nonviable adipocytes. To understand how AT macrophages (ATMs) contribute to development of insulin resistance, we examined their character in more detail. In silico analysis of F2 mouse populations revealed significant correlation between adipose glycoprotein nonmetastatic melanoma protein B (Gpnmb) expression and body weight. In obese mice and obese individuals, Gpnmb expression was induced in ATMs. Cultured RAW264.7 cells were used to obtain insight into the mechanism of Gpnmb regulation. Gpnmb was potently induced by lysosomal stress inducers, including palmitate and chloroquine, or Torin1, an inhibitor of mammalian target of rapamycin complex 1 (mTORC1). These stimuli also provoked microphthalmia transcription factor (MITF) translocation to the nucleus, and knockdown of MITF by short hairpin RNA indicated its absolute requirement for Gpnmb induction. In agreement with our in vitro data, reduced mTORC1 activity was observed in isolated ATMs from obese mice, which coincided with increased nuclear MITF localization and Gpnmb transcription. Aberrant nutrient sensing provokes lysosomal stress, resulting in attenuated mTORC1 activity and enhanced MITF-dependent Gpnmb induction. Our data identify Gpnmb as a novel marker for obesity-induced ATM infiltration and potentiator of interleukin-4 responses and point toward a crucial role for MITF in driving part of the ATM phenotype.
Collapse
Affiliation(s)
- Tanit L Gabriel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marc J Tol
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Roelof Ottenhof
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Aten
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Berend Hooibrink
- Department of Cell Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Barbara de Weijer
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Leonie van Elsenburg
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Kolb EA, Gorlick R, Billups CA, Hawthorne T, Kurmasheva RT, Houghton PJ, Smith MA. Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatr Blood Cancer 2014; 61:1816-21. [PMID: 24912408 PMCID: PMC4280502 DOI: 10.1002/pbc.25099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND Glembatumumab vedotin is an antibody-auristatin conjugate that targets cells expressing the transmembrane glycoprotein NMB (GPNMB, also known as osteoactivin). It has entered clinical evaluation for adult cancers that express GPNMB, including melanoma and breast cancer. PROCEDURES Glembatumumab vedotin was administered intravenously at a dose of 2.5 mg/kg using a weekly × 3 schedule, and its antitumor activity was evaluated against selected Pediatric Preclinical Testing Program (PPTP) solid tumor xenografts using standard PPTP response metrics. RESULTS Among PPTP xenografts, GPNMB was primarily expressed on the osteosarcoma xenografts, all of which expressed GPNMB at the RNA level, although at varying levels. Protein expression assessed by immunohistochemistry (IHC) showed variation across the osteosarcoma xenografts with one model showing no tumor cell expression. Glembatumumab vedotin induced statistically significant differences (P < 0.05) in event-free survival (EFS) distribution compared to control in each of the six osteosarcoma models studied. Three of six osteosarcoma xenografts demonstrated a maintained complete response (MCR). Two other xenografts showed progressive disease with growth delay, while the final xenograft showed progressive disease with no growth delay. Two of the osteosarcoma xenografts with MCRs showed the highest GPNMB expression at the RNA level. Conversely, the xenograft with the lowest GPNMB mRNA expression had the poorest response to glembatumumab vedotin. Two rhabdomyosarcoma xenografts that did not express GPNMB showed limited responses to glembatumumab vedotin. CONCLUSIONS Glembatumumab vedotin yielded high-level activity against three of six osteosarcoma xenografts, with evidence for response being related to GPNMB expression levels.
