1
|
Yao X, Sui X, Zhang Y. Amino Acid Metabolism and Transporters in Plant-Pathogen Interactions: Mechanisms and Implications. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40304541 DOI: 10.1111/pce.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
In the intricate landscape of plant-pathogen interactions, amino acids and their dedicated transporters emerge as pivotal players underpinning immune signalling and metabolic reprogramming. Amino acid metabolism serves as a linchpin in orchestrating systemic defence responses, with transporter-mediated amino acid homoeostasis intricately intertwined with immune pathways. This review synthesizes the dual roles of amino acids, including glutamate, proline, γ-aminobutyric acid, β-aminobutyric acid and pipecolic acid, as metabolic intermediates and signalling molecules that modulate defence responses. Complementing this metabolic framework, amino acid transporters, including LHT1 and members of the AAP and UMAMIT family, participate in plant defence against pathogens or provide nutrients to pathogens by regulating the transmembrane transport of amino acids. Their disease resistance or susceptibility functions are closely related to plant tissue-specificity and substrate-specificity. Additionally, this review explores the potential coordinated regulation between amino acid and sugar transporters in the context of plant-pathogen interactions. Looking ahead, future research should focus on resolving transporter mechanisms in resistance, dissecting regulatory hubs linking metabolism and transport, mapping nutrient fluxes at the host-pathogen interface and exploring the subcellular localization and transport direction of transporters to inform precision crop protection strategies.
Collapse
Affiliation(s)
- Xuehui Yao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Mo X, Meng K, Xu B, Li Z, Lan S, Ren Z, Xiang X, Zou P, Chen Z, Lai Z, Ao X, Liu Z, Shang W, Dai B, Luo L, Xu J, Wang Z, Zhang Z. Nat10-mediated N4-acetylcytidine modification enhances Nfatc1 translation to exacerbate osteoclastogenesis in postmenopausal osteoporosis. Proc Natl Acad Sci U S A 2025; 122:e2423991122. [PMID: 40193598 PMCID: PMC12012521 DOI: 10.1073/pnas.2423991122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Increased differentiation or activity of osteoclasts is the key pathogenic factor of postmenopausal osteoporosis (PMOP). N4-acetylcytidine (ac4C) modification, catalyzed by Nat10, is a novel posttranscriptional mRNA modification related to many diseases. However, its impact on regulating osteoclast activation in PMOP remains uncertain. Here, we initially observed that Nat10-mediated ac4C positively correlates with osteoclast differentiation of monocytes and low bone mass in PMOP. The specific knockout of Nat10 in monocytes and remodelin, a Nat10 inhibitor, alleviates ovariectomized (OVX)-induced bone loss by downregulating osteoclast differentiation. Mechanistically, epitranscriptomic analyses reveal that the nuclear factor of activated T cells cytoplasmic 1 (Nfatc1) is the key downstream target of ac4C modification during osteoclast differentiation. Subsequently, translatomic results demonstrate that Nat10-mediated ac4C enhances the translation efficiency (TE) of Nfatc1, thereby inducing Nfatc1 expression and consequent osteoclast maturation. Cumulatively, these findings reveal the promotive role of Nat10 in osteoclast differentiation and PMOP from a novel field of RNA modifications and suggest that Nat10 can be a target of epigenetic therapy for preventing bone loss in PMOP.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Keyu Meng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Bohan Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, China
| | - Zehui Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Shanwei Lan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhengda Ren
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Peiqian Zou
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zesen Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, NIH, Bethesda, MD20814
| | - Bingyang Dai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518000, China
| | - Li Luo
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou510080, China
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhizhang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| |
Collapse
|
3
|
Mei J, Yang S, Linghu Y, Gao Y, Hu Y, Nie W, Zhang Y, Peng L, Wu Y, Ding Y, Luo R, Liao J, Qian W. Unveiling the role of microRNAs in nonhost resistance to Sclerotinia sclerotiorum: Rice-specific microRNAs attack the pathogen via cross-kingdom RNAi. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1179-1195. [PMID: 39817484 DOI: 10.1111/jipb.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025]
Abstract
The development of rapeseed with high resistance against the pathogen Sclerotinia sclerotiorum is impeded by the lack of effective resistance resources within host species. Unraveling the molecular basis of nonhost resistance (NHR) holds substantial value for resistance improvement in crops. In the present study, small RNA sequencing and transcriptome sequencing were carried out between rice (a nonhost species of S. sclerotiorum) and rapeseed during infection, revealing the involvement of rice miRNAs on translation-related processes in both rice and the pathogen. Specifically, rice-specific miRNAs with potential capability for cross-kingdom RNAi against S. sclerotiorum were explored, of which Os-miR169y was selected as a representative case to elucidate its role in resistance to S. sclerotiorum. The silence of Os-miR169y decreased the resistance level of rice to S. sclerotiorum, and heterologous expression of Os-miR169y in Arabidopsis and rapeseed significantly enhanced the host resistance. The dual-luciferase reporter assay indicates that Os-miR169y targets S. sclerotiorum 60S ribosomal protein L19 (SsRPL19). Overexpressing Os-miR169y (OEss-miR169y) and RNAi of SsRPL19 (RNAiss-RPL19) in S. sclerotiorum significantly impaired the growth and pathogenicity of the pathogen, while overexpressing SsRPL19 exhibited a contrast effect. Yeast-two-hybridization revealed an interlinking role of SsRPL19 with multiple large and small ribosomal subunits, indicating its important role in translation. Proteome sequencing detected a decreased amount of proteins in transformants OEss-miR169y and RNAiss-RPL19 and significant suppression on key metabolic pathways such as carbon and nitrogen metabolisms. Collectively, this study suggests that rice can secrete specific miRNAs to suppress genes essential for S. sclerotiorum, such as Os-miR169y, which targets and suppresses SsRPL19 and thus impairs protein synthesis in the pathogen. This study sheds light on the intrinsic mechanisms of rice NHR against S. sclerotiorum, and further demonstrates the potential of using nonhost-specific "pathogen-attacking" miRNAs in improving resistance in host species.
Collapse
Affiliation(s)
- Jiaqin Mei
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Shuxian Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yanxia Linghu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yang Gao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Shilou Bureau of Agriculture and Rural Affairs, Lvliang, 033000, China
| | - Yuxin Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Wenjing Nie
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yujie Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Lixuan Peng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yongzhi Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Ruirui Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Jingyan Liao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| |
Collapse
|
4
|
Zhao Y, Wang Y. Protein Dynamics in Plant Immunity: Insights into Plant-Pest Interactions. Int J Mol Sci 2024; 25:12951. [PMID: 39684662 DOI: 10.3390/ijms252312951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
All living organisms regulate biological activities by proteins. When plants encounter pest invasions, the delicate balance between protein synthesis and degradation becomes even more pivotal for mounting an effective defense response. In this review, we summarize the mechanisms by which plants regulate their proteins to effectively coordinate immune responses during plant-pest interactions. Additionally, we discuss the main pathway proteins through which pest effectors manipulate host protein homeostasis in plants to facilitate their infestation. Understanding these processes at the molecular level not only deepens our knowledge of plant immunity but also holds the potential to inform strategies for developing pest-resistant crops, contributing to sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanru Wang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Lu X, He Y, Guo JQ, Wang Y, Yan Q, Xiong Q, Shi H, Hou Q, Yin J, An YB, Chen YD, Yang CS, Mao Y, Zhu X, Tang Y, Liu J, Bi Y, Song L, Wang L, Yang Y, He M, Li W, Chen X, Wang J. Dynamics of epitranscriptomes uncover translational reprogramming directed by ac4C in rice during pathogen infection. NATURE PLANTS 2024; 10:1548-1561. [PMID: 39317771 DOI: 10.1038/s41477-024-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Messenger RNA modifications play pivotal roles in RNA biology, but comprehensive landscape changes of epitranscriptomes remain largely unknown in plant immune response. Here we report translational reprogramming directed by ac4C mRNA modification upon pathogen challenge. We first investigate the dynamics of translatomes and epitranscriptomes and uncover that the change in ac4C at single-base resolution promotes translational reprogramming upon Magnaporthe oryzae infection. Then by characterizing the specific distributions of m1A, 2'O-Nm, ac4C, m5C, m6A and m7G, we find that ac4Cs, unlike other modifications, are enriched at the 3rd position of codons, which stabilizes the Watson-Crick base pairing. Importantly, we demonstrate that upon pathogen infection, the increased expression of the ac4C writer OsNAT10/OsACYR (N-ACETYLTRANSFERASE FOR CYTIDINE IN RNA) promotes translation to facilitate rapid activation of immune responses, including the enhancement of jasmonic acid biosynthesis. Our study provides an atlas of mRNA modifications and insights into ac4C function in plant immunity.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- MOE Key Laboratory of Agricultural Bioinformatics, Sichuan Agricultural University, Chengdu, China.
