1
|
Hadi F, Sardar H, Alam W, Aschner M, Alzahrani FM, Halawani IF, Xiao J, Khan H. Vigna mungo (Linn.) Hepper: ethnobotanical, pharmacological, phytochemical, and nutritious profile. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2025; 24:1119-1142. [PMID: 40371400 PMCID: PMC12077609 DOI: 10.1007/s11101-024-09972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2025]
Abstract
Vigna mungo is a member of the family Fabaceae and important medicinal plant that is widely consumed as food in South Asia. It is commonly referred as Black Gram, Urad daal and Maash. It is traditionally used for strangulated bowel syndrome, dyspepsia, constipation, neuropathy, hepatopathy, gastritis, diarrhea, rheumatism, diabetes, etc. This review article provides up-to-date information on V. mungo, including its reported ethnopharmacology, pharmacological activities, phytochemistry and nutritious composition. Articles were screened from databases such as Web of Science, SpringerLink, Google Scholar, PubMed, Medline Plus, Elsevier, and Science Direct. V. mungo contains phytochemical including alkaloids, flavonoids, saponins, steroids, tannins, phenolic compounds, fatty acids, carbohydrates, amino acids, vitamins, and carotenoids. These compounds exert pharmacological activities both in-vitro and in-vivo including antioxidant, antidiabetic, anti-hyperlipidemic, immunostimulatory, hepatoprotective, nephroprotective, antibacterial, anthelmintic, thrombolytic, anti-inflammatory, analgesic, ulcerogenic, anticonvulsant, nootropic, anti-osteoarthritic, aphrodisiac, spermatogenic and anticancer activities. Currently, scientific data in supports of the biological activities are scarce. We suggest more in-depth to determine its clinical efficacy.
Collapse
Affiliation(s)
- Fazal Hadi
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan
| | - Haseeba Sardar
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein, College of Medicine, Bronx, NY 10463, USA
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O., Box 11099, 21944 Taif, Saudi Arabia
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O., Box 11099, 21944 Taif, Saudi Arabia
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Vigo, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan
| |
Collapse
|
2
|
Bharti S. Harnessing the potential of bimetallic nanoparticles: Exploring a novel approach to address antimicrobial resistance. World J Microbiol Biotechnol 2024; 40:89. [PMID: 38337082 DOI: 10.1007/s11274-024-03923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The growing global importance of antimicrobial resistance (AMR) in public health has prompted the creation of innovative approaches to combating the issue. In this study, the promising potential of bimetallic nanoparticles (BMNPs) was investigated as a novel weapon against AMR. This research begins by elaborating on the gravity of the AMR problem, outlining its scope in terms of the effects on healthcare systems, and stressing the urgent need for novel solutions. Because of their unusual features and wide range of potential uses, bimetallic nanoparticles (BMNPs), which are tiny particles consisting of two different metal elements, have attracted a lot of interest in numerous fields. This review article provides a comprehensive analysis of the composition, structural characteristics, and several synthesis processes employed in the production of BMNPs. Additionally, it delves into the unique properties and synergistic effects that set BMNPs apart from other materials. This review also focuses on the various antimicrobial activities shown by bimetallic nanoparticles, such as the rupturing of microbial cell membranes, the production of reactive oxygen species (ROS), and the regulation of biofilm formation. An extensive review of in vitro studies confirms the remarkable antibacterial activity of BMNPs against a variety of pathogens and sheds light on the dose-response relationship. The efficacy and safety of BMNPs in practical applications are assessed in this study. It also delves into the synergistic effects of BMNPs with traditional antimicrobial drugs and their ability to overcome multidrug resistance, providing mechanistic insight into these phenomena. Wound healing, infection prevention, and antimicrobial coatings on medical equipment are only some of the clinical applications of BMNPs that are examined, along with the difficulties and possible rewards of clinical translation. This review covers nanoparticle-based antibacterial regulation and emerging uses. The essay concludes with prospects for hybrid systems, site-specific targeting, and nanoparticle-mediated gene and drug delivery. In summary, bimetallic nanoparticles have surfaced as a potential solution, offering the public a more promising and healthier future.
