1
|
Liu L, He Y, Du H, Tang M, Wang T, Tan J, Zha L, Yang L, Ashrafizadeh M, Tian Y, Zhou H. Biological profile of breast cancer brain metastasis. Acta Neuropathol Commun 2025; 13:78. [PMID: 40253355 PMCID: PMC12008903 DOI: 10.1186/s40478-025-01983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/08/2025] [Indexed: 04/21/2025] Open
Abstract
Breast cancer is one of the leading causes of death worldwide. The aggressive behaviour of breast tumor results from their metastasis. Notably, the brain tissue is one of the common regions of metastasis, thereby reducing the overall survival of patients. Moreover, the metastatic tumors demonstrate poor response or resistance to therapies. In addition, breast cancer brain metastasis provides the poor prognosis of patients. Therefore, it is of importance to understand the mechanisms in breast cancer brain metastasis. Both cell lines and animal models have been developed for the evaluation of breast cancer brain metastasis. Moreover, different tumor microenvironment components and other factors such as lymphocytes and astrocytes can affect brain metastasis. The breast cancer cells can disrupt the blood-brain barrier (BBB) during their metastasis into brain, developing blood-tumor barrier to enhance carcinogenesis. The breast cancer brain metastasis can be increased by the dysregulation of chemokines, STAT3, Wnt, Notch and PI3K/Akt. On the other hand, the effective therapeutics have been developed for the brain metastasis such as introduction of nanoparticles. Moreover, the disruption of BBB by ultrasound can increase the entrance of bioactive compounds to the brain tissue. In order to improve specificity and selectivity, the nanoparticles for the delivery of therapeutics and crossing over BBB have been developed to suppress breast cancer brain metastasis.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncology, Suining Central Hospital, Suning, 629000, China
| | - Yuan He
- Department of Oncology, Yunyang County People's Hospital, Chongqing, 404500, China
| | - Hongyu Du
- Department of General Medicine, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongging University of Technology, Chongqing, 400054, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Tingting Wang
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jieren Tan
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, PR China
| | - Lisha Zha
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, PR China
| | - Li Yang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, Guangdong Province, 510515, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL, 60532, USA.
- Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China.
| | - Hui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Baster Z, Russell L, Rajfur Z. A Review of Talin- and Integrin-Dependent Molecular Mechanisms in Cancer Invasion and Metastasis. Int J Mol Sci 2025; 26:1798. [PMID: 40076426 PMCID: PMC11899650 DOI: 10.3390/ijms26051798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer is the second most common cause of death in the world, representing one of the main economic burdens in health care and research. The effort of research has mainly focused on limiting the growth of a localized tumor, but most recently, there has been more attention focused on restricting the spreading of the cancer via invasion and metastasis. The signaling pathways behind these two processes share many molecules with physiological pathways regulating cell adhesion and migration, and, moreover, adhesion and migration processes themselves underlie tumor potential for invasion. In this work, we reviewed the latest literature about cancer development and invasion and their regulation by cell migration- and adhesion-related proteins, with a specific focus on talins and integrins. We also summarized the most recent developments and approaches to anti-cancer therapies, concentrating on cell migration-related therapies.
Collapse
Affiliation(s)
- Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lindsay Russell
- Undergraduate Program, Barnard College of Columbia University, New York, NY 10027, USA;
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348 Kraków, Poland
| |
Collapse
|
3
|
Li X, Liu Q, Wu M, Wang H, Yang J, Mu X, Zhang XD. Artificially Engineered Nanoprobes for Ultrasensitive Magnetic Resonance Imaging. Adv Healthc Mater 2025; 14:e2403099. [PMID: 39562174 DOI: 10.1002/adhm.202403099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive and radiation-free technique used for soft tissue. However, there are some limitations of the MRI modality, such as low sensitivity and poor image resolution. Artificially engineered magnetic nanoprobes have been extensively explored as a versatile platform for ultrasensitive MRI contrast agents due to their unique physiochemical characteristics and tunable magnetic properties. In this review, the emphasis is on recent progress in MRI nanoprobes with different structures and elements, including gadolinium-, iron-, manganese-based and metal-free nanoprobes. The key influencing factors and advanced engineering strategies for modulating the relaxation ratio of MRI nanoprobes are systematically condensed. Furthermore, the widespread and noninvasive visualization applications of MRI nanoprobes for real time monitoring of major organs and accurate disease diagnosing, such as cerebrovascular, ischemia, Alzheimer's disease, liver fibrosis, whole-body tumors, inflammation, as well as multi-mode imaging applications are summarized. Finally, the challenges and prospects for the future development of MRI nanoprobes are discussed, and promising strategies are specifically emphasized for improving biocompatibility, precisely engineering of optimal size, AI-driven prediction and design, and multifunctional self-assembly to enhance diagnostics. This review will provide new inspiration for artificial engineering and nanotechnology-based molecular probes for medical diagnosis and therapy with ultrasensitive MRI.
Collapse
Affiliation(s)
- Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Menglin Wu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Fabiano AR, Robbins SC, Knoblauch SV, Rowland SJ, Dombroski JA, King MR. Multiplex, high-throughput method to study cancer and immune cell mechanotransduction. Commun Biol 2024; 7:674. [PMID: 38824207 PMCID: PMC11144229 DOI: 10.1038/s42003-024-06327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Studying cellular mechanoresponses during cancer metastasis is limited by sample variation or complex protocols that current techniques require. Metastasis is governed by mechanotransduction, whereby cells translate external stimuli, such as circulatory fluid shear stress (FSS), into biochemical cues. We present high-throughput, semi-automated methods to expose cells to FSS using the VIAFLO96 multichannel pipetting device custom-fitted with 22 G needles, increasing the maximum FSS 94-fold from the unmodified tips. Specifically, we develop protocols to semi-automatically stain live samples and to fix, permeabilize, and intracellularly process cells for flow cytometry analysis. Our first model system confirmed that the pro-apoptotic effects of TRAIL therapeutics in prostate cancer cells can be enhanced via FSS-induced Piezo1 activation. Our second system implements this multiplex methodology to show that FSS exposure (290 dyn cm-2) increases activation of murine bone marrow-derived dendritic cells. These methodologies greatly improve the mechanobiology workflow, offering a high-throughput, multiplex approach.
Collapse
Affiliation(s)
- Abigail R Fabiano
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Spencer C Robbins
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Samantha V Knoblauch
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Schyler J Rowland
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA.
| |
Collapse
|
5
|
Zeng W, Wang Y, Zhang Q, Hu C, Li J, Feng J, Hu C, Su Y, Lou J, Long L, Zhou X. Neutrophil Nanodecoys Inhibit Tumor Metastasis by Blocking the Interaction between Tumor Cells and Neutrophils. ACS NANO 2024; 18:7363-7378. [PMID: 38422392 DOI: 10.1021/acsnano.3c08946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cancer metastasis is the main cause of cancer-related deaths and involves the interaction between tumor cells and neutrophils. In this study, we developed activated neutrophil membrane-coated nanoparticles (aNEM NPs) as nanodecoys to block neutrophil-mediated cancer metastasis. The aNEM NPs were fabricated by cloaking poly(lactic acid) nanoparticles with membranes derived from activated neutrophils and inherited the functional proteins of activated neutrophils. We demonstrated that aNEM NPs could interfere with the recruitment of neutrophils to the primary tumor and premetastatic niches, inhibit the adhesion of neutrophils to tumor vascular endothelium and circulating tumor cells (CTCs), and disrupt the formation of CTC-neutrophil clusters in vitro and in vivo. In 4T1-bearing mice, aNEM NPs could effectively reduce breast cancer metastasis to various organs in mice. Our results suggest that aNEM NPs are a promising nanomedicine for preventing or treating cancer metastasis by acting as neutrophil nanodecoys.
Collapse
Affiliation(s)
- Weiya Zeng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ying Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
- Leibo County People's Hospital, Sichuan 616500, China
| | - Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jinwei Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chenglu Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yong Su
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ling Long
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
6
|
Saltarin F, Wegmüller A, Bejarano L, Ildiz ES, Zwicky P, Vianin A, Spadin F, Soukup K, Wischnewski V, Engelhardt B, Deutsch U, J. Marques I, Frenz M, Joyce JA, Lyck R. Compromised Blood-Brain Barrier Junctions Enhance Melanoma Cell Intercalation and Extravasation. Cancers (Basel) 2023; 15:5071. [PMID: 37894438 PMCID: PMC10605101 DOI: 10.3390/cancers15205071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Melanoma frequently metastasises to the brain, and a detailed understanding of the molecular and cellular mechanisms underlying melanoma cell extravasation across the blood-brain barrier (BBB) is important for preventing brain metastasis formation. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as an in vitro BBB model, we imaged the interaction of melanoma cells into pMBMEC monolayers. We observed exclusive junctional intercalation of melanoma cells and confirmed that melanoma-induced pMBMEC barrier disruption can be rescued by protease inhibition. Interleukin (IL)-1β stimulated pMBMECs or PECAM-1-knockout (-ko) pMBMECs were employed to model compromised BBB barrier properties in vitro and to determine increased melanoma cell intercalation compared to pMBMECs with intact junctions. The newly generated brain-homing melanoma cell line YUMM1.1-BrM4 was used to reveal increased in vivo extravasation of melanoma cells across the BBB of barrier-compromised PECAM-1-deficient mice compared to controls. Taken together, our data indicate that preserving BBB integrity is an important measure to limit the formation of melanoma-brain metastasis.
Collapse
Affiliation(s)
- Federico Saltarin
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; (F.S.); (P.Z.)
| | - Adrian Wegmüller
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; (F.S.); (P.Z.)
| | - Leire Bejarano
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland (V.W.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ece Su Ildiz
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; (F.S.); (P.Z.)
| | - Pascale Zwicky
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; (F.S.); (P.Z.)
| | - Andréj Vianin
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | - Florentin Spadin
- Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland; (F.S.)
| | - Klara Soukup
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland (V.W.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland (V.W.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; (F.S.); (P.Z.)