| | - Yao He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jin-Qiao Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qian Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi-Bang An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi-Di Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Cheng-Shuang Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ye Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
6
|
Cao L, Karapetyan S, Yoo H, Chen T, Mwimba M, Zhang X, Dong X. H 2O 2 sulfenylates CHE, linking local infection to the establishment of systemic acquired resistance. Science 2024; 385:1211-1217. [PMID: 39265009 PMCID: PMC11586058 DOI: 10.1126/science.adj7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 09/14/2024]
Abstract
In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For many years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been debated. We found that in Arabidopsis thaliana, after a local infection, the conserved cysteine residue of the transcription factor CCA1 HIKING EXPEDITION (CHE) undergoes sulfenylation in systemic tissues, which enhances its binding to the promoter of the SA-synthesis gene ISOCHORISMATE SYNTHASE1 (ICS1) and increases SA production. Furthermore, hydrogen peroxide (H2O2) produced through NADPH oxidases is the mobile signal that sulfenylates CHE in a concentration-dependent manner. Accumulation of SA and the previously reported signal molecules, such as N-hydroxypipecolic acid (NHP), then form a signal amplification loop to establish SAR.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Heejin Yoo
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Tianyuan Chen
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Musoki Mwimba
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Ce F, Mei J, Zhao Y, Li Q, Ren X, Song H, Qian W, Si J. Comparative Analysis of Transcriptomes Reveals Pathways and Verifies Candidate Genes for Clubroot Resistance in Brassica oleracea. Int J Mol Sci 2024; 25:9189. [PMID: 39273138 PMCID: PMC11395044 DOI: 10.3390/ijms25179189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Clubroot, a soil-borne disease caused by Plasmodiophora brassicae, is one of the most destructive diseases of Brassica oleracea all over the world. However, the mechanism of clubroot resistance remains unclear. In this research, transcriptome sequencing was conducted on root samples from both resistant (R) and susceptible (S) B. oleracea plants infected by P. brassicae. Then the comparative analysis was carried out between the R and S samples at different time points during the infection stages to reveal clubroot resistance related pathways and candidate genes. Compared with 0 days after inoculation, a total of 4991 differential expressed genes were detected from the S pool, while only 2133 were found from the R pool. Gene function enrichment analysis found that the effector-triggered immunity played a major role in the R pool, while the pathogen-associated molecular pattern triggered immune response was stronger in the S pool. Simultaneously, candidate genes were identified through weighted gene co-expression network analysis, with Bol010786 (CNGC13) and Bol017921 (SD2-5) showing potential for conferring resistance to clubroot. The findings of this research provide valuable insights into the molecular mechanisms underlying clubroot resistance and present new avenues for further research aimed at enhancing the clubroot resistance of B. oleracea through breeding.
Collapse
Affiliation(s)
- Fuquan Ce
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Yu Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| |
Collapse
|
8
|
Rogan CJ, Pang YY, Mathews SD, Turner SE, Weisberg AJ, Lehmann S, Rentsch D, Anderson JC. Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen. Nat Commun 2024; 15:7048. [PMID: 39147739 PMCID: PMC11327374 DOI: 10.1038/s41467-024-51244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.
Collapse
Affiliation(s)
- Conner J Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Yin-Yuin Pang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sophie D Mathews
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sydney E Turner
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Silke Lehmann
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
9
|
Tominello-Ramirez CS, Muñoz Hoyos L, Oubounyt M, Stam R. Network analyses predict major regulators of resistance to early blight disease complex in tomato. BMC PLANT BIOLOGY 2024; 24:641. [PMID: 38971719 PMCID: PMC11227178 DOI: 10.1186/s12870-024-05366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.
Collapse
Affiliation(s)
- Christopher S Tominello-Ramirez
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lina Muñoz Hoyos
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany.
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
10
|
Wang H, Ye X, Bi Y, Yan Y, Li D, Song F. Eukaryotic translation elongation factor OseEF1A negatively regulates rice immunity against blast disease. PLANT PHYSIOLOGY 2024; 195:1796-1801. [PMID: 38593031 DOI: 10.1093/plphys/kiae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuan Ye
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Zhu S, Yuan S, Niu R, Zhou Y, Wang Z, Xu G. RNAirport: a deep neural network-based database characterizing representative gene models in plants. J Genet Genomics 2024; 51:652-664. [PMID: 38518981 DOI: 10.1016/j.jgg.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
A 5'-leader, known initially as the 5'-untranslated region, contains multiple isoforms due to alternative splicing (aS) and alternative transcription start site (aTSS). Therefore, a representative 5'-leader is demanded to examine the embedded RNA regulatory elements in controlling translation efficiency. Here, we develop a ranking algorithm and a deep-learning model to annotate representative 5'-leaders for five plant species. We rank the intra-sample and inter-sample frequency of aS-mediated transcript isoforms using the Kruskal-Wallis test-based algorithm and identify the representative aS-5'-leader. To further assign a representative 5'-end, we train the deep-learning model 5'leaderP to learn aTSS-mediated 5'-end distribution patterns from cap-analysis gene expression data. The model accurately predicts the 5'-end, confirmed experimentally in Arabidopsis and rice. The representative 5'-leader-contained gene models and 5'leaderP can be accessed at RNAirport (http://www.rnairport.com/leader5P/). The Stage 1 annotation of 5'-leader records 5'-leader diversity and will pave the way to Ribo-Seq open-reading frame annotation, identical to the project recently initiated by human GENCODE.
Collapse
Affiliation(s)
- Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
12
|
Hossain Z, Zhao S, Luo X, Liu K, Li L, Hubbard M. Deciphering Aphanomyces euteiches-pea-biocontrol bacterium interactions through untargeted metabolomics. Sci Rep 2024; 14:8877. [PMID: 38632368 PMCID: PMC11024177 DOI: 10.1038/s41598-024-52949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024] Open
Abstract
Aphanomyces euteiches causes root rot in pea, leading to significant yield losses. However, the metabolites involved in this pathosystem have not been thoroughly studied. This study aimed to fill this gap and explore mechanisms of bacterial suppression of A. euteiches via untargeted metabolomics using pea grown in a controlled environment. Chemical isotope labeling (CIL), followed by liquid chromatography-mass spectrometry (LC-MS), was used for metabolite separation and detection. Univariate and multivariate analyses showed clear separation of metabolites from pathogen-treated pea roots and roots from other treatments. A three-tier approach positively or putatively identified 5249 peak pairs or metabolites. Of these, 403 were positively identified in tier 1; 940 were putatively identified with high confidence in tier 2. There were substantial changes in amino acid pool, and fatty acid and phenylpropanoid pathway products. More metabolites, including salicylic and jasmonic acids, were upregulated than downregulated in A. euteiches-infected roots. 1-aminocyclopropane-1-carboxylic acid and 12-oxophytodienoic acid were upregulated in A. euteiches + bacterium-treated roots compared to A. euteiches-infected roots. A great number of metabolites were up- or down-regulated in response to A. euteiches infection compared with the control and A. euteiches + bacterium-treated plants. The results of this study could facilitate improved disease management.
Collapse
Affiliation(s)
- Zakir Hossain
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada.
| | - Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Kui Liu
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Michelle Hubbard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada.
| |
Collapse
|
13
|
Ge J, Wang Z, Wu J. NAT10-mediated ac 4C modification promotes ectoderm differentiation of human embryonic stem cells via acetylating NR2F1 mRNA. Cell Prolif 2024; 57:e13577. [PMID: 38041497 PMCID: PMC10984107 DOI: 10.1111/cpr.13577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023] Open
Abstract
Cell fate determination in mammalian development is complex and precisely controlled and accumulating evidence indicates that epigenetic mechanisms are crucially involved. N4-acetylcytidine (ac4C) is a recently identified modification of messenger RNA (mRNA); however, its functions are still elusive in mammalian. Here, we show that N-acetyltransferase 10 (NAT10)-mediated ac4C modification promotes ectoderm differentiation of human embryonic stem cells (hESCs) by acetylating nuclear receptor subfamily 2 group F member 1 (NR2F1) mRNA to enhance translation efficiency (TE). Acetylated RNA immunoprecipitation sequencing (acRIP-seq) revealed that levels of ac4C modification were higher in ectodermal neuroepithelial progenitor (NEP) cells than in hESCs or mesoendoderm cells. In addition, integrated analysis of acRIP-seq and ribosome profiling sequencing revealed that NAT10 catalysed ac4C modification to improve TE in NEP cells. RIP-qRT-PCR analysis identified an interaction between NAT10 and NR2F1 mRNA in NEP cells and NR2F1 accelerated the nucleus-to-cytoplasm translocation of yes-associated protein 1, which contributed to ectodermal differentiation of hESCs. Collectively, these findings point out the novel regulatory role of ac4C modification in the early ectodermal differentiation of hESCs and will provide a new strategy for the treatment of neuroectodermal defects diseases.
Collapse
Affiliation(s)
- Junbang Ge
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoxia Wang
- Laboratory Animal Center of Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Ji Wu
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- Shanghai Key Laboratory of Reproductive MedicineShanghaiChina
| |
Collapse
|
14
|
Contreras E, Martinez M. The RIN4-like/NOI proteins NOI10 and NOI11 modulate the response to biotic stresses mediated by RIN4 in Arabidopsis. PLANT CELL REPORTS 2024; 43:70. [PMID: 38358510 PMCID: PMC10869442 DOI: 10.1007/s00299-024-03151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024]
Abstract
KEY MESSAGE NOI10 and NOI11 are two RIN4-like/NOI proteins that participate in the immune response of the Arabidopsis plant and affect the RIN4-regulated mechanisms involving the R-proteins RPM1 and RPS2. The immune response in plants depends on the regulation of signaling pathways triggered by pathogens and herbivores. RIN4, a protein of the RIN4-like/NOI family, is considered to be a central immune signal in the interactions of plants and pathogens. In Arabidopsis thaliana, four of the 15 members of the RIN4-like/NOI family (NOI3, NOI5, NOI10, and NOI11) were induced in response to the plant herbivore Tetranychus urticae. While overexpressing NOI10 and NOI11 plants did not affect mite performance, opposite callose accumulation patterns were observed when compared to RIN4 overexpressing plants. In vitro and in vivo analyses demonstrated the interaction of NOI10 and NOI11 with the RIN4 interactors RPM1, RPS2, and RIPK, suggesting a role in the context of the RIN4-regulated immune response. Transient expression experiments in Nicotiana benthamiana evidenced that NOI10 and NOI11 differed from RIN4 in their functionality. Furthermore, overexpressing NOI10 and NOI11 plants had significant differences in susceptibility with WT and overexpressing RIN4 plants when challenged with Pseudomonas syringae bacteria expressing the AvrRpt2 or the AvrRpm1 effectors. These results demonstrate the participation of NOI10 and NOI11 in the RIN4-mediated pathway. Whereas RIN4 is considered a guardee protein, NOI10 and NOI11 could act as decoys to modulate the concerted activity of effectors and R-proteins.
