1
|
Iqbal A, Bao H, Wang J, Liu H, Liu J, Huang L, Li D. Role of jasmonates in plant response to temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112477. [PMID: 40097048 DOI: 10.1016/j.plantsci.2025.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
The ambient temperature exerts a significant influence on the growth and development of plants, which are sessile organisms. Exposure to extreme temperatures, both low and high, has a detrimental impact on plant growth and development, crop yields, and even geographical distribution. Jasmonates constitute a class of lipid hormones that regulate plant tolerance to biotic and abiotic stresses. Recent studies have revealed that jasmonate biosynthesis and signaling pathways are integral to plant responses to both high and low temperatures. Exogenous application of jasmonate improves cold and heat tolerance in plants and reduces cold injury in fruits and vegetables during cold storage. Jasmonate interacts with low and high temperature key response factors and engages in crosstalk with primary and secondary metabolic pathways, including hormones, under conditions of temperature stress. This review presents a comprehensive summary of the jasmonate synthesis and signal transduction pathway, as well as an overview of the functions and mechanisms of jasmonate in response to temperature stress.
Collapse
Affiliation(s)
- Aafia Iqbal
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Henan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Huijie Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jiangtao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Liqun Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Liu P, Quan X, Song Z, Li W, Wang Y, Gu H, Xie D, Yang W, Dresselhaus T, Zhong S, Qu LJ. A two-step self-pollination mechanism maximizes fertility in Brassicaceae. Cell 2025; 188:2845-2855.e8. [PMID: 40233737 DOI: 10.1016/j.cell.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/31/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025]
Abstract
Self-pollination in self-compatible plant species often occurs prior to flower opening. By tracking the temporal progress of pollination in Arabidopsis, we observed that pollen predominantly targets the lateral region of the stigma in unopened flowers. Notably, approximately 7 h after flower opening, flowers close, thereby pressing anthers toward the central region of the stigma for a second self-pollination. This two-step self-pollination results in a doubling of pollen deposition, which significantly increases the ovule-targeting ratio and improves fertility under pollen-limiting conditions, as evident in the anther-dehiscence-defective mutant myb108 and under environmental stress conditions. Analysis using gamete-interaction-defective mutants hap2/gcs1 and dmp8 dmp9 revealed that the timely separation of both pollination events promotes fertilization recovery efficiency. A similar two-step pollination was observed in two other self-pollinating but not in outcrossing Brassicaceae species. This mechanism represents a reproductive assurance strategy in predominantly self-pollinating annuals to maximize fertility under unfavorable conditions.
Collapse
Affiliation(s)
- Pu Liu
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xin Quan
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Wenhao Li
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Wang
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongya Gu
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Daoxin Xie
- Ministry of Education Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Weicai Yang
- Yazhouwan National Laboratory, 8 Huanjing Road, Yacheng, Sanya, Hainan 572025, People's Republic of China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sheng Zhong
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| | - Li-Jia Qu
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
3
|
Kang Y, Yang Y, Sun P, Li M, Wang H, Sun X, Jin W. Characterization of the heat shock factor RcHsfA6 in Rosa chinensis and function in the thermotolerance of Arabidopsis. BMC PLANT BIOLOGY 2025; 25:673. [PMID: 40399821 PMCID: PMC12093818 DOI: 10.1186/s12870-025-06652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/30/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Environmental stresses, especially high temperatures, severely limit the growth and development of many horticultural plants. As a woody ornamental flower with rich flower colors and flower types, rose (R. chinensis) leaves wilt and shriveled petals at high temperatures, which severely affects its growth and ornamental value. The defense mechanism of rose plants against high-temperature stress has not been fully elucidated. RESULTS In the present study, the transcriptomes of rose petals at normal (25 °C) and high (35 °C) temperature were compared. A total of 2519 differentially expressed genes (DEGs) were identified, including 1491 upregulated DEGs and 1028 downregulated DEGs. The plant hormone signal transduction pathway, especially the abscisic acid (ABA) signaling pathway, was the most enriched signaling pathway for DEGs in rose at high temperature. Heat shock factors (Hsfs), especially class A Hsfs, have been confirmed to be involved in thermotolerance mechanisms. Among the DEGs, eight genes were annotated as Hsfs, including 5 upregulated Hsfs at high temperature. RcHsfA6 is rapidly induced by high temperatures and is a candidate regulatory factor in the plant ABA signaling pathway. Therefore, we focused on RcHsfA6. RcHsfA6 encodes a protein containing 308 amino acids and contains typical Hsf domains, such as the DNA-binding domain (DBD), the N-terminal oligomerization domain (OD), the nuclear localization signal (NLS) and AHA motifs at the C-terminal activator domain (CTAD). The heterologous overexpression of RcHsfA6 in Arabidopsis increased the thermotolerance of Arabidopsis seeds. In addition, RcHsfA6 overexpression increased the ABA content and the expression of ABA biosynthetic gene AtABI5 and signal transduction gene AtPYL12, thereby inhibiting the germination of Arabidopsis seeds under exogenous ABA conditions. CONCLUSIONS Taken together, our results suggest that RcHsfA6 is involved in the high-temperature response of rose and its heterologous overexpression in Arabidopsis increased the thermotolerance of Arabidopsis at high temperatures via the ABA signaling pathway.
Collapse
Affiliation(s)
- Yanhui Kang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Pei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Xiangyi Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China.
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China.
| |
Collapse
|
4
|
Wang K, Li J, Wang Y, Xu L, Cui F, Mei Y, Ying J, Li B, Zhang X, Ma S, Wang R, Liao N, Liu L. RsKNAT3 Interacts Antagonistically With RsKNAT1 to Confer Thermotolerance by Regulating RsDREB2A Transcription in Radish. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40396544 DOI: 10.1111/pce.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
Knotted1-like homeobox (KNOX) transcription factors (TFs) are widely involved in plant growth and development processes, including shoot apical meristem division and leaf and root organ development. However, the critical roles of KNOXs in response to abiotic stress, especially heat stress (HS), remain largely unexplored in plants. In this study, both the transcriptome and RT-qPCR analysis revealed that two KNOX TFs, RsKNAT1 and RsKNAT3, were significantly responsive to HS in radish (Raphanus sativus L.). RsKNAT3, highly expressed in heat-tolerant genotypes, enhances thermotolerance and ROS scavenging, acting as a transcriptional activator. Conversely, RsKNAT1, elevated in heat-susceptible genotypes, negatively regulates thermotolerance and increases ROS accumulation, functioning as a repressor. Interestingly, the RsKNAT1 interacts with RsKNAT3 by forming a heterodimer. The identification of regulatory elements showed that RsKNAT3 bound to the Knotted I binding site and activate RsDREB2A expression, while RsKNAT1 acts as the specific repressor of RsKNAT3 and inhibits the regulation of RsKNAT3-targeted RsDREB2A under HS. These findings provided insights into the regulatory mechanism underlying thermotolerance mediated by RsKNAT3 interacting antagonistically with RsKNAT1, facilitating the genetically improvement of the heat tolerance in radish breeding programs.
Collapse
Affiliation(s)
- Kai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Jingxue Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Feng Cui
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yi Mei
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Bingshuang Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Shilin Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Ruixuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Nannan Liao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China) of MOAR, College of Horticulture, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Guo X, Luo W, Chong K. Exploring abiotic stress resilience module for molecular design in rice. Sci Bull (Beijing) 2025; 70:1364-1367. [PMID: 39701854 DOI: 10.1016/j.scib.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Huang R, Wen M, Feng B, Wu P, Zhong X, Yang Y, Liu M, Li H, Yang C, Peng C, Zhang S. SIZ1 SUMOylates and stabilizes WRI1 to safeguard seed filling and fatty acid biosynthesis under high-temperature stress. THE PLANT CELL 2025; 37:koaf085. [PMID: 40239030 PMCID: PMC12063489 DOI: 10.1093/plcell/koaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
High-temperature stress hinders seed filling, reducing seed quality and crop yield. However, the molecular mechanisms underlying this process remain unclear. Here, we identify SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) as a key regulator of seed filling under prolonged high temperatures in Arabidopsis (Arabidopsis thaliana). SIZ1 and WRINKLED1 (WRI1) are co-expressed during seed filling, and overexpressing either gene enhances seed filling and promotes fatty acid biosynthesis under high-temperature stress. Genetic and biochemical analyses revealed that SIZ1 stabilizes WRI1 by promoting its SUMOylation at Lys-257 and Lys-266, thereby inhibiting its interaction with the CULLIN3-based ubiquitin E3 ligase adaptor protein BTB/POZMATH (BPM) and preventing its ubiquitination and degradation. Mutating these SUMOylation sites accelerates WRI1 degradation, impairing its function in seed filling under high-temperature stress. Furthermore, high-temperature stress induces SIZ1 expression and reduces WRI1 levels, suggesting that SIZ1-mediated SUMOylation counteracts high-temperature stress-induced WRI1 instability. These findings establish SIZ1 as a crucial factor in maintaining WRI1 stability and seed filling under high-temperature stress, providing valuable genetic resources and a theoretical foundation for addressing prolonged high-temperature stress in agricultural production.