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; (F.S.); (P.Z.)
| | - Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, 3012 Bern, Switzerland; (F.S.)
| | - Johanna A. Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland (V.W.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; (F.S.); (P.Z.)
| |
Collapse
|
7
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
8
|
Singh AK, Malviya R, Prajapati B, Singh S, Yadav D, Kumar A. Nanotechnology-Aided Advancement in Combating the Cancer Metastasis. Pharmaceuticals (Basel) 2023; 16:899. [PMID: 37375846 PMCID: PMC10304141 DOI: 10.3390/ph16060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Modern medicine has been working to find a cure for cancer for almost a century, but thus far, they have not been very successful. Although cancer treatment has come a long way, more work has to be carried out to boost specificity and reduce systemic toxicity. The diagnostic industry is on the cusp of a technological revolution, and early diagnosis is essential for improving prognostic outlook and patient quality of life. In recent years, nanotechnology's use has expanded, demonstrating its efficacy in enhancing fields such as cancer treatment, radiation therapy, diagnostics, and imaging. Applications for nanomaterials are diverse, ranging from enhanced radiation adjuvants to more sensitive early detection instruments. Cancer, particularly when it has spread beyond the original site of cancer, is notoriously tough to combat. Many people die from metastatic cancer, which is why it remains a huge issue. Cancer cells go through a sequence of events known as the "metastatic cascade" throughout metastasis, which may be used to build anti-metastatic therapeutic techniques. Conventional treatments and diagnostics for metastasis have their drawbacks and hurdles that must be overcome. In this contribution, we explore in-depth the potential benefits that nanotechnology-aided methods might offer to the detection and treatment of metastatic illness, either alone or in conjunction with currently available conventional procedures. Anti-metastatic drugs, which can prevent or slow the spread of cancer throughout the body, can be more precisely targeted and developed with the help of nanotechnology. Furthermore, we talk about how nanotechnology is being applied to the treatment of patients with cancer metastases.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Arvind Kumar
- Chandigarh Engineering College, Jhanjeri, Mohali 140307, India;
| |
Collapse
|
9
|
Jayatilleke KM, Duivenvoorden HM, Ryan GF, Parker BS, Hulett MD. Investigating the Role of Heparanase in Breast Cancer Development Utilising the MMTV-PyMT Murine Model of Mammary Carcinoma. Cancers (Basel) 2023; 15:cancers15113062. [PMID: 37297024 DOI: 10.3390/cancers15113062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer is the second most common human malignancy and is a major global health burden. Heparanase (HPSE) has been widely implicated in enhancing the development and progression of solid tumours, including breast cancer. In this study, the well-established spontaneous mammary tumour-developing MMTV-PyMT murine model was utilised to examine the role of HPSE in breast cancer establishment, progression, and metastasis. The use of HPSE-deficient MMTV-PyMT (MMTV-PyMTxHPSE-/-) mice addressed the lack of genetic ablation models to investigate the role of HPSE in mammary tumours. It was demonstrated that even though HPSE regulated mammary tumour angiogenesis, mammary tumour progression and metastasis were HPSE-independent. Furthermore, there was no evidence of compensatory action by matrix metalloproteinases (MMPs) in response to the lack of HPSE expression in the mammary tumours. These findings suggest that HPSE may not play a significant role in the mammary tumour development of MMTV-PyMT animals. Collectively, these observations may have implications in the clinical setting of breast cancer and therapy using HPSE inhibitors.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hendrika M Duivenvoorden
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Gemma F Ryan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Belinda S Parker
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark D Hulett
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
10
|
Almoustafa HA, Alshawsh MA, Al-Suede FSR, Alshehade SA, Abdul Majid AMS, Chik Z. The Chemotherapeutic Efficacy of Hyaluronic Acid Coated Polymeric Nanoparticles against Breast Cancer Metastasis in Female NCr-Nu/Nu Nude Mice. Polymers (Basel) 2023; 15:284. [PMID: 36679166 PMCID: PMC9863707 DOI: 10.3390/polym15020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Polyethylene glycol (PEG) coated Poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for cancer treatment are biocompatible, nonimmunogenic and accumulate in tumour sites due to the enhanced permeability and retention (EPR). Doxorubicin (DOX) is a potent but cardiotoxic anticancer agent. Hyaluronic acid (HA) occurs naturally in the extra-cellar matrix and binds to CD44 receptors which are overexpressed in cancer metastasis, proven to be characteristic of cancer stem cells and responsible for multidrug resistance. In this study, an athymic mice model of breast cancer metastasis was developed using red fluorescent protein (RFP)-labelled triple negative cancer cells. The animals were divided into four treatment groups (Control, HA-PEG-PLGA nanoparticles, PEG-PLGA nanoparticles, and Free DOX). The tumour size growth was assessed until day 25 when animals were sacrificed. Mice treated with HA-PEG-PLGA NPs inhibited tumour growth. The tumour growth at day 25 (118% ± 13.0) was significantly (p < 0.05) less than PEG-PLGA NPs (376% ± 590 and control (826% ± 970). Fluorescent microscopy revealed that HA-PEG-PLGA NPs had significantly (p < 0.05) less metastasis in liver, spleen, colon, and lungs as compared to control and to Free DOX groups. The efficacy of HA-PEG-PLGA NPs was proven in vivo. Further pharmacokinetic and toxicity studies are required for this formulation to be ready for clinical research.
Collapse
Affiliation(s)
- Hassan A. Almoustafa
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Fouad Saleih R. Al-Suede
- EMAN Biodiscoveries Sdn. Bhd., A1-4, Lot 5, Persiaran 2/1, Kedah Halal Park, Kawasan Perindustrian Sungai Petani, Sungai Petani 08000, Malaysia
| | | | - Amin Malik Shah Abdul Majid
- EMAN Biodiscoveries Sdn. Bhd., A1-4, Lot 5, Persiaran 2/1, Kedah Halal Park, Kawasan Perindustrian Sungai Petani, Sungai Petani 08000, Malaysia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, 131 Garran Rd., Acton 2601, Australia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Faculty of Medicine, Universiti Malaya Bioequivalence and Testing Centre (UBAT), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
Morimoto M, Maishi N, Tsumita T, Alam MT, Kikuchi H, Hida Y, Yoshioka Y, Ochiya T, Annan DA, Takeda R, Kitagawa Y, Hida K. miR-1246 in tumor extracellular vesicles promotes metastasis via increased tumor cell adhesion and endothelial cell barrier destruction. Front Oncol 2023; 13:973871. [PMID: 37124539 PMCID: PMC10130374 DOI: 10.3389/fonc.2023.973871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Tumor blood vessels play a key role in tumor metastasis. We have previously reported that tumor endothelial cells (TECs) exhibit abnormalities compared to normal endothelial cells. However, it is unclear how TECs acquire these abnormalities. Tumor cells secrete extracellular vesicles (EVs) to create a suitable environment for themselves. We have previously identified miR-1246 to be more abundant in high metastatic melanoma EVs than in low metastatic melanoma EVs. In the current study, we focused on miR-1246 as primarily responsible for acquiring abnormalities in TECs and examined whether the alteration of endothelial cell (EC) character by miR-1246 promotes cancer metastasis. Methods We analyzed the effect of miR-1246 in metastatic melanoma, A375SM-EVs, in vivo metastasis. The role of tumor EV-miR-1246 in the adhesion between ECs and tumor cells and the EC barrier was addressed. Changes in the expression of adhesion molecule and endothelial permeability were examined. Results Intravenous administration of A375SM-EVs induced tumor cell colonization in the lung resulting in lung metastasis. In contrast, miR-1246 knockdown in A375SM decreased lung metastasis in vivo. miR-1246 transfection in ECs increased the expression of adhesion molecule ICAM-1 via activation of STAT3, followed by increased tumor cell adhesion to ECs. Furthermore, the expression of VE-Cadherin was downregulated in miR-1246 overexpressed EC. A375SM-EV treatment enhanced endothelial permeability. VE-Cadherin was validated as the potential target gene of miR-1246 via the target gene prediction database and 3' UTR assay. Conclusion miR-1246 in high metastatic tumor EVs promotes lung metastasis by inducing the adhesion of tumor cells to ECs and destroying the EC barrier.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroshi Kikuchi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yusuke Yoshioka
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Dorcas A. Annan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Ryo Takeda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- *Correspondence: Kyoko Hida,
| |
Collapse
|
12
|
A Tumor Accelerator Based on Multicomponent Bone Scaffolds and Cancer Cell Homing. Polymers (Basel) 2022; 14:polym14163340. [PMID: 36015599 PMCID: PMC9416103 DOI: 10.3390/polym14163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Bone tissue attracts cancer cell homing biologically, mechanically, or chemically. It is difficult and time consuming to identify their complex cross-talk using existed methods. In this study, a multi-component bone matrix was fabricated using gelatin, hydroxyapatite (HAp), and epidermal growth factor (EGF) as raw materials to investigate how “acellular” bone matrix affects cancer cell homing in bone. Then, EGF-responsive cancer cells were cultured with the scaffold in a dynamical bioreactor. For different culture periods, the effects of HAp, gelatin, and EGF on the cell adhesion, proliferation, 3D growth, and migration of cancer were evaluated. The results indicated that a small amount of calcium ion released from the scaffolds accelerated cancer MDA-MB-231 adhesion on the surface of inner pores. Moreover, degradable gelatin key caused cancer cell growth on the scaffold surface to turn into a 3D aggregation. Despite this, the formation of cancer spheroids was slow, and required 14 days of dynamic culture. Thankfully, EGF promoted cancer cell adhesion, proliferation, and migration, and cancer spheroids were observed only after 3-day culture. We concluded that the combination of the multiple components in this scaffold allows cancer cells to meet multiple requirements of cancer dynamic progression.
Collapse
|
13
|
Avula LR, Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev 2022; 41:383-404. [PMID: 35366154 PMCID: PMC8975728 DOI: 10.1007/s10555-022-10025-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 02/03/2023]
Abstract
Cancer, especially when it has metastasized to different locations in the body, is notoriously difficult to treat. Metastatic cancer accounts for most cancer deaths and thus remains an enormous challenge. During the metastasis process, cancer cells negotiate a series of steps termed the “metastatic cascadeˮ that offer potential for developing anti-metastatic therapy strategies. Currently available conventional treatment and diagnostic methods addressing metastasis come with their own pitfalls and roadblocks. In this contribution, we comprehensively discuss the potential improvements that nanotechnology-aided approaches are able to bring, either alone or in combination with the existing conventional techniques, to the identification and treatment of metastatic disease. We tie specific nanotechnology-aided strategies to the complex biology of the different steps of the metastatic cascade in order to open up new avenues for fine-tuned targeting and development of anti-metastatic agents designed specifically to prevent or mitigate the metastatic outgrowth of cancer. We also present a viewpoint on the progress of translation of nanotechnology into cancer metastasis patient care.
