1
|
Park J, Brown C, Hess C, Armstrong M, Rocke DM, Galvez F, Whitehead A. Multiple Stressors in the Anthropocene: Urban Evolutionary History Modifies Sensitivity to the Toxic Effects of Crude Oil Exposure in Killifish. Evol Appl 2025; 18:e70112. [PMID: 40385352 PMCID: PMC12081835 DOI: 10.1111/eva.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB-resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| | - Charles Brown
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Chelsea Hess
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Madison Armstrong
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| | - David M. Rocke
- Department of Biomedical EngineeringUniversity of California DavisDavisCaliforniaUSA
| | - Fernando Galvez
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Andrew Whitehead
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
2
|
Park J, Brown C, Hess C, Armstrong M, Galvez F, Whitehead A. Multiple stressors in the Anthropocene: Urban evolutionary history modifies sensitivity to the toxic effects of crude oil exposure in killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640141. [PMID: 40060406 PMCID: PMC11888386 DOI: 10.1101/2025.02.25.640141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Charles Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chelsea Hess
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Madison Armstrong
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Araújo C, Carneiro P, Fidelis L, Nascimento B, Antunes M, Viana D, Oliveira P, Torres R, Hazin F, Adam M. Comparative genomic damage among three shark species with different habits: Sublethal impacts of human origin in a protected island environment in the South Atlantic. MARINE POLLUTION BULLETIN 2023; 191:114924. [PMID: 37058835 DOI: 10.1016/j.marpolbul.2023.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Elasmobranchs can bioaccumulate and biomagnify pollutants. However, few studies are directed to the effects of pollutants on the health of these animals, and in most cases, are limited to the analysis of biochemical markers. Thus, the incidence of genomic damage among shark species inhabiting a protected ocean island in the South Atlantic was investigated in association with the analysis of pollutants in seawater sample. High levels of genomic damage were identified, especially in Negaprion brevirostris and Galeocerdo cuvier, in addition to interspecific variations that may be related to characteristics such as animal size, metabolism and habits. High concentrations of Surfactants were observed in seawater sample, in addition to low concentrations of Cadmium, Lead, Copper, Chromium, Zinc, Manganese, and Mercury. The results evidenced the potential of shark species as a bioindicator of environmental quality and allowed assessing the anthropic impact on the archipelago, which currently drives its economy through tourism.
Collapse
Affiliation(s)
- Camila Araújo
- Evolutionary and Environmental Genomics Laboratory, Department of Zoology, Center for Biological Sciences, Federal University of Pernambuco, Avenida Professor Moraes Rego, Cidade Universitária, 50.760-420 Recife, Pernambuco, Brazil; Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030 Recife, Pernambuco, Brazil.
| | - Pedro Carneiro
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030 Recife, Pernambuco, Brazil
| | - Leonardo Fidelis
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030 Recife, Pernambuco, Brazil
| | - Bruna Nascimento
- Evolutionary and Environmental Genomics Laboratory, Department of Zoology, Center for Biological Sciences, Federal University of Pernambuco, Avenida Professor Moraes Rego, Cidade Universitária, 50.760-420 Recife, Pernambuco, Brazil; Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030 Recife, Pernambuco, Brazil
| | - Marina Antunes
- Evolutionary and Environmental Genomics Laboratory, Department of Zoology, Center for Biological Sciences, Federal University of Pernambuco, Avenida Professor Moraes Rego, Cidade Universitária, 50.760-420 Recife, Pernambuco, Brazil; Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030 Recife, Pernambuco, Brazil
| | - Danielle Viana
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030 Recife, Pernambuco, Brazil
| | - Paulo Oliveira
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030 Recife, Pernambuco, Brazil
| | - Rodrigo Torres
- Evolutionary and Environmental Genomics Laboratory, Department of Zoology, Center for Biological Sciences, Federal University of Pernambuco, Avenida Professor Moraes Rego, Cidade Universitária, 50.760-420 Recife, Pernambuco, Brazil.
| | - Fábio Hazin
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030 Recife, Pernambuco, Brazil
| | - Mônica Adam
- Evolutionary and Environmental Genomics Laboratory, Department of Zoology, Center for Biological Sciences, Federal University of Pernambuco, Avenida Professor Moraes Rego, Cidade Universitária, 50.760-420 Recife, Pernambuco, Brazil
| |
Collapse
|
4
|
Qian Y, Yuan K, Hong X, Xu Z, Liang H. Contamination characteristics of alkyl polycyclic aromatic hydrocarbons in dust and topsoil collected from Huaibei Coalfield, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2935-2948. [PMID: 36121570 DOI: 10.1007/s10653-022-01365-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Alkyl polycyclic aromatic hydrocarbons (APAHs) are more toxic and persistent than their parent compounds. In this study, the concentrations of polycyclic aromatic compounds (PACs) in dust, topsoil and coal gangue from Huaibei Coal mine, China were analyzed by gas chromatography-mass spectrometry, confirming APAHs were the dominant pollutants. The mean concentrations of APAHs were substantially higher than those of 16 PAHs in both dust and topsoil. The mean concentration of APAHs in dust was 9197 µg kg-1, accounting for 80% of the total mean concentration of PACs. The mean concentration of APAHs in topsoil was 2835 µg kg-1, accounting for 77% of the mean concentration of PACs. Alkyl naphthalenes and alkyl phenanthrenes were the primary pollutants in APAHs. Their mean concentrations in dust and topsoil were 7782 µg kg-1 and 2333 µg kg-1, respectively. This accounted for 85% and 82% of the concentration of APAHs, respectively. Additionally, low-molecular-weight APAHs dominated the PACs of the coal mine, exhibiting petrogenic characteristics; distribution of C1-C4 NAP and C1-C4 PHE exhibited "bell shape" pattern indicated as petrogenic source. Source identification indicated that the PACs were mainly derived from petrogenic sources and vehicle emissions, followed by biomass and coal burning. Fingerprinting information of dust and topsoil were consistent with coal gangue, indicating that PACs are most likely derived from coal gangue. Coalfields comparable to our study area are widely distributed in China. Therefore, investigating PAC pollution derived from coal gangue warrants further attention.
Collapse
Affiliation(s)
- Yahui Qian
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Keyue Yuan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Xiuping Hong
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Zhenpeng Xu
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Handong Liang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, China.
- College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
| |
Collapse
|
5
|
Baines C, Meitern R, Kreitsberg R, Fort J, Scharsack JP, Nogueira P, Giraudeau M, Sepp T. Correlations between oxidative DNA damage and formation of hepatic tumours in two flatfish species from contaminated environments. Biol Lett 2023; 19:20220583. [PMID: 37254521 PMCID: PMC10230182 DOI: 10.1098/rsbl.2022.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Many species in aquatic environments face increased exposure to oncogenic pollution due to anthropogenic environmental change which can lead to higher cancer prevalence. The mechanistic relationship connecting environmental pollution and cancer is multi-factorial and poorly understood, and the specific mechanisms are so far still uncharacterized. One potential mediator between pollutant exposure and cancer is oxidative damage to DNA. We conducted a study in the field with two flatfish species, European flounder (Platichthys flesus L.) and common dab (Limanda limanda L.) with overlapping distribution and similar ecological niche, to investigate if the link between oncogenic pollutants and cancer described in ecotoxicological literature could be mediated by oxidative DNA damage. This was not the case for flounders as neither polycyclic aromatic hydrocarbon (PAH) bile metabolites nor metallic trace element concentrations were related to oxidative DNA damage measurements. However, dabs with higher PAH concentrations did exhibit increased oxidative damage. High oxidative DNA damage also did not predict neoplasm occurrence, rather, healthy individuals tended to have higher oxidative damage measurements compared to fishes with pre-neoplastic tumours. Our analyses showed that flounders had lower concentrations of PAH bile metabolites, suggesting that compared to dab this species is less exposed or better at eliminating these contaminants.
Collapse
Affiliation(s)
- Ciara Baines
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Harju County, Estonia
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Randel Kreitsberg
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Jörn Peter Scharsack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Pedro Nogueira
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
6
|
Bozinovic G, Feng Z, Shea D, Oleksiak MF. Cardiac physiology and metabolic gene expression during late organogenesis among F. heteroclitus embryo families from crosses between pollution-sensitive and -resistant parents. BMC Ecol Evol 2022; 22:3. [PMID: 34996355 PMCID: PMC8739662 DOI: 10.1186/s12862-022-01959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. RESULTS Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. CONCLUSION Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries.
Collapse
Affiliation(s)
- Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
- Division of Biological Sciences, University of California San Diego, San Diego, CA, USA.