Collapse
Affiliation(s)
- Sharda Bharti
- Department of Biotechnology, National Institute of Technology (NIT) Raipur, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
3
|
Giray G, Gonca S, Özdemir S, Isik Z, Yılmaz E, Soylak M, Dizge N. Novel extracellular synthesized silver nanoparticles using thermophilic Anoxybacillus flavithermus and Geobacillus stearothermophilus and their evaluation as nanodrugs. Prep Biochem Biotechnol 2023; 54:294-306. [PMID: 37452678 DOI: 10.1080/10826068.2023.2230496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In this investigation, two new thermophilic bacteria were isolated. The new isolates were characterized by 16S rRNA, biochemical, morphological, and physiological analyzes and the isolates were identified as Geobacillus stearothermophilus strain Gecek20 and thermophilic Anoxybacillus flavithermus strain Gecek19. Various biological activities of extracellular Ag-NPs synthesized from thermophilic G. stearothermophilus strain Gecek20 and thermophilic A. flavithermus strain Gecek19 were evaluated. The produced NPs were analyzed by SEM, SEM-EDX, and XRD analyses. The antioxidant abilities of new synthesized Ag-NPs from thermophilic G. stearothermophilus strain Gecek20 (T1-Ag-NPs) and new synthesized Ag-NPs from thermophilic A. flavithermus strain Gecek19 (T2-Ag-NPs) were studied by DPPH inhibition and metal chelating ability. The highest DPPH and metal chelating abilities of T1-Ag-NPs and T2-Ag-NPs at 200 mg/L concentration were 93.17 and 90.85%, and 75.80 and 83.64%, respectively. The extracellular green synthesized T1-Ag-NPs and T2-AgN-Ps showed DNA nuclease activity at all tested concentrations. Moreover, both new synthesized Ag-NPs had antimicrobial activity against the strains studied, especially on Gram positive bacteria. T1-Ag-NPs and T2-AgNPs also showed powerful Escherichia coli growth inhibition. The highest biofilm inhibition percentages of T1-Ag-NPs and T2-Ag-NPs against Pseudomonas aeruginosa and Staphylococcus aureus were 100.0%, respectively, at 500 mg/L.
Collapse
Affiliation(s)
- Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| | - Erkan Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Nanotechnology Application and Research Center, ERNAM Erciyes University, Kayseri, Turkey
- Technology Research&Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research&Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Maduraimuthu V, Ranishree JK, Gopalakrishnan RM, Ayyadurai B, Raja R, Heese K. Antioxidant Activities of Photoinduced Phycogenic Silver Nanoparticles and Their Potential Applications. Antioxidants (Basel) 2023; 12:1298. [PMID: 37372028 DOI: 10.3390/antiox12061298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
While various methods exist for synthesizing silver nanoparticles (AgNPs), green synthesis has emerged as a promising approach due to its affordability, sustainability, and suitability for biomedical purposes. However, green synthesis is time-consuming, necessitating the development of efficient and cost-effective techniques to minimize reaction time. Consequently, researchers have turned their attention to photo-driven processes. In this study, we present the photoinduced bioreduction of silver nitrate (AgNO3) to AgNPs using an aqueous extract of Ulva lactuca, an edible green seaweed. The phytochemicals found in the seaweed functioned as both reducing and capping agents, while light served as a catalyst for biosynthesis. We explored the effects of different light intensities and wavelengths, the initial pH of the reaction mixture, and the exposure time on the biosynthesis of AgNPs. Confirmation of AgNP formation was achieved through the observation of a surface plasmon resonance band at 428 nm using an ultraviolet-visible (UV-vis) spectrophotometer. Fourier transform infrared spectroscopy (FTIR) revealed the presence of algae-derived phytochemicals bound to the outer surface of the synthesized AgNPs. Additionally, high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) images demonstrated that the NPs possessed a nearly spherical shape, ranging in size from 5 nm to 40 nm. The crystalline nature of the NPs was confirmed by selected area electron diffraction (SAED) and X-ray diffraction (XRD), with Bragg's diffraction pattern revealing peaks at 2θ = 38°, 44°, 64°, and 77°, corresponding to the planes of silver 111, 200, 220, and 311 in the face-centered cubic crystal lattice of metallic silver. Energy-dispersive X-ray spectroscopy (EDX) results exhibited a prominent peak at 3 keV, indicating an Ag elemental configuration. The highly negative zeta potential values provided further confirmation of the stability of AgNPs. Moreover, the reduction kinetics observed via UV-vis spectrophotometry demonstrated superior photocatalytic activity in the degradation of hazardous pollutant dyes, such as rhodamine B, methylene orange, Congo red, acridine orange, and Coomassie brilliant blue G-250. Consequently, our biosynthesized AgNPs hold great potential for various biomedical redox reaction applications.