Collapse
Affiliation(s)
- Leela Rani Avula
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
14
|
Rohini M, Vairamani M, Selvamurugan N. TGF-β1-stimulation of NFATC2 and ATF3 proteins and their interaction for matrix metalloproteinase 13 expression in human breast cancer cells. Int J Biol Macromol 2021; 192:1325-1330. [PMID: 34687766 DOI: 10.1016/j.ijbiomac.2021.10.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 01/25/2023]
Abstract
Activating transcription factor 3 (ATF3), an inducible stress gene, is stimulated by transforming growth factor-beta1 (TGF-β1) in a protracted and relentless manner in human mammary cancer cells (hBC cells; MDA-MB231). The molecular mechanism behind this stable expression of ATF3 via TGF-β1 in MDA-MB231 cells is unknown. This study found that TGF-β1 stimulated the expression of the nuclear factor of activated T Cells 2 (NFATC2) in MDA-MB231 cells and provided evidence of its interaction with ATF3. The functional characterization of NFATC2 in association with ATF3 was determined by silencing of NFATC2 using siRNA. Knock-down of NFATC2 decreased the expression of both ATF3 and its target gene MMP13 (matrix metalloproteinase 13, a critical invasive gene) in hBC cells. Chromatin immunoprecipitation revealed that TGF-β1 promoted NFATC2 binding and NFATC2-ATF3 complex binding at the MMP13 promoter region, whereas silencing of NFATC2 decreased their binding in hBC cells. Thus, we uncovered the mechanism of interaction between NFATC2 and ATF3 regulated by TGF-β1, and NFATC2 acted as a pivotal factor in providing ATF3 stability and further drove MMP13 transcription. Targeting NFATC2 and blocking its association with ATF3 could therefore help to slow the progression of breast cancer.
Collapse
Affiliation(s)
- M Rohini
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - M Vairamani
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
15
|
Regulation of inflammation and COX-2 gene expression in benzo (a) pyrene induced lung carcinogenesis in mice by all trans retinoic acid (ATRA). Life Sci 2021; 285:119967. [PMID: 34543639 DOI: 10.1016/j.lfs.2021.119967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022]
Abstract
AIM Inflammation provides favourable microenvironment for cancer development. An enhanced COX-2 gene expression is a key inflammatory mediator of cancers and the drug that inhibits it, helps to manage cancer effectively and increases survival rate. The objective is to analyse the inflammatory changes and COX-2 gene expression in benzo (a) pyrene induced mice and to evaluate the regulatory effect of all trans retinoic acid. MATERIALS AND METHODS The body and organ weights were recorded in B(a)P induced mice. The haematological parameters and serum inflammatory markers of carcinogenesis were tested. The H & E stained liver and lung tissues were examined for histopathologic changes. The COX-2 gene expression was analysed by RT-PCR and qPCR in lung and liver. KEY FINDINGS The decreased body weight, increased organ weights and the damages in liver and lung were observed in B(a)P induced mice and were prevented significantly upon ATRA treatment. The lowered Hb, RBC and lymphocytes and an enhanced WBC, monocytes and neutrophils observed in B(a)P group were significantly reversed in treated group. A drastic increase in cancer associated inflammatory markers observed in B(a)P induced mice were significantly (P ≤ 0.001) reduced in treated mice. The RT-PCR product density of COX-2 gene was very high in B(a)P group (lung-0.43 ± 0.06; liver-0.39 ± 0.04) significantly lower in treated group (lung-0.12 ± 0.03; liver-0.08 ± 0.03) with a significant difference in RQ values (B(a)P lung-18.46 ± 0.04, liver-12.46 ± 0.08; treated lung-5.93 ± 0.07, liver-2.92 ± 0.10). SIGNIFICANCE The ATRA has decreased the inflammatory condition with downregulation of COX-2 gene expression and thereby prevented carcinogenesis during early stage of B(a)P induced cancer development.
Collapse
|
16
|
Glenny EM, Coleman MF, Giles ED, Wellberg EA, Hursting SD. Designing Relevant Preclinical Rodent Models for Studying Links Between Nutrition, Obesity, Metabolism, and Cancer. Annu Rev Nutr 2021; 41:253-282. [PMID: 34357792 PMCID: PMC8900211 DOI: 10.1146/annurev-nutr-120420-032437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to (a) provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; (b) identify common pitfalls when selecting a rodent model; and (c) discuss strengths and limitations of available preclinical models.
Collapse
Affiliation(s)
- Elaine M Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
17
|
Goswami M. Deep learning models for benign and malign ocular tumor growth estimation. Comput Med Imaging Graph 2021; 93:101986. [PMID: 34509705 DOI: 10.1016/j.compmedimag.2021.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
Relatively abundant availability of medical imaging data has provided significant support in the development and testing of Neural Network based image processing methods. Clinicians often face issues in selecting suitable image processing algorithm for medical imaging data. A strategy for the selection of a proper model is presented here. The training data set comprises optical coherence tomography (OCT) and angiography (OCT-A) images of 50 mice eyes with more than 100 days follow-up. The data contains images from treated and untreated mouse eyes. Four deep learning variants are tested for automatic (a) differentiation of tumor region with healthy retinal layer and (b) segmentation of 3D ocular tumor volumes. Exhaustive sensitivity analysis of deep learning models is performed with respect to the number of training and testing images using eight performance indices to study accuracy, reliability/reproducibility, and speed. U-net with UVgg16 is best for malign tumor data set with treatment (having considerable variation) and U-net with Inception backbone for benign tumor data (with minor variation). Loss value and root mean square error (R.M.S.E.) are found most and least sensitive performance indices, respectively. The performance (via indices) is found to be exponentially improving regarding a number of training images. The segmented OCT-Angiography data shows that neovascularization drives the tumor volume. Image analysis shows that photodynamic imaging-assisted tumor treatment protocol is transforming an aggressively growing tumor into a cyst. An empirical expression is obtained to help medical professionals choose a particular model given the number of images and types of characteristics. We recommend that the presented exercise should be taken as standard practice before employing a particular deep learning model for biomedical image analysis.
Collapse
Affiliation(s)
- Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
18
|
Xu M, Weng Q, Ji J. Applications and advances of CRISPR/Cas9 in animal cancer model. Brief Funct Genomics 2021; 19:235-241. [PMID: 32124927 DOI: 10.1093/bfgp/elaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Indexed: 01/18/2023] Open
Abstract
The recent developments of clustered regularly interspaced short palindromic repeats(CRISPR)/-associate protein 9 (CRISPR/Cas9) have got scientific interests due to the straightforward, efficient and versatile talents of it. Furthermore, the CRISPR/Cas9 system has democratized access to gene editing in many biological fields, including cancer. Cancer development is a multistep process caused by innate and acquired mutations and leads to the initiation and progression of tumorigenesis. It is obvious that establishing appropriate animal cancer models which can simulate human cancers is crucial for cancer research currently. Since the emergence of CRISPR/Cas9, considerable efforts have been taken by researchers to apply this technology in generating animal cancer models. Although there is still a long way to go we are happy to see the achievements we have made and the promising future we have.
Collapse
|
19
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
20
|
Brown SR, Bates JC, Avera AD, Kim Y. Relationship between Stemness, Reactive Oxygen Species, and Epithelial-to-Mesenchymal Transition in Model Circulating Tumor Cells. Cells Tissues Organs 2021; 211:282-293. [PMID: 34077929 DOI: 10.1159/000516574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Most cancer deaths are caused by secondary metastasized tumors. The cells that spread these tumors are known as circulating tumor cells (CTCs). They exist in a dynamic environment, including exposure to fluid shear stress (FSS) that makes them susceptible to reactive oxygen species (ROS) generation. There are questions about the similarities of CTCs to cancer stem cells (CSCs) and whether the stem cell-like characteristics of CTCs allow them to proliferate and spread despite the biophysical obstacles during the metastatic process. One of those qualities is the ability to undergo the epithelial-to-mesenchymal transition (EMT). Here, MDA-MB-231 and MCF7 were modeled as CTCs by prolonged exposure to FSS using a spinner flask. They were tested for ROS generation, CSC, EMT, and Hippo pathway gene and protein markers using qRT-PCR and flow cytometry. MDA-MB-231 did not show significant changes in CSC markers, but did show significant changes in ROS, EMT, and Hippo markers (p < 0.05). Similarly, MCF7 showed significant changes in ROS and EMT markers (p < 0.05). Furthermore, both cell lines demonstrated the reverse mesenchymal-to-epithelial transition signature when allowed to recover after FSS. These results suggest that the degree of their stemness or aggressiveness affects their responses to externally applied biophysical forces and demonstrates a potential link between mechanotransduction, the Hippo pathway, and the induction of EMT in breast cancer cells.
Collapse
Affiliation(s)
- Spenser R Brown
- Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Juliana C Bates
- Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Alexandra D Avera
- Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, College of Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
21
|
Githaka JM, Tripathi N, Kirschenman R, Patel N, Pandya V, Kramer DA, Montpetit R, Zhu LF, Sonenberg N, Fahlman RP, Danial NN, Underhill DA, Goping IS. BAD regulates mammary gland morphogenesis by 4E-BP1-mediated control of localized translation in mouse and human models. Nat Commun 2021; 12:2939. [PMID: 34011960 PMCID: PMC8134504 DOI: 10.1038/s41467-021-23269-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Elucidation of non-canonical protein functions can identify novel tissue homeostasis pathways. Herein, we describe a role for the Bcl-2 family member BAD in postnatal mammary gland morphogenesis. In Bad3SA knock-in mice, where BAD cannot undergo phosphorylation at 3 key serine residues, pubertal gland development is delayed due to aberrant tubulogenesis of the ductal epithelium. Proteomic and RPPA analyses identify that BAD regulates focal adhesions and the mRNA translation repressor, 4E-BP1. These results suggest that BAD modulates localized translation that drives focal adhesion maturation and cell motility. Consistent with this, cells within Bad3SA organoids contain unstable protrusions with decreased compartmentalized mRNA translation and focal adhesions, and exhibit reduced cell migration and tubulogenesis. Critically, protrusion stability is rescued by 4E-BP1 depletion. Together our results confirm an unexpected role of BAD in controlling localized translation and cell migration during mammary gland development.