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Marjorie F Oleksiak
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
7
|
Calboli FCF, Delahaut V, Deflem I, Hablützel PI, Hellemans B, Kordas A, Raeymaekers JAM, Bervoets L, De Boeck G, Volckaert FAM. Association between Chromosome 4 and mercury accumulation in muscle of the three-spined stickleback ( Gasterosteus aculeatus). Evol Appl 2021; 14:2553-2567. [PMID: 34745343 PMCID: PMC8549617 DOI: 10.1111/eva.13298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022] Open
Abstract
Anthropogenic stressors, such as pollutants, act as selective factors that can leave measurable changes in allele frequencies in the genome. Metals are of particular concern among pollutants, because of interference with vital biological pathways. We use the three-spined stickleback as a model for adaptation to mercury pollution in natural populations. We collected sticklebacks from 21 locations in Flanders (Belgium), measured the accumulated levels of mercury in the skeletal muscle tissue, and genotyped the fish by sequencing (GBS). The spread of muscle mercury content across locations was considerable, ranging from 21.5 to 327 ng/g dry weight (DW). We then conducted a genome-wide association study (GWAS) between 28,450 single nucleotide polymorphisms (SNPs) and the accumulated levels of mercury, using different approaches. Based on a linear mixed model analysis, the GWAS yielded multiple hits with a single top hit on Chromosome 4, with eight more SNPs suggestive of association. A second approach, a latent factor mixed model analysis, highlighted one single SNP on Chromosome 11. Finally, an outlier test identified one additional SNP on Chromosome 4 that appeared under selection. Out of all ten SNPs we identified as associated with mercury in muscle, three SNPs all located on Chromosome 4 and positioned within a 2.5 kb distance of an annotated gene. Based on these results and the genome coverage of our SNPs, we conclude that the selective effect of mercury pollution in Flanders causes a significant association with at least one locus on Chromosome 4 in three-spined stickleback.
Collapse
Affiliation(s)
- Federico C. F. Calboli
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
- Present address:
Natural Resources Institute Finland (Luke)HelsinkiFinland
| | - Vyshal Delahaut
- Department of BiologySystemic Physiological and Ecotoxicological Research (SPHERE)University of AntwerpAntwerpenBelgium
| | - Io Deflem
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
| | | | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
| | - Anna Kordas
- Laboratory of Biodiversity and Evolutionary GenomicsKU LeuvenLeuvenBelgium
| | | | - Lieven Bervoets
- Department of BiologySystemic Physiological and Ecotoxicological Research (SPHERE)University of AntwerpAntwerpenBelgium
| | - Gudrun De Boeck
- Department of BiologySystemic Physiological and Ecotoxicological Research (SPHERE)University of AntwerpAntwerpenBelgium
| | | |
Collapse
|
8
|
Celander MC, Goldstone JV, Brun NR, Clark B, Jayaraman S, Nacci D, Stegeman JJ. Resistance to Cyp3a induction by polychlorinated biphenyls, including non-dioxin-like PCB153, in gills of killifish (Fundulus heteroclitus) from New Bedford Harbor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103580. [PMID: 33429071 PMCID: PMC8374885 DOI: 10.1016/j.etap.2020.103580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Previous reports suggested that non-dioxin-like (NDL) PCB153 effects on cytochrome P450 3A (Cyp3a) expression in Atlantic killifish (Fundulus heteroclitus) gills differed between F0 generation fish from a PCB site (New Bedford Harbor; NBH) and a reference site (Scorton Creek; SC). Here, we examined effects of PCB153, dioxin-like (DL) PCB126, or a mixture of both, on Cyp3a56 mRNA in killifish generations removed from the wild, without environmental PCB exposures. PCB126 effects in liver and gills differed between populations, as expected. Gill Cyp3a56 was not affected by either congener in NBH F2 generation fish, but was induced by PCB153 in SC F1 fish, with females showing a greater response. PCB153 did not affect Cyp3a56 in liver of either population. Results suggest a heritable resistance to NDL-PCBs in killifish from NBH, in addition to that reported for DL PCBs. Induction of Cyp3a56 in gills may be a biomarker of exposure to NDL PCBs in fish populations that are not resistant to PCBs.
Collapse
Affiliation(s)
- Malin C Celander
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30, Gothenburg, Sweden; Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| | - Jared V Goldstone
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Nadja R Brun
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Bryan Clark
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - Saro Jayaraman
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - Diane Nacci
- United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - John J Stegeman
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
9
|
Baines C, Lerebours A, Thomas F, Fort J, Kreitsberg R, Gentes S, Meitern R, Saks L, Ujvari B, Giraudeau M, Sepp T. Linking pollution and cancer in aquatic environments: A review. ENVIRONMENT INTERNATIONAL 2021; 149:106391. [PMID: 33515955 DOI: 10.1016/j.envint.2021.106391] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Due to the interconnectedness of aquatic ecosystems through the highly effective marine and atmospheric transport routes, all aquatic ecosystems are potentially vulnerable to pollution. Whilst links between pollution and increased mortality of wild animals have now been firmly established, the next steps should be to focus on specific physiological pathways and pathologies that link pollution to wildlife health deterioration. One of the pollution-induced pathologies that should be at the centre of attention in ecological and evolutionary research is cancer, as anthropogenic contamination has resulted in a rapid increase of oncogenic substances in natural habitats. Whilst wildlife cancer research is an emerging research topic, systematic reviews of the many case studies published over the recent decades are scarce. This research direction would (1) provide a better understanding of the physiological mechanisms connecting anthropogenic pollution to oncogenic processes in non-model organisms (reducing the current bias towards human and lab-animal studies in cancer research), and (2) allow us to better predict the vulnerability of different wild populations to oncogenic contamination. This article combines the information available within the scientific literature about cancer occurrences in aquatic and semi-aquatic species. For the first aim, we use available knowledge from aquatic species to suggest physiological mechanisms that link pollution and cancer, including main metabolic detoxification pathways, oxidative damage effects, infections, and changes to the microbiome. For the second aim, we determine which types of aquatic animals are more vulnerable to pollution-induced cancer, which types of pollution are mainly associated with cancer in aquatic ecosystems, and which types of cancer pollution causes. We also discuss the role of migration in exposing aquatic and semi-aquatic animals to different oncogenic pollutants. Finally, we suggest novel research avenues, including experimental approaches, analysis of the effects of pollutant cocktails and long-term chronic exposure to lower levels of pollutants, and the use of already published databases of gene expression levels in animals from differently polluted habitats.
Collapse
Affiliation(s)
- Ciara Baines
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | - Adelaide Lerebours
- LIttoral, ENvironnement et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France
| | - Frederic Thomas
- CREEC/CREES, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France; MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| | - Jerome Fort
- LIttoral, ENvironnement et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France
| | - Randel Kreitsberg
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Sophie Gentes
- LIttoral, ENvironnement et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Lauri Saks
- Estonian Marine Institute, Universty of Tartu, Mäealuse 14, 12618 Tallinn, Harju County, Estonia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Mathieu Giraudeau
- LIttoral, ENvironnement et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France; CREEC/CREES, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France; MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| |
Collapse
|
10
|
Chernick M, Burke T, Lieberman N, Brown DR, Di Giulio RT, Hinton DE. Heart development in two populations of Atlantic killifish (Fundulus heteroclitus) following exposure to a polycyclic aromatic hydrocarbon mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111580. [PMID: 33396103 PMCID: PMC7837385 DOI: 10.1016/j.ecoenv.2020.111580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Historic industrial pollution of the Elizabeth River, Virginia resulted in polycyclic aromatic hydrocarbon (PAH) contamination in sediments. Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood (AW) industrial site adapted to complex PAH mixture at this Superfund site. Their embryos have proved highly resistant to cardiac abnormalities indicative of PAH toxicity. In this study, embryos spawned from adults collected at AW and King's Creek (KC), a reference site, were exposed at 24 h post fertilization (hpf) to Elizabeth River Sediment Extract (ERSE), a complex PAH mixture, in a range of concentrations (0, 5.04, 50.45, 100.90, 151.35, or 252.25 µg/L total PAHs). Embryos were processed for histology at 144 hpf to enable evaluations of hearts at tissue and cellular levels. Morphometry and severity scoring were used to evaluate the extent of alterations. Unexposed embryos were similar in both populations. ERSE exposure resulted in multiple changes to hearts of KC embryos but not AW. Alterations were particularly evident in KC embryos exposed to concentrations above 1% ERSE (50.45 µg/L), which had thinner ventricular walls and larger pericardial edema. Individuals with moderate pericardial edema maintained arrangement and proximity of heart chambers, but changes were seen in ventricular myocytes. Severe pericardial edema was prevalent in exposed KC embryos and typically resulted in tube heart formation. Ventricles of tube hearts had very thin walls composed of small, basophilic cells and lacked trabeculae. Edematous pericardial fluid contained small amounts of proteinaceous material, as did controls, and was free of cells. This fluid was primarily unstained, suggesting water influx due to increased permeability. The use of histological approaches provided more specific detail for tissue and cellular effects in hearts of embryos exposed to PAHs and enabled understanding of potential links to later life effects of early life exposure.