Collapse
Affiliation(s)
- Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengrui Wen
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bojin Feng
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Pingzhi Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoqing Zhong
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yifeng Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Minghui Liu
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongqing Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Changlian Peng
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
7
|
Hu J, Liu H, Gao X, Fu X. Reprogrammable design of DELLA as a strategy to mitigate alkaline-heat stress for sustainable agriculture. MOLECULAR PLANT 2025; 18:744-746. [PMID: 40158207 DOI: 10.1016/j.molp.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Jie Hu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology. Chinese Academy of Sciences, Beijing 100101, China.
| | - Hui Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology. Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuhua Gao
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology. Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangdong Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology. Chinese Academy of Sciences, Beijing 100101, China; New Cornerstone Science Laboratory, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049 China
| |
Collapse
|
8
|
Bahrami F, Arzani A, Rahimmalek M, Araniti F. Transcriptome alterations related to heat stress responses of wild and cultivated barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109699. [PMID: 40037173 DOI: 10.1016/j.plaphy.2025.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Heat stress, exacerbated by global warming, threatens food security by disrupting plant growth and productivity across many regions. The present study compared the transcriptome changes of heat-tolerant wild (Hordeum vulgare ssp. spontaneum L.) genotype and heat-sensitive cultivated Hordeum ('Mona' cultivar) barley subjected to control (24 ± 2 °C) and heat stress (40 ± 2 °C, 3 h) conditions via RNA sequencing with the Illumina Hiseq2500 platform. The wild barley genotype exhibited less impact from heat stress on growth and physiology than the 'Mona' cultivar. Heat stress led to 2141 differentially expressed genes (DEGs) in the heat-tolerant wild genotype and 1456 in the 'Mona' cultivar. Gene ontology enrichment analysis of the DEGs revealed that biological processes such as defense response to heat stress, proline and polyamine biosynthesis, and oxidative stress scavenging were predominantly involved in the thermo-tolerance of wild barley. Moreover, heat shock proteins, osmoprotectants, and catalytic activity were identified as the most critical molecular functions in response to high temperatures in wild barley. The significant alterations in the expression levels of candidate genes in response to heat stress highlight these genes' pivotal role in the thermo-tolerance of wild barley compared to the heat-sensitive 'Mona' cultivar. Comparing the evolved mechanisms in response to high temperatures between wild and cultivated barley helps identify the effective heat tolerance mechanisms in the thermo-tolerant wild genotype.
Collapse
Affiliation(s)
- Forouzan Bahrami
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, 20133, Milan, Italy.
| |
Collapse
|
9
|
He M, Wu J, Cui Q, Fan N, Yan H, Liu Y, Pan Z, Zhang K, Sun J, Wang J, Guo S, Wang Y. BAG2 mediates HsfA1a-induced thermotolerance by regulating heat shock proteins in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70200. [PMID: 40324163 DOI: 10.1111/tpj.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/04/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
The heat shock transcription factors (Hsfs) and Bcl-2-associated athanogene (BAG) are crucial in response to heat stress. However, the relationship and regulation mechanism between Hsfs and BAGs in plants are largely unknown. Here, we demonstrated that the HsfA1a-BAG2 module mediated thermotolerance through regulating heat shock proteins (HSPs) in tomato. Overexpression of HsfA1a in tomato increased thermotolerance and enhanced the expression of HSP70, HSP90, and BAG2, but compromised in hsfa1a mutant plants. Yeast one-hybrid, dual luciferase, electrophoretic mobility shift assay, and chromatin immunoprecipitation coupled with qPCR assays found that HsfA1a directly bound to the promoter of BAG2 to activate its expression. BAG2 interacted with HsfA1a and BAG5b both in vitro and in vivo. Importantly, BAG5b facilitated the interaction between BAG2 and HsfA1a, resulting in enhanced transcriptional activation capacity of HsfA1a to HSP70 and HSP90. Either overexpression of BAG2 or BAG5b increased thermotolerance, concomitant with sustained expression levels of HSP70 and HSP90 genes. By contrast, knockout of BAG2 or BAG5b displayed the opposite results. Furthermore, silencing of BAG2 or BAG5b in HsfA1a overexpression plants attenuated HsfA1a-induced thermotolerance and HSPs expression. Thus, HsfA1a mediated thermotolerance through transcriptionally regulating BAG2 and forming a complex with BAG2 and BAG5b to ultimately induce the expression of HSPs in tomato. Our findings provide new insights into the regulatory network of Hsfs on HSPs under heat stress in plants.
Collapse
Affiliation(s)
- Mingming He
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiating Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingshen Cui
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nuo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Yan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihao Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zonghua Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Zhang X, Zhang X, Fu Y, Cui Y, Wu N, Li Y, Yang Z, Zhang C, Song H, He G, Sang X. HTT1, a Stearoyl-Acyl Carrier Protein Desaturase Involved Unsaturated Fatty Acid Biosynthesis, Affects Rice Heat Tolerance. PLANT, CELL & ENVIRONMENT 2025; 48:3391-3405. [PMID: 39757551 DOI: 10.1111/pce.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Elucidating the mechanisms underlying heat tolerance in rice (Oryza Sativa. L) is vital for adapting this crop to rising global temperature while increasing yields. Here, we identified a rice mutant, high temperature tolerance 1 (htt1), with high survival rates under heat stress. HTT1 encodes a chloroplast-localized stearoyl-acyl carrier protein (ACP) desaturase involved in the biosynthesis of unsaturated fatty acids, converting C18:0 to C18:1 fatty acid. Overexpression and knockout rice lines provided evidence that HTT1 negatively regulates the response to heat stress. In the htt1 mutant, a G-to-A base substitution in HTT1 impairs unsaturated fatty acid biosynthesis, remodelling the lipid content of cellular membranes and in particular increasing diglyceride contents, which improves membrane stability under heat stress. HTT1 was differentially expressed in all tissues analyzed and was inhibited by heat. Yeast one-hybrid and dual-luciferase reporter assays showed that OsHsfA2d binds to the promoter of HTT1, inhibiting its expression. Different HTT1 alleles were identified between the two Asian cultivated rice subspecies, indica and japonica, potentially facilitating their adaptation to different environmental temperature. Taken together, these findings demonstrate that HTT1 is a previously unidentified negative regulator of heat tolerance and a potential target gene for the improvement of heat adaptability in rice.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xuefei Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yao Fu
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Nai Wu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Yangyang Li
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhenglin Yang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Changwei Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guanghua He
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xianchun Sang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Li X, Xie C, Cheng L, Tong H, Bock R, Qian Q, Zhou W. The next Green Revolution: integrating crop architectype and physiotype. Trends Biotechnol 2025:S0167-7799(25)00129-5. [PMID: 40307093 DOI: 10.1016/j.tibtech.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
In the middle of the last century, the Green Revolution dramatically increased crop yields and transformed global agriculture. As current food production is increasingly challenged by the demands of the growing population, climate change, and environmental degradation, a new Green Revolution is urgently needed. This Review highlights recent progress in defining the morphological ideotypes of four major crops, and proposes essential physiological traits critical for crop improvement and environmental adaptation. We introduce two concepts: the 'architectype' representing optimized morphological features, and the 'physiotype' encompassing improved physiological traits. By integrating these concepts through advanced genomic technologies and precision management practices, the next Green Revolution could potentially enhance crop yields and resource use efficiency by over 20-30%, thereby ensuring sustainable food production.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenbin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Pougy KC, Brito BA, Melo GS, Pinheiro AS. Phase separation as a key mechanism in plant development, environmental adaptation, and abiotic stress response. J Biol Chem 2025:108548. [PMID: 40286852 DOI: 10.1016/j.jbc.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Liquid-liquid phase separation is a fundamental biophysical process in which biopolymers, such as proteins, nucleic acids, and their complexes, spontaneously demix into distinct coexisting phases. This phenomenon drives the formation of membraneless organelles-cellular subcompartments without a lipid bilayer that perform specialized functions. In plants, phase-separated biomolecular condensates play pivotal roles in regulating gene expression, from genome organization to transcriptional and post-transcriptional processes. In addition, phase separation governs plant-specific traits, such as flowering and photosynthesis. As sessile organisms, plants have evolved to leverage phase separation for rapid sensing and response to environmental fluctuations and stress conditions. Recent studies highlight the critical role of phase separation in plant adaptation, particularly in response to abiotic stress. This review compiles the latest research on biomolecular condensates in plant biology, providing examples of their diverse functions in development, environmental adaptation, and stress responses. We propose that phase separation represents a conserved and dynamic mechanism enabling plants to adapt efficiently to ever-changing environmental conditions. Deciphering the molecular mechanisms underlying phase separation in plant stress responses opens new avenues for biotechnological strategies aimed at engineering stress-resistant crops. These advancements have significant implications for agriculture, particularly in addressing crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Karina C Pougy
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil.
| | - Bruna A Brito
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Giovanna S Melo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| |
Collapse
|
13
|
Li W, Yang K, Hu C, Abbas W, Zhang J, Xu P, Cheng B, Zhang J, Yin W, Shalmani A, Qu L, Lv Q, Li B, He Y, Lai X, Xiong L, Zhang Q, Li Y. A natural gene on-off system confers field thermotolerance for grain quality and yield in rice. Cell 2025:S0092-8674(25)00413-1. [PMID: 40311617 DOI: 10.1016/j.cell.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/22/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Rising global temperatures threaten crop grain quality and yield; however, how temperature regulates grain quality and how to achieve synergistic thermotolerance for both quality and yield remain unknown. Here, we identified a rice major locus, QT12, which negatively controls grain-quality field thermotolerance by disrupting endosperm storage substance homeostasis through over-activating unfolded protein response (UPR). Natural variations in QT12 and an NF-Y complex form a natural gene on-off system to modulate QT12 expression and thermotolerance. High temperatures weaken NF-YB9/NF-YC10 interactions with NF-YA8, releasing QT12 suppression and triggering quality deterioration. Low QT12 expression confers superior quality and increases elite rice yield up to 1.31-1.93 times under large-scale high-temperature trials. Two trait regulatory haplotypes (TRHs) from co-selected variations of the four genetically unlinked genes in NF-Ys-QT12 were identified for subspecies thermotolerance differentiation. Our work provides mechanistic insights into rice field thermotolerance and offers a proof-of-concept breeding strategy to break stress-growth and yield-quality trade-offs.