Collapse
Affiliation(s)
- Estefania Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| |
Collapse
|
15
|
Zheng X, Chen H, Deng Z, Wu Y, Zhong L, Wu C, Yu X, Chen Q, Yan S. The tRNA thiolation-mediated translational control is essential for plant immunity. eLife 2024; 13:e93517. [PMID: 38284752 PMCID: PMC10863982 DOI: 10.7554/elife.93517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024] Open
Abstract
Plants have evolved sophisticated mechanisms to regulate gene expression to activate immune responses against pathogen infections. However, how the translation system contributes to plant immunity is largely unknown. The evolutionarily conserved thiolation modification of transfer RNA (tRNA) ensures efficient decoding during translation. Here, we show that tRNA thiolation is required for plant immunity in Arabidopsis. We identify a cgb mutant that is hyper-susceptible to the pathogen Pseudomonas syringae. CGB encodes ROL5, a homolog of yeast NCS6 required for tRNA thiolation. ROL5 physically interacts with CTU2, a homolog of yeast NCS2. Mutations in either ROL5 or CTU2 result in loss of tRNA thiolation. Further analyses reveal that both transcriptome and proteome reprogramming during immune responses are compromised in cgb. Notably, the translation of salicylic acid receptor NPR1 is reduced in cgb, resulting in compromised salicylic acid signaling. Our study not only reveals a regulatory mechanism for plant immunity but also uncovers an additional biological function of tRNA thiolation.
Collapse
Affiliation(s)
- Xueao Zheng
- Hubei Hongshan LaboratoryWuhanChina
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Hanchen Chen
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yujing Wu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Linlin Zhong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhanChina
| | - Chong Wu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Xiaodan Yu
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Shunping Yan
- Hubei Hongshan LaboratoryWuhanChina
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern AgricultureShenzhenChina
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityShenzhenChina
| |
Collapse
|
16
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
17
|
Siodmak A, Martinez-Seidel F, Rayapuram N, Bazin J, Alhoraibi H, Gentry-Torfer D, Tabassum N, Sheikh AH, Kise J, Blilou I, Crespi M, Kopka J, Hirt H. Dynamics of ribosome composition and ribosomal protein phosphorylation in immune signaling in Arabidopsis thaliana. Nucleic Acids Res 2023; 51:11876-11892. [PMID: 37823590 PMCID: PMC10681734 DOI: 10.1093/nar/gkad827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
In plants, the detection of microbe-associated molecular patterns (MAMPs) induces primary innate immunity by the activation of mitogen-activated protein kinases (MAPKs). We show here that the MAMP-activated MAPK MPK6 not only modulates defense through transcriptional regulation but also via the ribosomal protein translation machinery. To understand the effects of MPK6 on ribosomes and their constituent ribosomal proteins (RPs), polysomes, monosomes and the phosphorylation status of the RPs, MAMP-treated WT and mpk6 mutant plants were analysed. MAMP-activation induced rapid changes in RP composition of monosomes, polysomes and in the 60S ribosomal subunit in an MPK6-specific manner. Phosphoproteome analysis showed that MAMP-activation of MPK6 regulates the phosphorylation status of the P-stalk ribosomal proteins by phosphorylation of RPP0 and the concomitant dephosphorylation of RPP1 and RPP2. These events coincide with a significant decrease in the abundance of ribosome-bound RPP0s, RPP1s and RPP3s in polysomes. The P-stalk is essential in regulating protein translation by recruiting elongation factors. Accordingly, we found that RPP0C mutant plants are compromised in basal resistance to Pseudomonas syringae infection. These data suggest that MAMP-induced defense also involves MPK6-induced regulation of P-stalk proteins, highlighting a new role of ribosomal regulation in plant innate immunity.
Collapse
Affiliation(s)
- Anna Siodmak
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Hanna Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Dione Gentry-Torfer
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - José Kenyi González Kise
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
18
|
Wang Z, Li X, Yao X, Ma J, Lu K, An Y, Sun Z, Wang Q, Zhou M, Qin L, Zhang L, Zou S, Chen L, Song C, Dong H, Zhang M, Chen X. MYB44 regulates PTI by promoting the expression of EIN2 and MPK3/6 in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100628. [PMID: 37221824 PMCID: PMC10721452 DOI: 10.1016/j.xplc.2023.100628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
The plant signaling pathway that regulates pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) involves mitogen-activated protein kinase (MAPK) cascades that comprise sequential activation of several protein kinases and the ensuing phosphorylation of MAPKs, which activate transcription factors (TFs) to promote downstream defense responses. To identify plant TFs that regulate MAPKs, we investigated TF-defective mutants of Arabidopsis thaliana and identified MYB44 as an essential constituent of the PTI pathway. MYB44 confers resistance against the bacterial pathogen Pseudomonas syringae by cooperating with MPK3 and MPK6. Under PAMP treatment, MYB44 binds to the promoters of MPK3 and MPK6 to activate their expression, leading to phosphorylation of MPK3 and MPK6 proteins. In turn, phosphorylated MPK3 and MPK6 phosphorylate MYB44 in a functionally redundant manner, thus enabling MYB44 to activate MPK3 and MPK6 expression and further activate downstream defense responses. Activation of defense responses has also been attributed to activation of EIN2 transcription by MYB44, which has previously been shown to affect PAMP recognition and PTI development. AtMYB44 thus functions as an integral component of the PTI pathway by connecting transcriptional and posttranscriptional regulation of the MPK3/6 cascade.
Collapse
Affiliation(s)
- Zuodong Wang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaoxu Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Jinbiao Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Wang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Miao Zhou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Congfeng Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hansong Dong
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; Qilu College, Shandong Agricultural University, Taian 271018, China.
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaochen Chen
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
19
|
An Y, Wang Z, Liu B, Cao Y, Chen L. Translational Landscape of Medicago truncatula Seedlings under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16657-16668. [PMID: 37880959 DOI: 10.1021/acs.jafc.3c03922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The expression of plant genes under salt stress at the transcriptional level has been extensively studied. However, less attention has been paid to gene translation regulation under salt stress. In this study, Ribo-seq and RNA-seq analyses were conducted in Medicago truncatula seedlings grown under normal and salt stress conditions. The results showed that salt stress significantly altered the gene expression at the transcriptional and translational levels, with 2755 genes showing significant changes only at the translational level. Salt stress significantly inhibited the gene translation efficiency. Small ORFs (including uORFs in the 5'UTR, dORFs in 3'UTRs, and sORFs in lncRNAs) were identified throughout the genome of M. truncatula. The efficiency of gene translation was simultaneously regulated by the uORFs, dORFs, and miRNAs. In summary, our results provide valuable information about translatomic resources and new insights into plant responses to salt stress.
Collapse
Affiliation(s)
- Yixin An
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Ziqi Wang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Baijian Liu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yuwei Cao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
20
|
Hazra A, Ghosh S, Naskar S, Rahaman P, Roy C, Kundu A, Chaudhuri RK, Chakraborti D. Global transcriptome analysis reveals fungal disease responsive core gene regulatory landscape in tea. Sci Rep 2023; 13:17186. [PMID: 37821523 PMCID: PMC10567763 DOI: 10.1038/s41598-023-44163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fungal infections are the inevitable limiting factor for productivity of tea. Transcriptome reprogramming recruits multiple regulatory pathways during pathogen infection. A comprehensive meta-analysis was performed utilizing previously reported, well-replicated transcriptomic datasets from seven fungal diseases of tea. The study identified a cumulative set of 18,517 differentially expressed genes (DEGs) in tea, implicated in several functional clusters, including the MAPK signaling pathway, transcriptional regulation, and the biosynthesis of phenylpropanoids. Gene set enrichment analyses under each pathogen stress elucidated that DEGs were involved in ethylene metabolism, secondary metabolism, receptor kinase activity, and various reactive oxygen species detoxification enzyme activities. Expressional fold change of combined datasets highlighting 2258 meta-DEGs shared a common transcriptomic response upon fungal stress in tea. Pervasive duplication events caused biotic stress-responsive core DEGs to appear in multiple copies throughout the tea genome. The co-expression network of meta-DEGs in multiple modules demonstrated the coordination of appropriate pathways, most of which involved cell wall organization. The functional coordination was controlled by a number of hub genes and miRNAs, leading to pathogenic resistance or susceptibility. This first-of-its-kind meta-analysis of host-pathogen interaction generated consensus candidate loci as molecular signatures, which can be associated with future resistance breeding programs in tea.
Collapse
Affiliation(s)
- Anjan Hazra
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sudipta Naskar
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Piya Rahaman
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chitralekha Roy
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
21
|
Vélez-Bermúdez IC, Chou SJ, Chen AP, Lin WD, Schmidt W. Protocol to measure ribosome density along mRNA transcripts of Arabidopsis thaliana tissues using Ribo-seq. STAR Protoc 2023; 4:102520. [PMID: 37597190 PMCID: PMC10469065 DOI: 10.1016/j.xpro.2023.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
Ribosome profiling (Ribo-seq) measures ribosome density along messenger RNA (mRNA) transcripts and is used to estimate the "translational fitness" of a given mRNA in response to environmental or developmental cues with high resolution. Here, we describe a protocol for Ribo-seq in plants adapted for the model plant Arabidopsis thaliana. We describe steps for lysis and nucleolytic digestion and ribosome footprinting. We then detail library construction, sequencing, and data analysis.