Collapse
Affiliation(s)
- John Maringa Githaka
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada
| | - Namita Tripathi
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada
| | - Raven Kirschenman
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada
| | - Namrata Patel
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada
| | - Vrajesh Pandya
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada
| | - David A. Kramer
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada
| | - Rachel Montpetit
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada
| | - Lin Fu Zhu
- grid.17089.37Department of Surgery, University of Alberta, Edmonton, AB Canada
| | - Nahum Sonenberg
- grid.14709.3b0000 0004 1936 8649Department of Biochemistry, McGill University, Montreal, QC Canada
| | - Richard P. Fahlman
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada
| | - Nika N. Danial
- grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - D. Alan Underhill
- grid.17089.37Department of Oncology, University of Alberta, Edmonton, AB Canada
| | - Ing Swie Goping
- grid.17089.37Department of Biochemistry, University of Alberta, Edmonton, AB Canada ,grid.17089.37Department of Oncology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
22
|
Mayo V, Bowles AC, Wubker LE, Ortiz I, Cordoves AM, Cote RJ, Correa D, Agarwal A. Human-derived osteoblast-like cells and pericyte-like cells induce distinct metastatic phenotypes in primary breast cancer cells. Exp Biol Med (Maywood) 2021; 246:971-985. [PMID: 33210551 PMCID: PMC8024509 DOI: 10.1177/1535370220971599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Approximately 70% of advanced breast cancer patients will develop bone metastases, which accounts for ∼90% of cancer-related mortality. Breast cancer circulating tumor cells (CTCs) establish metastatic tumors in the bone after a close interaction with local bone marrow cells including pericytes and osteoblasts, both related to resident mesenchymal stem/stromal cells (BM-MSCs) progenitors. In vitro recapitulation of the critical cellular players of the bone microenvironment and infiltrating CTCs could provide new insights into their cross-talk during the metastatic cascade, helping in the development of novel therapeutic strategies. Human BM-MSCs were isolated and fractionated according to CD146 presence. CD146+ cells were utilized as pericyte-like cells (PLCs) given the high expression of the marker in perivascular cells, while CD146- cells were induced into an osteogenic phenotype generating osteoblast-like cells (OLCs). Transwell migration assays were performed to establish whether primary breast cancer cells (3384T) were attracted to OLC. Furthermore, proliferation of 3384T breast cancer cells was assessed in the presence of PLC- and OLC-derived conditioned media. Additionally, conditioned media cultures as well as transwell co-cultures of each OLCs and PLCs were performed with 3384T breast cancer cells for gene expression interrogation assessing their induced transcriptional changes with an emphasis on metastatic potential. PLC as well as their conditioned media increased motility and invasion potential of 3384T breast cancer cells, while OLC induced a dormant phenotype, downregulating invasiveness markers related with migration and proliferation. Altogether, these results indicate that PLC distinctively drive 3384T cancer cells to an invasive and migratory phenotype, while OLC induce a quiescence state, thus recapitulating the different phases of the in vivo bone metastatic process. These data show that phenotypic responses from metastasizing cancer cells are influenced by neighboring cells at the bone metastatic niche during the establishment of secondary metastatic tumors.
Collapse
Affiliation(s)
- Vera Mayo
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Annie C Bowles
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura E Wubker
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Albert M Cordoves
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Richard J Cote
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St Louis, MO 63110, USA
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
23
|
Sigdel I, Gupta N, Faizee F, Khare VM, Tiwari AK, Tang Y. Biomimetic Microfluidic Platforms for the Assessment of Breast Cancer Metastasis. Front Bioeng Biotechnol 2021; 9:633671. [PMID: 33777909 PMCID: PMC7992012 DOI: 10.3389/fbioe.2021.633671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Of around half a million women dying of breast cancer each year, more than 90% die due to metastasis. Models necessary to understand the metastatic process, particularly breast cancer cell extravasation and colonization, are currently limited and urgently needed to develop therapeutic interventions necessary to prevent breast cancer metastasis. Microfluidic approaches aim to reconstitute functional units of organs that cannot be modeled easily in traditional cell culture or animal studies by reproducing vascular networks and parenchyma on a chip in a three-dimensional, physiologically relevant in vitro system. In recent years, microfluidics models utilizing innovative biomaterials and micro-engineering technologies have shown great potential in our effort of mechanistic understanding of the breast cancer metastasis cascade by providing 3D constructs that can mimic in vivo cellular microenvironment and the ability to visualize and monitor cellular interactions in real-time. In this review, we will provide readers with a detailed discussion on the application of the most up-to-date, state-of-the-art microfluidics-based breast cancer models, with a special focus on their application in the engineering approaches to recapitulate the metastasis process, including invasion, intravasation, extravasation, breast cancer metastasis organotropism, and metastasis niche formation.
Collapse
Affiliation(s)
- Indira Sigdel
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Niraj Gupta
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Fairuz Faizee
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| | - Vishwa M Khare
- Eurofins Lancaster Laboratories, Philadelphia, PA, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yuan Tang
- Biofluidics Laboratory, Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States
| |
Collapse
|
24
|
Tan PY, Teng KT. Role of dietary fat on obesity-related postmenopausal breast cancer: insights from mouse models and methodological considerations. Breast Cancer 2021; 28:556-571. [PMID: 33687609 DOI: 10.1007/s12282-021-01233-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
The increasing incidence rate of breast cancer in the last few decades is known to be linked to the upward trend of obesity prevalence worldwide. The consumption of high-fat diet in particular has been correlated with postmenopausal breast cancer risk. The underlying mechanisms, using suitable and reliable experimental mouse model, however, is lacking. The current review aims to discuss the evidence available from mouse models on the effects of dietary fats intake on postmenopausal breast cancer. We will further discuss the biochemical mechanisms involved in the occurrence of postmenopausal breast cancer. In addition, the methodological considerations and their limitations in obesity-related postmenopausal breast cancer, such as choice of mouse models and breast cancer cell lines as well as the study duration will be reviewed. The current review will provide a platform for further development of new xenograft models which may offer the opportunity to investigate the mechanisms of postmenopausal breast cancer in a greater detail.
Collapse
Affiliation(s)
- Pei Yee Tan
- Division of Product Development and Advisory Services, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Kim Tiu Teng
- Division of Product Development and Advisory Services, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
25
|
Herrero de la Parte B, González-Arribas M, Diaz-Sanz I, Palomares T, García-Alonso I. Partial hepatectomy enhances the growth of CC531 rat colorectal cancer cells both in vitro and in vivo. Sci Rep 2021; 11:5356. [PMID: 33686132 PMCID: PMC7970880 DOI: 10.1038/s41598-021-85082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Partial hepatectomy (PHx) is the gold standard for the treatment of colorectal cancer liver metastases. However, after removing a substantial amount of hepatic tissue, growth factors are released to induce liver regeneration, which may promote the proliferation of liver micrometastases or circulating tumour cells still present in the patient. The aim of this study is to assess the effect of PHx on the growth of liver metastases induced by intrasplenic cell inoculation as well as on in vitro proliferation of the same cancer cell line. Liver tumours were induced in 18 WAG/RijHsd male rats, by seeding 250,000 syngeneic colorectal cancer cells (CC531) into the spleen. The left lateral lobe of the liver was mobilized and in half of the animals it was removed to achieve a 40% hepatectomy. Twenty-eight days after tumour induction, the animals were sacrificed and the liver was removed and sliced to assess the relative tumour surface area (RTSA%). CC531 cells were cultured in presence of foetal calf serum, non-hepatectomised (NRS) or hepatectomized rat serum (HRS), and their proliferation rate at 24, 48, and 72 h was measured. RTSA% was significantly higher in animals which had undergone PHx than in the controls (non-hepatectomised) (46.98 ± 8.76% vs. 18.73 ± 5.65%; p < 0.05). Analysing each lobe separately, this difference in favour of hepatectomized animals was relevant and statistically significant in the paramedian and caudate lobes. But in the right lobe the difference was scarce and not significant. In vitro, 2.5% HRS achieved stronger proliferative rates than the control cultures (10% FCS) or their equivalent of NRS. In this experimental model, a parallelism has been shown between the effect of PHx on the growth of colorectal cancer cells in the liver and the effect of the serum on those cells in vitro.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain. .,Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
| | - Mikel González-Arribas
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Iñaki Diaz-Sanz
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Teodoro Palomares
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain.,Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| |
Collapse
|
26
|
Hughes AM, Kolb AD, Shupp AB, Shine KM, Bussard KM. Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche. Cancers (Basel) 2021; 13:507. [PMID: 33572757 PMCID: PMC7865550 DOI: 10.3390/cancers13030507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer commonly metastasizes to bone, resulting in osteolytic lesions and poor patient quality of life. The bone extracellular matrix (ECM) plays a critical role in cancer cell metastasis by means of the physical and biochemical cues it provides to support cellular crosstalk. Current two-dimensional in-vitro models lack the spatial and biochemical complexities of the native ECM and do not fully recapitulate crosstalk that occurs between the tumor and endogenous stromal cells. Engineered models such as bone-on-a-chip, extramedullary bone, and bioreactors are presently used to model cellular crosstalk and bone-tumor cell interactions, but fall short of providing a bone-biomimetic microenvironment. Three-dimensional bioprinting allows for the deposition of biocompatible materials and living cells in complex architectures, as well as provides a means to better replicate biological tissue niches in-vitro. In cancer research specifically, 3D constructs have been instrumental in seminal work modeling cancer cell dissemination to bone and bone-tumor cell crosstalk in the skeleton. Furthermore, the use of biocompatible materials, such as hydroxyapatite, allows for printing of bone-like microenvironments with the ability to be implanted and studied in in-vivo animal models. Moreover, the use of bioprinted models could drive the development of novel cancer therapies and drug delivery vehicles.