Collapse
Affiliation(s)
- Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham 27708, NC, USA
| | | | - Noah Lieberman
- Nicholas School of the Environment, Duke University, Durham 27708, NC, USA
| | - Daniel R Brown
- Nicholas School of the Environment, Duke University, Durham 27708, NC, USA; Department of Biology Western Carolina University Cullowhee, 28723, NC, USA
| | | | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham 27708, NC, USA.
| |
Collapse
|
11
|
Hamilton PB, Lockyer AE, Uren Webster TM, Studholme DJ, Paris JR, Baynes A, Nicol E, Dawson DA, Moore K, Farbos A, Jobling S, Stevens JR, Tyler CR. Investigation into Adaptation in Genes Associated with Response to Estrogenic Pollution in Populations of Roach ( Rutilus rutilus) Living in English Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15935-15945. [PMID: 33227200 DOI: 10.1021/acs.est.0c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exposure of male fish to estrogenic substances from wastewater treatment works (WwTWs) results in feminization and reduced reproductive fitness. Nevertheless, self-sustaining populations of roach (Rutilus rutilus) inhabit river stretches polluted with estrogenic WwTW effluents. In this study, we examine whether such roach populations have evolved adaptations to tolerate estrogenic pollution by comparing frequency differences in single-nucleotide polymorphisms (SNPs) between populations sampled from rivers receiving either high- or low-level WwTW discharges. SNPs within 36 "candidate" genes, selected for their involvement in estrogenic responses, and 120 SNPs in reference genes were genotyped in 465 roaches. There was no evidence for selection in highly estrogen-dependent candidate genes, including those for the estrogen receptors, aromatases, and vitellogenins. The androgen receptor (ar) and cytochrome P450 1A genes were associated with large shifts in allele frequencies between catchments and in individual populations, but there is no clear link to estrogen pollution. Selection at ar in the effluent-dominated River Lee may have resulted from historical contamination with endocrine-disrupting pesticides. Critically, although our results suggest population-specific selection including at genes related to endocrine disruption, there was no strong evidence that the selection resulted from exposure to estrogen pollution.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
- College of Medicine and Health, University of Exeter, St Luke's Campus, Heavitree Road, Exeter EX1 2LU, U.K
| | - Anne E Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Tamsyn M Uren Webster
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
- Biosciences, College of Science, Swansea University, Swansea SA2 8PP, U.K
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Josephine R Paris
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Alice Baynes
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Elizabeth Nicol
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Deborah A Dawson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Karen Moore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Audrey Farbos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, U.K
| | - Jamie R Stevens
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
12
|
Sueiro MC, Awruch C, Gilardoni C, Demetrio M, Palacios MG. Immunity and health of two wild marine fishes naturally exposed to anthropogenic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138303. [PMID: 32305751 DOI: 10.1016/j.scitotenv.2020.138303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
There are increasing global concerns of the alarming pollution impacts on marine life, thus it is becoming essential to generate reliable tools to monitor and understand the effects of these impacts on aquatic organisms. We performed a field study assessing how exposure to anthropogenic pollution impacts immunological and health-state parameters and parasite infection of a wild marine fish, the Brazilian sandperch Pinguipes brasilianus. Then we compared this information to previously published data of a sympatric species, the Patagonian rockfish Sebastes oculatus inhabiting the same polluted and pristine areas. The field study revealed that exposed P. brasilianus showed chronic stress, poor immune condition and higher prevalence and abundance of acanthocephalan parasites. By comparing these former results with already published in S. oculatus, we concluded that, although both species exhibited physiological alterations associate to inhabiting sites exposed to pollution, their specific immunological and health-state responses differed. Our results demonstrate that Patagonian reef-fish assemblages inhabiting sites exposed to pollutant are being affected in their immune and heath condition, which could potentially result in higher susceptibility to disease and in turn population decline. These findings highlight the necessity of more studies incorporating interspecific comparisons to assess variation in fish susceptibility in an ecoimmunotoxicological context and get a more profound understanding of anthropogenic impacts on wildlife.
Collapse
Affiliation(s)
- María Cruz Sueiro
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina.
| | - Cynthia Awruch
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina; School of Natural Sciences, University of Tasmania, Tasmania 7001, Australia.
| | - Carmen Gilardoni
- Laboratorio de Parasitología (LAPA), Instituto de Biología de Organismos Marinos (IBIOMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina.
| | - Muriel Demetrio
- Laboratorio de Parasitología (LAPA), Instituto de Biología de Organismos Marinos (IBIOMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina
| | - María Gabriela Palacios
- Centro para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico - Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT - CONICET) Puerto Madryn, Chubut, Argentina.
| |
Collapse
|
13
|
Doering JA, Lee S, Kristiansen K, Evenseth L, Barron MG, Sylte I, LaLone CA. In Silico Site-Directed Mutagenesis Informs Species-Specific Predictions of Chemical Susceptibility Derived From the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Tool. Toxicol Sci 2019; 166:131-145. [PMID: 30060110 DOI: 10.1093/toxsci/kfy186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemical hazard assessment requires extrapolation of information from model organisms to all species of concern. The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed as a rapid, cost-effective method to aid cross-species extrapolation of susceptibility to chemicals acting on specific protein targets through evaluation of protein structural similarities and differences. The greatest resolution for extrapolation of chemical susceptibility across species involves comparisons of individual amino acid residues at key positions involved in protein-chemical interactions. However, a lack of understanding of whether specific amino acid substitutions among species at key positions in proteins affect interaction with chemicals made manual interpretation of alignments time consuming and potentially inconsistent. Therefore, this study used in silico site-directed mutagenesis coupled with docking simulations of computational models for acetylcholinesterase (AChE) and ecdysone receptor (EcR) to investigate how specific amino acid substitutions impact protein-chemical interaction. This study found that computationally derived substitutions in identities of key amino acids caused no change in protein-chemical interaction if residues share the same side chain functional properties and have comparable molecular dimensions, while differences in these characteristics can change protein-chemical interaction. These findings were considered in the development of capabilities for automatically generated species-specific predictions of chemical susceptibility in SeqAPASS. These predictions for AChE and EcR were shown to agree with SeqAPASS predictions comparing the primary sequence and functional domain sequence of proteins for more than 90% of the investigated species, but also identified dramatic species-specific differences in chemical susceptibility that align with results from standard toxicity tests. These results provide a compelling line of evidence for use of SeqAPASS in deriving screening level, species-specific, susceptibility predictions across broad taxonomic groups for application to human and ecological hazard assessment.
Collapse
Affiliation(s)
- Jon A Doering
- Mid-Continent Ecology Division.,National Research Council, U.S. Environmental Protection Agency, Duluth, Minnesota 55804
| | - Sehan Lee
- Gulf Ecology Division, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561.,Molecular Design Team, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 41061 Daegu City, Korea
| | - Kurt Kristiansen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromso-The Arctic University of Norway, NO-9037, Tromso, Norway
| | - Linn Evenseth
- Department of Medical Biology, Faculty of Health Sciences, University of Tromso-The Arctic University of Norway, NO-9037, Tromso, Norway
| | - Mace G Barron
- Gulf Ecology Division, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, University of Tromso-The Arctic University of Norway, NO-9037, Tromso, Norway
| | | |
Collapse
|
14
|
Doering JA, Villeneuve DL, Poole ST, Blackwell BR, Jensen KM, Kahl MD, Kittelson AR, Feifarek DJ, Tilton CB, LaLone CA, Ankley GT. Quantitative Response-Response Relationships Linking Aromatase Inhibition to Decreased Fecundity are Conserved Across Three Fishes with Asynchronous Oocyte Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10470-10478. [PMID: 31386814 DOI: 10.1021/acs.est.9b02606] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative adverse outcome pathways (qAOPs) describe quantitative response-response relationships that can predict the probability or severity of an adverse outcome for a given magnitude of chemical interaction with a molecular initiating event. However, the taxonomic domain of applicability for these predictions is largely untested. The present study began defining this applicability for a previously described qAOP for aromatase inhibition leading to decreased fecundity developed using data from fathead minnow (Pimephales promelas). This qAOP includes quantitative response-response relationships describing plasma 17β-estradiol (E2) as a function of plasma fadrozole, plasma vitellogenin (VTG) as a function of plasma E2, and fecundity as a function of plasma VTG. These quantitative response-response relationships simulated plasma E2, plasma VTG, and fecundity measured in female zebrafish (Danio rerio) exposed to fadrozole for 21 days but not these responses measured in female Japanese medaka (Oryzias latipes). However, Japanese medaka had different basal levels of plasma E2, plasma VTG, and fecundity. Normalizing basal levels of each measurement to equal those of female fathead minnow enabled the relationships to accurately simulate plasma E2, plasma VTG, and fecundity measured in female Japanese medaka. This suggests that these quantitative response-response relationships are conserved across these three fishes when considering relative change rather than absolute measurements. The present study represents an early step toward defining the appropriate taxonomic domain of applicability and extending the regulatory applications of this qAOP.