Collapse
Affiliation(s)
- Vijayakumar Maduraimuthu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | | | - Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Brabakaran Ayyadurai
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Rathinam Raja
- Research and Development Wing, Bharath Institute of Higher Education and Research (BIHER), Sree Balaji Medical College and Hospital (SBMCH), Chennai 600044, Tamil Nadu, India
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
5
|
Nanobiotechnological approaches in anticoagulant therapy: The role of bioengineered silver and gold nanomaterials. Talanta 2023; 256:124279. [PMID: 36709710 DOI: 10.1016/j.talanta.2023.124279] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Nanotechnology is a novel area that has exhibited various remarkable applications, mostly in medicine and industry, due to the unique properties coming with the nanoscale size. One of the notable medical uses of nanomaterials (NMs) that attracted enormous attention recently is their significant anticoagulant activity, preventing or reducing coagulation of blood, decreasing the risk of strokes, heart attacks, and other serious conditions. Despite successful in vitro experiments, in vivo analyses are yet to be confirmed and further research is required to fully prove the safety and efficacy of nanoparticles (NPs) and to introduce them as valid alternatives to conventional ineffective anticoagulants with various shortcomings and side-effects. NMs can be synthesized through two main routes, i.e., the bottom-up route as a more preferable method, and the top-down route. In numerous studies, biological fabrication of NPs, especially metal NPs, is highly suggested given its eco-friendly approach, in which different resources can be employed such as plants, fungi, bacteria, and algae. This review discusses the green synthesis and characterization of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as two of the most useful metal NPs, and also their alloys in different studies focussing on their anticoagulant potential. Challenges and alternative approaches to the use of these NPs as anticoagulants have also been highlighted.
Collapse
|
6
|
Mokhtar FA, Selim NM, Elhawary SS, Abd El Hadi SR, Hetta MH, Albalawi MA, Shati AA, Alfaifi MY, Elbehairi SEI, Fahmy LI, Ibrahim RM. Green Biosynthesis of Silver Nanoparticles Using Annona glabra and Annona squamosa Extracts with Antimicrobial, Anticancer, Apoptosis Potentials, Assisted by In Silico Modeling, and Metabolic Profiling. Pharmaceuticals (Basel) 2022; 15:ph15111354. [PMID: 36355526 PMCID: PMC9692630 DOI: 10.3390/ph15111354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Annona glabra L. (AngTE) and Annona squamosa L. (AnsTE) fruits have been widely used in cancer treatment. Accordingly, their extracts were used to synthesize silver nanoparticles via a biogenic route (Ang-AgNPs) and (Ans-AgNPs), respectively. Chemical profiling was established using UPLC-QTOF-MS/MS. All species were tested for anticancer activity against human cervical cancer cells (HeLa), prostate adenocarcinoma metastatic (PC3), and ovary adenocarcinoma (SKOV3) using sulphorhodamine B assay. Apoptosis was determined using Annexin flow cytometry along with cell cycle analysis and supported by a molecular docking. The antibacterial and synergistic effect when combined with gentamicin were evaluated. A total of 114 compounds were tentatively identified, mainly acetogenins and ent-kaurane diterpenes. AnsTE and Ans-AgNPs had the most potent cytotoxicity on HeLa and SKOV3 cells, inducing a significant apoptotic effect against all tumor cells. The AnsTE and Ans-AgNPs significantly arrested PC3, SKOV3, and HeLa cells in the S phase. The nanoparticles demonstrated greater antibacterial and antifungal activities, as well as a synergistic effect with gentamicin against P. aeruginosa and E. coli. Finally, a molecular docking was attempted to investigate the binding mode of the identified compounds in Bcl-2 proteins’ receptor, implying that the fruits and their nanoparticles are excellent candidates for treating skin infections in patients with ovarian or prostatic cancer.