Collapse
Affiliation(s)
- Anne M. Hughes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Alexus D. Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Alison B. Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Kristy M. Shine
- Health Design Lab, Jefferson Bioprinting Lab, Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M. Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| |
Collapse
|
27
|
Lasocki A, Khoo C, Lau PKH, Kok DL, Mcarthur GA. High-resolution MRI demonstrates that more than 90% of small intracranial melanoma metastases develop in close relationship to the leptomeninges. Neuro Oncol 2021; 22:423-432. [PMID: 31498868 DOI: 10.1093/neuonc/noz171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite classic teaching that intracranial metastases typically arise at the gray-white matter junction, small intracranial melanoma metastases (IMM) are frequently observed at the interface between the cortex and leptomeninges (ie, "corticomeningeal interface"), suggesting possible leptomeningeal origin. METHODS MRI brain examinations of melanoma patients treated at a specialist oncology center from July 2015 to June 2017 were retrospectively reviewed. The MRI examination on which IMM were first visible was identified, utilizing 1 mm volumetric postcontrast imaging prior to local therapy. Individual metastases (up to 10 per patient) were assessed for the presence of leptomeningeal contact, as well as their number, size, and morphology. Lesions ≥10 mm in long axis were excluded, in order to examine early metastatic disease. RESULTS Seventy-five patients had evidence of IMM. Fifteen patients had only lesion(s) measuring ≥10 mm at diagnosis, leaving 60 patients. One hundred ninety-two individual metastases were examined (median 2 per patient; interquartile range, 1-4), 174 (91%) demonstrating leptomeningeal contact. A nodular morphology was observed in 154 of 192 (82%), 32 (17%) were ovoid but elongated along the cortex, and 6 (3%) were linear. Only 3 patients (5%) also exhibited a "classic" linear leptomeningeal disease appearance. CONCLUSIONS Most IMM measuring between 2 and 9 mm in diameter are corticomeningeal nodules. These data raise the hypothesis that deeper parenchymal extension of IMM occurs secondarily. If the leptomeninges provide a preferential site for establishment of IMM, further investigation of the underlying biology of this phenomenon may provide opportunities for novel therapeutic strategies for patients with IMM.
Collapse
Affiliation(s)
- Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Chloe Khoo
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter K H Lau
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David L Kok
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Grant A Mcarthur
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
A biomimetic model of 3D fluid extracellular macromolecular crowding microenvironment fine-tunes ovarian cancer cells dissemination phenotype. Biomaterials 2020; 269:120610. [PMID: 33388691 DOI: 10.1016/j.biomaterials.2020.120610] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
An early fundamental step in ovarian cancer progression is the dissemination of cancer cells through liquid environments, one of them being cancer ascites accumulated in the peritoneal cavity. These biological fluids are highly crowded with a high total macromolecule concentration. This biophysical property of fluids is widely used in tissue engineering for a few decades now, yet is largely underrated in cancer biomimetic models. To unravel the role of fluids extracellular macromolecular crowding (MMC), we exposed ovarian cancer cells (OCC) to high molecular weight inert polymer solutions. High macromolecular composition of extracellular liquid presented a differential effect: i) it impeded non-adherent OCC aggregation in suspension and, decreased their adhesion; ii) it promoted adherent OCC migration by decreasing extracellular matrix deposition. Besides, there seemed to be a direct link between the extracellular MMC and intracellular processes, especially the actin cytoskeleton organization and the nucleus morphology. In conclusion, extracellular fluid MMC orients OCC dissemination phenotype. Integrating MMC seems crucial to produce more relevant mimetic 3D in vitro fluid models to study ovarian dissemination but also to screen drugs.
Collapse
|
29
|
Wang YY, Chen HD, Lo S, Chen YK, Huang YC, Hu SCS, Hsieh YC, Hung AC, Hou MF, Yuan SSF. Visfatin Enhances Breast Cancer Progression through CXCL1 Induction in Tumor-Associated Macrophages. Cancers (Basel) 2020; 12:cancers12123526. [PMID: 33256011 PMCID: PMC7760195 DOI: 10.3390/cancers12123526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Visfatin, an adipocytokine highly expressed in breast tumor tissues, is associated with breast cancer progression. Recent studies showed that adipocytokines mediate tumor development through adipocytokine tumor-stromal interactions in the tumor microenvironment. This study focused on the interaction between one key stromal constituent-tumor-associated macrophages-and visfatin. Pretreatment of THP-1 and peripheral blood mononuclear cells (PBMCs) with recombinant visfatin resulted in M2-polarization determined by CD163 and CD206 expression. Indirect co-culture with visfatin-treated THP-1 (V-THP-1) promoted the viability, migration, tumorsphere formation, EMT, and stemness of breast cancer cells. Cytokine array identified an increased CXCL1 secretion in V-THP-1 conditioned medium and recombinant CXCL1 enhanced cell migration and invasion, which were abrogated by the CXCL1-neutralizing antibody. Additionally, visfatin induced pERK in THP-1 cells and clinical samples confirmed a positive CXCL1/pERK correlation. In an orthotopic mouse model, the tumor bioluminescent signal of luciferase-expressing MDA-MB-231 (Luc-MDA-MB-231) cells co-cultured with V-THP-1 and the expression of proliferation marker Ki67 were significantly higher than that co-cultured with THP-1. Furthermore, tail vein-injected Luc-MDA-MB-231 pretreated with V-PBMCs conditioned medium metastasized to lungs more frequently compared to control, and this was reversed by CXCL1 blocking antibody. In summary, this study demonstrated that visfatin enhanced breast cancer progression via pERK/CXCL1 induction in macrophages.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.W.); (Y.-K.C.)
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-D.C.); (A.C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Huan-Da Chen
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-D.C.); (A.C.H.)
| | - Steven Lo
- Canniesburn Regional Plastic Surgery and Burns Unit, Glasgow Royal Infirmary, Glasgow G4 0SF, UK;
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.W.); (Y.-K.C.)
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Oral & Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Ci Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Dermatology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Ya-Ching Hsieh
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK;
| | - Amos C. Hung
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-D.C.); (A.C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Division of General and Gastroenterological Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Shyng-Shiou F. Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-D.C.); (A.C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2557)
| |
Collapse
|
30
|
Giulietti M, Bastianoni M, Cecati M, Ruzzo A, Bracci M, Malavolta M, Piacenza F, Giacconi R, Piva F. MetaTropismDB: a database of organ-specific metastasis induced by human cancer cell lines in mouse models. Database (Oxford) 2020; 2020:baaa100. [PMID: 33238004 PMCID: PMC7687678 DOI: 10.1093/database/baaa100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 11/12/2022]
Abstract
The organotropism is the propensity of metastatic cancer cells to colonize preferably certain distant organs, resulting in a non-random distribution of metastases. In order to shed light on this behaviour, several studies were performed by the injection of human cancer cell lines into immunocompromised mouse models. However, the information about these experiments is spread in the literature. For each xenograft experiment reported in the literature, we annotated both the experimental conditions and outcomes, including details on inoculated human cell lines, mouse models, injection methods, sites of metastasis, organs not colonized, rate of metastasis, latency time, overall survival and the involved genes. We created MetaTropismDB, a freely available database collecting hand-curated data useful to highlight the mechanisms of organ-specific metastasis. Currently, it stores the results of 513 experiments in which injections of 219 human cell lines have been carried out in mouse models. Notably, 296 genes involved in organotropic metastases have been collected. This specialized database allows the researchers to compare the current results about organotropism and plan future experiments in order to identify which tumour molecular signatures establish if and where the metastasis will develop. Database URL: http://www.introni.it/Metastasis/metastasis.html.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Bastianoni
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029, Urbino, Italy
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10/a, 60126, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
31
|
Chen D, Schnepp RW. RNA Binding Protein LIN28B: a prime time player shaping neuroblastoma aggression and metastasis. Oncoscience 2020; 7:52-56. [PMID: 32923517 PMCID: PMC7458334 DOI: 10.18632/oncoscience.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Dongdong Chen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Robert W Schnepp
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
32
|
Abstract
Metastasis of cancer cells to the brain occurs frequently in patients with certain subtypes of breast cancer. In particular, patients with HER2-positive or triple-negative breast cancer are at high risk for the development of brain metastases. Despite recent advances in the treatment of primary breast tumors, the prognosis of breast cancer patients with brain metastases remains poor. A better understanding of the molecular and cellular mechanisms underlying brain metastasis might be expected to lead to improvements in the overall survival rate for these patients. Recent studies have revealed complex interactions between metastatic cancer cells and their microenvironment in the brain. Such interactions result in the activation of various signaling pathways related to metastasis in both cancer cells and cells of the microenvironment including astrocytes and microglia. In this review, we focus on such interactions and on their role both in the metastatic process and as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mari Hosonaga
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Breast Medical Oncology Department, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
33
|
Mondadori C, Crippa M, Moretti M, Candrian C, Lopa S, Arrigoni C. Advanced Microfluidic Models of Cancer and Immune Cell Extravasation: A Systematic Review of the Literature. Front Bioeng Biotechnol 2020; 8:907. [PMID: 32984267 PMCID: PMC7479057 DOI: 10.3389/fbioe.2020.00907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Extravasation is a multi-step process implicated in many physiological and pathological events. This process is essential to get leukocytes to the site of injury or infection but is also one of the main steps in the metastatic cascade in which cancer cells leave the primary tumor and migrate to target sites through the vascular route. In this perspective, extravasation is a double-edged sword. This systematic review analyzes microfluidic 3D models that have been designed to investigate the extravasation of cancer and immune cells. The purpose of this systematic review is to provide an exhaustive summary of the advanced microfluidic 3D models that have been designed to study the extravasation of cancer and immune cells, offering a perspective on the current state-of-the-art. To this end, we set the literature search cross-examining PUBMED and EMBASE databases up to January 2020 and further included non-indexed references reported in relevant reviews. The inclusion criteria were defined in agreement between all the investigators, aimed at identifying studies which investigate the extravasation process of cancer cells and/or leukocytes in microfluidic platforms. Twenty seven studies among 174 examined each step of the extravasation process exploiting 3D microfluidic devices and hence were included in our review. The analysis of the results obtained with the use of microfluidic models allowed highlighting shared features and differences in the extravasation of immune and cancer cells, in view of the setup of a common framework, that could be beneficial for the development of therapeutic approaches fostering or hindering the extravasation process.
Collapse
Affiliation(s)
- Carlotta Mondadori
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Martina Crippa
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Christian Candrian
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| |
Collapse
|
34
|
Marcazzan S, Dadbin A, Brachi G, Blanco E, Varoni EM, Lodi G, Ferrari M. Development of lung metastases in mouse models of tongue squamous cell carcinoma. Oral Dis 2020; 27:494-505. [PMID: 32767730 DOI: 10.1111/odi.13592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) represents 3%-4% of all cancers. Despite the increasing incidence of OSCC distant metastasis and poor prognosis, few animal models of OSCC distant metastasis have been reported. In this study, we established mouse models of OSCC lung metastasis by orthotopic and tail vein injection of new OSCC cell lines. METHODS For the tail vein model, we used a novel cell line isolated from lung metastases reproduced in vivo after intravenous injection of HSC-3 GFP/luciferase cells and sorted for GFP expression (HSC-3 M1 GFP/luciferase). Lung metastases were assessed by imaging techniques and further confirmed by histology. For the orthotopic model, HSC-3 GFP/luciferase cells were injected into the tongue of athymic nude mice. The primary tumor and metastases were assessed by in vivo imaging, histology, and immunohistochemistry. RESULTS The orthotopic model presented spontaneous lung metastases in 50% of the animals and lymph node metastases were present in 83% of cases. In the tail vein model, a lung metastasis rate of 60% was observed. CONCLUSIONS Lung metastases were successfully reproduced by orthotopic and tail vein injection. Since lymph node metastases were present, the orthotopic model with HSC-3 GFP/luciferase cells may be suitable to investigate metastatic dissemination in OSCC.