Collapse
Affiliation(s)
- Jon A Doering
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
- National Research Council , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Shane T Poole
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Brett R Blackwell
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Kathleen M Jensen
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Michael D Kahl
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Ashley R Kittelson
- Oak Ridge Institute of Science Education , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - David J Feifarek
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Charlene B Tilton
- Oak Ridge Institute of Science Education , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Carlie A LaLone
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Gerald T Ankley
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| |
Collapse
|
15
|
Loria A, Cristescu ME, Gonzalez A. Mixed evidence for adaptation to environmental pollution. Evol Appl 2019; 12:1259-1273. [PMID: 31417613 PMCID: PMC6691217 DOI: 10.1111/eva.12782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
Adaptation to pollution has been studied since the first observations of heavy metal tolerance in plants decades ago. To document micro-evolutionary responses to pollution, researchers have used phenotypic, molecular genetics, and demographic approaches. We reviewed 258 articles and evaluated the evidence for adaptive responses following exposure to a wide range of pollutants, across multiple taxonomic groups. We also conducted a meta-analysis to calculate the magnitude of phenotypic change in invertebrates in response to metal pollution. The majority of studies that reported differences in responses to pollution were focused on phenotypic responses at the individual level. Most of the studies that used demographic assays in their investigations found that negative effects induced by pollution often worsened over multiple generations. Our meta-analysis did not reveal a significant relationship between metal pollution intensity and changes in the traits studied, and this was probably due to differences in coping responses among different species, the broad array of abiotic and biotic factors, and the weak statistical power of the analysis. We found it difficult to make broad statements about how likely or how common adaptation is in the presence of environmental contamination. Ecological and evolutionary responses to contamination are complex, and difficult to interpret in the context of taxonomic, and methodological biases, and the inconsistent set of approaches that have been used to study adaptation to pollution in the laboratory and in the field. This review emphasizes the need for: (a) long-term monitoring programs on exposed populations that link demography to phenotypic, genetic, and selection assays; (b) the use of standardized protocols across studies especially for similar taxa. Approaches that combine field and laboratory studies offer the greatest opportunity to reveal the complex eco-evolutionary feedback that can occur under selection imposed by pollution.
Collapse
|
16
|
Heuschele J, Lode T, Andersen T, Borgå K, Titelman J. An affordable and automated imaging approach to acquire highly resolved individual data-an example of copepod growth in response to multiple stressors. PeerJ 2019; 7:e6776. [PMID: 31041153 PMCID: PMC6476288 DOI: 10.7717/peerj.6776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/12/2019] [Indexed: 01/21/2023] Open
Abstract
Individual trait variation is essential for populations to cope with multiple stressors and continuously changing environments. The immense number of possible stressor combinations and the influence of phenotypic variation makes experimental testing for effects on organisms challenging. The acquisition of such data requires many replicates and is notoriously laborious. It is further complicated when responses occur over short time periods. To overcome such challenges, we developed an automated imaging platform to acquire temporally highly resolved individual data. We tested this platform by exposing copepods to a combination of a biotic stressor (predator cues) and a toxicant (copper) and measured the growth response of individual copepods. We tested the automatically acquired data against published manually acquired data with much lower temporal resolution. We find the same general potentiating effects of predator cues on the adverse effects of copper, and the influence of an individual’s clutch identity on its ability to resist stress, between the data obtained from low and high temporal resolution. However, when using the high temporal resolution, we also uncovered effects of clutch ID on the timing and duration of stage transitions, which highlights the importance of considering phenotypic variation in ecotoxicological testing. Phenotypic variation is usually not acknowledged in ecotoxicological testing. Our approach is scalable, affordable, and adjustable to accommodate both aquatic and terrestrial organisms, and a wide range of visually detectable endpoints. We discuss future extensions that would further widen its applicability.
Collapse
Affiliation(s)
- Jan Heuschele
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Torben Lode
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tom Andersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
17
|
Maceina MJ, Sammons SM. The relation between polychlorinated biphenyls and population metrics of 4 species of fish from the upper Hudson River, New York, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:329-339. [PMID: 30488984 DOI: 10.1002/etc.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/06/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
In the upper Hudson River, New York, USA, fish were exposed to polychlorinated biphenyls (PCBs) from the 1940s to 1977, and PCBs still persist in this environment. Yellow perch (Perca flavescens), brown bullhead (Ameiurus nebulosus), smallmouth bass (Micropterus dolomieu), and largemouth bass (M. salmoides) were collected annually from 2003 to 2009 from 1 control site upstream of the PCB discharge locations and from 2 sites downstream from where PCBs were released. Fish PCB concentrations were estimated, and 3 population metrics were examined: 1) relative abundance, 2) weight-to-length ratio, and 3) growth. Normalized lipid-based PCB concentrations at the 2 PCB exposure pools averaged approximately 100 to 600 μg/g. Estimated relative abundances with electrofishing were higher for largemouth bass, smallmouth bass, and brown bullhead at PCB exposure sites compared to the control site; but yellow perch were more abundant at the control site. Weight to length ratios varied among sites and species, but no consistent pattern was evident in relation to PCBs at the population level or for individual fish. Growth rates for yellow perch and brown bullhead were similar among sites. Largemouth bass growth was slightly higher at the control site compared to the 2 PCB sites, but smallmouth bass growth was much higher at the PCB sites compared to the control site. We could not detect any relation or influence of PCBs on the 3 population metrics that we examined. the present results corroborated those of previous investigations concerning the effects of PCBs on fishes. We recommend stronger consideration of the biological impacts of PCBs at the population level when conducting risk assessments. Environ Toxicol Chem 2019;38:329-339. © 2018 SETAC.
Collapse
|
18
|
Vittecoq M, Giraudeau M, Sepp T, Marcogliese DJ, Klaassen M, Renaud F, Ujvari B, Thomas F. Turning natural adaptations to oncogenic factors into an ally in the war against cancer. Evol Appl 2018; 11:836-844. [PMID: 29928293 PMCID: PMC5999213 DOI: 10.1111/eva.12608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
Both field and experimental evolution studies have demonstrated that organisms naturally or artificially exposed to environmental oncogenic factors can, sometimes rapidly, evolve specific adaptations to cope with pollutants and their adverse effects on fitness. Although numerous pollutants are mutagenic and carcinogenic, little attention has been given to exploring the extent to which adaptations displayed by organisms living in oncogenic environments could inspire novel cancer treatments, through mimicking the processes allowing these organisms to prevent or limit malignant progression. Building on a substantial knowledge base from the literature, we here present and discuss this progressive and promising research direction, advocating closer collaboration between the fields of medicine, ecology, and evolution in the war against cancer.
Collapse
Affiliation(s)
- Marion Vittecoq
- Institut de Recherche de la Tour du Valat Arles France.,CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| | - Mathieu Giraudeau
- School of Life Sciences Arizona State University Tempe AZ USA.,Centre for Ecology & Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Tuul Sepp
- School of Life Sciences Arizona State University Tempe AZ USA.,Department of Zoology University of Tartu Tartu Estonia
| | - David J Marcogliese
- Aquatic Contaminants Research Division Water Science and Technology Directorate Environment and Climate Change Canada St. Lawrence Centre Montreal QC Canada.,Fisheries and Oceans Canada St. Andrews Biological Station St. Andrews NB Canada
| | - Marcel Klaassen
- School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Deakin Vic. Australia
| | - François Renaud
- CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| | - Beata Ujvari
- School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Deakin Vic. Australia.,School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Frédéric Thomas
- CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| |
Collapse
|
19
|
Ainsworth CH, Paris CB, Perlin N, Dornberger LN, Patterson WF, Chancellor E, Murawski S, Hollander D, Daly K, Romero IC, Coleman F, Perryman H. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLoS One 2018; 13:e0190840. [PMID: 29370187 PMCID: PMC5784916 DOI: 10.1371/journal.pone.0190840] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
We use a spatially explicit biogeochemical end-to-end ecosystem model, Atlantis, to simulate impacts from the Deepwater Horizon oil spill and subsequent recovery of fish guilds. Dose-response relationships with expected oil concentrations were utilized to estimate the impact on fish growth and mortality rates. We also examine the effects of fisheries closures and impacts on recruitment. We validate predictions of the model by comparing population trends and age structure before and after the oil spill with fisheries independent data. The model suggests that recruitment effects and fishery closures had little influence on biomass dynamics. However, at the assumed level of oil concentrations and toxicity, impacts on fish mortality and growth rates were large and commensurate with observations. Sensitivity analysis suggests the biomass of large reef fish decreased by 25% to 50% in areas most affected by the spill, and biomass of large demersal fish decreased even more, by 40% to 70%. Impacts on reef and demersal forage caused starvation mortality in predators and increased reliance on pelagic forage. Impacts on the food web translated effects of the spill far away from the oiled area. Effects on age structure suggest possible delayed impacts on fishery yields. Recovery of high-turnover populations generally is predicted to occur within 10 years, but some slower-growing populations may take 30+ years to fully recover.