Collapse
Affiliation(s)
- Fatma A. Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, Al Salam University, Kafr Alzayat, Algharbia 31611, Egypt
- Correspondence: (F.A.M.); (N.M.S.)
| | - Nabil M. Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo 11562, Egypt
- Correspondence: (F.A.M.); (N.M.S.)
| | - Seham S. Elhawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo 11562, Egypt
| | - Soha R. Abd El Hadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11562, Egypt
| | - Mona H. Hetta
- Department of Pharmacognosy, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Marzough A. Albalawi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Alfra’a 62223, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Alfra’a 62223, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Alfra’a 62223, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Giza 12654, Egypt
| | - Lamiaa I. Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12573, Egypt
| | - Rana M. Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo 11562, Egypt
| |
Collapse
|
7
|
Abdelkhalek A, El-Gendi H, Alotibi FO, Al-Askar AA, Elbeaino T, Behiry SI, Abd-Elsalam KA, Moawad H. Ocimum basilicum-Mediated Synthesis of Silver Nanoparticles Induces Innate Immune Responses against Cucumber Mosaic Virus in Squash. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202707. [PMID: 36297731 PMCID: PMC9609463 DOI: 10.3390/plants11202707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 06/12/2023]
Abstract
Cucumber mosaic virus (CMV) causes a significant threat to crop output sustainability and human nutrition worldwide, since it is one of the most prevalent plant viruses infecting most kinds of plants. Nowadays, different types of nanomaterials are applied as a control agent against different phytopathogens. However, their effects against viral infections are still limited. In the current study, the antiviral activities of the biosynthesized silver nanoparticles (Ag-NPs) mediated by aqueous extract of Ocimum basilicum against cucumber mosaic virus in squash (Cucurbita pepo L.) were investigated. The prepared Ag-NPs were characterized using scanning electron microscopy (SEM), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and zeta potential distribution techniques. DLS, SEM, and TEM analyses showed that the Ag-NPs were spherical, with sizes ranging from 26.3 to 83 nm with an average particle size of about 32.6 nm. FTIR identified different functional groups responsible for the capping and stability of Ag-NPs. The zeta potential was reported as being -11.1 mV. Under greenhouse conditions, foliar sprays of Ag-NPs (100 µg/mL) promoted growth, delayed disease symptom development, and significantly reduced CMV accumulation levels of treated plants compared to non-treated plants. Treatment with Ag-NPs 24 h before or after CMV infection reduced CMV accumulation levels by 92% and 86%, respectively. There was also a significant increase in total soluble carbohydrates, free radical scavenging activity, antioxidant enzymes (PPO, SOD, and POX), as well as total phenolic and flavonoid content. Furthermore, systemic resistance was induced by significantly increasing the expression levels of pathogenesis-related genes (PR-1 and PR-5) and polyphenolic pathway genes (HCT and CHI). These findings suggest that Ag-NPs produced by O. basilicum could be used as an elicitor agent and as a control agent in the induction and management of plant viral infections.
Collapse
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt
| | - Fatimah O. Alotibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari (CIHEAM-IAMB), Via Ceglie 9, Valenzano, 70010 Bari, Italy
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Centre, Giza 12619, Egypt
| | - Hassan Moawad
- Agriculture Microbiology Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
8
|
Shahabadi N, Zendehcheshm S, Khademi F. Exploring the ct-DNA and plasmid DNA binding affinity of the biogenic synthesized Chloroxine-conjugated silver nanoflowers: Spectroscopic and gel electrophoresis methods. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
On Recent Developments in Biosynthesis and Application of Au and Ag Nanoparticles from Biological Systems. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/5560244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. The researcher made continuous efforts for the environmental-friendly and economical methods, such as biogenic methods known as green synthesis. There are many strategies for separating and applying gold (Au) and silver (Ag) nanoparticles, of which biological routes have emerged as efficient, low-cost, and environmentally friendly techniques. This review focuses on recent developments of green synthesized AuNPs and AgNPs using biogenic sources such as algae, animals, plants, microbes, bacteria, fungi, and so on. Hence, it discusses their numerous biomedical applications and separating Au and Ag nanoparticles from plants, bacteria, fungi, and algae.
Collapse
|
10
|
Majeed M, Hakeem KR, Rehman RU. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. CHEMOSPHERE 2022; 288:132527. [PMID: 34637861 DOI: 10.1016/j.chemosphere.2021.132527] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The phytocomponent conjugated silver nanoparticles (AgNPs) have been extensively explored for various therapeutic applications such as antimicrobial, antioxidant, anticancer, anti-inflammatory, antidiabetic and anticoagulant effects. The bio-conjugation of Ag-based nanomaterial with plant extracts reduces their toxicity to biological systems and enhances their therapeutic effectiveness. The diversity of phytochemicals or capping agents provided by the plant extracts and the small size and large surface area of AgNPs permits maximum adsorption of these capping agents onto their surfaces that further promote the therapeutic performance of phytoconjugated AgNPs in various biomedical applications. The mechanistic action involved in antimicrobial and anticancer functions of AgNPs is mainly dependent on the induction of reactive oxygen species (ROS) resulting in cellular apoptosis and necrosis. This review summarizes the recent studies of various plant extract assisted synthesis of AgNPs, potential biomedical applications with the possible mechanism of action and major shortcomings affecting their therapeutic efficacy.