Collapse
Affiliation(s)
- Sabrina Marcazzan
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy.,Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Ali Dadbin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Giulia Brachi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Elena Maria Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Lodi
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
35
|
Dissemination of Ras V12-transformed cells requires the mechanosensitive channel Piezo. Nat Commun 2020; 11:3568. [PMID: 32678085 PMCID: PMC7366633 DOI: 10.1038/s41467-020-17341-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
Dissemination of transformed cells is a key process in metastasis. Despite its importance, how transformed cells disseminate from an intact tissue and enter the circulation is poorly understood. Here, we use a fully developed tissue, Drosophila midgut, and describe the morphologically distinct steps and the cellular events occurring over the course of RasV12-transformed cell dissemination. Notably, RasV12-transformed cells formed the Actin- and Cortactin-rich invasive protrusions that were important for breaching the extracellular matrix (ECM) and visceral muscle. Furthermore, we uncovered the essential roles of the mechanosensory channel Piezo in orchestrating dissemination of RasV12-transformed cells. Collectively, our study establishes an in vivo model for studying how transformed cells migrate out from a complex tissue and provides unique insights into the roles of Piezo in invasive cell behavior. Drosophila tumours can be utilised to study the mechanisms of cell dissemination. Here, the authors use Drosophila midgut to examine the course of RasV12-transformed cell dissemination from midgut into circulation, which requires the actions of invasive protrusions and the mechanosensitive channel Piezo.
Collapse
|
36
|
Drug resistance occurred in a newly characterized preclinical model of lung cancer brain metastasis. BMC Cancer 2020; 20:292. [PMID: 32264860 PMCID: PMC7137432 DOI: 10.1186/s12885-020-06808-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cancer metastasis and drug resistance have traditionally been studied separately, though these two lethal pathological phenomena almost always occur concurrently. Brain metastasis occurs in a large proportion of lung cancer patients (~ 30%). Once diagnosed, patients have a poor prognosis surviving typically less than 1 year due to lack of treatment efficacy. Methods Human metastatic lung cancer cells (PC-9-Br) were injected into the left cardiac ventricle of female athymic nude mice. Brain lesions were allowed to grow for 21 days, animals were then randomized into treatment groups and treated until presentation of neurological symptoms or when moribund. Prior to tissue collection mice were injected with Oregon Green and 14C-Aminoisobutyric acid followed by an indocyanine green vascular washout. Tracer accumulation was determined by quantitative fluorescent microscopy and quantitative autoradiography. Survival was tracked and tumor burden was monitored via bioluminescent imaging. Extent of mutation differences and acquired resistance was measured in-vitro through half-maximal inhibitory assays and qRT-PCR analysis. Results A PC-9 brain seeking line (PC-9-Br) was established. Mice inoculated with PC-9-Br resulted in a decreased survival time compared with mice inoculated with parental PC-9. Non-targeted chemotherapy with cisplatin and etoposide (51.5 days) significantly prolonged survival of PC-9-Br brain metastases in mice compared to vehicle control (42 days) or cisplatin and pemetrexed (45 days). Further in-vivo imaging showed greater tumor vasculature in mice treated with cisplatin and etoposide compared to non-tumor regions, which was not observed in mice treated with vehicle or cisplatin and pemetrexed. More importantly, PC-9-Br showed significant resistance to gefitinib by in-vitro MTT assays (IC50 > 2.5 μM at 48 h and 0.1 μM at 72 h) compared with parental PC-9 (IC50: 0.75 μM at 48 h and 0.027 μM at 72 h). Further studies on the molecular mechanisms of gefitinib resistance revealed that EGFR and phospho-EGFR were significantly decreased in PC-9-Br compared with PC-9. Expression of E-cadherin and vimentin did not show EMT in PC-9-Br compared with parental PC-9, and PC-9-Br had neither a T790M mutation nor amplifications of MET and HER2 compared with parental PC-9. Conclusion Our study demonstrated that brain metastases of lung cancer cells may independently prompt drug resistance without drug treatment.
Collapse
|
37
|
Pourbagher R, Akhavan-Niaki H, Jorsaraei SGA, Fattahi S, Sabour D, Zabihi E, Abedian Z, Ghasemi M, Golpour M, Mostafazadeh A. Targeting LA7 breast cancer stem cells of rat through repressing the genes of stemness-related transcription factors using three different biological fluids. Gene 2020; 734:144381. [PMID: 31978510 DOI: 10.1016/j.gene.2020.144381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Down-regulation of stemness genes expression is important in differentiation therapy against cancer stem cells (CSCs). The aim of this study was to evaluate the Oct4 , Sox2, Nanog, and C-myc expression in rat breast cancer stem cells (LA7) which treated with human ovarian follicular fluid (FF), replicative senescent fibroblast culture supernatant (P14), and 16 h serum starved fibroblast supernatant (16 h-SFS). The cells were exposed to these biological fluids for 24 h, 72 h, and 7 days. Stem-loop RT-qPCR assay was used to quantify the expression of above mentioned genes. Results showed that FF had the least cytotoxic effect on the LA7 cells. Except for Nanog gene, exposure of LA7 cell line to 16 h-SFS and P14 decreased significantly expression of the three other genes after 24 h (P < 0.05). Nanog and Sox2 genes expression was also decreased in LA7 cells which have been already treated with FF for 24 h. Moreover, compared to the control solution, the expression of Oct4 increased significantly after 7 days exposure to FF (P < 0.05). Annexin V-PE /7-AAD-, acridine orange/ethidium bromide staining and doubling time assays revealed apoptosis and necrosis induction by these biological fluids in LA7 cells. Moreover, in an in vitro model of metastasis assay, i.e., scratch test, these fluids exhibited anti-LA7 migration activity which culminated in 16 h-SFS treated cells. Generally, this study showed that FF, 16 h-SFS, and P14 have positive effects on down-regulation of Nanog, Oct4, Sox2 and C-myc expression, and consequently can increase the differentiation of breast cancer stem cells. For the first time, this study provided some evidence indicating that some biological fluids have potential to differentiate the CSCs, show anti- survival, growth-, and cell migration activity.
Collapse
Affiliation(s)
- Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Gholam Ali Jorsaraei
- Fatemeh Zahra Infertility and Reproductive Health Research Centre, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Davood Sabour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zeinab Abedian
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Dental Materials Research Center, Dental Faculty, Babol University of Medical Sciences, Babol, Iran
| | - Masoumeh Ghasemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Monireh Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
38
|
Yuan W, Goldstein LD, Durinck S, Chen YJ, Nguyen TT, Kljavin NM, Sokol ES, Stawiski EW, Haley B, Ziai J, Modrusan Z, Seshagiri S. S100a4 upregulation in Pik3caH1047R;Trp53R270H;MMTV-Cre-driven mammary tumors promotes metastasis. Breast Cancer Res 2019; 21:152. [PMID: 31881983 PMCID: PMC6935129 DOI: 10.1186/s13058-019-1238-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 12/06/2019] [Indexed: 11/10/2022] Open
Abstract
Background PIK3CA mutations are frequent in human breast cancer. Pik3caH1047R mutant expression in mouse mammary gland promotes tumorigenesis. TP53 mutations co-occur with PIK3CA mutations in human breast cancers. We previously generated a conditionally activatable Pik3caH1047R;MMTV-Cre mouse model and found a few malignant sarcomatoid (spindle cell) carcinomas that had acquired spontaneous dominant-negative Trp53 mutations. Methods A Pik3caH1047R;Trp53R270H;MMTV-Cre double mutant mouse breast cancer model was generated. Tumors were characterized by histology, marker analysis, transcriptional profiling, single-cell RNA-seq, and bioinformatics. Cell lines were developed from mutant tumors and used to identify and confirm genes involved in metastasis. Results We found Pik3caH1047R and Trp53R270H cooperate in driving oncogenesis in mammary glands leading to a shorter latency than either alone. Double mutant mice develop multiple histologically distinct mammary tumors, including adenocarcinoma and sarcomatoid (spindle cell) carcinoma. We found some tumors to be invasive and a few metastasized to the lung and/or the lymph node. Single-cell RNA-seq analysis of the tumors identified epithelial, stromal, myeloid, and T cell groups. Expression analysis of the metastatic tumors identified S100a4 as a top candidate gene associated with metastasis. Metastatic tumors contained a much higher percentage of epithelial–mesenchymal transition (EMT)-signature positive and S100a4-expressing cells. CRISPR/CAS9-mediated knockout of S100a4 in a metastatic tumor-derived cell line disrupted its metastatic potential indicating a role for S100a4 in metastasis. Conclusions Pik3caH1047R;Trp53R270H;MMTV-Cre mouse provides a preclinical model to mimic a subtype of human breast cancers that carry both PIK3CA and TP53 mutations. It also allows for understanding the cooperation between the two mutant genes in tumorigenesis. Our model also provides a system to study metastasis and develop therapeutic strategies for PIK3CA/TP53 double-positive cancers. S100a4 found involved in metastasis in this model can be a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Bioinformatics and Computational Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Steffen Durinck
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Bioinformatics and Computational Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ying-Jiun Chen
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Thong T Nguyen
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Noelyn M Kljavin
- Department of Cancer Signaling, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ethan S Sokol
- Foundation Medicine Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Eric W Stawiski
- Research and Development Department, MedGenome Inc., Foster City, CA, 94404, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - James Ziai
- Department of Pathology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA. .,SciGenom Research Foundation, Bangalore, 560099, India.
| |
Collapse
|
39
|
Sheen MR, Fields JL, Northan B, Lacoste J, Ang LH, Fiering S. Replication Study: Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. eLife 2019; 8:45120. [PMID: 31845647 PMCID: PMC6917490 DOI: 10.7554/elife.45120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 11/06/2019] [Indexed: 01/06/2023] Open
Abstract
As part of the Reproducibility Project: Cancer Biology we published a Registered Report (Fiering et al., 2015) that described how we intended to replicate selected experiments from the paper 'Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis' (Goetz et al., 2011). Here we report the results. Primary mouse embryonic fibroblasts (pMEFs) expressing caveolin 1 (Cav1WT) demonstrated increased extracellular matrix remodeling in vitro compared to Cav1 deficient (Cav1KO) pMEFs, similar to the original study (Goetz et al., 2011). In vivo, we found higher levels of intratumoral stroma remodeling, determined by fibronectin fiber orientation, in tumors from cancer cells co-injected with Cav1WT pMEFs compared to cancer cells only or cancer cells plus Cav1KO pMEFs, which were in the same direction as the original study (Supplemental Figure S7C; Goetz et al., 2011), but not statistically significant. Primary tumor growth was similar between conditions, like the original study (Supplemental Figure S7Ca; Goetz et al., 2011). We found metastatic burden was similar between Cav1WT and Cav1KO pMEFs, while the original study found increased metastases with Cav1WT (Figure 7C; Goetz et al., 2011); however, the duration of our in vivo experiments (45 days) were much shorter than in the study by Goetz et al. (2011) (75 days). This makes it difficult to interpret the difference between the studies as it is possible that the cells required more time to manifest the difference between treatments observed by Goetz et al. We also found a statistically significant negative correlation of intratumoral remodeling with metastatic burden, while the original study found a statistically significant positive correlation (Figure 7Cd; Goetz et al., 2011), but again there were differences between the studies in terms of the duration of the metastasis studies and the imaging approaches that could have impacted the outcomes. Finally, we report meta-analyses for each result.