Collapse
Affiliation(s)
- Cameron H. Ainsworth
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
- * E-mail:
| | - Claire B. Paris
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, United States of America
| | - Natalie Perlin
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, United States of America
| | - Lindsey N. Dornberger
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
| | - William F. Patterson
- University of Florida, Institute of Food and Agricultural Sciences, Fisheries and Aquatic Sciences Program, Gainesville, FL, United States of America
| | - Emily Chancellor
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
| | - Steve Murawski
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
| | - David Hollander
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
| | - Kendra Daly
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
| | - Isabel C. Romero
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
| | - Felicia Coleman
- Florida State University, Dept. of Biological Sciences, Tallahassee, FL, United States of America
| | - Holly Perryman
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, United States of America
| |
Collapse
|
20
|
Hamilton PB, Rolshausen G, Uren Webster TM, Tyler CR. Adaptive capabilities and fitness consequences associated with pollution exposure in fish. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0042. [PMID: 27920387 PMCID: PMC5182438 DOI: 10.1098/rstb.2016.0042] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Many fish populations are exposed to harmful levels of chemical pollution and selection pressures associated with these exposures have led to the evolution of tolerance. Our understanding of the physiological basis for these adaptations is limited, but they are likely to include processes involved with the absorption, distribution, metabolism and/or excretion of the target chemical. Other potential adaptive mechanisms include enhancements in antioxidant responses, an increased capacity for DNA and/or tissue repair and alterations to the life cycle of fish that enable earlier reproduction. Analysis of single-nucleotide polymorphism frequencies has shown that tolerance to hydrocarbon pollutants in both marine and estuarine fish species involves alteration in the expression of the xenobiotic metabolism enzyme CYP1A. In this review, we present novel data showing also that variants of the CYP1A gene have been under selection in guppies living in Trinidadian rivers heavily polluted with crude oil. Potential costs associated with these adaptations could reduce fitness in unpolluted water conditions. Integrating knowledge of local adaptation to pollution is an important future consideration in conservation practices such as for successful restocking, and improving connectivity within river systems.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Tamsyn M Uren Webster
- Department of Biosciences, Swansea University, Wallace Building, Swansea SA2 8PP, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
21
|
Braham RP, Blazer VS, Shaw CH, Mazik PM. Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:570-581. [PMID: 28868735 PMCID: PMC5656883 DOI: 10.1002/em.22123] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/20/2017] [Indexed: 05/26/2023]
Abstract
Biological markers (biomarkers) sensitive to genotoxic and mutagenic contamination in fishes are widely used to identify exposure effects in aquatic environments. The micronucleus assay was incorporated into a suite of indicators to assess exposure to genotoxic and mutagenic contamination at five Great Lakes Areas of Concern (AOCs), as well as one non-AOC (reference) site. The assay allowed enumeration of micronuclei as well as other nuclear abnormalities for both site and species comparisons. Erythrocyte abnormality data was also compared to skin and liver tumor prevalence and hepatic transcript abundance. Erythrocyte abnormalities were observed at all sites with variable occurrence and severity among sites and species. Benthic-oriented brown bullhead (Ameiurus nebulosus) and white sucker (Catostomus commersonii) expressed lower rates of erythrocyte abnormalities, but higher rates of skin and liver neoplasms, when compared to pelagic-oriented largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) at the same site. The reduced erythrocyte abnormalities, increased transcript abundance associated with Phase I and II toxicant responsive pathways, and increased neoplastic lesions among benthic-oriented taxa may indicate the development of contaminant resistance of these species to more acute effects. Environ. Mol. Mutagen. 58:570-581, 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Ryan P. Braham
- School of Natural ResourcesWest Virginia UniversityMorgantownWest Virgina26506
| | - Vicki S. Blazer
- U.S. Geological Survey, National Fish Health Research LaboratoryLeetown Science CenterKearneysvilleWest Virgina25430
| | - Cassidy H. Shaw
- U.S. Geological Survey, National Fish Health Research LaboratoryLeetown Science CenterKearneysvilleWest Virgina25430
- Present address:
U.S. Department of AgricultureCool and Cold Water Aquaculture Research11861 Leetown Road, KearneysvilleWest Virgina25430
| | - Patricia M. Mazik
- U.S. Geological Survey, West Virginia Cooperative Fish and Wildlife Research UnitWest Virginia UniversityMorgantownWest Virgina26506
| |
Collapse
|
22
|
Jung JH, Ko J, Lee EH, Choi KM, Kim M, Yim UH, Lee JS, Shim WJ. RNA seq- and DEG-based comparison of developmental toxicity in fish embryos of two species exposed to Iranian heavy crude oil. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:1-10. [PMID: 28257923 DOI: 10.1016/j.cbpc.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 02/05/2023]
Abstract
To determine and compare the toxic effects of Iranian heavy crude oil (IHCO) on the embryonic development of two fish species, we examined transcriptome profiles using RNA-seq. The assembled contigs were 66,070 unigenes in olive flounder embryos and 76,498 unigenes in spotted seabass embryos. In the differential gene expression (DEG) profiles, olive flounder embryos showed different up- and down-regulated patterns than spotted seabass embryos in response to fresh IHCO (FIHCO) and weathered IHCO (WIHCO). In this work, we categorized DEG profiles into six pathways: ribosome, oxidative phosphorylation, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cardiac muscle contraction, validating the expression patterns of 13 DEGs using real-time quantitative RT-PCR. The expression of the CYP1A, CYP1B1, and CYP1C1 genes in spotted seabass embryos was higher than in olive flounder embryos, whereas genes related to cell processing, development, and the immune system showed the opposite trend. Orthologous gene cluster analysis showed that olive flounder embryos were sensitive (fold change of genes with cutoff P<0.05) to both FIHCO and WIHCO, but spotted seabass embryos exhibited higher sensitivity to WIHCO than FIHCO, indicating that species-specific differences are likely to be reflected in population levels after oil spills. Overall, our study provides new insight on the different embryonic susceptibilities of two marine fish species to FIHCO and WIHCO and a better understanding of the underlying molecular mechanisms via RNA-seq and DEGs.
Collapse
Affiliation(s)
- Jee-Hyun Jung
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Junsu Ko
- Theragen Etex Bio Institute Inc., Suwon 16229, Republic of Korea
| | - Eun-Hee Lee
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kwang-Min Choi
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Moonkoo Kim
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Un Hyuk Yim
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Joon Shim
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
23
|
Uren Webster TM, Williams TD, Katsiadaki I, Lange A, Lewis C, Shears JA, Tyler CR, Santos EM. Hepatic transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:26-36. [PMID: 28081447 DOI: 10.1016/j.aquatox.2016.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/05/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
Some fish populations inhabiting contaminated environments show evidence of increased chemical tolerance, however the mechanisms contributing to this tolerance, and whether this is heritable, are poorly understood. We investigated the responses of two populations of wild three-spined stickleback (Gasterosteus aculeatus) with different histories of contaminant exposure to an oestrogen and copper, two widespread aquatic pollutants. Male stickleback originating from two sites, the River Aire, with a history of complex pollution discharges, and Siblyback Lake, with a history of metal contamination, were depurated and then exposed to copper (46μg/L) and the synthetic oestrogen ethinyloestradiol (22ng/L). The hepatic transcriptomic response was compared between the two populations and to a reference population with no known history of exposure (Houghton Springs, Dorset). Gene responses included those typical for both copper and oestrogen, with no discernable difference in response to oestrogen between populations. There was, however, some difference in the magnitude of response to copper between populations. Siblyback fish showed an elevated baseline transcription of genes encoding metallothioneins and a lower level of metallothionein induction following copper exposure, compared to those from the River Aire. Similarly, a further experiment with an F1 generation of Siblyback fish bred in the laboratory found evidence for elevated transcription of genes encoding metallothioneins in unexposed fish, together with an altered transcriptional response to 125μg/L copper, compared with F1 fish originating from the clean reference population exposed to the same copper concentration. These data suggest that the stickleback from Siblyback Lake have a differential response to copper, which is inherited by the F1 generation in laboratory conditions, and for which the underlying mechanism may include an elevation of baseline transcription of genes encoding metallothioneins. The genetic and/or epigenetic mechanisms contributing to this inherited alteration of metallothionein transcription have yet to be established.