Collapse
Affiliation(s)
- Wei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ke Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chaofan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jian Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengkun Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bo Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juncheng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenjing Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Abdullah Shalmani
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingya Lv
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bingchen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
14
|
Sonkar K, Singh A. Wax deposition is vital for thermotolerance in rice. PLANT COMMUNICATIONS 2025; 6:101317. [PMID: 40091348 PMCID: PMC12010369 DOI: 10.1016/j.xplc.2025.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Kamankshi Sonkar
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
15
|
Lv X, Zhao X, Wang F, Wang H, Zhang Y, Ruan B, Dong G, Yu Y, Wu L, Chen F. Rice Cytochrome P450 Protein CYP71P1 Is Required for Heat Stress Tolerance by Regulating Serotonin Biosynthesis and ROS Homeostasis. PLANTS (BASEL, SWITZERLAND) 2025; 14:1072. [PMID: 40219140 PMCID: PMC11990548 DOI: 10.3390/plants14071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Heat stress is one of the major factors affecting crop growth and yield. However, the molecular mechanisms underlying rice heat stress tolerance remain largely unclear. In this study, we identified and characterized the rice high temperature sensitive 2 (hts2) mutant, which is highly susceptible to heat stress. Map-based cloning revealed that the HTS2 encodes a cytochrome P450 protein (CYP71P1) involved in serotonin biosynthesis. HTS2 is ubiquitously expressed across plant tissues and shows strong upregulation in response to heat stress. The HTS2 mutation significantly impairs basal serotonin synthesis in rice, and the heat-sensitive phenotype of the hts2 mutant is completely rescued by exogenous serotonin supplementation. Compared to the wild type, the hts2 mutant exhibits reduced antioxidant capacity, leading to excessive reactive oxygen species (ROS) accumulation and severe oxidative damage, ultimately reducing heat stress tolerance. Furthermore, disruption of HTS2 significantly affects the rice heat shock response, with the heat-induced expression of HsfA2s and their downstream target genes, such as HSP18.0 (heat shock protein 18.0) and OsAPX2 (ascorbate peroxidase 2), markedly depressed in hts2 mutant. Our results suggest a pivotal role of HTS2 in modulating serotonin metabolism and maintaining ROS homeostasis during heat stress, offering new perspectives on the mechanisms underlying heat tolerance and potential strategies to enhance rice resilience to heat stress.
Collapse
Affiliation(s)
- Xuantong Lv
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Xunan Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Fang Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Haili Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| |
Collapse
|
16
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2025; 48:2549-2580. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
17
|
Moreira X, Durán J, Rodríguez A, Cao A, Correia M, Serôdio J, Rodríguez-Echeverría S. Interactions between macro- and micro-climate: Effects on phenolic compound production in Nardus stricta at high elevations. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:417-425. [PMID: 39945121 DOI: 10.1111/plb.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 03/29/2025]
Abstract
Phenolic compounds are key to plant defence, offering protection as antioxidants, UV shields, and antimicrobials. Their production is largely shaped by environmental conditions. It is believed that plants at lower elevations increase phenolic content to counter herbivory, while those at higher elevations rely on phenolics to manage abiotic stresses, such as climate variability. Microhabitat warming also affects phenolic levels, but responses differ, depending on broader climatic contexts: plants in warmer, lower-elevation environments show limited adaptability, whereas high-elevation plants demonstrate greater plasticity. Despite the importance of these environmental interactions, many small-scale abiotic studies lack sufficient spatial replication across broader gradients like elevation or latitude, while large-scale studies frequently overlook microscale factors. This study investigated the effects of macroclimate factors and microhabitat warming on phenolic production in Nardus stricta across five semi-natural grassland sites (1546-1875 m a.s.l.) in Portugal's Serra da Estrela. Warming was simulated using open-top chambers over two growing seasons, after which leaf samples were analysed for phenolic compounds, and soil nutrients were measured. The N. stricta plants at the highest elevation site contained significantly higher leaf flavonoid concentrations. Microhabitat warming led to a significant decrease in flavonoid concentrations, but only at the highest elevation site. These effects occurred independently of soil nutrient levels, suggesting direct thermal effects or stress responses might be involved. Our findings highlight the complex interactions between macro- and microenvironmental factors in shaping plant chemistry, underscoring critical considerations for plant resilience in the face of climate change. This understanding is essential for developing strategies to support plant and ecosystem adaptation to changing climates.
Collapse
Affiliation(s)
- X Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - J Durán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - A Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - A Cao
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - M Correia
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J Serôdio
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Rodríguez-Echeverría
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Zhou J, Wang Y, Li J, Song Z, Xiao Y, Deng H, Liu X, Chen Q, Tang W, Zhang G. Anther Transcriptome Analysis of Two Heat Tolerance-Differentiated Indica Rice Restorer Lines Reveals the Importance of Non-Structural Carbohydrates and ATP in the Regulation of Heat Tolerance. Int J Mol Sci 2025; 26:3161. [PMID: 40243934 PMCID: PMC11989966 DOI: 10.3390/ijms26073161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Screening and breeding more resistant heat stress restorer lines represent an effective approach to addressing the decline in hybrid rice seed production caused by heat stress (HS). However, the molecular mechanisms affecting the differences in the heat resistance of anthers under HS remain unclear. This study compared the gene expression patterns of two hybrid rice restorer lines with differing heat resistances under HS and discusses the mechanisms of the heat response in rice. Under heat stress, 247 DEGs were co-expressed across varieties and were involved in biological processes such as protein processing and carbon metabolism, with heat shock proteins being the most ubiquitous. Interestingly, a substantial enrichment of genes related to non-structural carbohydrates and ATP was observed among the unique DEGs in R996 and R4628. Simultaneously, the contents of non-structural carbohydrates and ATP levels in the young spikes of R996 were significantly higher than those in R4628. This suggests that starch, soluble sugars and ATP play significant roles in heat tolerance during the flowering stage of rice. Overall, this study provides novel insights into the molecular mechanisms underlying heat stress resistance in indica rice restorer lines and informs future strategies for the genetic improvement of heat tolerance in these varieties.
Collapse
Affiliation(s)
- Jieqiang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Jiangfeng Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Zijian Song
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
- State Key Laboratory of Hybrid Rice, Changsha 410128, China
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| |
Collapse
|
19
|
Nguyen VH, Mittelsten Scheid O, Gutzat R. Heat stress response and transposon control in plant shoot stem cells. PLANT PHYSIOLOGY 2025; 197:kiaf110. [PMID: 40155207 PMCID: PMC11997658 DOI: 10.1093/plphys/kiaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Plants have an impressive repertoire to react to stress conditions that limit regular growth. Elevated temperatures beyond the optimal range cause rapid and specific transcriptional responses, resulting in developmental alterations and plasticity. Heat stress also causes chromatin decondensation and activation of some transposable elements (TEs), endangering genomic integrity. This is especially risky for stem cells in the shoot apical meristem (SAM) that potentially contribute to the next generation. We examined how the heat stress response in SAM stem cells of Arabidopsis (Arabidopsis thaliana) is different from that in other tissues and whether the elements of epigenetic TE control active in the meristem are involved in specific heat protection of stem cells. Using fluorescence-activated nuclear sorting to isolate and characterize SAM stem cells after exposure to conditions that activate a heat-responsive TE, we found that SAM stem cells maintain their developmental program and suppress the heat-response pathways dominating in surrounding somatic cells. Furthermore, mutants defective in DNA methylation recovered less efficiently from heat stress and persistently activated heat response factors and heat-responsive TEs. Heat stress also induced epimutations at the level of DNA methylation, especially in the CHG sequence context. Regions with modified DNA methylation patterns remained altered for at least 3 wk beyond the stress. These findings urge for disentangling cell type-specific responses under different stress types, especially for stem cells as bridges to the next generation.
Collapse
Affiliation(s)
- Vu Hoang Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
20
|
Fan D, Li J, Zhang Z, Zhang L, Xu Y, Song Y, Liu J, Liu M, Wang L, He J, Ren Y, Ma C. The microRNA-encoded peptide miPEP398b regulates heat tolerance in grapevine. PLANT PHYSIOLOGY 2025; 197:kiaf144. [PMID: 40270449 PMCID: PMC12018877 DOI: 10.1093/plphys/kiaf144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
A microRNA-encoded peptide modulates heat tolerance in grapevine via a circular regulatory pathway involving heat shock factors and heat shock proteins.