Collapse
Affiliation(s)
- Mee Rie Sheen
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, United States
| | - Jennifer L Fields
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, United States
| | | | | | - Lay-Hong Ang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Steven Fiering
- Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Lebanon, United States
| | | |
Collapse
|
40
|
Functional Significance and Therapeutic Potential of miR-15a Mimic in Pancreatic Ductal Adenocarcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:228-239. [PMID: 31846800 PMCID: PMC6921186 DOI: 10.1016/j.omtn.2019.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Treatment of pancreatic ductal adenocarcinoma (PDAC) remains a clinical challenge. There is an urgent need to develop novel strategies to enhance survival and improve patient prognosis. MicroRNAs (miRNAs) play critical roles as oncogenes or tumor suppressors in the regulation of cancer development and progression. In this study, we demonstrate that low expression of miR-15a is associated with poor prognosis of PDAC patients. miR-15a expression is reduced in PDAC while closely related miR-16 expression remains relatively unchanged. miR-15a suppresses several important targets such as Wee1, Chk1, Yap-1, and BMI-1, causing cell cycle arrest and inhibiting cell proliferation. Ectopic expression of miR-15a sensitizes PDAC cells to gemcitabine reducing the half maximal inhibitory concentration (IC50) more than 6.5-fold. To investigate the therapeutic potential of miR-15a, we used a modified miR-15a (5-FU-miR-15a) with uracil (U) residues in the guide strand replaced with 5-fluorouracil (5-FU). We demonstrated enhanced inhibition of PDAC cell proliferation by 5-FU-miR-15a compared to native miR-15a. In vivo we showed the therapeutic power of 5-FU-miR-15a alone or in combination with gemcitabine with near complete elimination of PDAC lung metastatic tumor growth. These results support the future development of 5-FU-miR-15a as a novel therapeutic agent as well as a prognostic biomarker in the clinical management of PDAC.
Collapse
|
41
|
Khan GJ, Sun L, Abbas M, Naveed M, Jamshaid T, Baig MMFA, Yuan S. In-vitro Pre-Treatment of Cancer Cells with TGF-β1: A Novel Approach of Tail Vein Lung Cancer Metastasis Mouse Model for Anti-Metastatic Studies. Curr Mol Pharmacol 2019; 12:249-260. [PMID: 30848226 DOI: 10.2174/1874467212666190306165703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
Background:
Aggressive behavior of tumor metastasis comes from certain mutations,
changes in cellular metabolic and signaling pathways that are majorly altered by tumor microenvironment
(TME), its other components and growth factors like transforming growth factor-β1 (TGF-β1)
which is chiefly known for its epithelial to mesenchymal transformation (EMT). EMT is a critical step
of metastasis cascade in actual human lung cancer scenario.
Objective:
Our present study is focused on unveiling the in-vivo metastatic behavior of TGF-β1 treated
lung cancer cells that undergo EMT.
Methods:
The lung cancer epithelial A549 cells were treated in-vitro with TGF-β1 (3-5ng/ml for 72 h)
for EMT. After confirming the transformation of cells by phenotype modifications, wound healing and
cell migration assay and qRT-PCR analyses of EMT biomarkers including E. Cadherin, Vimentin,
Snail, Slug, MMP2 and MMP9; those TGF-β1 modified cells were probed with fluorescent trackers and
were injected into the tail vein of BALB/c nude mice for metastatic dissemination studies.
Results:
Our findings indicate that the distribution of TGF-β1 treated A549 cells as compared to W.T
A549 towards lungs is less in terms of total relative fluorescent cluster count, however, the difference is
insignificant (52±4, 60±5 respectively). Additionally, we show that TGF-β1 treated cells tend to metastasize
almost 2, 3, 1.5, 2 and 1.7 times more than W.T towards liver, brain, ovaries, bones and adrenal
gland, respectively, which is very much like human lung cancer metastasis.
Conclusion:
Conclusively, it is the first study ever reporting that a pre-treatment of cells with TGF-β1
for experimental lung cancer metastasis mouse model may portray a more precise approach for the
development of potential therapeutic treatments. Additional pre-treatment studies with the application
of other TME conditions like hypoxia and factors like NFκB, VEGF etc. may be a future prospect to
develop a better understanding.
Collapse
Affiliation(s)
- Ghulam Jilany Khan
- Jiangsu key laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Li Sun
- Jiangsu key laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Muhammad Abbas
- State key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210023, Nanjing, China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Talha Jamshaid
- Department of Pharmaceutics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shengtao Yuan
- Jiangsu key laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
42
|
García-Martín AB, Zwicky P, Gruber T, Matti C, Moalli F, Stein JV, Francisco D, Enzmann G, Levesque MP, Hewer E, Lyck R. VLA-4 mediated adhesion of melanoma cells on the blood-brain barrier is the critical cue for melanoma cell intercalation and barrier disruption. J Cereb Blood Flow Metab 2019; 39:1995-2010. [PMID: 29762071 PMCID: PMC6775593 DOI: 10.1177/0271678x18775887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melanoma is the most aggressive skin cancer in humans. One severe complication is the formation of brain metastasis, which requires extravasation of melanoma cells across the tight blood-brain barrier (BBB). Previously, VLA-4 has been assigned a role for the adhesive interaction of melanoma cells with non-BBB endothelial cells. However, the role of melanoma VLA-4 for breaching the BBB remained unknown. In this study, we used a mouse in vitro BBB model and imaged the shear resistant arrest of melanoma cells on the BBB. Similar to effector T cells, inflammatory conditions of the BBB increased the arrest of melanoma cells followed by a unique post-arrest behavior lacking immediate crawling. However, over time, melanoma cells intercalated into the BBB and compromised its barrier properties. Most importantly, antibody ablation of VLA-4 abrogated melanoma shear resistant arrest on and intercalation into the BBB and protected the BBB from barrier breakdown. A tissue microarray established from human brain metastasis revealed that indeed a majority of 92% of all human melanoma brain metastases stained VLA-4 positive. We propose VLA-4 as a target for the inhibition of brain metastasis formation in the context of personalized medicine identifying metastasizing VLA-4 positive melanoma.
Collapse
Affiliation(s)
| | - Pascale Zwicky
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Christoph Matti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - David Francisco
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Assaker G, Camirand A, Abdulkarim B, Omeroglu A, Deschenes J, Joseph K, Noman ASM, Ramana Kumar AV, Kremer R, Sabri S. PTHrP, A Biomarker for CNS Metastasis in Triple-Negative Breast Cancer and Selection for Adjuvant Chemotherapy in Node-Negative Disease. JNCI Cancer Spectr 2019; 4:pkz063. [PMID: 32296756 PMCID: PMC7050156 DOI: 10.1093/jncics/pkz063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/01/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is characterized by poor prognosis and lack of targeted therapies and biomarkers to guide decisions on adjuvant chemotherapy. Parathyroid hormone-related protein (PTHrP) is frequently overexpressed in breast cancer and involved in proliferation and metastasis, two hallmarks of poor prognosis for node-negative breast cancer. We investigated the prognostic value of PTHrP with respect to organ-specific metastasis and nodal status in TNBC. Methods We assessed PTHrP expression using immunohistochemistry in a clinically annotated tissue microarray for a population-based study of 314 patients newly diagnosed with TNBC, then analyzed its correlation to progression and survival using Kaplan-Meier and Cox regression analyses. The Cancer Genome Atlas (TCGA) validation analysis was performed through Bioconductor. All statistical tests were two-sided. Results PTHrP overexpression (160 of 290 scorable cases, 55.2%) was statistically significantly associated in univariate analysis with decreased overall survival (OS) in our cohort (P = .0055) and The Cancer Genome Atlas (P = .0018) and decreased central nervous system (CNS)-progression-free survival (P = .0029). In multivariate analysis, PTHrP was a statistically significant independent prognostic factor for CNS-progression-free survival in TNBC (hazard ratio [HR] = 5.014, 95% confidence interval [CI] = 1.421 to 17.692, P = .0122) and for OS selectively in node-negative TNBC (HR = 2.423, 95% CI = 1.129 to 5.197, P = .0231). Strikingly, PTHrP emerged as the only statistically significant prognostic factor (HR = 2.576, 95% CI = 1.019 to 6.513, P = .0456) for OS of low-clinical risk node-negative patients who did not receive adjuvant chemotherapy. Conclusions PTHrP is a novel independent prognostic factor for CNS metastasis and adjuvant chemotherapy selection of low-clinical risk node-negative TNBC. Its predictive value needs to be prospectively assessed in clinical trials.