Collapse
Affiliation(s)
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Genomic Technology Core, Academia Sinica, Taipei 11529, Taiwan
| | - Ai-Ping Chen
- Institute of Plant and Microbial Biology, Genomic Technology Core, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Bioinformatics Core Lab, Academia Sinica, Taipei 11529, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
22
|
George J, Stegmann M, Monaghan J, Bailey-Serres J, Zipfel C. Arabidopsis translation initiation factor binding protein CBE1 negatively regulates accumulation of the NADPH oxidase respiratory burst oxidase homolog D. J Biol Chem 2023; 299:105018. [PMID: 37423301 PMCID: PMC10432800 DOI: 10.1016/j.jbc.2023.105018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023] Open
Abstract
Cell surface pattern recognition receptors sense invading pathogens by binding microbial or endogenous elicitors to activate plant immunity. These responses are under tight control to avoid excessive or untimely activation of cellular responses, which may otherwise be detrimental to host cells. How this fine-tuning is accomplished is an area of active study. We previously described a suppressor screen that identified Arabidopsis thaliana mutants with regained immune signaling in the immunodeficient genetic background bak1-5, which we named modifier of bak1-5 (mob) mutants. Here, we report that bak1-5 mob7 mutant restores elicitor-induced signaling. Using a combination of map-based cloning and whole-genome resequencing, we identified MOB7 as conserved binding of eIF4E1 (CBE1), a plant-specific protein that interacts with the highly conserved eukaryotic translation initiation factor eIF4E1. Our data demonstrate that CBE1 regulates the accumulation of respiratory burst oxidase homolog D, the NADPH oxidase responsible for elicitor-induced apoplastic reactive oxygen species production. Furthermore, several mRNA decapping and translation initiation factors colocalize with CBE1 and similarly regulate immune signaling. This study thus identifies a novel regulator of immune signaling and provides new insights into reactive oxygen species regulation, potentially through translational control, during plant stress responses.
Collapse
Affiliation(s)
- Jeoffrey George
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Martin Stegmann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jacqueline Monaghan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, California, USA
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
23
|
Wang W, Wang Y, Chen T, Qin G, Tian S. Current insights into posttranscriptional regulation of fleshy fruit ripening. PLANT PHYSIOLOGY 2023; 192:1785-1798. [PMID: 36250906 PMCID: PMC10315313 DOI: 10.1093/plphys/kiac483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 05/26/2023]
Abstract
Fruit ripening is a complicated process that is accompanied by the formation of fruit quality. It is not only regulated at the transcriptional level via transcription factors or DNA methylation but also fine-tuned after transcription occurs. Here, we review recent advances in our understanding of key regulatory mechanisms of fleshy fruit ripening after transcription. We mainly highlight the typical mechanisms by which fruit ripening is controlled, namely, alternative splicing, mRNA N6-methyladenosine RNA modification methylation, and noncoding RNAs at the posttranscriptional level; regulation of translation efficiency and upstream open reading frame-mediated translational repression at the translational level; and histone modifications, protein phosphorylation, and protein ubiquitination at the posttranslational level. Taken together, these posttranscriptional regulatory mechanisms, along with transcriptional regulation, constitute the molecular framework of fruit ripening. We also critically discuss the potential usage of some mechanisms to improve fruit traits.
Collapse
Affiliation(s)
- Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Santillán-Sarmiento A, Pazzaglia J, Ruocco M, Dattolo E, Ambrosino L, Winters G, Marin-Guirao L, Procaccini G. Gene co-expression network analysis for the selection of candidate early warning indicators of heat and nutrient stress in Posidonia oceanica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162517. [PMID: 36868282 DOI: 10.1016/j.scitotenv.2023.162517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 05/06/2023]
Abstract
The continuous worldwide seagrasses decline calls for immediate actions in order to preserve this precious marine ecosystem. The main stressors that have been linked with decline in seagrasses are 1) the increasing ocean temperature due to climate change and 2) the continuous inputs of nutrients (eutrophication) associated with coastal human activities. To avoid the loss of seagrass populations, an "early warning" system is needed. We used Weighed Gene Co-expression Network Analysis (WGCNA), a systems biology approach, to identify potential candidate genes that can provide an early warning signal of stress in the Mediterranean iconic seagrass Posidonia oceanica, anticipating plant mortality. Plants were collected from both eutrophic (EU) and oligotrophic (OL) environments and were exposed to thermal and nutrient stress in a dedicated mesocosm. By correlating the whole-genome gene expression after 2-weeks exposure with the shoot survival percentage after 5-weeks exposure to stressors, we were able to identify several transcripts that indicated an early activation of several biological processes (BP) including: protein metabolic process, RNA metabolic process, organonitrogen compound biosynthetic process, catabolic process and response to stimulus, which were shared among OL and EU plants and among leaf and shoot apical meristem (SAM), in response to excessive heat and nutrients. Our results suggest a more dynamic and specific response of the SAM compared to the leaf, especially the SAM from plants coming from a stressful environment appeared more dynamic than the SAM from a pristine environment. A vast list of potential molecular markers is also provided that can be used as targets to assess field samples.
Collapse
Affiliation(s)
| | - Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Gidon Winters
- Dead Sea and Arava Science Center (DSASC), Masada National Park, Mount Masada 8698000, Israel.; Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, Eilat 8855630, Israel
| | - Lázaro Marin-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| |
Collapse
|
25
|
Guo Y, Chen Y, Wang Y, Wu X, Zhang X, Mao W, Yu H, Guo K, Xu J, Ma L, Guo W, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H. The translational landscape of bread wheat during grain development. THE PLANT CELL 2023; 35:1848-1867. [PMID: 36905284 PMCID: PMC10226598 DOI: 10.1093/plcell/koad075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 05/30/2023]
Abstract
The dynamics of gene expression in crop grains has typically been investigated at the transcriptional level. However, this approach neglects translational regulation, a widespread mechanism that rapidly modulates gene expression to increase the plasticity of organisms. Here, we performed ribosome profiling and polysome profiling to obtain a comprehensive translatome data set of developing bread wheat (Triticum aestivum) grains. We further investigated the genome-wide translational dynamics during grain development, revealing that the translation of many functional genes is modulated in a stage-specific manner. The unbalanced translation between subgenomes is pervasive, which increases the expression flexibility of allohexaploid wheat. In addition, we uncovered widespread previously unannotated translation events, including upstream open reading frames (uORFs), downstream open reading frames (dORFs), and open reading frames (ORFs) in long noncoding RNAs, and characterized the temporal expression dynamics of small ORFs. We demonstrated that uORFs act as cis-regulatory elements that can repress or even enhance the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, dORFs, and microRNAs. In summary, our study presents a translatomic resource that provides a comprehensive and detailed overview of the translational regulation in developing bread wheat grains. This resource will facilitate future crop improvements for optimal yield and quality.
Collapse
Affiliation(s)
- Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaojia Wu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weiwei Mao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Hongjian Yu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Kai Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Liang Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Karapetyan S, Mwimba M, Dong X. Circadian redox rhythm gates immune-induced cell death distinctly from the genetic clock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.535069. [PMID: 37131835 PMCID: PMC10153234 DOI: 10.1101/2023.04.21.535069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth’s day-night cycles and regulate responses to environmental stresses to gain competitive advantage 1 . While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, a conserved circadian redox rhythm has only recently been reported and hypothesized to be a more ancient clock 2, 3 . However, it is controversial whether the redox rhythm serves as an independent clock and controls specific biological processes 4 . Here, we uncovered the coexistence of redox and genetic rhythms with distinct period lengths and transcriptional targets through concurrent metabolic and transcriptional time-course measurements in an Arabidopsis long-period clock mutant 5 . Analysis of the target genes indicated regulation of the immune-induced programmed cell death (PCD) by the redox rhythm. Moreover, this time-of-day-sensitive PCD was eliminated by redox perturbation and by blocking the signalling pathway of the plant defence hormones jasmonic acid/ethylene, while remaining intact in a genetic-clock-impaired line. We demonstrate that compared to robust genetic clocks, the more sensitive circadian redox rhythm serves as a signalling hub in regulating incidental energy-intensive processes, such as immune-induced PCD 6 , to provide organisms a flexible strategy to prevent metabolic overload caused by stress, a unique role for the redox oscillator.
Collapse
|
27
|
Ma Q, Wang Y, Li S, Wen J, Zhu L, Yan K, Du Y, Li S, Yan L, Xie Z, Lyu Y, Shen F, Li Q. Ribosome footprint profiling enables elucidating the systemic regulation of fatty acid accumulation in Acer truncatum. BMC Biol 2023; 21:68. [PMID: 37013569 PMCID: PMC10071632 DOI: 10.1186/s12915-023-01564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The accumulation of fatty acids in plants covers a wide range of functions in plant physiology and thereby affects adaptations and characteristics of species. As the famous woody oilseed crop, Acer truncatum accumulates unsaturated fatty acids and could serve as the model to understand the regulation and trait formation in oil-accumulation crops. Here, we performed Ribosome footprint profiling combing with a multi-omics strategy towards vital time points during seed development, and finally constructed systematic profiling from transcription to proteomes. Additionally, we characterized the small open reading frames (ORFs) and revealed that the translational efficiencies of focused genes were highly influenced by their sequence features. RESULTS The comprehensive multi-omics analysis of lipid metabolism was conducted in A. truncatum. We applied the Ribo-seq and RNA-seq techniques, and the analyses of transcriptional and translational profiles of seeds collected at 85 and 115 DAF were compared. Key members of biosynthesis-related structural genes (LACS, FAD2, FAD3, and KCS) were characterized fully. More meaningfully, the regulators (MYB, ABI, bZIP, and Dof) were identified and revealed to affect lipid biosynthesis via post-translational regulations. The translational features results showed that translation efficiency tended to be lower for the genes with a translated uORF than for the genes with a non-translated uORF. They provide new insights into the global mechanisms underlying the developmental regulation of lipid metabolism. CONCLUSIONS We performed Ribosome footprint profiling combing with a multi-omics strategy in A. truncatum seed development, which provides an example of the use of Ribosome footprint profiling in deciphering the complex regulation network and will be useful for elucidating the metabolism of A. truncatum seed oil and the regulatory mechanisms.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Yuxiao Wang
- Nanjing Forestry University, Nanjing, 210037, China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Yiming Du
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China
| | - Shuxian Li
- Nanjing Forestry University, Nanjing, 210037, China
| | - Liping Yan
- Shandong Academy of Forestry Sciences, Jinan, 250014, China
| | - Zhijun Xie
- Xiangyang Forestry Science and Technology Extension Station, Xiangyang, 441000, China
| | - Yunzhou Lyu
- Jiangsu Academy of Forestry, Nanjing, 211153, China.
| | - Fei Shen
- Institute of Biology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100197, China.