Collapse
Affiliation(s)
- Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lipeng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Minying Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lujia Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Thapa P, Guo J, Pradhan K, Thapa D, Madhavarapu S, Zou J, Potts J, Li H, O’Hair J, Wang C, Zhou S, Yang Y, Fish T, Thannhauser TW. Cell-Type-Specific Heat-Induced Changes in the Proteomes of Pollen Mother Cells and Microspores Provide New Insights into Tomato Pollen Production Under Elevated Temperature. Proteomes 2025; 13:13. [PMID: 40265418 PMCID: PMC12015871 DOI: 10.3390/proteomes13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Tomatoes are self-pollinating plants, and successful fruit set depends on the production of functional pollen within the same flower. Our previous studies have shown that the 'Black Vernissage' tomato variety exhibits greater resilience to heat stress in terms of pollen productivity compared to the 'Micro-Tom' variety. Pollen productivity is determined by meiotic activity during microsporogenesis and the development of free microspores during gametogenesis. This study focused on identifying heat stress (HS)-induced proteomes in pollen mother cells (PMCs) and microspores. METHODS Tomato plants were grown under two temperature conditions: 26 °C (non-heat-treated control) and 37 °C (heat-treated). Homogeneous cell samples of meiotic PMCs (prior to the tetrad stage) and free microspores were collected using laser capture microdissection (LCM). The heat-induced proteomes were identified using tandem mass tag (TMT)-quantitative proteomics analysis. RESULTS The enrichment of the meiotic cell cycle in PMCs and the pre-mitotic process in free microspores confirmed the correlation between proteome expression and developmental stage. Under HS, PMCs in both tomato varieties were enriched with heat shock proteins (HSPs). However, the 'Black Vernissage' variety exhibited a greater diversity of HSP species and a higher level of enrichment compared to the 'Micro-Tom' variety. Additionally, several proteins involved in gene expression and protein translation were downregulated in PMCs and microspores of both varieties. In the PMC proteomes, the relative abundance of proteins showed no significant differences between the two varieties under normal conditions, with very few exceptions. However, HS induced significant differential expression both within and between the varieties. More importantly, these heat-induced differentially abundant proteins (DAPs) in PMCs are directly involved in meiotic cell division, including the meiosis-specific protein ASY3 (Solyc01g079080), the cell division protein kinase 2 (Solyc11g070140), COP9 signalosome complex subunit 1 (Solyc01g091650), the kinetochore protein ndc80 (Solyc01g104570), MORC family CW-type zinc finger 3 (Solyc02g084700), and several HSPs that function in protecting the fidelity of the meiotic processes, including the DNAJ chaperone (Solyc04g009770, Solyc05g055160), chaperone protein htpG (Solyc04g081570), and class I and class II HSPs. In the microspores, most of the HS-induced DAPs were consistently observed across both varieties, with only a few proteins showing significant differences between them under heat stress. These HS-induced DAPs include proteases, antioxidant proteins, and proteins related to cell wall remodeling and the generation of pollen exine. CONCLUSIONS HS induced more dynamic proteomic changes in meiotic PMCs compared to microspores, and the inter-varietal differences in the PMC proteomes align with the effects of HS on pollen productivity observed in the two varieties. This research highlights the importance of the cell-type-specific proteomics approach in identifying the molecular mechanisms that are critical for the pollen developmental process under elevated temperature conditions.
Collapse
Affiliation(s)
- Priya Thapa
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Jun Guo
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Kajol Pradhan
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Dibya Thapa
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Sudhakar Madhavarapu
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Jing Zou
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Jesse Potts
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Hui Li
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Joshua O’Hair
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Chen Wang
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Suping Zhou
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA (T.F.)
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA (T.F.)
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA (T.F.)
| |
Collapse
|
22
|
Luqman T, Hussain M, Ahmed SR, Ijaz I, Maryum Z, Nadeem S, Khan Z, Khan SMUD, Aslam M, Liu Y, Khan MKR. Cotton under heat stress: a comprehensive review of molecular breeding, genomics, and multi-omics strategies. Front Genet 2025; 16:1553406. [PMID: 40171219 PMCID: PMC11959566 DOI: 10.3389/fgene.2025.1553406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Cotton is a vital fiber crop for the global textile industry, but rising temperatures due to climate change threaten its growth, fiber quality and yields. Heat stress disrupts key physiological and biochemical processes, affecting carbohydrate metabolism, hormone signaling, calcium and gene regulation and expression. This review article explores cotton's defense mechanism against heat stress, including epigenetic regulations and transgenic approaches, with a focus on genome editing tools. Given the limitations of traditional breeding, advanced omics technologies such as GWAS, transcriptomics, proteomics, ionomics, metabolomics, phenomics and CRISPR-Cas9 offer promising solutions for developing heat-resistant cotton varieties. This review highlights the need for innovative strategies to ensure sustainable cotton production under climate change.
Collapse
Affiliation(s)
- Tahira Luqman
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Manzoor Hussain
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Horticulture Research Institute, Pakistan Agriculture Research Council (PARC), Khuzdar, Pakistan
| | - Iram Ijaz
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Sahar Nadeem
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Zafran Khan
- Department Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Mohammad Aslam
- Horticulture Research Institute, Pakistan Agriculture Research Council (PARC), Khuzdar, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|
23
|
Peng M, Jaeger KE, Lu Y, Fan Z, Zeng W, Sampathkumar A, Wigge PA. Activation and memory of the heat shock response is mediated by prion-like domains of sensory HSFs in Arabidopsis. MOLECULAR PLANT 2025; 18:457-467. [PMID: 39789846 DOI: 10.1016/j.molp.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heat shock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood. By comprehensively analyzing the binding targets of all the HSFs, we found that HSFs act in a network, with upstream sensory HSFs acting in a transcriptional cascade to activate downstream HSFs and protective proteins. The upstream sensory HSFs are activated by heat at the protein level via a modular prion-like domain (PrD) structure. PrD1 enables HSF sequestration via chaperone binding, allowing release under heat shock. Activated HSFs are recruited into transcriptionally active foci via PrD2, enabling the formation of DNA loops between heat-responsive promoters and enhancer motifs, boosting gene expression days after a priming heat stress. The ability of HSFs to respond rapidly to heat via a protein phase-change response is likely a conserved mechanism in eukaryotes.
Collapse
Affiliation(s)
- Maolin Peng
- Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Katja E Jaeger
- Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany
| | - Yunlong Lu
- Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany
| | - Zhuping Fan
- Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany
| | - Wei Zeng
- Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Philip A Wigge
- Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
24
|
Calixto CPG. Molecular aspects of heat stress sensing in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70069. [PMID: 40085177 PMCID: PMC11908636 DOI: 10.1111/tpj.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Heat stress impacts all aspects of life, from evolution to global food security. Therefore, it becomes essential to understand how plants respond to heat stress, especially in the context of climate change. The heat stress response (HSR) involves three main components: sensing, signal transduction, and cellular reprogramming. Here, I focus on the heat stress sensing component. How can cells detect heat stress if it is not a signalling particle? To answer this question, I have looked at the molecular definition of heat stress. It can be defined as any particular rise in the optimum growth temperature that leads to higher-than-normal levels of reactive molecular species and macromolecular damage to biological membranes, proteins, and nucleic acid polymers (DNA and RNA). It is precisely these stress-specific alterations that are detected by heat stress sensors, upon which they would immediately trigger the appropriate level of the HSR. In addition, the work towards thermotolerance is complemented by a second type of response, here called the cellular homeostasis response (CHR). Upon mild and extreme temperature changes, the CHR is triggered by plant thermosensors, which are responsible for monitoring temperature information. Heat stress sensors and thermosensors are distinct types of molecules, each with unique modes of activation and functions. While many recent reviews provide a comprehensive overview of plant thermosensors, there remains a notable gap in the review literature regarding an in-depth analysis of plant heat stress sensors. Here, I attempt to summarise our current knowledge of the cellular sensors involved in triggering the plant HSR.
Collapse
|
25
|
Yang L, Fang S, Liu L, Zhao L, Chen W, Li X, Xu Z, Chen S, Wang H, Yu D. WRKY transcription factors: Hubs for regulating plant growth and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:488-509. [PMID: 39815727 DOI: 10.1111/jipb.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
As sessile organisms, plants must directly face various stressors. Therefore, plants have evolved a powerful stress resistance system and can adjust their growth and development strategies appropriately in different stressful environments to adapt to complex and ever-changing conditions. Nevertheless, prioritizing defensive responses can hinder growth; this is a crucial factor for plant survival but is detrimental to crop production. As such, comprehending the impact of adverse environments on plant growth is not only a fundamental scientific inquiry but also imperative for the agricultural industry and for food security. The traditional view that plant growth is hindered during defense due to resource allocation trade-offs is challenged by evidence that plants exhibit both robust growth and defensive capabilities through human intervention. These findings suggest that the growth‒defense trade-off is not only dictated by resource limitations but also influenced by intricate transcriptional regulatory mechanisms. Hence, it is imperative to conduct thorough investigations on the central genes that govern plant resistance and growth in unfavorable environments. Recent studies have consistently highlighted the importance of WRKY transcription factors in orchestrating stress responses and plant-specific growth and development, underscoring the pivotal role of WRKYs in modulating plant growth under stressful conditions. Here, we review recent advances in understanding the dual roles of WRKYs in the regulation of plant stress resistance and growth across diverse stress environments. This information will be crucial for elucidating the intricate interplay between plant stress response and growth and may aid in identifying gene loci that could be utilized in future breeding programs to develop crops with enhanced stress resistance and productivity.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Siyu Fang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Lei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Lirong Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
26
|
Xiao B, Hu Y, Liu Y, Jia S, Zhang T, Yin S, Xiao C, Jiang J, Wang L, Yang C. Physiological and transcriptional analysis provides insights into responses of a spring wheat variety to combination of salt and heat stresses. PHYSIOLOGIA PLANTARUM 2025; 177:e70154. [PMID: 40104955 DOI: 10.1111/ppl.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Enhancing the frequency and intensity of extreme high temperature conditions due to global warming largely deteriorates salt-induced harm to the crop plants living in saline lands, which leads to losses of agricultural production. In northern China, spring wheat is grown in many slightly saline areas and often subjected to a combination of salt and heat stresses. In this study, a spring wheat cultivar was selected as the experimental material and subjected to salt stress (S), heat stress (H) and their combination (S + H). Physiological analysis showed that the inhibitory effect of S + H stress on wheat growth was much stronger than that of individual salt stress due to aggravating Na+ toxicity caused by heat stress. We observed that many genes involved in plant hormones showed much higher expression under S + H stress than under salt stress and heat stress, including key ABA synthesis genes (NCEDs), core ABA signalling transduction genes, key ethylene synthesis genes, and core ethylene signalling transduction genes. Particularly, many ABA-responsive genes (HSFs, HSPs, DHNs and LEAs) were upregulated under S + H stress but not under salt stress and heat stress. DHNs and LEAs were identified to play an important role in preventing cytoplasmic dehydration, protein aggregation, and slowing Na+ migration, and ethylene was identified to contribute to Na+ detoxification. We propose that in response to S + H stress, wheat plants regulate the expression of DHNs, LEAs, HSPs and HSFs via the ABA pathway to prevent cell dehydration and protein aggregation and keep ion homeostasis via the ethylene pathway.