Collapse
Affiliation(s)
- Tamsyn M Uren Webster
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Tim D Williams
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth DT4 8UB, UK
| | - Anke Lange
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ceri Lewis
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Janice A Shears
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
24
|
Oziolor EM, Bickham JW, Matson CW. Evolutionary toxicology in an omics world. Evol Appl 2017; 10:752-761. [PMID: 29151868 PMCID: PMC5680431 DOI: 10.1111/eva.12462] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
Evolutionary toxicology is a young field that has grown rapidly in the past two decades. The potential of this field comes from the ability to link chemical contamination to multigenerational and population-wide effects in various species. The advancements and rapidly decreasing costs of -omic tools are improving the power and resolution of evolutionary toxicology studies. In this manuscript, we aim to address the trajectories and perspectives for conducting evolutionary toxicology studies with -omic approaches. We discuss the complementarity of using multiple -omic tools (genomics, eDNA, transcriptomics, proteomics, and metabolomics) for utility in understanding the toxicological relevance of adaptive responses in populations. In addition, we discuss phenotypic plasticity and its relevance to transcriptomic studies in toxicology. As evolutionary toxicology grows and expands its capacity to link toxicology with population-wide end points, we emphasize the applications of such studies in answering questions about ecological and population health, as well as future applicability to regulation. Thus, we aim to emphasize the enormous potential for evolutionary toxicology in an -omics world and give perspectives on the directions of future investigations.
Collapse
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Science Center for Reservoir and Aquatic Systems Research (CRASR), and the Institute for Biomedical Studies Baylor University Waco TX USA
| | - John W Bickham
- Department of Wildlife and Fisheries Science Texas A&M University College Station TX USA
| | - Cole W Matson
- Department of Environmental Science Center for Reservoir and Aquatic Systems Research (CRASR), and the Institute for Biomedical Studies Baylor University Waco TX USA
| |
Collapse
|
25
|
Oziolor EM, Dubansky B, Burggren WW, Matson CW. Cross-resistance in Gulf killifish (Fundulus grandis) populations resistant to dioxin-like compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:222-231. [PMID: 27064400 DOI: 10.1016/j.aquatox.2016.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The Houston Ship Channel (HSC) in Houston, Texas is an aquatic environment with a long history of contamination, including polychlorinated dibenzodioxins (PCDD), polychlorinated dibenzofurans (PCDF), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals. Populations of Gulf killifish (Fundulus grandis) from the HSC have adapted to resist developmental cardiac deformities caused by dioxin-like compounds (DLCs). Contaminants in the HSC have acted as a strong selective pressure on resident Gulf killifish populations. Rapid adaptation can lead to fitness costs, some as a direct result of the mechanisms involved in the adaptive process, whereas other adaptations may be more general. To explore potential fitness costs, we evaluated two Gulf killifish populations with documented resistance to DLC-induced cardiac teratogenesis (Patrick Bayou and Vince Bayou), and one previously characterized reference population (Gangs Bayou). We also characterized a previously unstudied population from Galveston Bay as an additional reference population (Smith Point). We tested the sensitivity of F1 larvae from these four populations to two classes of pesticides (pyrethroid (permethrin) and carbamate (carbaryl)) and two model pro-oxidants (tert-butyl hydroquinone (tBHQ) and tert-butyl hydroperoxide (tBOOH)). In addition, we explored their responses to hypoxia and measured resting metabolic rates (M.O2). Both adapted populations were cross-resistant to the toxicity of carbaryl and both pro-oxidants tested. There were no population differences in sensitivity to permethrin. On the other hand, one reference population (Gangs Bayou) was less sensitive to hypoxia, and maintained a lower M.O2 . However, there were no differences in hypoxia tolerance or resting metabolic rate between the second reference and the two adapted populations. This investigation emphasizes the importance of including multiple reference populations to clearly link fitness costs or cross-resistance to pollution adaptation, rather than to unrelated environmental or ecological differences. When compared to previous literature on adapted populations of Fundulus heteroclitus, we see a mixture of similarities and differences, suggesting that F. grandis adapted phenotypes likely involve multiple mechanisms, which may not be completely consistent among adapted populations.
Collapse
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research (CRASR) and the Institute for Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Benjamin Dubansky
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Warren W Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Cole W Matson
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research (CRASR) and the Institute for Biomedical Studies, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
26
|
Milan M, Matozzo V, Pauletto M, Di Camillo B, Giacomazzo M, Boffo L, Binato G, Marin MG, Patarnello T, Bargelloni L. Can ecological history influence response to pollutants? Transcriptomic analysis of Manila clam collected in different Venice lagoon areas and exposed to heavy metal. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:123-133. [PMID: 26945539 DOI: 10.1016/j.aquatox.2016.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Chronic exposure to environmental pollutants can exert strong selective pressures on natural populations, favoring the transmission over generations of traits that enable individuals to survive and thrive in highly impacted environments. The lagoon of Venice is an ecosystem subject to heavy anthropogenic impact, mainly due to the industrial activities of Porto Marghera (PM), which led to a severe chemical contamination of soil, groundwater, and sediments. Gene expression analysis on wild Manila clams collected in different Venice lagoon areas enabled to identify differences in gene expression profiles between clams collected in PM and those sampled in clean areas, and the definition of molecular signatures of chemical stress. However, it remains largely unexplored to which extent modifications of gene expression patterns persists after removing the source of contamination. It is also relatively unknown whether chronic exposure to xenobiotics affects the response to other chemical pollutants. To start exploring such issues, in the present study a common-garden experiment was coupled with transcriptomic analysis, to compare gene expression profiles of PM clams with those of clams collected in the less impacted area of Chioggia (CH) during a period under the same control conditions. Part of the two experimental groups were also exposed to copper for seven days to assess whether different "ecological history" does influence response to such pollutant. The results obtained suggest that the chronic exposure to chemical pollution generated a response at the transcriptional level that persists after removal for the contaminated site. These transcriptional changes are centered on key biological processes, such as defense against either oxidative stress or tissue/protein damage, and detoxification, suggesting an adaptive strategy for surviving in the deeply impacted environment of Porto Marghera. On the other hand, CH clams appeared to respond more effectively to copper exposure than PM animals, proposing that chronic exposure to chemical toxicants either lowers the sensitivity to additional toxicants or blunts the capacity to respond to novel chemical challenges in PM clams.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy.
| | - Valerio Matozzo
- Department of Biology, University of Padova, via G. Colombo 3, 35131 Padova, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| | | | - Matteo Giacomazzo
- Department of Biology, University of Padova, via G. Colombo 3, 35131 Padova, Italy; Department of Environmental Sciences University of Quèbec at Trois-Rivières, Canada
| | | | - Giovanni Binato
- Laboratory of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| |
Collapse
|
27
|
Waits ER, Martinson J, Rinner B, Morris S, Proestou D, Champlin D, Nacci D. Genetic Linkage Map and Comparative Genome Analysis for the Atlantic Killifish (<i>Fundulus heteroclitus</i>). ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojgen.2016.61004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Wirgin I, Maceda L, Waldman J, Mayack DT. Genetic variation and population structure of American mink Neovison vison from PCB-contaminated and non-contaminated locales in eastern North America. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1961-75. [PMID: 26374638 PMCID: PMC4662875 DOI: 10.1007/s10646-015-1533-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
American mink Neovison vison may be particularly vulnerable to toxicities of persistent contaminants such as PCBs because of their aquatic-based diet, position near the top of the food web, and small deme sizes. Furthermore, ranched mink are sensitive to reproductive toxicities of fish diets from PCB-polluted sites. The upper Hudson River is highly contaminated with PCBs and previous studies have shown elevated hepatic burdens of total and coplanar PCBs in mink collected near the river compared with those from more distant locales in New York and elsewhere. We hypothesized that bioaccumulation of PCBs in Hudson River mink has reduced their levels of genetic diversity or altered their genetic population structure. To address this, we conducted microsatellite DNA analysis on collections made in proximity to and from more distant locales in the Hudson River watershed, elsewhere in New York State, and at other sites in eastern North America including New Brunswick, four locales in Ontario, multiple drainages in Maine, and two ecoregions in Rhode Island. We did not find reduced genetic diversity at the individual or population levels in mink collected near (<6 km) to PCB hotspots in the Hudson River nor evidence of altered population structure. Consistent with their distribution in small localized and isolated demes, we did find significant genetic population structure among many mink collections in New York State and elsewhere. Depending on the analytical approach used, genetically distinct populations numbered between 16 when using STRUCTURE to 19-20 when using Exact G tests, F ST, or AMOVA analyses. Genetically distinct population units were found among major ecoregions and minor ecoregions in New York State, among different hydrologic subunits within the Hudson River watershed, among spatially separate locales in Ontario, and among most watersheds in Maine. However, despite this localization and potential heightened impact of stressors, genetic diversity and genetic population structure in mink does not seem to be affected by their bioaccumulation of high levels of PCBs of Hudson River origin.