Collapse
Affiliation(s)
- Mahak Majeed
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India.
| |
Collapse
|
11
|
Donga S, Chanda S. Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system). ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:292-302. [PMID: 33733973 DOI: 10.1080/21691401.2021.1899193] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
A novel approach for the utilisation of fruit waste is attempted in the present investigation. Mangifera indica seed aqueous extract was utilised for green synthesis of silver nanoparticles (AgNPs). The phytoconstituents in the seed acted as reducing and stabilising agent for AgNP formation. UV-Vis, Zeta potential, FT-IR, XRD, TEM, SAED, EDX analysis were used to characterise the green synthesised AgNPs. UV-vis spectra showed characteristic spectra at 450 nm; XRD and SAED confirmed the crystalline nature while TEM revealed the shape to be round and average size was 26.85 nm. FT-IR revealed functional groups like alcohol or phenols, carboxylic acids, ketones, amines, aromatic amines, aliphatic amines, alkyl halides and alkynes which were responsible for AgNP formation. The nanoparticles showed more antibacterial activity than antifungal activity and antibacterial activity towards Gram-negative bacteria was more than Gram-positive bacteria. Dose dependent antioxidant activity (DPPH, SO and ABTS) and dose dependent cytotoxic effect against HeLa, MCF-7 and normal fibroblast cell lines was envisaged. The green synthesised AgNPs exhibited three different bioactivities (3-in-1 system) i.e. dose dependent antimicrobial, antioxidant and cytotoxic activity. Fruit waste can be successfully utilised for silver nanoparticles formation which can be therapeutically useful and effective.[Figure: see text]HighlightsSilver nanoparticles were synthesised from M. indica fruit waste i.e. seedCharacterisation by spectroscopic techniques: UV-Vis, Zeta, FTIR, XRD, SAED, EDX and TEM analysis.Silver nanoparticles were 26.85 nm in size and round in shapeAntimicrobial activity against 14 microorganismsAntioxidant activity in terms of DPPH, SO and ABTSCytotoxic activity against HeLa, MCF-7 and Fibroblast normal cell lines.
Collapse
Affiliation(s)
- Savan Donga
- Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, India
| | - Sumitra Chanda
- Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, India
| |
Collapse
|
12
|
Shaikh WA, Chakraborty S, Owens G, Islam RU. A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): the wonder particle of the past decade. APPLIED NANOSCIENCE 2021; 11:2625-2660. [PMID: 34745812 PMCID: PMC8556825 DOI: 10.1007/s13204-021-02135-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022]
Abstract
Silver nanoparticle (AgNP) has been one of the most commonly used nanoparticles since the past decade for a wide range of applications, including environmental, agricultural, and medical fields, due to their unique physicochemical properties and ease of synthesis. Though chemical and physical methods of fabricating AgNPs have been quite popular, they posed various environmental problems. As a result, the bioinspired route of AgNP synthesis emerged as the preferred pathway for synthesis. This review focuses extensively on the biosynthesis of AgNP-mediated through different plant species worldwide in the past 10 years. The most popularly utilized application areas have been highlighted with their in-depth mechanistic approach in this review, along with the discussion on the different phytochemicals playing an important role in the bio-reduction of silver ions. In addition to this, the environmental factors which govern their synthesis and stability have been reviewed. The paper systematically analyses the trend of research on AgNP biosynthesis throughout the world through bibliometric analysis. Apart from this, the feasibility analysis of the plant-mediated synthesis of nanoparticles and their applications have been intrigued considering the perspectives of engineering, economic, and environmental limitations. Thus, the review is not only a comprehensive summary of the achievements and current status of plant-mediated biosynthesis but also provides insight into emerging future research frontier. Supplementary Information The online version contains supplementary material available at 10.1007/s13204-021-02135-5.