Collapse
Affiliation(s)
- Binbin Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yue Hu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yaping Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Siyuan Jia
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Tiantian Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Siyuan Yin
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Chaoxia Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Jie Jiang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Lu Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
27
|
Zuo Y, Abbas A, Dauda SO, Chen C, Bose J, Donovan-Mak M, Wang Y, He J, Zhang P, Yan Z, Chen ZH. Function of key ion channels in abiotic stresses and stomatal dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109574. [PMID: 39903947 DOI: 10.1016/j.plaphy.2025.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Climate changes disrupt environmental and soil conditions that affect ionic balance in plants, presenting significant challenges to their survival and productivity. Membrane transporters are crucial for maintaining ionic homeostasis and regulating the movement of substances across plasma and organellar membranes, particularly under abiotic stresses. Among these abiotic stress-responsive mechanisms, stomata are critical for regulating water loss and carbon dioxide uptake, reflecting a plant's ability to respond and adapt to abiotic stresses effectively. This review highlights the role of ion transporters, including both anion and cation transporters in plant abiotic stress responses. It explores the interplay between different ion channels and regulatory components that enable plants to withstand key abiotic stresses such as drought, salinity, and heat. Moreover, we emphasized the contributions of three essential types of ion channels - potassium, anion, and calcium to abiotic stress-related stomatal regulation. These ion channels orchestrate complex signaling networks that allow plants to modulate stomatal behavior and maintain physiological balance under adverse conditions. This article provides valuable molecular and physiological insights into the mechanisms of ion transport and regulation for plants to adapt to environmental challenges. Thus, this review offers a useful foundation for developing innovative strategies to enhance crop resilience and performance in an era of increasingly unpredictable and harsh climates.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Asad Abbas
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Chen Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China; The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Jayakumar Bose
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jing He
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peng Zhang
- The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
28
|
Li X, Su T, Wang X, Liu Y, Ge J, Huo P, Zhao Y, Wang T, Yu H, Duan M, Jia Y, Yang X, Wang P, Gong Q, Liu J, Ma C. Blocking constitutive autophagy rescues the loss of acquired heat resistance in Arabidopsis fes1a. THE NEW PHYTOLOGIST 2025; 245:2569-2583. [PMID: 39887380 DOI: 10.1111/nph.20393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
High temperature is one of several major abiotic stresses that can cause substantial loss of crop yields. Heat shock proteins (HSPs) are key components of heat stress resistance. Mutation of FES1A, an auxiliary molecular chaperone of HSP70, leads to defective acquired thermotolerance. Autophagy is a positive regulator of basal thermotolerance and a negative regulator of heat stress memory, but its function in acquired thermotolerance is unclear. We found that blocking constitutive autophagy rescued the heat sensitivity of fes1a in Arabidopsis thaliana. Immunoblot and proteomic analyses showed that the rescue was not due to increased HSP levels. Instead, proteomic analysis and confocal microscopy studies revealed that knocking out the core autophagy-related (ATG) genes leads to accumulation of peroxisomes, thus upregulating the metabolic pathways within the peroxisomes. Accumulation of peroxisomes promotes both reactive oxygen species scavenging and indole-3-acetic acid (IAA) production in atg7 fes1a. Overexpression of ABCD1/PXA1/CTS, a peroxisomal ATP-binding cassette transporter, in atg7 fes1a leads to abnormal peroxisomal function and subsequently thermosensitivity. Moreover, we found that exogenous application of indole-3-butyric acid, IAA or naphthalene-1-acetic acid rescued fes1a heat sensitivity. We propose that autophagy is detrimental to the survival of the fes1a mutant, which has acquired thermosensitivity.
Collapse
Affiliation(s)
- Xuezhi Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Tong Su
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiaofeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yan Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jingjing Ge
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Panfei Huo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Tongtong Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hongbin Yu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Meijie Duan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yuebin Jia
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xianpeng Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
29
|
Li HG, Yang L, Fang Y, Wang G, Lyu S, Deng S. A genome-wide-level insight into the HSF gene family of Rhodomyrtus tomentosa and the functional divergence of RtHSFA2a and RtHSFA2b in thermal adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109460. [PMID: 39793331 DOI: 10.1016/j.plaphy.2024.109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R. tomentosa. We identified 25 HSF genes in the R. tomentosa genome. They could be classified into three classes: HSFA, HSFB, and HSFC. Gene duplication events are major motivations for the expansion of the RtHSF gene family. Most of the genes in the same subclass share similar conserved motifs and gene structures. The cis-acting elements of the promoter regions of RtHSF genes are related to development, phytohormone signaling, and stress responses, and they vary among the genes even in the same subclass, resulting in different expression patterns. Especially, there exists subfunctionalization in the RtHSFA2 subfamily in responding to various abiotic stresses, viz. RtHSFA2a is sensitive to drought, salt, and cold stresses, whilst RtHSFA2b is mainly induced by heat stress. We further proved that RtHSFA2b might be of more importance in R. tomentosa thermotolerance, for Arabidopsis plants with overexpressed RtHSFA2b outperformed those with RtHSFA2a under heat stress, and RtHSFA2b had much higher transcription activity than RtHSFA2a in regulating certain heat shock response (HSR) genes. RtHSFA2a plays a role in transactivating RtHSFA2b. All these results provide a general prospect of the RtHSF gene family and enclose a basal thermal adaptation mechanism of R. tomentosa.
Collapse
Affiliation(s)
- Hui-Guang Li
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ling Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yujie Fang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Gui Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanwu Lyu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Yang L, Zhang R, Zhang H, Yang Y, Fu L. TOR Mediates Stress Responses Through Global Regulation of Metabolome in Plants. Int J Mol Sci 2025; 26:2095. [PMID: 40076716 PMCID: PMC11900525 DOI: 10.3390/ijms26052095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The target of rapamycin (TOR) kinase is an evolutionarily conserved atypical Ser/Thr protein kinase present in yeasts, plants, and mammals. In plants, TOR acts as a central signaling hub, playing a pivotal role in the precise orchestration of growth and development. Extensive studies have underscored its significant role in these processes. Recent research has further elucidated TOR's multifaceted roles in plant stress adaptation. Furthermore, mounting evidence indicates TOR's role in mediating the plant metabolome. In this review, we will discuss recent findings on the involvement of TOR signaling in plant adaptation to various abiotic and biotic stresses, with a specific focus on TOR-regulated metabolome reprogramming in response to different stresses.
Collapse
Affiliation(s)
- Lin Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingyu Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liwen Fu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Y.); (R.Z.); (H.Z.); (Y.Y.)
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
31
|
Liu J, Wang K, Wang G, Peng Z, Wang T, Meng Y, Huang J, Huo J, Li X, Zhu X, Xu F, Zhang Q, Wang Z, Chen H, Wang Y, Xu W. The OsEBF1-OsEIL5-OsPP91 module regulates rice heat tolerance via ubiquitination and transcriptional activation. Cell Rep 2025; 44:115271. [PMID: 39913286 DOI: 10.1016/j.celrep.2025.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Understanding the regulatory mechanisms underlying the plant heat stress response is important for developing climate-resilient crops, including rice (Oryza sativa). Here, we report that OsEIL5, one member of the ETHYLENE INSENSITIVE3-LIKE family, positively regulates rice heat tolerance at the seedling and reproductive stages. OsEIL5 directly binds to the promoter of OsPP91 (encoding one type 2C protein phosphatase) and activates its expression. OsPP91 is required for rice thermotolerance, and overexpressing OsPP91 in oseil5-1 partially rescues its heat sensitivity. The F box protein OsEBF1 interacts with OsEIL5 and degrades it through the ubiquitination pathway, resulting in the reduction of OsPP91 expression and ultimately weakening rice heat tolerance. Knocking out OsEIL5 in the EBF1R13 line partially reduces its extremely high heat tolerance. Taken together, our work uncovers a mechanism that finely regulates rice thermotolerance through the OsEBF1-OsEIL5-OsPP91 module at the posttranslational and transcriptional levels.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ke Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350000, China
| | - Guining Wang
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Meng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinli Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaohan Huo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Li
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqi Zhu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengrui Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ya Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
32
|
Chu B, Liu W, Li J, Zhang X, Li P. Molecular Mechanisms of Gene Expression Regulation in Response to Heat Stress in Hemerocallis fulva. PLANTS (BASEL, SWITZERLAND) 2025; 14:690. [PMID: 40094620 PMCID: PMC11901499 DOI: 10.3390/plants14050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Hemerocallis fulva is one of the three major flowers in the world; its flower type and color are very rich, with high ornamental value and economic value. Heat stress severely limits the cultivation and geographical distribution of H. fulva. Genetic resources and their underlying molecular mechanisms constitute the cornerstone of contemporary breeding technologies. However, research on the response of H. fulva to heat stress remains relatively scant. In this study, we used the heat-resistant 'Dan Yang' variety and heat-sensitive 'Nuo Mi Lu' variety with phenotypic expression as experimental materials to determine the changes in substance and gene expression levels, and used bioinformatics technology to study the molecular mechanisms and gene resource mining of H. fulva in response to heat stress. We identified several thousand differentially expressed genes (DEGs) in different comparison groups. At the same time, 1850 shared DEGs were identified in two H. fulva genotypes responding to heat stress. The dynamic cutting algorithm was used to cluster the genes, and 23 gene co-expression modules were obtained. The MEorangered, MElightpink, and MEmagenta modules were significantly correlated with physiological and biochemical traits. We identified ten key genes closely related to the response of H. fulva to heat stress, including plant-pathogen interactions, plant hormone signal transduction, oxidative transduction phosphorylation, and the plant hormone signal transduction pathway. This study not only analyzes the molecular mechanism of H. fulva response to heat stress, but also provides genetic resources for breeding H. fulva heat tolerance.