Collapse
|
32
|
Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD, Simantov R, Crowley E, Green JA, Hawthorne T, Davis TA, Sznol M, Hwu P. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol 2014; 32:3659-66. [PMID: 25267741 DOI: 10.1200/jco.2013.54.8115] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The antibody-drug conjugate glembatumumab vedotin links a fully human immunoglobulin G2 monoclonal antibody against the melanoma-related glycoprotein NMB (gpNMB) to the potent cytotoxin monomethyl auristatin E. This study evaluated the safety and activity of glembatumumab vedotin in patients with advanced melanoma. PATIENTS AND METHODS Patients received glembatumumab vedotin every 3 weeks (schedule 1) in a dose escalation and phase II expansion at the maximum-tolerated dose (MTD). Dosing during 2 of 3 weeks (schedule 2) and weekly (schedule 3) was also assessed. The primary end points were safety and pharmacokinetics. The secondary end points included antitumor activity, gpNMB expression, and immunogenicity. RESULTS One hundred seventeen patients were treated using schedule 1 (n = 79), schedule 2 (n = 15), or schedule 3 (n = 23). The MTDs were 1.88, 1.5, and 1.0 mg/kg for schedules 1, 2, and 3, respectively. Grade 3/4 treatment-related toxicities that occurred in two or more patients included rash, neutropenia, fatigue, neuropathy, arthralgia, myalgia, and diarrhea. Three treatment-related deaths (resulting from pneumococcal sepsis, toxic epidermal necrolysis, and renal failure) occurred at doses exceeding the MTDs. In the schedule 1 phase II expansion cohort (n = 34), five patients (15%) had a partial response and eight patients (24%) had stable disease for ≥ 6 months. The objective response rate (ORR) was 2 of 6 (33%) for the schedule 2 MTD and 3 of 12 (25%) for the schedule 3 MTD. Rash was correlated with a greater ORR and improved progression-free survival. CONCLUSION Glembatumumab vedotin is active in advanced melanoma. The schedule 1 MTD (1.88 mg/kg once every 3 weeks) was associated with a promising ORR and was generally well tolerated. More frequent dosing was potentially associated with a greater ORR but increased toxicity.
Collapse
Affiliation(s)
- Patrick A Ott
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ.
| | - Omid Hamid
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Anna C Pavlick
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Harriet Kluger
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Kevin B Kim
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Peter D Boasberg
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Ronit Simantov
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Elizabeth Crowley
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Jennifer A Green
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Thomas Hawthorne
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Thomas A Davis
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Mario Sznol
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Patrick Hwu
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| |
Collapse
|
33
|
Fiorentini C, Bodei S, Bedussi F, Fragni M, Bonini SA, Simeone C, Zani D, Berruti A, Missale C, Memo M, Spano P, Sigala S. GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity. Exp Cell Res 2014; 323:100-111. [DOI: 10.1016/j.yexcr.2014.02.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/03/2023]
|
34
|
Maric G, Rose AA, Annis MG, Siegel PM. Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. Onco Targets Ther 2013; 6:839-52. [PMID: 23874106 PMCID: PMC3711880 DOI: 10.2147/ott.s44906] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecularly targeted therapies are rapidly growing with respect to their clinical development and impact on cancer treatment due to their highly selective anti-tumor action. However, many aggressive cancers such as triple-negative breast cancer (TNBC) currently lack well-defined therapeutic targets against which such agents can be developed. The identification of tumor-associated antigens and the generation of antibody drug-conjugates represent an emerging area of intense interest and growth in the field of cancer therapeutics. Glycoprotein non-metastatic b (GPNMB) has recently been identified as a gene that is over-expressed in numerous cancers, including TNBC, and often correlates with the metastatic phenotype. In breast cancer, GPNMB expression in the tumor epithelium is associated with a reduction in disease-free and overall survival. Based on these findings, glembatumumab vedotin (CDX-011), an antibody-drug conjugate that selectively targets GPNMB, is currently being investigated in clinical trials for patients with metastatic breast cancer and unresectable melanoma. This review discusses the physiological and potential pathological roles of GPNMB in normal and cancer tissues, respectively, and details the clinical advances and challenges in targeting GPNMB-expressing malignancies.