Collapse
Affiliation(s)
- Wasim Akram Shaikh
- Environmental Engineering Laboratory, Department of Civil and Environmental Engineering, Birla Institute of Technology, Ranchi, Mesra, Jharkhand 835215 India
| | - Sukalyan Chakraborty
- Environmental Engineering Laboratory, Department of Civil and Environmental Engineering, Birla Institute of Technology, Ranchi, Mesra, Jharkhand 835215 India
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, 5095 Australia
| | - Rafique Ul Islam
- Department of Chemistry, School of Physical and Material Sciences, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar 845401 India
| |
Collapse
|
13
|
Razavi R, Amiri M, Alshamsi HA, Eslaminejad T, Salavati-Niasari M. Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111918. [PMID: 33433370 DOI: 10.1016/j.jenvman.2020.111918] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, and surface plasmon resonance, silver nanoparticles are used in a wide variety of products, including consumer goods, healthcare, catalysts, electronics, and analytical equipment. As the production and applications of silver nanoparticles containing products increase daily, the environmental pollution due to silver nanoparticles release is increasing and affecting especially the aqueous ecosystem. Silver nanoparticles can kill useful bacteria in soil and water, and bioaccumulate in living organisms even at low concentrations from 10-2 to 10 μg/mL silver can show antibacterial effect. On the other hand, the maximum silver discharge limit into freshwater is 0.1 μg/L and 3.2 μg/L for Australia and the USA, respectively. To reduce its toxic consequences and meet the regulatory guidelines, it is crucial to remove silver nanoparticles from wastewater before it is discharged into other water streams. Several technologies are available to remove silver nanoparticles, but the adsorption process using low-cost adsorbents is a promising alternative to mitigate silver nanoparticle pollution in the bulk stage. As one of the low-cost adsorbents, biochar produced from the biomass waste could be a suitable adsorbent. This review focuses on collating the latest evidence on silver nanoparticle production, applications, environmental consequences, and cost-effective technological approaches for silver removal from wastewater.
Collapse
Affiliation(s)
- Md Anwarul Islam
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
15
|
Turunc E, Kahraman O, Binzet R. Green synthesis of silver nanoparticles using pollen extract: Characterization, assessment of their electrochemical and antioxidant activities. Anal Biochem 2021; 621:114123. [PMID: 33549546 DOI: 10.1016/j.ab.2021.114123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/19/2022]
Abstract
In the present study, a simple, cheaply and environmental friendly method was evaluated for the synthesis of silver nanoparticle via Cupressus sempervirens L. (CSPE) pollen extract as reducing and stabilizing agent. Various parameters such as volume of CSPE, temperature and reaction time on AgNPs formation were investigated spectrophotometrically to optimize reaction conditions. The electrochemical behavior of the biosynthesized AgNPs were investigated by cyclic voltammetry and square wave voltammetry techniques. An electrosensor based on AgNPs modified glassy carbon electrode were constructed and tested on electro reduction of hydrogen peroxide in phosphate buffer medium. The prepared electrosensor could detect the H2O2 in the range of 5.0 μM - 2.5 mM with a detection limit of 0.23 μM. In addition, the antioxidant activity of biosynthesized AgNPs were evaluated against DPPH free radical. Results obtained from the antioxidant study suggested that CSPE mediated AgNPs exhibit a good antioxidant effect.
Collapse
Affiliation(s)
- Ersan Turunc
- Advanced Technology Applied and Research Center, Mersin University, Mersin, 33343, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey.
| | - Oskay Kahraman
- Department of Biology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey.