Collapse
Affiliation(s)
- Boyan Chu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang 050061, China; (W.L.); (J.L.); (X.Z.)
| | - Weixue Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang 050061, China; (W.L.); (J.L.); (X.Z.)
- Hebei Key Laboratory of Floral Biological Breeding, Hebei Agricultural University, Baoding 071000, China
- College of Landscape and Tourism, Hebei Agricultural University, Baoding 071000, China
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Jinxia Li
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang 050061, China; (W.L.); (J.L.); (X.Z.)
| | - Xiaofei Zhang
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang 050061, China; (W.L.); (J.L.); (X.Z.)
| | - Ping Li
- Hebei Key Laboratory of Floral Biological Breeding, Hebei Agricultural University, Baoding 071000, China
- College of Landscape and Tourism, Hebei Agricultural University, Baoding 071000, China
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
33
|
Martín-Cardoso H, San Segundo B. Impact of Nutrient Stress on Plant Disease Resistance. Int J Mol Sci 2025; 26:1780. [PMID: 40004243 PMCID: PMC11855198 DOI: 10.3390/ijms26041780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Plants are constantly exposed to abiotic and biotic stresses that seriously affect crop yield and quality. A coordinated regulation of plant responses to combined abiotic/biotic stresses requires crosstalk between signaling pathways initiated by each stressor. Interconnected signaling pathways further finetune plant stress responses and allow the plant to respond to such stresses effectively. The plant nutritional status might influence disease resistance by strengthening or weakening plant immune responses, as well as through modulation of the pathogenicity program in the pathogen. Here, we discuss advances in our understanding of interactions between nutrient stress, deficiency or excess, and immune signaling pathways in the context of current agricultural practices. The introduction of chemical fertilizers and pesticides was a major component of the Green Revolution initiated in the 1960s that greatly boosted crop production. However, the massive application of agrochemicals also has adverse consequences on the environment and animal/human health. Therefore, an in-depth understanding of the connections between stress caused by overfertilization (or low bioavailability of nutrients) and immune responses is a timely and novel field of research with important implications for disease control in crop species. Optimizing nutrient management practices tailored to specific environmental conditions will be crucial in maximizing crop production using environmentally friendly systems.
Collapse
Affiliation(s)
- Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain;
- Consejo Superior de Investigaciones Científicas (CSIC), 08193 Barcelona, Spain
| |
Collapse
|
34
|
Pagano A, Dueñas C, Bedotto N, Elleuch A, Khemakhem B, El Abed H, Tani E, Goufa M, Chachalis D, Balestrazzi A. Exploring the Genotoxic Stress Response in Primed Orphan Legume Seeds Challenged with Heat Stress. Genes (Basel) 2025; 16:235. [PMID: 40004564 PMCID: PMC11855731 DOI: 10.3390/genes16020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The increased frequency of extreme weather events related to climate change, including the occurrence of extreme temperatures, severely affects crop yields, impairing global food security. Heat stress resulting from temperatures above 30 °C is associated with poor germination performance and stand establishment. The combination of climate-resilient crop genotypes and tailored seed priming treatments might represent a reliable strategy to overcome such drawbacks. This work explores the potential of hydropriming as a tool to mitigate the heat-stress-mediated impact on germination performance in orphan legumes. METHODS For each tested species (Lathyrus sativus L., Pisum sativum var. arvense and Trigonella foenum-graecum L.), two accessions were investigated. Germination tests were performed at 25 °C, 30 °C, 35 °C and 40 °C to assess the heat stress tolerance threshold. Hydropriming was then applied and germination tests were performed at 40 °C to test the impact of the treatment on the seeds' ability to cope with heat stress. An alkaline comet assay and Quantitative Real Time-Polymerase Chain Reaction were performed on embryos excised from primed and control seeds. RESULTS Phenotyping at the germination and seedling development stage highlighted the accession-specific beneficial impact of hydropriming under heat stress conditions. In L. sativus seeds, the alkaline comet assay revealed the dynamics of heat stress-induced DNA damage accumulation, as well as the repair patterns promoted by hydropriming. The expression patterns of genes involved in DNA repair and antioxidant response were consistently responsive to the hydropriming and heat wave conditions in L. sativus accessions.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (A.P.); (C.D.J.); (N.B.)
| | - Conrado Dueñas
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (A.P.); (C.D.J.); (N.B.)
| | - Nicolò Bedotto
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (A.P.); (C.D.J.); (N.B.)
| | - Amine Elleuch
- Faculty of Sciences, University of Sfax, Airport Road km 0.5, Sfax P.O. Box 1169-3029, Tunisia; (A.E.); (B.K.); (H.E.A.)
| | - Bassem Khemakhem
- Faculty of Sciences, University of Sfax, Airport Road km 0.5, Sfax P.O. Box 1169-3029, Tunisia; (A.E.); (B.K.); (H.E.A.)
| | - Hanen El Abed
- Faculty of Sciences, University of Sfax, Airport Road km 0.5, Sfax P.O. Box 1169-3029, Tunisia; (A.E.); (B.K.); (H.E.A.)
| | - Eleni Tani
- Laboratory of Plant Breeding & Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.T.); (M.G.)
| | - Maria Goufa
- Laboratory of Plant Breeding & Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.T.); (M.G.)
| | - Dimosthenis Chachalis
- Benaki Phytopathological Institute, Stefanou Delta Street 8, Kifissia, 14561 Athens, Greece;
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (A.P.); (C.D.J.); (N.B.)
| |
Collapse
|
35
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 PMCID: PMC11897469 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Shi Y, Zhang Z, Yan Z, Chu H, Luo C. Tomato mitogen-activated protein kinase: mechanisms of adaptation in response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2025; 16:1533248. [PMID: 39963529 PMCID: PMC11830615 DOI: 10.3389/fpls.2025.1533248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Plants live under various biotic and abiotic stress conditions, and to cope with the adversity and severity of these conditions, they have developed well-established resistance mechanisms. These mechanisms begin with the perception of stimuli, followed by molecular, biochemical, and physiological adaptive measures. Tomato (Solanum lycopersicum) is a globally significant vegetable crop that experiences several biotic and abiotic stress events that can adversely impact its quality and production. Mitogen-activated protein kinases (MAPKs) in tomato plants have crucial functions of mediating responses to environmental cues, internal signals, defense mechanisms, cellular processes, and plant development and growth. MAPK cascades respond to various environmental stress factors by modulating associated gene expression, influencing plant hormone synthesis, and facilitating interactions with other environmental stressors. Here, we review the evolutionary relationships of 16 tomato SlMAPK family members and emphasize on recent studies describing the regulatory functions of tomato SlMAPKs in both abiotic and biotic stress conditions. This review could enhance our comprehension of the MAPK regulatory network in biotic and abiotic stress conditions and provide theoretical support for breeding tomatoes with agronomic traits of excellent stress resistance.
Collapse
Affiliation(s)
| | | | | | | | - Changxin Luo
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| |
Collapse
|
37
|
Lu HP, Liu XH, Wang MJ, Zhu QY, Lyu YS, Xu JH, Liu JX. The NAT1-bHLH110-CER1/CER1L module regulates heat stress tolerance in rice. Nat Genet 2025; 57:427-440. [PMID: 39809898 DOI: 10.1038/s41588-024-02065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Rice production is facing substantial threats from global warming associated with extreme temperatures. Here we report that modifying a heat stress-induced negative regulator, a negative regulator of thermotolerance 1 (NAT1), increases wax deposition and enhances thermotolerance in rice. We demonstrated that the C2H2 family transcription factor NAT1 directly inhibits bHLH110 expression, and bHLH110 directly promotes the expression of wax biosynthetic genes CER1/CER1L under heat stress conditions. In situ hybridization revealed that both NAT1 and bHLH110 are predominantly expressed in epidermal layers. By using gene-editing technology, we successfully mutated NAT1 to eliminate its inhibitory effects on wax biosynthesis and improved thermotolerance without yield penalty under normal temperature conditions. Field trials further confirmed the potential of NAT1-edited rice to increase seed-setting rate and grain yield. Therefore, our findings shed light on the regulatory mechanisms governing wax biosynthesis under heat stress conditions in rice and provide a strategy to enhance heat resilience through the modification of NAT1.
Collapse
Affiliation(s)
- Hai-Ping Lu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Huan Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qiao-Yun Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Shu Lyu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Hang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Yuelushan Laboratory of Hunan Province, Changsha, China.