Collapse
Affiliation(s)
- Gordana Maric
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada ; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
35
|
Huang JJ, Ma WJ, Yokoyama S. Expression and immunolocalization of Gpnmb, a glioma-associated glycoprotein, in normal and inflamed central nervous systems of adult rats. Brain Behav 2012; 2:85-96. [PMID: 22574278 PMCID: PMC3345354 DOI: 10.1002/brb3.39] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 01/16/2023] Open
Abstract
Glycoprotein nonmetastatic melanoma B (Gpnmb) is a type I transmembrane protein implicated in cell differentiation, inflammation, tissue regeneration, and tumor progression. Gpnmb, which is highly expressed in glioblastoma cells, is a potential therapeutic target. However, little is known about its expression, cellular localization, and roles in non-tumorous neural tissues. In this study, we examined Gpnmb expression in the central nervous system of adult rats under both normal and inflammatory conditions. Reverse transcription-polymerase chain reaction analysis revealed that Gpnmb mRNA was expressed in the cerebrum, cerebellum, brain stem, and spinal cord of normal adult rats. Immunoperoxidase staining revealed that Gpnmb-immunoreactive cells were widely distributed in the parenchyma of all brain regions examined, with the cells being most prevalent in the hippocampal dentate gyrus, cerebellar cortex, spinal dorsal horn, choroid plexus, ependyma, periventricular regions, and in layers II and III of the cerebral cortex. Double immunofluorescence staining showed that these cells were co-stained most frequently with the microglia/macrophage marker OX42, and occasionally with the radial glia marker RC2 or the neuronal marker NeuN. Furthermore, an intraperitoneal injection of bacterial endotoxin lipopolysaccharide increased the number of Gpnmb and OX42 double-positive cells in the area postrema, which is one of the circumventricular organs, indicating infiltration of hematogenous macrophages. These results suggest that Gpnmb, which is expressed in microglia and macrophages in non-tumorous neural tissues, plays an important role in the regulation of immune/inflammatory responses.
Collapse
Affiliation(s)
- Jian-Jun Huang
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine Kanazawa 920-8640, Japan
| | | | | |
Collapse
|
36
|
Abstract
Background Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Methods and Results Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Conclusion Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer.
Collapse
|
37
|
SLC41A1 Mg2+ transport is regulated via Mg2+-dependent endosomal recycling through its N-terminal cytoplasmic domain. Biochem J 2011; 439:129-39. [DOI: 10.1042/bj20110807] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SLC41A1 (solute carrier family 41, member A1) is a recently described vertebrate member of the MgtE family of Mg2+ transporters. Although MgtE transporters are found in both prokaryotic and eukaryotic organisms, and are highly conserved, little is known about the regulation of their Mg2+ transport function. In the present study, we have shown that endogenous SLC41A1 transporter expression is post-transcriptionally regulated by extracellular Mg2+ in TRPM7 (transient receptor potential cation channel, subfamily M, member 7)-deficient cells, suggesting that SLC41A1 transporters underlie a novel plasma membrane Mg2+ transport function. Consistent with this conclusion, structure–function analyses of heterologous SLC41A1 transporter expression demonstrate that SLC41A1 transporters exhibit the same plasma membrane orientation as homologous bacterial MgtE proteins, are capable of complementing growth of TRPM7-deficient cells only when the Mg2+ transporting pore is intact, and require an N-terminal cytoplasmic domain for Mg2+-dependent regulation of lysosomal degradation and surface expression. Taken together, our results indicate that SLC41A1 proteins are a central component of vertebrate Mg2+ transport systems, and that their Mg2+ transport function is regulated primarily through an endosomal recycling mechanism involving the SLC41A1 N-terminal cytoplasmic domain.