| | - Riza Binzet
- Department of Biology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
16
|
An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Krishnan BR, Ramesh M, Selvakumar M, Karthick S, Sasikumar A, Geerthi DV, Senthilkumar N. A Facile Green Approach of Cone-like ZnO NSs Synthesized Via Jatropha gossypifolia Leaves Extract for Photocatalytic and Biological Activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01576-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Soneya S, Saritha KV. Biofabrication of silver nanoparticles using leaf extract of Rhynchosia beddomei Baker: spectral characterization and their biological activities. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Reddy NV, Satyanarayana BM, Sivasankar S, Pragathi D, Subbaiah KV, Vijaya T. Eco-friendly synthesis of silver nanoparticles using leaf extract of Flemingia wightiana: spectral characterization, antioxidant and anticancer activity studies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2702-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
20
|
Syafiuddin A, Fulazzaky MA, Salmiati S, Roestamy M, Fulazzaky M, Sumeru K, Yusop Z. Sticky silver nanoparticles and surface coatings of different textile fabrics stabilised by Muntingia calabura leaf extract. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2534-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
21
|
Green Synthesis of Fe3O4 Nanoparticles and Its Application in Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal for Drug Delivery Systems. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01500-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Vinayagam R, Selvaraj R, Arivalagan P, Varadavenkatesan T. Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111760. [DOI: 10.1016/j.jphotobiol.2019.111760] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/23/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023]
|
23
|
Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110462. [PMID: 31923986 DOI: 10.1016/j.msec.2019.110462] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/10/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022]
Abstract
Breast cancer is a serious public health problem that causes thousands of deaths annually. Chemotherapy continues to play a central role in the management of breast cancer but is associated with extreme off-target toxicity. Therefore, treatments that directly target the tumor and display reduced susceptibility to resistance could improve the outcome and quality of life for patients suffering from this disease. Photodynamic therapy is a targeted treatment based on the use of light to activate a photosensitizer (PS) that then interacts with molecular oxygen and other biochemical substrates to generate cytotoxic levels of Reactive Oxygen Species. Currently approved PS also tends to have poor aqueous solubility that can cause problems when delivered intravenously. In order to circumvent this limitation, in this manuscript, we evaluate the potential of a phthalocyanine-loaded nanostructured lipid carrier (NLC) functionalized with folic acid (FA). To prepare the FA labelled NLC, the polymer PF127 was first esterified with FA and emulsified with an oil phase containing polyoxyethylene 40 stearate, capric/caprylic acid triglycerides, ethoxylated hydrogenated castor oil 40 and the PS zinc phthalocyanine. The resulting PS loaded FA-NLC had a hydrodynamic diameter of 180 nm and were stable in suspension for >90 days. Interestingly, the amount of singlet oxygen generated upon light activation for the PS loaded FA-NLC was substantially higher than the free PS, yet at a lower PS concentration. The PS was released from the NLC in a sustained manner with 4.13 ± 0.58% and 27.7 ± 3.16% after 30 min and 7 days, respectively. Finally, cytotoxicity assays showed that NLC in the concentrations of 09.1 μM of PS present non-toxic with >80 ± 6.8% viable and after 90 s of the light-exposed the results show a statistically significant decrease in cell viability (57 ± 4%). The results obtained allow us to conclude that the functionalized NLC incorporated with PS associated with the PDT technique have characteristics that make them potential candidates for the alternative treatment of breast cancer.
Collapse
|
24
|
Hamedi S, Shojaosadati SA. Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: Evaluation of their biological and catalytic activities. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Biogenic synthesis of ferric oxide nanoparticles using the leaf extract of Peltophorum pterocarpum and their catalytic dye degradation potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101251] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Yadi M, Mostafavi E, Saleh B, Davaran S, Aliyeva I, Khalilov R, Nikzamir M, Nikzamir N, Akbarzadeh A, Panahi Y, Milani M. Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S336-S343. [DOI: 10.1080/21691401.2018.1492931] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Morteza Yadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Bahram Saleh
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Joint Ukrain-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine and Baku, Azerbaijan
| | - Immi Aliyeva
- Joint Ukrain-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine and Baku, Azerbaijan
- Department of Environmental Engineering, Azerbaijan Technological University, Ganja, Azerbaijan
| | - Rovshan Khalilov
- Joint Ukrain-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine and Baku, Azerbaijan
- Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
| | - Mohammad Nikzamir
- Department of industrial Engineering, Islamic Azad University, Tehran, Iran
| | - Nasrin Nikzamir
- Department of Chemistry, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Joint Ukrain-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine and Baku, Azerbaijan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, School of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
27
|
Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Anwaar Asghar HM, Bhattacharjee S. Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.095] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Sangaonkar GM, Pawar KD. Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids Surf B Biointerfaces 2018; 164:210-217. [DOI: 10.1016/j.colsurfb.2018.01.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
29
|
Arumai Selvan D, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:243-252. [PMID: 29476965 DOI: 10.1016/j.jphotobiol.2018.02.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV-Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H2O2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts.
Collapse
Affiliation(s)
- D Arumai Selvan
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India
| | - D Mahendiran
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India
| | - R Senthil Kumar
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode 637 205, India
| | - A Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India.
| |
Collapse
|