| |
Collapse
|
38
|
Wang X, Liu X, Su Y, Shen H. Rice Responses to Abiotic Stress: Key Proteins and Molecular Mechanisms. Int J Mol Sci 2025; 26:896. [PMID: 39940666 PMCID: PMC11817427 DOI: 10.3390/ijms26030896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The intensification of global climate change and industrialization has exacerbated abiotic stresses on crops, particularly rice, posing significant threats to food security and human health. The mechanisms by which rice responds to these stresses are complex and interrelated. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying rice's response to various abiotic stresses, including drought, salinity, extreme temperatures, and heavy metal pollution. We emphasize the molecular mechanisms and structural roles of key proteins involved in these stress responses, such as the roles of SLAC1 and QUAC1 in stomatal regulation, HKT and SOS proteins in salinity stress, heat shock proteins (HSPs) and heat stress transcription factors (HSFs) in temperature stress, and Nramp and ZIP transport proteins in response to heavy metal stress. This review elucidates the complex response networks of rice to various abiotic stresses, highlighting the key proteins and their related molecular mechanisms, which may further help to improve the strategies of molecular breeding.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Xuelei Liu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou 310024, China;
| | - Yonglin Su
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Huaizong Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou 310024, China;
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
39
|
Wu HC, Yu SY, Vivek S, Wang YD, Jinn TL. ABA-mediated regulation of PME12 influences stomatal density, pore aperture, and heat stress response in Arabidopsis thaliana. PLANTA 2025; 261:29. [PMID: 39786611 DOI: 10.1007/s00425-025-04606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
MAIN CONCLUSION PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress. Pectin, an essential component of plant cell walls, is synthesized in the Golgi apparatus and deposited into the cell wall in a highly methylesterified form. The degree and distribution of methylesterification within homogalacturonan (HGA) domains are crucial in determining its functional properties. Pectin methylesterase (PME) catalyzes the demethylesterification of HGA, which is pivotal for adjusting cell wall properties in response to environmental cues. Our investigation of PME12, a type-I pectin methylesterase in Arabidopsis, reveals its role in abscisic acid (ABA)-mediated stomatal regulation during heat stress, with the pme12 mutant showing increased stomatal density, reduced size, and heightened sensitivity to ABA-induced closure. Additionally, pme12 plants exhibited altered PME activities under heat stress but displayed enhanced thermotolerance. Moreover, our study identified SCRM as a transcriptional regulator positively influencing PME12 expression, linking stomatal development with PME12-mediated pectin methylesterification. These findings suggest that PME12-mediated pectin modification plays a role in coordinating ABA responses and influencing stomatal behavior under heat stress conditions.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan.
| | - Shih-Yu Yu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Sandeep Vivek
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yin-Da Wang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Tsung-Luo Jinn
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Batool I, Ayyaz A, Qin T, Wu X, Chen W, Hannan F, Zafar ZU, Naeem MS, Farooq MA, Zhou W. Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2025; 14:152. [PMID: 39861509 PMCID: PMC11768255 DOI: 10.3390/plants14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures. Given the rising global temperatures, heat stress has become a major abiotic challenge, affecting the growth and development of various crops and significantly reducing productivity. Brassica napus, the second-largest source of vegetable oil worldwide, faces drastic reductions in seed yield and quality under heat stress. This review summarizes recent research on the genetic and physiological impact of heat stress in the Brassicaceae family, as well as in model plants Arabidopsis and rice. Several studies show that extreme temperature fluctuations during crucial growth stages negatively affect plants, leading to impaired growth and reduced seed production. The review discusses the mechanisms of heat stress adaptation and the key regulatory genes involved. It also explores the emerging understanding of epigenetic modifications during heat stress. While such studies are limited in B. napus, contrasting trends in gene expression have been observed across different species and cultivars, suggesting these genes play a complex role in heat stress tolerance. Key knowledge gaps are identified regarding the impact of heat stress during the growth stages of B. napus. In-depth studies of these stages are still needed. The profound understanding of heat stress response mechanisms in tissue-specific models are crucial in advancing our knowledge of thermo-tolerance regulation in B. napus and supporting future breeding efforts for heat-tolerant crops.
Collapse
Affiliation(s)
- Iram Batool
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Tongjun Qin
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Xiaofen Wu
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Weiqi Chen
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| | - Zafar Ullah Zafar
- Institute of Botany, Bahauddin Zakariya University, Multan 40162, Pakistan;
| | - Muhammad Shahbaz Naeem
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Ahsan Farooq
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China; (I.B.); (A.A.); (T.Q.); (X.W.); (W.C.); (F.H.)
| |
Collapse
|
41
|
Kang Y, Sun P, Yang Y, Li M, Wang H, Sun X, Jin W. Genome-Wide Analysis of the Hsf Gene Family in Rosa chinensis and RcHsf17 Function in Thermotolerance. Int J Mol Sci 2024; 26:287. [PMID: 39796142 PMCID: PMC11719701 DOI: 10.3390/ijms26010287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Heat shock transcription factors (Hsfs) play an important role in response to high temperatures by binding to the promoter of the heat shock protein gene to promote its expression. As an important ornamental plant, the rose often encounters heat stress during the flowering process. However, there are few studies on the Hsf family in roses (Rosa. chinensis). In the current study, 19 Hsf genes were identified from R. chinensis and grouped into three main subfamilies (A, B, and C) according to their structural characteristics and phylogenetic analysis. The expression patterns of RcHsf genes were detected in different tissues by quantitative real-time PCR. The RcHsf genes exhibited distinct expression patterns at high temperatures, with RcHsf17 having the highest expression level. RcHsf17 was localized in the nucleus and had transcriptional activity. The overexpression of RcHsf17 increased thermotolerance in Arabidopsis, suggesting the potential role of RcHsf17 in the regulation of the high-temperature response. In addition, RcHsf17 overexpressed in Arabidopsis could enhance the response of transgenic Arabidopsis to methyl jasmonate. Collectively, this study identified and screened RcHsfs in response to high temperatures in roses, providing new insights into the functional divergence of RcHsfs and a basis for screening new varieties of rose.
Collapse
Affiliation(s)
- Yanhui Kang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Pei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Xiangyi Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| |
Collapse
|
42
|
Li X, Liao J, Chung KK, Feng L, Liao Y, Yang Z, Liu C, Zhou J, Shen W, Li H, Yang C, Zhuang X, Gao C. Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress. Nat Commun 2024; 15:10910. [PMID: 39738069 PMCID: PMC11685989 DOI: 10.1038/s41467-024-55292-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana. As HS subsides, SGs disassemble, leading to the re-translocation of ATG proteins back to the cytoplasm, thereby facilitating the rapid activation of autophagy to degrade HS-induced ubiquitinated aggregates. Notably, autophagy activation is delayed in the SG-deficient (ubp1abc) mutants during the HS recovery phase, resulting in an insufficient clearance of ubiquitinated insoluble proteins that arise due to HS. Collectively, this study uncovers a previously unknown function of SGs in regulating autophagy as a temporary repository for ATG proteins under HS and provides valuable insights into the cellular mechanisms that maintain protein homeostasis during stress.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ka Kit Chung
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yanglan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhixin Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
43
|
Han Y, Luo F, Liang A, Xu D, Zhang H, Liu T, Qi H. Aquaporin CmPIP2;3 links H2O2 signal and antioxidation to modulate trehalose-induced cold tolerance in melon seedlings. PLANT PHYSIOLOGY 2024; 197:kiae477. [PMID: 39250755 DOI: 10.1093/plphys/kiae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024]
Abstract
Cold stress severely restricts the growth and development of cold-sensitive crops. Trehalose (Tre), known as the "sugar of life", plays key roles in regulating plant cold tolerance by triggering antioxidation. However, the relevant regulatory mechanism remains unclear. Here, we confirmed that Tre triggers apoplastic hydrogen peroxide (H2O2) production and thus plays key roles in improving the cold tolerance of melon (Cucumis melo var. makuwa Makino) seedlings. Moreover, Tre treatment can promote the transport of apoplastic H2O2 to the cytoplasm. This physiological process may depend on aquaporins. Further studies showed that a Tre-responsive plasma membrane intrinsic protein 2;3 (CmPIP2;3) had strong H2O2 transport function and that silencing CmPIP2;3 significantly weakened apoplastic H2O2 transport and reduced the cold tolerance of melon seedlings. Yeast library and protein-DNA interaction technology were then used to screen 2 Tre-responsive transcription factors, abscisic acid-responsive element (ABRE)-binding factor 2 (CmABF2) and ABRE-binding factor 3 (CmABF3), which can bind to the ABRE motif of the CmPIP2;3 promoter and activate its expression. Silencing of CmABF2 and CmABF3 further dramatically increased the ratio of apoplastic H2O2/cytoplasm H2O2 and reduced the cold tolerance of melon seedlings. This study uncovered that Tre treatment induces CmABF2/3 to positively regulate CmPIP2;3 expression. CmPIP2;3 subsequently enhances the cold tolerance of melon seedlings by promoting the transport of apoplastic H2O2 into the cytoplasm for conducting redox signals and stimulating downstream antioxidation.
Collapse
Affiliation(s)
- Yuqing Han
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Adan Liang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Dongdong Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyi Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
44
|
Ali MY, Faruque S, Ahmadi S, Ohkubo T. Genetic Analysis of HSP70 and HSF3 Polymorphisms and Their Associations with the Egg Production Traits of Bangladeshi Hilly Chickens. Animals (Basel) 2024; 14:3552. [PMID: 39765456 PMCID: PMC11672713 DOI: 10.3390/ani14243552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
In warm environments, thermoregulation in poultry is controlled by heat shock protein 70 (HSP70), whose expression is controlled by heat shock factor 3 (HSF3). Although the association between genetic polymorphisms in these genes and thermotolerance as well as reproductive traits has been extensively studied in mammals, the association has not yet been studied in poultry. This study aimed to explore the relationship between single-nucleotide polymorphisms (SNPs) in these genes and the egg production traits of Bangladeshi hilly chickens. Sequencing and allele-specific PCR (AS-PCR) were used to detect new SNPs and perform genotyping. We identified two novel SNPs (G-399A and A-68G) in the 5'-flanking regions of HSP70 that were significantly associated with egg numbers (ENs) at 161-190 days and increased egg weight (EW) at 40 weeks of age. Furthermore, three SNPs in HSP70 (A258G, C276G and C1431A) and one SNP in HSF3 (A-1388G) were associated with EN at different ages. The haplotype and combined genotypic effects of these two genes were found to be associated with age at sexual maturity (ASM), EN, EW, and body weight at ASM. The identified SNPs and their corresponding haplotypes may be useful in selective breeding to enhance the productivity of chickens in warm environments.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh;
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8538, Japan; (S.A.); (T.O.)
- College of Agriculture, Ibaraki University, Ami 300-0393, Ibaraki, Japan
| | - Shakila Faruque
- Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh;
| | - Sadequllah Ahmadi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8538, Japan; (S.A.); (T.O.)