Collapse
Affiliation(s)
- Gloria Assaker
- See the Notes section for the full list of authors' affiliations
| | - Anne Camirand
- See the Notes section for the full list of authors' affiliations
| | | | - Atilla Omeroglu
- See the Notes section for the full list of authors' affiliations
| | - Jean Deschenes
- See the Notes section for the full list of authors' affiliations
| | - Kurian Joseph
- See the Notes section for the full list of authors' affiliations
| | | | | | - Richard Kremer
- See the Notes section for the full list of authors' affiliations
| | - Siham Sabri
- See the Notes section for the full list of authors' affiliations
| |
Collapse
|
44
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
45
|
McVeigh LE, Wijetunga I, Ingram N, Marston G, Prasad R, Markham AF, Coletta PL. Development of orthotopic tumour models using ultrasound-guided intrahepatic injection. Sci Rep 2019; 9:9904. [PMID: 31289364 PMCID: PMC6616610 DOI: 10.1038/s41598-019-46410-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/25/2019] [Indexed: 01/19/2023] Open
Abstract
Mouse models of human diseases are an essential part of the translational pipeline. Orthotopic tumour mouse models are increasingly being used in cancer research due to their increased clinical relevance over subcutaneous xenograft models, particularly in relation to metastatic disease. In this study, we have developed orthotopic colorectal cancer liver metastases (CRCLM) and primary cholangiocarcinoma (CCA) models in BALB/c nude mice using minimally invasive ultrasound-guided intrahepatic injection. Due to its minimally invasive nature, the method reduced risk from surgical complications whilst being fast and easy to perform and resulted in measurable tumour volumes 1 to 3 weeks post-injection. Tumour volumes were monitored in vivo by weekly high-frequency ultrasound (HF-US) and/or twice weekly bioluminescence imaging (BLI) and confirmed with end-point histology. Take rates were high for human CRC cells (>73%) and for CCA cells (90%). We have demonstrated that this method reliably induces CRCLM and CCAs, in which tumour volume can be monitored throughout using HF-US and/or BLI. This provides a promising experimental tool for future testing of cancer therapeutics in an orthotopic model.
Collapse
Affiliation(s)
- L E McVeigh
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - I Wijetunga
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| | - N Ingram
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| | - G Marston
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| | - R Prasad
- Department of Hepatobiliary and Transplant Surgery, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - A F Markham
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| | - P L Coletta
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, LS9 7TF, UK
| |
Collapse
|
46
|
The Detection and Morphological Analysis of Circulating Tumor and Host Cells in Breast Cancer Xenograft Models. Cells 2019; 8:cells8070683. [PMID: 31284534 PMCID: PMC6679018 DOI: 10.3390/cells8070683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hematogenous dissemination may occur early in breast cancer (BC). Experimental models could clarify mechanisms, but in their development, the heterogeneity of this neoplasia must be considered. Here, we describe circulating tumor cells (CTCs) and the metastatic behavior of several BC cell lines in xenografts. MDA-MB-231, BT-474, MDA-MB-453 and MDA-MB-468 cells were injected at the orthotopic level in immunocompromised mice. CTCs were isolated using a size-based method and identified by cytomorphological criteria. Metastases were detected by COX IV immunohistochemistry. CTCs were detected in 90% of animals in each model. In MDA-MB-231, CTCs were observed after 5 weeks from the injection and step wisely increased at later time points. In animals injected with less aggressive cell lines, the load of single CTCs (mean ± SD CTCs/mL: 1.8 ± 1.3 in BT-474, 122.2 ± 278.5 in MDA-MB-453, 3.4 ± 2.5 in MDA-MB468) and the frequency of CTC clusters (overall 38%) were lower compared to MDA-MB231 (946.9 ± 2882.1; 73%). All models had lung metastases, MDA-MB-453 and MDA-MB468 had ovarian foci too, whereas lymph nodal involvement was observed in MDA-MB231 and MDA-MB-468 only. Interestingly, CTCs showed morphological heterogeneity and were rarely associated to host cells. Orthotopic xenograft of BC cell lines offers valid models of hematogenous dissemination and a possible experimental setting to study CTC-blood microenvironment interactions.
Collapse
|
47
|
Butler CT, Kennedy SA, Buckley A, Doyle R, Conroy E, Gallagher WM, O'Sullivan J, Kennedy BN. 1,4-dihydroxy quininib attenuates growth of colorectal cancer cells and xenografts and regulates the TIE-2 signaling pathway in patient tumours. Oncotarget 2019; 10:3725-3744. [PMID: 31217905 PMCID: PMC6557215 DOI: 10.18632/oncotarget.26966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/21/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer associated deaths in developed countries. Cancer progression and metastatic spread is reliant on new blood vasculature, or angiogenesis. Tumour-related angiogenesis is regulated by pro- and anti-angiogenic factors secreted from malignant tissue in a stepwise process. Previously we structurally modified the small anti-angiogenic molecule quininib and discovered a more potent anti-angiogenic compound 1, 4 dihydroxy quininib (Q8), an antagonist of cysteinyl leukotriene receptor-1 with VEGF-independent bioactivity. Here, Q8, quininib (Q1) and five structural analogues were assayed for anti-tumorigenic effects in pre-clinical cancer models. Q8 reduced clone formation of the human colorectal cancer cell line HT29-Luc2. Gene silencing of CysLT1 in HT29-Luc2 cells significantly reduced expression of calpain-2. In human ex vivo colorectal cancer tumour explants, Q8 significantly decreased the secretion of both TIE-2 and VCAM-1 expression. In vivo Q8 was well tolerated up to 50 mg/kg by Balb/C mice and significantly more effective at reducing tumour volume in colorectal tumour xenografts compared to the parent drug quininib. In tumour xenografts, Q8 significantly reduced expression of the angiogenic marker calpain-2. In summary, we propose Q8 may act on the TIE-2-Angiopoietin signalling pathway to significantly inhibit the process of tumour angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Clare T Butler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - Susan A Kennedy
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Amy Buckley
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Ronan Doyle
- Department of Histopathology, Trinity College Dublin Central Pathology Laboratory, St James's Hospital, Dublin, Ireland
| | - Emer Conroy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.,These authors contributed equally to this work
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, Dublin, Ireland.,These authors contributed equally to this work
| |
Collapse
|
48
|
Codenotti S, Faggi F, Ronca R, Chiodelli P, Grillo E, Guescini M, Megiorni F, Marampon F, Fanzani A. Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Lett 2019; 449:135-144. [DOI: 10.1016/j.canlet.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 02/10/2019] [Indexed: 11/15/2022]
|
49
|
Civit L, Theodorou I, Frey F, Weber H, Lingnau A, Gröber C, Blank M, Dambrune C, Stunden J, Beyer M, Schultze J, Latz E, Ducongé F, Kubbutat MHG, Mayer G. Targeting hormone refractory prostate cancer by in vivo selected DNA libraries in an orthotopic xenograft mouse model. Sci Rep 2019; 9:4976. [PMID: 30899039 PMCID: PMC6428855 DOI: 10.1038/s41598-019-41460-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
The targeting of specific tissue is a major challenge for the effective use of therapeutics and agents mediating this targeting are strongly demanded. We report here on an in vivo selection technology that enables the de novo identification of pegylated DNA aptamers pursuing tissue sites harbouring a hormone refractory prostate tumour. To this end, two libraries, one of which bearing an 11 kDa polyethylene glycol (PEG) modification, were used in an orthotopic xenograft prostate tumour mouse model for the selection process. Next-generation sequencing revealed an in vivo enriched pegylated but not a naïve DNA aptamer recognising prostate cancer tissue implanted either subcutaneous or orthotopically in mice. This aptamer represents a valuable and cost-effective tool for the development of targeted therapies for prostate cancer. The described selection strategy and its analysis is not limited to prostate cancer but will be adaptable to various tissues, tumours, and metastases. This opens the path towards DNA aptamers being experimentally and clinically engaged as molecules for developing targeted therapy strategies.
Collapse
Affiliation(s)
- Laia Civit
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Ioanna Theodorou
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - Franziska Frey
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Holger Weber
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,ProQinase GmbH, Breisacher Straße 117, 79106, Freiburg, Germany
| | - Andreas Lingnau
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,Genmab B.V., Yalelaan 60, 3584 CM, Utrecht, The Netherlands
| | - Carsten Gröber
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg, Martinsried, Germany
| | - Michael Blank
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg, Martinsried, Germany
| | - Chloé Dambrune
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany.,Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Joachim Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Frédéric Ducongé
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - Michael H G Kubbutat
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,ProQinase GmbH, Breisacher Straße 117, 79106, Freiburg, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany. .,Center of Aptamer Research and Development (CARD), University of Bonn, Gerhard-Domagk Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
50
|
Obradović MMS, Hamelin B, Manevski N, Couto JP, Sethi A, Coissieux MM, Münst S, Okamoto R, Kohler H, Schmidt A, Bentires-Alj M. Glucocorticoids promote breast cancer metastasis. Nature 2019; 567:540-544. [PMID: 30867597 DOI: 10.1038/s41586-019-1019-4] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 02/09/2019] [Indexed: 02/07/2023]
Abstract
Diversity within or between tumours and metastases (known as intra-patient tumour heterogeneity) that develops during disease progression is a serious hurdle for therapy1-3. Metastasis is the fatal hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic cascade4, remain poorly defined. A clearer understanding of the cellular and molecular processes that underlie both intra-patient tumour heterogeneity and metastasis is crucial for the success of personalized cancer therapy. Here, using transcriptional profiling of tumours and matched metastases in patient-derived xenograft models in mice, we show cancer-site-specific phenotypes and increased glucocorticoid receptor activity in distant metastases. The glucocorticoid receptor mediates the effects of stress hormones, and of synthetic derivatives of these hormones that are used widely in the clinic as anti-inflammatory and immunosuppressive agents. We show that the increase in stress hormones during breast cancer progression results in the activation of the glucocorticoid receptor at distant metastatic sites, increased colonization and reduced survival. Our transcriptomics, proteomics and phospho-proteomics studies implicate the glucocorticoid receptor in the activation of multiple processes in metastasis and in the increased expression of kinase ROR1, both of which correlate with reduced survival. The ablation of ROR1 reduced metastatic outgrowth and prolonged survival in preclinical models. Our results indicate that the activation of the glucocorticoid receptor increases heterogeneity and metastasis, which suggests that caution is needed when using glucocorticoids to treat patients with breast cancer who have developed cancer-related complications.
Collapse
Affiliation(s)
- Milan M S Obradović
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Wellmera AG, Basel, Switzerland
| | - Baptiste Hamelin
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nenad Manevski
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,UCB Celltech, Development Sciences, Slough, UK
| | - Joana Pinto Couto
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Atul Sethi
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marie-May Coissieux
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Münst
- Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ryoko Okamoto
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland. .,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|