Collapse
|
38
|
Patel-Chamberlin M, Wang Y, Satirapoj B, Phillips LM, Nast CC, Dai T, Watkins RA, Wu X, Natarajan R, Leng A, Ulanday K, Hirschberg RR, LaPage J, Nam EJ, Haq T, Adler SG. Hematopoietic growth factor inducible neurokinin-1 (Gpnmb/Osteoactivin) is a biomarker of progressive renal injury across species. Kidney Int 2011; 79:1138-48. [DOI: 10.1038/ki.2011.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Hong SB, Oh H, Valera VA, Baba M, Schmidt LS, Linehan WM. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS One 2010; 5:e15793. [PMID: 21209915 PMCID: PMC3012117 DOI: 10.1371/journal.pone.0015793] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/29/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Germline mutations in a tumor suppressor gene FLCN lead to development of fibrofolliculomas, lung cysts and renal cell carcinoma (RCC) in Birt-Hogg-Dubé syndrome. TFE3 is a member of the MiTF/TFE transcription factor family and Xp11.2 translocations found in sporadic RCC involving TFE3 result in gene fusions and overexpression of chimeric fusion proteins that retain the C-terminal DNA binding domain of TFE3. We found that GPNMB expression, which is regulated by MiTF, was greatly elevated in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Since TFE3 is implicated in RCC, we hypothesized that elevated GPNMB expression was due to increased TFE3 activity resulting from the inactivation of FLCN. METHODOLOGY/PRINCIPAL FINDINGS TFE3 knockdown reduced GPNMB expression in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Moreover, FLCN knockdown induced GPNMB expression in FLCN-restored renal cancer cells. Conversely, wildtype FLCN suppressed GPNMB expression in FLCN-null cells. FLCN inactivation was correlated with increased TFE3 transcriptional activity accompanied by its nuclear localization as revealed by elevated GPNMB mRNA and protein expression, and predominantly nuclear immunostaining of TFE3 in renal cancer cells, mouse embryo fibroblast cells, mouse kidneys and mouse and human renal tumors. Nuclear localization of TFE3 was associated with TFE3 post-translational modifications including decreased phosphorylation. CONCLUSIONS/SIGNIFICANCE Increased TFE3 activity is a downstream event induced by FLCN inactivation and is likely to be important for renal tumor development. This study provides an important novel mechanism for induction of TFE3 activity in addition to TFE3 overexpression resulting from Xp11.2 translocations, suggesting that TFE3 may be more broadly involved in tumorigenesis.
Collapse
Affiliation(s)
- Seung-Beom Hong
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - HyoungBin Oh
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Vladimir A. Valera
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
40
|
Rose AAN, Annis MG, Dong Z, Pepin F, Hallett M, Park M, Siegel PM. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS One 2010; 5:e12093. [PMID: 20711474 PMCID: PMC2919417 DOI: 10.1371/journal.pone.0012093] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/18/2010] [Indexed: 01/10/2023] Open
Abstract
Background Glycoprotein non-metastatic melanoma protein B (GPNMB)/Osteoactivin (OA) is a transmembrane protein expressed in approximately 40–75% of breast cancers. GPNMB/OA promotes the migration, invasion and metastasis of breast cancer cells; it is commonly expressed in basal/triple-negative breast tumors and is associated with shorter recurrence-free and overall survival times in patients with breast cancer. Thus, GPNMB/OA represents an attractive target for therapeutic intervention in breast cancer; however, little is known about the functions of GPNMB/OA within the primary tumor microenvironment. Methodology/Principal Findings We have employed mouse and human breast cancer cells to investigate the effects of GPNMB/OA on tumor growth and angiogenesis. GPNMB/OA-expressing tumors display elevated endothelial recruitment and reduced apoptosis when compared to vector control-derived tumors. Primary human breast cancers characterized by high vascular density also display elevated levels of GPNMB/OA when compared to those with low vascular density. Using immunoblot and ELISA assays, we demonstrate the GPNMB/OA ectodomain is shed from the surface of breast cancer cells. Transient siRNA-mediated knockdown studies of known sheddases identified ADAM10 as the protease responsible for GPNMB/OA processing. Finally, we demonstrate that the shed extracellular domain (ECD) of GPNMB/OA can promote endothelial migration in vitro. Conclusions/Significance GPNMB/OA expression promotes tumor growth, which is associated with enhanced endothelial recruitment. We identify ADAM10 as a sheddase capable of releasing the GPNMB/OA ectodomain from the surface of breast cancer cells, which induces endothelial cell migration. Thus, ectodomain shedding may serve as a novel mechanism by which GPNMB/OA promotes angiogenesis in breast cancer.