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement Nanjing, Nanjing, 210014, China.
| |
Collapse
|
28
|
Chen T, Xu G, Mou R, Greene GH, Liu L, Motley J, Dong X. Global translational induction during NLR-mediated immunity in plants is dynamically regulated by CDC123, an ATP-sensitive protein. Cell Host Microbe 2023; 31:334-342.e5. [PMID: 36801014 PMCID: PMC10898606 DOI: 10.1016/j.chom.2023.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
The recognition of pathogen effectors by their cognate nucleotide-binding leucine-rich repeat (NLR) receptors activates effector-triggered immunity (ETI) in plants. ETI is associated with correlated transcriptional and translational reprogramming and subsequent death of infected cells. Whether ETI-associated translation is actively regulated or passively driven by transcriptional dynamics remains unknown. In a genetic screen using a translational reporter, we identified CDC123, an ATP-grasp protein, as a key activator of ETI-associated translation and defense. During ETI, an increase in ATP concentration facilitates CDC123-mediated assembly of the eukaryotic translation initiation factor 2 (eIF2) complex. Because ATP is required for the activation of NLRs as well as the CDC123 function, we uncovered a possible mechanism by which the defense translatome is coordinately induced during NLR-mediated immunity. The conservation of the CDC123-mediated eIF2 assembly suggests its possible role in NLR-mediated immunity beyond plants.
Collapse
Affiliation(s)
- Tianyuan Chen
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Guoyong Xu
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Rui Mou
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - George H Greene
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lijing Liu
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jonathan Motley
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
29
|
Carter M. After the trap snaps in the plant immune response. Cell Host Microbe 2023; 31:323-324. [PMID: 36893728 DOI: 10.1016/j.chom.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/11/2023]
Abstract
In this issue of Cell Host and Microbe, Chen et al. report that global translation is increased upon plant pathogen detection by intracellular resistance proteins. To achieve this, the conserved protein CDC123 promotes translation initiation complex assembly during the early hours of a defensive programmed cell death in Arabidopsis.
Collapse
Affiliation(s)
- Morgan Carter
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina, 28223, USA.
| |
Collapse
|
30
|
Son S, Park SR. Plant translational reprogramming for stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1151587. [PMID: 36909402 PMCID: PMC9998923 DOI: 10.3389/fpls.2023.1151587] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Organisms regulate gene expression to produce essential proteins for numerous biological processes, from growth and development to stress responses. Transcription and translation are the major processes of gene expression. Plants evolved various transcription factors and transcriptome reprogramming mechanisms to dramatically modulate transcription in response to environmental cues. However, even the genome-wide modulation of a gene's transcripts will not have a meaningful effect if the transcripts are not properly biosynthesized into proteins. Therefore, protein translation must also be carefully controlled. Biotic and abiotic stresses threaten global crop production, and these stresses are seriously deteriorating due to climate change. Several studies have demonstrated improved plant resistance to various stresses through modulation of protein translation regulation, which requires a deep understanding of translational control in response to environmental stresses. Here, we highlight the translation mechanisms modulated by biotic, hypoxia, heat, and drought stresses, which are becoming more serious due to climate change. This review provides a strategy to improve stress tolerance in crops by modulating translational regulation.
Collapse
|
31
|
Zhou Y, Niu R, Tang Z, Mou R, Wang Z, Zhu S, Yang H, Ding P, Xu G. Plant HEM1 specifies a condensation domain to control immune gene translation. NATURE PLANTS 2023; 9:289-301. [PMID: 36797349 DOI: 10.1038/s41477-023-01355-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Translational reprogramming is a fundamental layer of immune regulation, but how such a global regulatory mechanism operates remains largely unknown. Here we perform a genetic screen and identify Arabidopsis HEM1 as a global translational regulator of plant immunity. The loss of HEM1 causes exaggerated cell death to restrict bacterial growth during effector-triggered immunity (ETI). By improving ribosome footprinting, we reveal that the hem1 mutant increases the translation efficiency of pro-death immune genes. We show that HEM1 contains a plant-specific low-complexity domain (LCD) absent from animal homologues. This LCD endows HEM1 with the capability of phase separation in vitro and in vivo. During ETI, HEM1 interacts and condensates with the translation machinery; this activity is promoted by the LCD. CRISPR removal of this LCD causes more ETI cell death. Our results suggest that HEM1 condensation constitutes a brake mechanism of immune activation by controlling the tissue health and disease resistance trade-off during ETI.
Collapse
Affiliation(s)
- Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Hongchun Yang
- School of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
32
|
Su J, Gassmann W. Cytoplasmic regulation of chloroplast ROS accumulation during effector-triggered immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1127833. [PMID: 36794218 PMCID: PMC9922995 DOI: 10.3389/fpls.2023.1127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Accumulating evidence suggests that chloroplasts are an important battleground during various microbe-host interactions. Plants have evolved layered strategies to reprogram chloroplasts to promote de novo biosynthesis of defense-related phytohormones and the accumulation of reactive oxygen species (ROS). In this minireview, we will discuss how the host controls chloroplast ROS accumulation during effector-triggered immunity (ETI) at the level of selective mRNA decay, translational regulation, and autophagy-dependent formation of Rubisco-containing bodies (RCBs). We hypothesize that regulation at the level of cytoplasmic mRNA decay impairs the repair cycle of photosystem II (PSII) and thus facilitates ROS generation at PSII. Meanwhile, removing Rubisco from chloroplasts potentially reduces both O2 and NADPH consumption. As a consequence, an over-reduced stroma would further exacerbate PSII excitation pressure and enhance ROS production at photosystem I.
Collapse
|
33
|
Tao CN, Buswell W, Zhang P, Walker H, Johnson I, Field K, Schwarzenbacher R, Ton J. A single amino acid transporter controls the uptake of priming-inducing beta-amino acids and the associated tradeoff between induced resistance and plant growth. THE PLANT CELL 2022; 34:4840-4856. [PMID: 36040205 PMCID: PMC9709968 DOI: 10.1093/plcell/koac271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Selected β-amino acids, such as β-aminobutyric acid (BABA) and R-β-homoserine (RBH), can prime plants for resistance against a broad spectrum of diseases. Here, we describe a genome-wide screen of fully annotated Arabidopsis thaliana T-DNA insertion lines for impaired in RBH-induced immunity (iri) mutants against the downy mildew pathogen Hyaloperonospora arabidopsidis, yielding 104 lines that were partially affected and four lines that were completely impaired in RBH-induced resistance (IR). We confirmed the iri1-1 mutant phenotype with an independent T-DNA insertion line in the same gene, encoding the high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER 1 (LHT1). Uptake experiments with yeast cells expressing LHT1 and mass spectrometry-based quantification of RBH and BABA in leaves of lht1 mutant and LHT1 overexpression lines revealed that LHT1 acts as the main transporter for cellular uptake and systemic distribution of RBH and BABA. Subsequent characterization of lht1 mutant and LHT1 overexpression lines for IR and growth responses revealed that the levels of LHT1-mediated uptake determine the tradeoff between IR and plant growth by RBH and BABA.