Collapse
Affiliation(s)
- Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA.
| | - Lorraine Maceda
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - John Waldman
- Biology Department, Queens College, 65-30 Kissena Boulevard, Flushing, NY, 11367, USA
| | | |
Collapse
|
29
|
Buckler J, Candrl JS, McKee MJ, Papoulias DM, Tillitt DE, Galat DL. Sensitivity of shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid sturgeon (S. albus) early life stages to 3,3',4,4',5-pentachlorobiphenyl and 2,3,7,8-tetrachlorodibenzo-P-dioxin exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1417-1424. [PMID: 25703836 DOI: 10.1002/etc.2950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/03/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Concern exists that polychlorinated biphenyls (PCBs) may be contributing to the current decline of shovelnose sturgeon (Scaphirhynchus platorynchus) and the US federally endangered pallid sturgeon (Scaphirhynchus albus). Waterborne exposures with newly fertilized eggs were used to assess developmental and morphological effects of 2 of the most potent aryl hydrocarbon receptor (AhR) agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on early life stage shovelnose and pallid sturgeon. No dose-related effects of PCB-126 were observed on percent development or hatch in either species at concentrations as high as 1711 ng/g egg. Effects of TCDD on percent development were not assessed in shovelnose sturgeon. However, percent development was not affected by TCDD in pallid sturgeon, and percent hatch was unaffected by TCDD doses as high as 60 ng/g egg to 81 ng/g egg in either species. Morphological pathologies such as yolk sac edema and craniofacial deformities were typical of AhR agonist exposure and were similar in both species. Calculated PCB-126 50% lethal dose (LD50, 95% fiducial limits) values were 196 ng/g egg (188-203 ng/g) for shovelnose and 159 ng/g egg (122-199 ng/g) for pallid sturgeon. Likewise, calculated TCDD LD50 values were 13 ng/g egg (11-15 ng/g) for shovelnose and 12 ng/g egg (10-14 ng/g) for pallid sturgeon. These LD50 values are among the highest recorded in early life stage fish, suggesting that early life stage Scaphirhynchus sturgeon may be comparatively insensitive to AhR agonists.
Collapse
Affiliation(s)
- Justin Buckler
- University of Missouri Cooperative Fish and Wildlife Research Unit, University of Missouri-Columbia, Columbia, Missouri, USA
| | - James S Candrl
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Michael J McKee
- Missouri Department of Conservation, Central Region Office and Research Center, Columbia, Missouri, USA
| | - Diana M Papoulias
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - David L Galat
- University of Missouri Cooperative Fish and Wildlife Research Unit, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
30
|
Simpson AM, Jeyasingh PD, Belden JB. Variation in toxicity of a current-use insecticide among resurrected Daphnia pulicaria genotypes. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:488-496. [PMID: 25481822 DOI: 10.1007/s10646-014-1397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
This study examined how genotypes of Daphnia pulicaria from a single population, separated by thousands of generations of evolution in the wild, differ in their sensitivity to a novel anthropogenic stressor. These genotypes were resurrected from preserved resting eggs isolated from sediments belonging to three time periods: 2002-2008, 1967-1977, and 1301-1646 A.D. Toxicity of the organophosphate insecticide chlorpyrifos was determined through a series of acute toxicity tests. There was a significant dose-response effect in all genotypes studied. Moreover, significant variation in toxicity among genotypes within each time period was detected. Importantly, a significant effect of time period on sensitivity to chlorpyrifos was found. Analysis of the median effect concentrations (EC50s) for genotypes within each time period indicated that the 1301-1646 genotypes were 2.7 times more sensitive than the 1967-1977 genotypes. This trend may be partially explained by microevolutionary shifts in response to cultural eutrophication.
Collapse
Affiliation(s)
- Adam M Simpson
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA,
| | | | | |
Collapse
|
31
|
Fritsch EB, Stegeman JJ, Goldstone JV, Nacci DE, Champlin D, Jayaraman S, Connon RE, Pessah IN. Expression and function of ryanodine receptor related pathways in PCB tolerant Atlantic killifish (Fundulus heteroclitus) from New Bedford Harbor, MA, USA. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:156-66. [PMID: 25546006 PMCID: PMC4300256 DOI: 10.1016/j.aquatox.2014.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 05/12/2023]
Abstract
Atlantic killifish (Fundulus heteroclitus) thrive in New Bedford Harbor (NBH), MA, highly contaminated with polychlorinated biphenyls (PCBs). Resident killifish have evolved tolerance to dioxin-like (DL) PCBs, whose toxic effects through the aryl hydrocarbon receptor (AhR) are well studied. In NBH, non-dioxin like PCBs (NDL PCBs), which lack activity toward the AhR, vastly exceed levels of DL congeners yet how killifish counter NDL toxic effects has not been explored. In mammals and fish, NDL PCBs are potent activators of ryanodine receptors (RyR), Ca(2+) release channels necessary for a vast array of physiological processes. In the current study we compared the expression and function of RyR related pathways in NBH killifish with killifish from the reference site at Scorton Creek (SC, MA). Relative to the SC fish, adults from NBH displayed increased levels of skeletal muscle RyR1 protein, and increased levels of FK506-binding protein 12 kDa (FKBP12) an accessory protein essential for NDL PCB-triggered changes in RyR channel function. In accordance with increased RyR1 levels, NBH killifish displayed increased maximal ligand binding, increased maximal response to Ca(2+) activation and increased maximal response to activation by the NDL PCB congener PCB 95. Compared to SC, NBH embryos and larvae had increased levels of mtor and ryr2 transcripts at multiple stages of development, and generations, while levels of serca2 were decreased at 9 days post-fertilization in the F1 and F2 generations. These findings suggest that there are compensatory and heritable changes in RyR mediated Ca(2+) signaling proteins or potential signaling partners in NBH killifish.
Collapse
Affiliation(s)
- Erika B Fritsch
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Diane E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Denise Champlin
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Saro Jayaraman
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA; The Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, USA
| |
Collapse
|
32
|
Gräns J, Wassmur B, Fernández-Santoscoy M, Zanette J, Woodin BR, Karchner SI, Nacci DE, Champlin D, Jayaraman S, Hahn ME, Stegeman JJ, Celander MC. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:198-207. [PMID: 25553538 PMCID: PMC4311260 DOI: 10.1016/j.aquatox.2014.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 05/12/2023]
Abstract
Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of AhR2 or CYP1A in liver and gills of NBH fish. In NBH fish, but not in SC fish, there was increased mRNA expression of hepatic PXR, CYP3A and Pgp upon exposure to either of the two PCB congeners. However, basal PXR and Pgp mRNA levels in liver of NBH fish were significantly lower than in SC fish. A different pattern was seen in gills, where there were no differences in basal mRNA expression of these genes between the two populations. In SC fish, but not in NBH fish, there was increased mRNA expression of branchial PXR and CYP3A upon exposure to PCB126 and of CYP3A upon exposure to PCB153. The results suggest a difference between the two populations in non-AhR transcription factor signaling in liver and gills, and that this could involve killifish PXR. It also implies possible cross-regulatory interactions between that factor (presumably PXR) and AhR2 in liver of these fish.
Collapse
Affiliation(s)
- Johanna Gräns
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg, Sweden
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg, Sweden
| | - María Fernández-Santoscoy
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg, Sweden
| | - Juliano Zanette
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Bruce R Woodin
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Sibel I Karchner
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Diane E Nacci
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Denise Champlin
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Saro Jayaraman
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Mark E Hahn
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - John J Stegeman
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Malin C Celander
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg, Sweden.
| |
Collapse
|
33
|
Amiard JC, Amiard-Triquet C. Quality Standard Setting and Environmental Monitoring. AQUATIC ECOTOXICOLOGY 2015:51-76. [DOI: 10.1016/b978-0-12-800949-9.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Di Giulio RT, Clark BW. The Elizabeth River Story: A Case Study in Evolutionary Toxicology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:259-98. [PMID: 26505693 PMCID: PMC4733656 DOI: 10.1080/15320383.2015.1074841] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.