Collapse
Affiliation(s)
- April A. N. Rose
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Matthew G. Annis
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zhifeng Dong
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Francois Pepin
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michael Hallett
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Peter M. Siegel
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
41
|
[Current impact of natural products in the discovery of anticancer drugs]. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:218-32. [PMID: 20637355 DOI: 10.1016/j.pharma.2010.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/15/2010] [Accepted: 04/19/2010] [Indexed: 12/15/2022]
Abstract
Since the middle of 1990s, the development of combinatorial chemistry along with the high throughput screening have led to some lack of interest for natural products from the pharmaceutical industry. Moreover, purification and optimization of natural compounds are very often difficult and animal experimentations need enough supply of natural sources or alternatively need sophisticated total synthesis. In oncology, this increased disinterest was also closely connected with the rapid expansion of monoclonal antibodies and synthetic protein kinase inhibitors. However since 2005, with the approval of five new drugs by the FDA (trabectedin, ixabepilone, temsirolimus, everolimus and Vinflunine), it appears that natural products are still present as direct or indirect sources of drugs. On the other hand, a third generation of natural product has arisen, which relies upon bioengineering using genetically altered producer organisms. This is particularly true of the polyketides where bioengineering harnesses their natural flexibility to expand their structural diversity. Several programs are going on to produce antibiotics, anticancer drugs or immunosuppressant. This combinatorial approach makes drug discovery by bioengineering complementary with conventional medicinal chemistry. With the approval of Mylotarg by the FDA, increased interest has also been devoted to immunoconjugates, which represent a way by which highly cytotoxic natural products such as dolastatin, calicheamycin, duocarmycin and maytansin may be targeted to cancer cells while limiting their side-effects.
Collapse
|
42
|
|
43
|
Rose AAN, Grosset AA, Dong Z, Russo C, Macdonald PA, Bertos NR, St-Pierre Y, Simantov R, Hallett M, Park M, Gaboury L, Siegel PM. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res 2010; 16:2147-56. [PMID: 20215530 DOI: 10.1158/1078-0432.ccr-09-1611] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Although the murine orthologue of glycoprotein nonmetastatic B (GPNMB), Osteoactivin, promotes breast cancer metastasis in an in vivo mouse model, its importance in human breast cancer is unknown. We have examined the significance of GPNMB expression as a prognostic indicator of recurrence and assessed its potential as a novel therapeutic target in breast cancer. EXPERIMENTAL DESIGN The clinical significance of GPNMB expression in breast cancer was addressed by analyzing GPNMB levels in several published gene expression data sets and two independent tissue microarrays derived from human breast tumors. GPNMB-expressing human breast cancer cell lines were further used to validate a toxin-conjugated anti-GPNMB antibody as a novel therapeutic agent. RESULTS GPNMB expression correlates with shorter recurrence times and reduced overall survival of breast cancer patients. Epithelial-specific GPNMB staining is an independent prognostic indicator for breast cancer recurrence. GPNMB is highly expressed in basal and triple-negative breast cancers and is associated with increased risk of recurrence within this subtype. GPNMB expression confers a more migratory and invasive phenotype on breast cancer cells and sensitizes them to killing by CDX-011 (glembatumumab vedotin), a GPNMB-targeted antibody-drug conjugate. CONCLUSIONS GPNMB expression is associated with the basal/triple-negative subtype and is a prognostic marker of poor outcome in patients with breast cancer. CDX-011 (glembatumumab vedotin) is a promising new targeted therapy for patients with metastatic triple-negative breast cancers, a patient population that currently lacks targeted-therapy options.