Collapse
Affiliation(s)
- Chia-Nan Tao
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Will Buswell
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Peijun Zhang
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Heather Walker
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, biOMICS Facility, University of Sheffield, Sheffield, S10 2TN, UK
| | - Irene Johnson
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Katie Field
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Roland Schwarzenbacher
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
34
|
Mackenzie SA, Mullineaux PM. Plant environmental sensing relies on specialized plastids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7155-7164. [PMID: 35994779 DOI: 10.1093/jxb/erac334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In plants, plastids are thought to interconvert to various forms that are specialized for photosynthesis, starch and oil storage, and diverse pigment accumulation. Post-endosymbiotic evolution has led to adaptations and specializations within plastid populations that align organellar functions with different cellular properties in primary and secondary metabolism, plant growth, organ development, and environmental sensing. Here, we review the plastid biology literature in light of recent reports supporting a class of 'sensory plastids' that are specialized for stress sensing and signaling. Abundant literature indicates that epidermal and vascular parenchyma plastids display shared features of dynamic morphology, proteome composition, and plastid-nuclear interaction that facilitate environmental sensing and signaling. These findings have the potential to reshape our understanding of plastid functional diversification.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
35
|
Microscopic and Transcriptomic Comparison of Powdery Mildew Resistance in the Progenies of Brassica carinata × B. napus. Int J Mol Sci 2022; 23:ijms23179961. [PMID: 36077359 PMCID: PMC9456427 DOI: 10.3390/ijms23179961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew is a widespread disease in rapeseed due to a lack of resistant germplasm. We compared the foliar epidermal features and transcriptomic responses between the resistant (R) and susceptible (S) plants among the two parents and progenies of Brassica carinata × B. napus. The amount of cuticular wax and callose deposition on the R plants was much lower than that on the S plants; hence, these chemicals are not all essential to pre-penetration resistance, although the cuticular wax on the R plants had more needle-like crystals. A total of 1049 genes involved in various defense responses were expressed differentially among the R/S plants. The expression levels of two well-known susceptibility genes, MLO6 and MLO12, were much lower in the R plant, indicating an important role in PM resistance. A set of genes related to wax biosynthesis (KCS6, LACS2, CER and MAH1), cell wall modification (PMR5, PMEI9, RWA2, PDCB1 and C/VIF2), chloroplast function (Chlorophyllase-1, OEP161, PSBO1, CP29B and CSP41b), receptor kinase activity (ERECTA, BAK1, BAM2, LYM1, LYM3, RLK902, RLP11, ERL1 and ERL2), IPCS2, GF14 lambda, RPS4 and RPS6 were highly expressed in the R plants. In the S plants, most highly expressed genes were involved in later defense responses, including CERK1, LYK4, LIK1, NIMIN-1, CHITINASE 10, PECTINESTERASE, CYP81F2 and RBOHF and the genes involved in salicylic acid-dependent systemic acquired resistance and hypersensitive responses, indicating the occurrence of severe fungal infection. The results indicate that some uncertain pre-penetration defenses are pivotal for high resistance, while post-penetration defenses are more important for the S plant survival.
Collapse
|
36
|
Riaz M, Akhtar N, Msimbira LA, Antar M, Ashraf S, Khan SN, Smith DL. Neocosmospora rubicola, a stem rot disease in potato: Characterization, distribution and management. Front Microbiol 2022; 13:953097. [PMID: 36033873 PMCID: PMC9403868 DOI: 10.3389/fmicb.2022.953097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Potato (Solanum tuberosum L.) is one of the most important crops in maintaining global food security. Plant stand and yield are affected by production technology, climate, soil type, and biotic factors such as insects and diseases. Numerous fungal diseases including Neocosmospora rubicola, causing stem rot, are known to have negative effects on potato growth and yield quality. The pathogen is known to stunt growth and cause leaf yellowing with grayish-black stems. The infectivity of N. rubicola across a number of crops indicates the need to search for appropriate management approaches. Synthetic pesticides application is a major method to mitigate almost all potato diseases at this time. However, these pesticides significantly contribute to environmental damage and continuous use leads to pesticide resistance by pathogens. Consumers interest in organic products have influenced agronomists to shift toward the use of biologicals in controlling most pathogens, including N. rubicola. This review is an initial effort to carefully examine current and alternative approaches to control N. rubicola that are both environmentally safe and ecologically sound. Therefore, this review aims to draw attention to the N. rubicola distribution and symptomatology, and sustainable management strategies for potato stem rot disease. Applications of plant growth promoting bacteria (PGPB) as bioformulations with synthetic fertilizers have the potential to increase the tuber yield in both healthy and N. rubicola infested soils. Phosphorus and nitrogen applications along with the PGPB can improve plants uptake efficiency and reduce infestation of pathogen leading to increased yield. Therefore, to control N. rubicola infestation, with maximum tuber yield benefits, a pre-application of the biofertilizer is shown as a better option, based on the most recent studies. With the current limited information on the disease, precise screening of the available resistant potato cultivars, developing molecular markers for resistance genes against N. rubicola will assist to reduce spread and virulence of the pathogen.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Naureen Akhtar
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Mohammed Antar
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Shoaib Ashraf
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Salik Nawaz Khan
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
| | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Li XY, An HB, Zhang LY, Liu H, Shen YC, Yang XT. Non-negative matrix factorization model-based construction for molecular clustering and prognostic assessment of head and neck squamous carcinoma. Heliyon 2022; 8:e10100. [PMID: 35991972 PMCID: PMC9389204 DOI: 10.1016/j.heliyon.2022.e10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose We aimed at exploring the efficacy of non-negative matrix factorization (NMF) model-based clustering for prognostic assessment of head and neck squamous carcinoma (HNSCC). Methods The transcriptome microarray data of HNSCC samples were downloaded from The Cancer Genome Atlas (TCGA) and the Shanghai Ninth People's Hospital. R software packages were used to establish NMF clustering, from which relevant prognostic models were developed. Results Based on NMF, samples were allocated into 2 subgroups. Predictive models were constructed using differentially expressed genes between the two subgroups. The high-risk group was associated with poor prognostic outcomes. Moreover, multi-factor Cox regression analysis revealed that the predictive model was an independent prognostic predictor. Conclusion The NMF-based prognostic model has the potential for prognostic assessment of HNSCC.
Collapse
Affiliation(s)
- Xin-yu Li
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hong-bang An
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Lu-yu Zhang
- The Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yu-chen Shen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-tao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Biniaz Y, Tahmasebi A, Tahmasebi A, Albrectsen BR, Poczai P, Afsharifar A. Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. BIOLOGY 2022; 11:1155. [PMID: 36009782 PMCID: PMC9404733 DOI: 10.3390/biology11081155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Following a pathogen attack, plants defend themselves using multiple defense mechanisms to prevent infections. We used a meta-analysis and systems-biology analysis to search for general molecular plant defense responses from transcriptomic data reported from different pathogen attacks in Arabidopsis thaliana. Data from seven studies were subjected to meta-analysis, which revealed a total of 3694 differentially expressed genes (DEGs), where both healthy and infected plants were considered. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis further suggested that the DEGs were involved in several biosynthetic metabolic pathways, including those responsible for the biosynthesis of secondary metabolites and pathways central to photosynthesis and plant-pathogen interactions. Using network analysis, we highlight the importance of WRKY40, WRKY46 and STZ, and suggest that they serve as major points in protein-protein interactions. This is especially true regarding networks of composite-metabolic responses by pathogens. In summary, this research provides a new approach that illuminates how different mechanisms of transcriptome responses can be activated in plants under pathogen infection and indicates that common genes vary in their ability to regulate plant responses to the pathogens studied herein.
Collapse
Affiliation(s)
- Yaser Biniaz
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 7916193145, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Benedicte Riber Albrectsen
- Department of Plant Physiology, Faculty of Science and Technology, Umeå University, 901 87 Umeå, Sweden;
| | - Péter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00065 Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), P.O. Box 4, H-9731 Kőszeg, Hungary
| | - Alireza Afsharifar
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| |
Collapse
|
39
|
Moormann J, Heinemann B, Hildebrandt TM. News about amino acid metabolism in plant-microbe interactions. Trends Biochem Sci 2022; 47:839-850. [PMID: 35927139 DOI: 10.1016/j.tibs.2022.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023]
Abstract
Plants constantly come into contact with a diverse mix of pathogenic and beneficial microbes. The ability to distinguish between them and to respond appropriately is essential for plant health. Here we review recent progress in understanding the role of amino acid sensing, signaling, transport, and metabolism during plant-microbe interactions. Biochemical pathways converting individual amino acids into active compounds have recently been elucidated, and comprehensive large-scale approaches have brought amino acid sensors and transporters into focus. These findings show that plant central amino acid metabolism is closely interwoven with stress signaling and defense responses at various levels. The individual biochemical mechanisms and the interconnections between the different processes are just beginning to emerge and might serve as a foundation for new plant protection strategies.
Collapse
Affiliation(s)
- Jannis Moormann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Björn Heinemann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany.
| |
Collapse
|
40
|
Thieffry A, López-Márquez D, Bornholdt J, Malekroudi MG, Bressendorff S, Barghetti A, Sandelin A, Brodersen P. PAMP-triggered genetic reprogramming involves widespread alternative transcription initiation and an immediate transcription factor wave. THE PLANT CELL 2022; 34:2615-2637. [PMID: 35404429 PMCID: PMC9252474 DOI: 10.1093/plcell/koac108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
Immune responses triggered by pathogen-associated molecular patterns (PAMPs) are key to pathogen defense, but drivers and stabilizers of the growth-to-defense genetic reprogramming remain incompletely understood in plants. Here, we report a time-course study of the establishment of PAMP-triggered immunity (PTI) using cap analysis of gene expression. We show that around 15% of all transcription start sites (TSSs) rapidly induced during PTI define alternative transcription initiation events. From these, we identify clear examples of regulatory TSS change via alternative inclusion of target peptides or domains in encoded proteins, or of upstream open reading frames in mRNA leader sequences. We also find that 60% of PAMP response genes respond earlier than previously thought. In particular, a cluster of rapidly and transiently PAMP-induced genes is enriched in transcription factors (TFs) whose functions, previously associated with biological processes as diverse as abiotic stress adaptation and stem cell activity, appear to converge on growth restriction. Furthermore, examples of known potentiators of PTI, in one case under direct mitogen-activated protein kinase control, support the notion that the rapidly induced TFs could constitute direct links to PTI signaling pathways and drive gene expression changes underlying establishment of the immune state.