- College of Agriculture, Ibaraki University, Ami 300-0393, Ibaraki, Japan
| | - Takeshi Ohkubo
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8538, Japan; (S.A.); (T.O.)
- College of Agriculture, Ibaraki University, Ami 300-0393, Ibaraki, Japan
| |
Collapse
|
45
|
Yu HX, Cao YJ, Yang YB, Shan JX, Ye WW, Dong NQ, Kan Y, Zhao HY, Lu ZQ, Guo SQ, Lei JJ, Liao B, Lin HX. A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice. MOLECULAR PLANT 2024; 17:1899-1918. [PMID: 39552084 DOI: 10.1016/j.molp.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Heat stress poses a significant threat to grain yield. As an α2 subunit of the 26S proteasome, TT1 has been shown to act as a critical regulator of rice heat tolerance. However, the heat tolerance mechanisms mediated by TT1 remain elusive. In this study, we unveiled that small ubiquitin-like modifier (SUMO)-conjugating enzyme 1 (SCE1), which interacts with TT1 and acts as a downstream component of TT1, is engaged in TT1-mediated 26S proteasome degradation. We showed that SCE1 functions as a negative regulator of heat tolerance in rice, which is associated with its ubiquitination modification. Furthermore, we observed that small heat-shock proteins (sHSPs) such as Hsp24.1 and Hsp40 can undergo SUMOylation mediated by SCE1, leading to increased accumulation of sHSPs in the absence of SCE1. Reducing protein levels of SCE1 significantly enhanced grain yield under high-temperature stress by improving seed-setting rate and rice grain filling capacity. Taken together, these results uncover the critical role of SCE1 in the TT1-mediated heat tolerance pathway by regulating the abundance of sHSPs and SUMOylation, and ultimately modulating rice heat tolerance. These findings underscore the great potential of the TT1-SCE1 module in improving the heat tolerance of crops.
Collapse
Affiliation(s)
- Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Cao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Yang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
46
|
Li H, Yang L, Fang Y, Wang G, Liu T. RtHSFA9s of Rhodomyrtus tomentosa Positively Regulate Thermotolerance by Transcriptionally Activating RtHSFA2s and RtHSPs. Life (Basel) 2024; 14:1591. [PMID: 39768298 PMCID: PMC11676978 DOI: 10.3390/life14121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Heat shock transcription factors (HSFs) are crucial components in heat stress response. However, the contribution of the HSFs governing the inherent thermotolerance in Rhodomyrtus tomentosa has barely been investigated. We here compared the roles of RtHSFA9a, RtHSFA9b, and RtHSFA9c in heat stress tolerance. These three genes are the results of gene duplication events, but there exist vast variations in their amino acid sequences. They are all localized to the nucleus. Arabidopsis thaliana plants with overexpressed RtHSFA9a and RtHSFA9c outperformed the wild-type plants, while the over-accumulation of RtHSFA9b had little impact on plant thermotolerance. By transiently overexpressing RtHSFA9a, RtHSFA9b, and RtHSFA9c in R. tomentosa seedlings, the mRNA abundance of heat shock response genes, including RtHSFA2a, RtHSFA2b, RtHSP17.4, RtHSP21.8, RtHSP26.5, and RtHSP70, were upregulated. Transactivation assays confirmed that there exist regulatory divergences among these three genes, viz., RtHSFA9a has the highest transcription activity in regulating RtHSFA2a, RtHSFA2b, RtHSP21.8, and RtHSP70; RtHSFA9c can transcriptionally activate RtHSFA2b, RtHSP21.8, and RtHSP70; RtHSFA9b makes limited contributions to the accumulation of RtHSFA2b, RtHSP21.8, and RtHSP70. Our results indicate that the RtHSFA9 genes make crucial contributions to the thermal adaption of R. tomentosa by positively regulating the RtHSFA2a, RtHSFA2b, and RtHSP genes, which provides novel insights into the RtHSFA9 subfamily.
Collapse
Affiliation(s)
- Huiguang Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ling Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yujie Fang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Gui Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Zhang Y, Zhao Q, Zhang J, Wei S, Tao F, Yang P. Bio-Inspired Adaptive and Responsive Protein-Based Materials. Chempluschem 2024; 89:e202400309. [PMID: 39116292 DOI: 10.1002/cplu.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In nature, the inherent adaptability and responsiveness of proteins play a crucial role in the survival and reproduction of organisms, enabling them to adjust to ever-changing environments. A comprehensive understanding of protein structure and function is essential for unraveling the complex biological adaptive processes, providing new insights for the design of protein-based materials in advanced fields. Recently, materials derived from proteins with specific properties and functions have been engineered. These protein-based materials, distinguished by their engineered adaptability and responsiveness, range from the nanoscale to the macroscale through meticulous control of protein structure. First, the review introduces the natural adaptability and responsiveness of proteins in organisms, encompassing biological adhesion and the responses of organisms to light, magnetic fields, and temperature. Next, it discusses the achievements in protein-engineered adaptability and adhesion through protein assembly and nanotechnology, emphasizing precise control over protein bioactivity. Finally, the review briefly addresses the application of protein engineering techniques and the self-assembly capabilities of proteins to achieve responsiveness in protein-based materials to humidity, light, magnetism, temperature, and other factors. We hope this review will foster a multidimensional understanding of protein adaptability and responsiveness, thereby advancing the interdisciplinary integration of biomedical science, materials science, and biotechnology.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Qi Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Jingjiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Shuo Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
48
|
Xing YH, Lu H, Zhu X, Deng Y, Xie Y, Luo Q, Yu J. How Rice Responds to Temperature Changes and Defeats Heat Stress. RICE (NEW YORK, N.Y.) 2024; 17:73. [PMID: 39611857 DOI: 10.1186/s12284-024-00748-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
Collapse
Affiliation(s)
- Yuan-Hang Xing
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Hongyu Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinfeng Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yufei Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Qiuhong Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
49
|
Liu YN, Chen YL, Zhang ZJ, Wu FY, Wang HJ, Wang XL, Liu GQ. Phosphatidic acid directly activates mTOR and then regulates SREBP to promote ganoderic acid biosynthesis under heat stress in Ganoderma lingzhi. Commun Biol 2024; 7:1503. [PMID: 39537975 PMCID: PMC11560937 DOI: 10.1038/s42003-024-07225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Ganoderic acids (GAs), a class of secondary metabolites produced by the traditional medicinal mushroom Ganoderma, are a group of triterpenoids with superior biological activities. Heat stress (HS) is one of the most important environmental abiotic stresses. Understanding how organisms sense temperature and integrate this information into their metabolism is important for determining how organisms adapt to climate change and for applying this knowledge to breeding. We previously reported that HS induced GA biosynthesis, and phospholipase D (PLD)-mediated phosphatidic acid (PA) was involved in HS-induced GA biosynthesis. We screened a proteome to identify the PA-binding proteins in G. lingzhi. We reported that PA directly interacted with mTOR and positively correlated with the ability of mTOR to promote GA biosynthesis under HS. The PA-activated mTOR pathway promoted the processing of the transcription factor sterol regulatory element-binding protein (SREBP) under HS, which directly activated GA biosynthesis. Our results suggest that SREBP is an intermediate of the PLD-mediated PA-interacting protein mTOR in HS-induced GA biosynthesis. Our report established the link between PLD-mediated PA production and the activation of mTOR and SREBP in the HS response and HS-induced secondary metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| | - Yu-Lin Chen
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Zi-Juan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Feng-Yuan Wu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Hao-Jin Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| |
Collapse
|
50
|
Wang JH, Feng X, Ashraf MA, Li Y, Kong Y, Cai Q, Xian S, Yin H, Yu NT. Identification of common and specific cold resistance pathways from cold tolerant and non-cold tolerant mango varieties. PeerJ 2024; 12:e18431. [PMID: 39494304 PMCID: PMC11531256 DOI: 10.7717/peerj.18431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Mango has frequently encountered severe climate and environmental challenges such as low temperatures, seriously affecting the sustainable development of the industry. In the study, physiological measurements showed that the activities of superoxide dismutase (SOD) and peroxidase (POD) were found to be higher in Jinhuang (JH) mango plants than those of Tainong (TN) mango plants under cold stress, indicating cold tolerant (JH) and non-cold tolerant (TN) mango varieties were firstly determined. Subsequently, transcriptomics showed 8,337 and 7,996 differentially expressed genes (DEGs) were respectively identified in JH and TN mango varieties treated at 4 °C for 36 h, while more DEGs (10,683 and 10,723) were screened when treated at 4 °C for 72 h. Quantitative real-time PCR (qRT-PCR) of the selected DEGs confirmed their transcriptional levels displayed agreement to the transcriptome data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed two primary cold resistant regulation pathways, photosynthesis-antenna proteins pathway and photosynthesis pathway, were both significant annotated in the two mango varieties, indicating share the common regulation mechanism response to cold stress. However, five specific cold resistant pathways, such as amino acid and carbohydrate metabolisms, were identified in JH mango variety with cold stress for longer duration, indicating the specific regulation pathways in the cold tolerant mango varieties. Furthermore, 43 ethylene-responsive transcription factors (ERFs) were significantly annotated in JH mango after cold-treated for 72 h comparing with the control group, and three of them ERF109-1, ERF017-1 and ERF017-2 were highly expressed, which may play important regulatory roles in plant cold resistance. These results provided insights into the primary and specific molecular mechanisms of different mango varieties resistance to chill.
Collapse
Affiliation(s)
- Jian-hua Wang
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyan Feng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Muhammad Aleem Ashraf
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Department of Biosciences and Technology, Emerson University, Multan, Pakistan
| | - Yufeng Li
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise, China
| | - Yu Kong
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise, China
| | - Qiuliang Cai
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise, China
| | - Shuli Xian
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huixiang Yin
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Nai-tong Yu
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|