Collapse
Affiliation(s)
- April A N Rose
- Department of Medicine, Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West Montréal, Québec, Canada, H3A 1A3
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hoashi T, Sato S, Yamaguchi Y, Passeron T, Tamaki K, Hearing VJ. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. FASEB J 2010; 24:1616-29. [PMID: 20056711 DOI: 10.1096/fj.09-151019] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Melanosomes are organelles specialized for the production of melanin pigment and are specifically produced by melanocytic cells. More than 150 pigmentation-related genes have been identified, including glycoprotein nonmetastatic melanoma protein b (GPNMB). A recent proteomics analysis revealed that GPNMB is localized in melanosomes, and GPNMB is a membrane-bound glycoprotein that shows high homology with a well-known melanosomal structural protein, Pmel17/gp100. In this study, we show that GPNMB is expressed in melanocytes of normal human skin, as well as in human melanoma cells. GPNMB is heavily glycosylated and is enriched in mature (stage III and IV) melanosomes in contrast to MART-1 and Pmel17, which are abundant in early (stage I and II) melanosomes. MART-1 and Pmel17 play critical roles in the maturation of early melanosomes; thus, we speculate that GPNMB might be important in the functions of late melanosomes, possibly their transport and/or transfer to keratinocytes. We also demonstrate that a secreted form of GPNMB is released by ectodomain shedding from the largely Golgi-modified form of GPNMB and that the PKC and Ca(2+) intracellular signaling pathways regulate that shedding. We conclude that GPNMB is a melanosomal protein that is released by proteolytic ectodomain shedding and might be a useful and specific histological marker of melanocytic cells.
Collapse
Affiliation(s)
- Toshihiko Hoashi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256, USA
| | | | | | | | | | | |
Collapse
|
45
|
Rose AAN, Siegel PM. Emerging therapeutic targets in breast cancer bone metastasis. Future Oncol 2010; 6:55-74. [DOI: 10.2217/fon.09.138] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the past decade, our understanding of the molecular mechanisms that underlie breast cancer pathology and progression has dramatically improved. Using this knowledge, we have identified additional targets and developed novel therapeutic interventions in breast cancer. Together, these translational research efforts are helping to usher us into an age of personalized cancer therapy. Metastasis to bone is a common and devastating consequence of breast cancer. Bisphosphonates, which represent the current gold standard in bone metastasis therapies, are being improved with newer and more efficacious generations of these compounds being developed. Breast cancer growth in the bone requires activation of various signaling pathways in both cancer cells and stromal cells, including those that are stimulated by TGF-β and RANKL, and mediated through the Src tyrosine kinase. Bone cells and cancer cells alike express promising targets for therapeutic intervention, including Cathepsin K, CXCR4 and GPNMB. In this article we discuss the molecular mechanisms behind these pro-metastatic molecules and review the most recent findings in the clinical development of their associated targeted therapies.
Collapse
Affiliation(s)
- April AN Rose
- Departments of Medicine, Goodman Cancer Centre, McGill University, QC H3A 1A3, Canada
| | - Peter M Siegel
- Departments of Medicine and Biochemistry, Goodman Cancer Centre, McGill University, 1160 Pine Ave. West, Room 513, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
46
|
Qian X, Mills E, Torgov M, LaRochelle WJ, Jeffers M. Pharmacologically enhanced expression of GPNMB increases the sensitivity of melanoma cells to the CR011-vcMMAE antibody-drug conjugate. Mol Oncol 2008; 2:81-93. [PMID: 19383330 DOI: 10.1016/j.molonc.2008.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022] Open
Abstract
GPNMB is a melanoma-associated glycoprotein that is targeted by the CR011-vcMMAE antibody-drug conjugate (ADC). Previous studies have shown that CR011-vcMMAE induces the apoptosis of GPNMB-expressing tumor cells in vitro and tumor regression in xenograft models. This ADC is currently in clinical trials for melanoma. In the present investigation, a variety of compounds were examined for their ability to increase the expression of GPNMB by cancer cells. These experiments lead to the identification of three distinct groups of compounds that increased GPNMB, some of which were shown to enhance the sensitivity of melanoma cells to CR011-vcMMAE. These data indicate that it may be possible to increase the anticancer activity of CR011-vcMMAE through pharmacological enhancement of GPNMB expression for potential therapeutic benefit.
Collapse
|