Collapse
Affiliation(s)
- Axel Thieffry
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | - Simon Bressendorff
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Andrea Barghetti
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | |
Collapse
|
41
|
Dinkeloo K, Pelly Z, McDowell JM, Pilot G. A split green fluorescent protein system to enhance spatial and temporal sensitivity of translating ribosome affinity purification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:304-315. [PMID: 35436375 PMCID: PMC9544980 DOI: 10.1111/tpj.15779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Translating ribosome affinity purification (TRAP) utilizes transgenic plants expressing a ribosomal protein fused to a tag for affinity co-purification of ribosomes and the mRNAs that they are translating. This population of actively translated mRNAs (translatome) can be interrogated by quantitative PCR or RNA sequencing. Condition- or cell-specific promoters can be utilized to isolate the translatome of specific cell types, at different growth stages and/or in response to environmental variables. While advantageous for revealing differential expression, this approach may not provide sufficient sensitivity when activity of the condition/cell-specific promoter is weak, when ribosome turnover is low in the cells of interest, or when the targeted cells are ephemeral. In these situations, expressing tagged ribosomes under the control of these specific promoters may not yield sufficient polysomes for downstream analysis. Here, we describe a new TRAP system that employs two transgenes: One is constitutively expressed and encodes a ribosomal protein fused to one fragment of a split green fluorescent protein (GFP); the second is controlled by a stimulus-specific promoter and encodes the second GFP fragment fused to an affinity purification tag. In cells where both transgenes are active, the purification tag is attached to ribosomes by bi-molecular folding and assembly of the split GFP fragments. This approach provides increased sensitivity and better temporal resolution because it labels pre-existing ribosomes and does not depend on rapid ribosome turnover. We describe the optimization and key parameters of this system, and then apply it to a plant-pathogen interaction in which spatial and temporal resolution are difficult to achieve with current technologies.
Collapse
Affiliation(s)
- Kasia Dinkeloo
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - Zoe Pelly
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| |
Collapse
|
42
|
Nguyen NH, Trotel-Aziz P, Clément C, Jeandet P, Baillieul F, Aziz A. Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. PLANTA 2022; 255:116. [PMID: 35511374 DOI: 10.1007/s00425-022-03907-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
This review provides an overview on the role of camalexin in plant immunity taking into account various plant-pathogen and beneficial microbe interactions, regulation mechanisms and the contribution in basal and induced plant resistance. In a hostile environment, plants evolve complex and sophisticated defense mechanisms to counteract invading pathogens and herbivores. Several lines of evidence support the assumption that secondary metabolites like phytoalexins which are synthesized de novo, play an important role in plant defenses and contribute to pathogens' resistance in a wide variety of plant species. Phytoalexins are synthesized and accumulated in plants upon pathogen challenge, root colonization by beneficial microbes, following treatment with chemical elicitors or in response to abiotic stresses. Their protective properties against pathogens have been reported in various plant species as well as their contribution to human health. Phytoalexins are synthesized through activation of particular sets of genes encoding specific pathways. Camalexin (3'-thiazol-2'-yl-indole) is the primary phytoalexin produced by Arabidopsis thaliana after microbial infection or abiotic elicitation and an iconic representative of the indole phytoalexin family. The synthesis of camalexin is an integral part of cruciferous plant defense mechanisms. Although the pathway leading to camalexin has been largely elucidated, the regulatory networks that control the induction of its biosynthetic steps by pathogens with different lifestyles or by beneficial microbes remain mostly unknown. This review thus presents current knowledge regarding camalexin biosynthesis induction during plant-pathogen and beneficial microbe interactions as well as in response to microbial compounds and provides an overview on its regulation and interplay with signaling pathways. The contribution of camalexin to basal and induced plant resistance and its detoxification by some pathogens to overcome host resistance are also discussed.
Collapse
Affiliation(s)
- Ngoc Huu Nguyen
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
- Department of Plant Biology, Faculty of Agriculture and Forestry, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, Daklak, Vietnam
| | - Patricia Trotel-Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Christophe Clément
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Fabienne Baillieul
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France.
| |
Collapse
|
43
|
Kong X, Wang H, Zhang M, Chen X, Fang R, Yan Y. A SA-regulated lincRNA promotes Arabidopsis disease resistance by modulating pre-rRNA processing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111178. [PMID: 35151436 DOI: 10.1016/j.plantsci.2022.111178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Regulation of gene expression at translational level has been shown critical for plant defense against pathogen infection. Pre-rRNA processing is essential for ribosome biosynthesis and thus affects protein translation. It remains unknown if plants modulate pre-rRNA processing as a translation regulatory mechanism for disease resistance. In this study, we show a 5' snoRNA capped and 3' polyadenylated (SPA) lincRNA named SUNA1 promotes disease resistance involved in modulating pre-rRNA processing in Arabidopsis. SUNA1 expression is highly induced by Pst DC3000 infection, which is impaired in SA biosynthesis-defective mutant sid2 and signaling mutant npr1. Consistently, SA triggers SUNA1 expression dependent on NPR1. Functional analysis indicates that SUNA1 plays a positive role in Arabidopsis defense against Pst DC3000 relying on its snoRNA signature motifs. Potential mechanism study suggests that the nucleus-localized SUNA1 interacts with the nucleolar methyltransferase fibrillarin to modulate SA-controlled pre-rRNA processing, then enhancing the translational efficiency (TE) of some defense genes in Arabidopsis response to Pst DC3000 infection. NPR1 appears to have similar effects as SUNA1 on pre-rRNA processing and TE of defense genes. Together, these studies reveal one kind of undescribed antibacterial translation regulatory mechanism, in which SA-NPR1-SUNA1 signaling cascade controls pre-rRNA processing and TE of certain defense genes in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyu Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Plant Gene Research Center, Beijing, China.
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Ai G, Liu J, Fu X, Li T, Zhu H, Zhai Y, Xia C, Pan W, Li J, Jing M, Shen D, Xia A, Dou D. Making Use of Plant uORFs to Control Transgene Translation in Response to Pathogen Attack. BIODESIGN RESEARCH 2022; 2022:9820540. [PMID: 37850142 PMCID: PMC10521741 DOI: 10.34133/2022/9820540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2023] Open
Abstract
Reducing crop loss to diseases is urgently needed to meet increasing food production challenges caused by the expanding world population and the negative impact of climate change on crop productivity. Disease-resistant crops can be created by expressing endogenous or exogenous genes of interest through transgenic technology. Nevertheless, enhanced resistance by overexpressing resistance-produced genes often results in adverse developmental affects. Upstream open reading frames (uORFs) are translational control elements located in the 5' untranslated region (UTR) of eukaryotic mRNAs and may repress the translation of downstream genes. To investigate the function of three uORFs from the 5' -UTR of ACCELERATED CELL 11 (uORFsACD11), we develop a fluorescent reporter system and find uORFsACD11 function in repressing downstream gene translation. Individual or simultaneous mutations of the three uORFsACD11 lead to repression of downstream translation efficiency at different levels. Importantly, uORFsACD11-mediated translational inhibition is impaired upon recognition of pathogen attack of plant leaves. When coupled with the PATHOGENESIS-RELATED GENE 1 (PR1) promoter, the uORFsACD11 cassettes can upregulate accumulation of Arabidopsis thaliana LECTIN RECEPTOR KINASE-VI.2 (AtLecRK-VI.2) during pathogen attack and enhance plant resistance to Phytophthora capsici. These findings indicate that the uORFsACD11 cassettes can be a useful toolkit that enables a high level of protein expression during pathogen attack, while for ensuring lower levels of protein expression at normal conditions.
Collapse
Affiliation(s)
- Gan Ai
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Liu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowei Fu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianli Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zhu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Chuyan Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiye Pan
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jialu Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
45
|
Zhu F, Wang Z, Su W, Tong J, Fang Y, Luo Z, Yuan F, Xiang J, Chen X, Wang R. Study on the Role of Salicylic Acid in Watermelon-Resistant Fusarium Wilt under Different Growth Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:293. [PMID: 35161274 PMCID: PMC8839013 DOI: 10.3390/plants11030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fusarium wilt disease is leading threat to watermelon yield and quality. Different cultivation cropping systems have been reported as safe and efficient methods to control watermelon Fusarium wilt. However, the role of salicylic acid (SA) in watermelon resistance to Fusarium wilt in these different cultivation systems remains unknown. METHODS in this experiment, we used RNA-seq and qRT-PCR to study the effect of SA biosynthesis on improving watermelon health, demonstrating how it may be responsible for Fusarium wilt resistance under continuous monocropping and oilseed rape rotation systems. RESULTS the results revealed that the expression of the CIPALs genes was key to SA accumulation in watermelon roots. We observed that the NPR family genes may play different roles in responding to the SA signal. Differentially expressed NPRs and WRKYs may interact with other phytohormones, leading to the amelioration of watermelon Fusarium wilt. CONCLUSIONS further understanding of gene expression patterns will pave the way for interventions that effectively control the disease.
Collapse
Affiliation(s)
- Feiying Zhu
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.F.); (Z.L.); (X.C.)
| | - Zhiwei Wang
- Hunan Agricultural Equipment Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Wenjun Su
- Zhuzhou Institute of Agricultural Sciences, Zhuzhou 412007, China;
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.F.); (Z.L.); (X.C.)
| | - Zhengliang Luo
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.F.); (Z.L.); (X.C.)
| | - Fan Yuan
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
| | - Jing Xiang
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
| | - Xi Chen
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Y.F.); (Z.L.); (X.C.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (F.Y.); (J.X.)
| |
Collapse
|
46
|
Zhu F, Wang Z, Fang Y, Tong J, Xiang J, Yang K, Wang R. Study on the Role of Phytohormones in Resistance to Watermelon Fusarium Wilt. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020156. [PMID: 35050045 PMCID: PMC8781552 DOI: 10.3390/plants11020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 05/12/2023]
Abstract
Fusarium wilt disease is one of the major diseases causing a decline in watermelon yield and quality. Researches have informed that phytohormones play essential roles in regulating plants growth, development, and stress defendants. However, the molecular mechanism of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in resistance to watermelon Fusarium wilt remains unknown. In this experiment, we established the SA, JA, and ABA determination system in watermelon roots, and analyzed their roles in against watermelon Fusarium wilt compared to the resistant and susceptible varieties using transcriptome sequencing and RT-qPCR. Our results revealed that the up-regulated expression of Cla97C09G174770, Cla97C05G089520, Cla97C05G081210, Cla97C04G071000, and Cla97C10G198890 genes in resistant variety were key factors against (Fusarium oxysporum f. sp. Niveum) FON infection at 7 dpi. Additionally, there might be crosstalk between SA, JA, and ABA, caused by those differentially expressed (non-pathogen-related) NPRs, (Jasmonate-resistant) JAR, and (Pyrabactin resistance 1-like) PYLs genes, to trigger the plant immune system against FON infection. Overall, our results provide a theoretical basis for watermelon resistance breeding, in which phytohormones participate.
Collapse
Affiliation(s)
- Feiying Zhu
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (J.X.)
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Institute of Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.W.); (K.Y.)
| | - Zhiwei Wang
- Institute of Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.W.); (K.Y.)
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Institute of Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.W.); (K.Y.)
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (J.X.)
| | - Jing Xiang
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (J.X.)
| | - Kankan Yang
- Institute of Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.W.); (K.Y.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (F.Z.); (J.T.); (J.X.)
- Correspondence:
| |
Collapse
|
47
|
Hampejsová R, Berka M, Berková V, Jersáková J, Domkářová J, von Rundstedt F, Frary A, Saiz-Fernández I, Brzobohatý B, Černý M. Interaction With Fungi Promotes the Accumulation of Specific Defense Molecules in Orchid Tubers and May Increase the Value of Tubers for Biotechnological and Medicinal Applications: The Case Study of Interaction Between Dactylorhiza sp. and Tulasnella calospora. FRONTIERS IN PLANT SCIENCE 2022; 13:757852. [PMID: 35845638 PMCID: PMC9282861 DOI: 10.3389/fpls.2022.757852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Terrestrial orchids can form tubers, organs modified to store energy reserves. Tubers are an attractive source of nutrients, and salep, a flour made from dried orchid tubers, is the source of traditional beverages. Tubers also contain valuable secondary metabolites and are used in traditional medicine. The extensive harvest of wild orchids is endangering their populations in nature; however, orchids can be cultivated and tubers mass-produced. This work illustrates the importance of plant-fungus interaction in shaping the content of orchid tubers in vitro. Orchid plants of Dactylorhiza sp. grown in asymbiotic culture were inoculated with a fungal isolate from Tulasnella calospora group and, after 3 months of co-cultivation, tubers were analyzed. The fungus adopted the saprotrophic mode of life, but no visible differences in the morphology and biomass of the tubers were detected compared to the mock-treated plants. To elucidate the mechanisms protecting the tubers against fungal infestation, proteome, metabolome, and lipidome of tubers were analyzed. In total, 1,526, 174, and 108 proteins, metabolites, and lipids were quantified, respectively, providing a detailed snapshot of the molecular process underlying plant-microbe interaction. The observed changes at the molecular level showed that the tubers of inoculated plants accumulated significantly higher amounts of antifungal compounds, including phenolics, alkaloid Calystegine B2, and dihydrophenanthrenes. The promoted antimicrobial effects were validated by observing transient inhibition of Phytophthora cactorum growth. The integration of omics data highlighted the promotion of flavonoid biosynthesis, the increase in the formation of lipid droplets and associated production of oxylipins, and the accumulation of auxin in response to T. calospora. Taken together, these results provide the first insights into the molecular mechanisms of defense priming in orchid tubers and highlight the possible use of fungal interactors in biotechnology for the production of orchid secondary metabolites.
Collapse
Affiliation(s)
- Romana Hampejsová
- Potato Research Institute, Ltd., Havlíčkův Brod, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jana Jersáková
- Department of Biology of Ecosystems, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | | | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Turkey
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Martin Černý,
| |
Collapse
|
48
|
Afonnikov DA, Sinitsyna OI, Golubeva TS, Shmakov NA, Kochetov AV. [Ribosomal profiling as a tool for studying translation in plants: main results, problems and future prospects]. Vavilovskii Zhurnal Genet Selektsii 2021; 25:251-259. [PMID: 34901721 PMCID: PMC8627869 DOI: 10.18699/vj21.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
The expression of eukaryotic genes can be regulated at several stages, including the translation of mRNA. It is known that the structure of mRNA can affect both the efficiency of interaction with the translation apparatus in general and the choice of translation initiation sites. To study the translated fraction of the transcriptome, experimental methods of analysis were developed, the most informative of which is ribosomal profiling (RP, Ribo-seq). Originally developed for use in yeast systems, this method has been adapted for research in translation mechanisms in many plant species. This technology includes the isolation of the polysomal fraction and high-performance sequencing of a pool of mRNA fragments associated with ribosomes. Comparing the results of transcript coverage with reads obtained using the ribosome profiling with the transcriptional efficiency of genes allows the translation efficiency to be evaluated for each transcript. The exact positions of ribosomes determined on mRNA sequences allow determining the translation of open reading frames and switching between the translation of several reading frames - a phenomenon in which two or more overlapping frames are read from one mRNA and different proteins are synthesized. The advantage of this method is that it provides quantitative estimates of ribosome coverage of mRNA and can detect relatively rare translation events. Using this technology, it was possible to identify and classify plant genes by the type of regulation of their expression at the transcription, translation, or both levels. Features of the mRNA structure that affect translation levels have been revealed: the formation of G2 quadruplexes and the presence of specific motifs in the 5'-UTR region, GC content, the presence of alternative translation starts, and the influence of uORFs on the translation of downstream mORFs. In this review, we briefly reviewed the RP methodology and the prospects for its application to study the structural and functional organization and regulation of plant gene expression.
Collapse
Affiliation(s)
- D A Afonnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - O I Sinitsyna
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - T S Golubeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - N A Shmakov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - A V Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
49
|
Wang H, Bi Y, Gao Y, Yan Y, Yuan X, Xiong X, Wang J, Liang J, Li D, Song F. A Pathogen-Inducible Rice NAC Transcription Factor ONAC096 Contributes to Immunity Against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae by Direct Binding to the Promoters of OsRap2.6, OsWRKY62, and OsPAL1. FRONTIERS IN PLANT SCIENCE 2021; 12:802758. [PMID: 34956298 PMCID: PMC8702954 DOI: 10.3389/fpls.2021.802758] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The rice NAC transcriptional factor family harbors 151 members, and some of them play important roles in rice immunity. Here, we report the function and molecular mechanism of a pathogen-inducible NAC transcription factor, ONAC096, in rice immunity against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae. Expression of ONAC096 was induced by M. oryzae and by abscisic acid and methyl jasmonate. ONAC096 had the DNA binding ability to NAC recognition sequence and was found to be a nucleus-localized transcriptional activator whose activity depended on its C-terminal. CRISPR/Cas9-mediated knockout of ONAC096 attenuated rice immunity against M. oryzae and X. oryzae pv. oryzae as well as suppressed chitin- and flg22-induced reactive oxygen species burst and expression of PTI marker genes OsWRKY45 and OsPAL4; by contrast, overexpression of ONAC096 enhanced rice immunity against these two pathogens and strengthened chitin- or flg22-induced PTI. RNA-seq transcriptomic profiling and qRT-PCR analysis identified a small set of defense and signaling genes that are putatively regulated by ONAC096, and further biochemical analysis validated that ONAC096 could directly bind to the promoters of OsRap2.6, OsWRKY62, and OsPAL1, three known defense and signaling genes that regulate rice immunity. ONAC096 interacts with ONAC066, which is a positive regulator of rice immunity. These results demonstrate that ONAC096 positively contributes to rice immunity against M. oryzae and X. oryzae pv. oryzae through direct binding to the promoters of downstream target genes including OsRap2.6, OsWRKY62, and OsPAL1.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xi Yuan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Xiaohui Xiong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiayu Liang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Zhao K, Kong D, Jin B, Smolke CD, Rhee SY. A novel bivalent chromatin associates with rapid induction of camalexin biosynthesis genes in response to a pathogen signal in Arabidopsis. eLife 2021; 10:69508. [PMID: 34523419 PMCID: PMC8547951 DOI: 10.7554/elife.69508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Temporal dynamics of gene expression underpin responses to internal and environmental stimuli. In eukaryotes, regulation of gene induction includes changing chromatin states at target genes and recruiting the transcriptional machinery that includes transcription factors. As one of the most potent defense compounds in Arabidopsis thaliana, camalexin can be rapidly induced by bacterial and fungal infections. Though several transcription factors controlling camalexin biosynthesis genes have been characterized, how the rapid activation of genes in this pathway upon a pathogen signal is enabled remains unknown. By combining publicly available epigenomic data with in vivo chromatin modification mapping, we found that camalexin biosynthesis genes are marked with two epigenetic modifications with opposite effects on gene expression, trimethylation of lysine 27 of histone 3 (H3K27me3) (repression) and acetylation of lysine 18 of histone 3 (H3K18ac) (activation), to form a previously uncharacterized type of bivalent chromatin. Mutants with reduced H3K27me3 or H3K18ac suggested that both modifications were required to determine the timing of gene expression and metabolite accumulation at an early stage of the stress response. Our study indicates that the H3K27me3-H3K18ac bivalent chromatin, which we name as kairostat, plays an important role in controlling the timely induction of gene expression upon stress stimuli in plants.
Collapse
Affiliation(s)
- Kangmei Zhao
- Carnegie Institution for Science, Department of Plant Biology, Stanford, United States
| | - Deze Kong
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Benjamin Jin
- Carnegie Institution for Science, Department of Plant Biology, Stanford, United States
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Seung Yon Rhee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, United States
| |
Collapse
|