Collapse
Affiliation(s)
- Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Address correspondence to Richard T. Di Giulio, Nicholas School of the Environment, Duke University, Durham, NC27708-0328, USA. E-mail:
| | - Bryan W. Clark
- U.S. Environmental Protection Agency, Atlantic Ecology Division, National Health & Environmental Effects Research Laboratory, Office of Research and Development, Narragansett, Rhode Island, USA
| |
Collapse
|
35
|
Aluru N, Karchner SI, Franks DG, Nacci D, Champlin D, Hahn ME. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:192-201. [PMID: 25481785 PMCID: PMC4272816 DOI: 10.1016/j.aquatox.2014.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off-target effects in AHR paralogs. No mutations were observed in closely related AHR genes (AHR1a, AHR1b, AHR2a, AHRR) in the CRISPR-Cas9-injected embryos. Overall, our results demonstrate that targeted genome-editing methods are efficient in inducing mutations at specific loci in embryos of a non-traditional model species, without detectable off-target effects in paralogous genes.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| | - Diane Nacci
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Environmental Protection Agency, Narragansett, RI 02882, USA
| | - Denise Champlin
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Environmental Protection Agency, Narragansett, RI 02882, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
36
|
Burggren W, Dubansky B, Roberts A, Alloy M. Deepwater Horizon Oil Spill as a Case Study for Interdisciplinary Cooperation within Developmental Biology, Environmental Sciences and Physiology. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjet.2015.34c002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Clark BW, Bone AJ, Di Giulio RT. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13898-908. [PMID: 24374617 PMCID: PMC4074458 DOI: 10.1007/s11356-013-2446-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/09/2013] [Indexed: 05/06/2023]
Abstract
Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable.
Collapse
Affiliation(s)
- Bryan W Clark
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA,
| | | | | |
Collapse
|
38
|
Williams R, Hubberstey AV. Benzo(a)pyrene exposure causes adaptive changes in p53 and CYP1A gene expression in Brown bullhead (Ameiurus nebulosus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:201-210. [PMID: 25259779 DOI: 10.1016/j.aquatox.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The Brown bullhead (Ameiurus nebulosus) is able to survive and reproduce in high levels of environmentally contaminated areas of the Great Lakes. The purpose of this study was to establish whether there are adaptive genetic/molecular changes occurring in these fish that allow for their survival. Expression of a cell cycle regulator, p53 and the toxin metabolizing protein, CYP1A were measured in liver tissue from bullhead caught from either clean or contaminated areas of Lake Erie and surrounding areas. Wild caught fish and F1 raised offspring (whose parents originated from clean and contaminated sites) were used to measure endogenous gene expression levels. Results revealed that endogenous expression of p53 was on average 6.6× higher in contaminated fish than in fish caught from clean sites. Interestingly, when fed benzo(a)pyrene (BaP)-treated food, p53 expression increased 0.2× in clean fish and decreased 2.6× in contaminated fish. Endogenous CYP1A expression was not detectable in clean fish and low in contaminated fish. Upon exposure to BaP-treated food, CYP1A expression increased in both clean and contaminated fish, although at a higher rate in clean fish. Furthermore, when fish were cleared and then re-exposed to BaP, CYP1A expression increased from basal levels at a higher rate in clean versus contaminated fish. CYP1A and p53 expression in F1 offspring was similar to wild caught fish at the endogenous level and when fed BaP treated food. Results suggest that fish in contaminated regions may be implementing an adaptive response to severe environmental stress by maintaining high expression of p53 and low expression of CYP1A; thus lending increased protection to cells and decreasing the potential amount of carcinogens produced by contaminant metabolism.
Collapse
Affiliation(s)
- R Williams
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B3P4
| | - A V Hubberstey
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B3P4.
| |
Collapse
|
39
|
Tison JL, Blennow V, Palkopoulou E, Gustafsson P, Roos A, Dalén L. Population structure and recent temporal changes in genetic variation in Eurasian otters from Sweden. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0664-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Foekema EM, Lopez Parron M, Mergia MT, Carolus ERM, vd Berg JHJ, Kwadijk C, Dao Q, Murk AJ. Internal effect concentrations of organic substances for early life development of egg-exposed fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 101:14-22. [PMID: 24507121 DOI: 10.1016/j.ecoenv.2013.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
The present study investigates the likelihood that early life development of marine fish from contaminated areas is affected by maternally transferred persistent organic substances (POPs). The common sole (Solea solea) was used as model species. Fertilized eggs were exposed via the water until hatching, 6 days post fertilization. The newly hatched larvae were allowed to develop further under unexposed conditions until the end of the metamorphosis. Effects on the larvae were determined for the dioxin-like polychlorinated biphenyl PCB 126, the technical PCB-mixture Arochlor 1254, polybrominated diphenylethers (PBDEs), and hexabromocyclododecane (HBCD), for an artificial mixture of PCBs and PBDEs, and for 'field mixtures' extracted from sole from the North Sea and the contaminated Western Scheldt estuary. Effect levels were expressed as tissue concentrations in the newly hatched larvae at the end of the exposure period. Exposure to PCBs, PBDEs, and the artificial and field mixtures caused mortality that started to occur shortly after the larvae became free-feeding (10 days post fertilization) and continued to increase until the onset of metamorphosis, 15 days later. The effects induced by the field mixtures correlated well with the ΣPCB concentrations in the tissue of the exposed larvae. No indications were found for synergistic effects or for substantial contribution of other (unknown) substances in the field mixtures. HBCD did not induce toxic effects. As lipid normalized POP levels in fish eggs are in general comparable to the levels in the tissue of the female fish, fish tissue concentrations are indicative of the internal exposure of the developing larvae as a result maternally transferred POPs will occur in the field. In sole from the Western Scheldt estuary POP levels are about twenty times lower than the larval tissue concentration that produced 50 percent early life stage mortality. Levels in North Sea sole are an order of a magnitude lower. At more heavily contaminated sites negative effect of PCBs, especially of those with dioxin-like toxicity can be expected.
Collapse
Affiliation(s)
- Edwin M Foekema
- IMARES Wageningen UR, Institute for marine resources and ecosystem Studies, PO Box 57, 1780 AB Den Helder, Netherlands.
| | - Maria Lopez Parron
- Wageningen University, Division of Toxicology, Tuinlaan 5, 6703 HE Wageningen, Netherlands
| | - Mekuria T Mergia
- Wageningen University, Division of Toxicology, Tuinlaan 5, 6703 HE Wageningen, Netherlands
| | - Elisa R M Carolus
- Wageningen University, Division of Toxicology, Tuinlaan 5, 6703 HE Wageningen, Netherlands
| | - Johannes H J vd Berg
- Wageningen University, Division of Toxicology, Tuinlaan 5, 6703 HE Wageningen, Netherlands
| | - Christiaan Kwadijk
- IMARES Wageningen UR, Institute for marine resources and ecosystem Studies, PO Box 57, 1780 AB Den Helder, Netherlands
| | - Quy Dao
- IMARES Wageningen UR, Institute for marine resources and ecosystem Studies, PO Box 57, 1780 AB Den Helder, Netherlands
| | - AlberTinka J Murk
- Wageningen University, Division of Toxicology, Tuinlaan 5, 6703 HE Wageningen, Netherlands
| |
Collapse
|
41
|
Reitzel AM, Karchner SI, Franks DG, Evans BR, Nacci D, Champlin D, Vieira VM, Hahn ME. Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats. BMC Evol Biol 2014; 14:6. [PMID: 24422594 PMCID: PMC3899389 DOI: 10.1186/1471-2148-14-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/18/2013] [Indexed: 11/27/2022] Open
Abstract
Background The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. Results We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Conclusion Together, these data suggest that F. heteroclitus populations in reference and polluted sites have similar genetic diversity, providing no evidence for strong genetic bottlenecks for populations in polluted locations. However, the data provide evidence for genetic differentiation among sites, selection at specific nucleotides in AHR1 and AHR2, and specific AHR2 SNPs and haplotypes that are associated with the PCB-resistant phenotype in the New Bedford Harbor population. The results suggest that AHRs, and especially AHR2, may be important, recurring targets for selection in local adaptation to dioxin-like aromatic hydrocarbon contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02568, USA.
| |
Collapse
|
42
|
Whitehead A. Evolutionary Genomics of Environmental Pollution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:321-37. [DOI: 10.1007/978-94-007-7347-9_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
43
|
Bozinovic G, Sit TL, Di Giulio R, Wills LF, Oleksiak MF. Genomic and physiological responses to strong selective pressure during late organogenesis: few gene expression changes found despite striking morphological differences. BMC Genomics 2013; 14:779. [PMID: 24215130 PMCID: PMC3835409 DOI: 10.1186/1471-2164-14-779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/26/2013] [Indexed: 12/31/2022] Open
Abstract
Background Adaptations to a new environment, such as a polluted one, often involve large modifications of the existing phenotypes. Changes in gene expression and regulation during critical developmental stages may explain these phenotypic changes. Embryos from a population of the teleost fish, Fundulus heteroclitus, inhabiting a clean estuary do not survive when exposed to sediment extract from a site highly contaminated with polycyclic aromatic hydrocarbons (PAHs) while embryos derived from a population inhabiting a PAH polluted estuary are remarkably resistant to the polluted sediment extract. We exposed embryos from these two populations to surrogate model PAHs and analyzed changes in gene expression, morphology, and cardiac physiology in order to better understand sensitivity and adaptive resistance mechanisms mediating PAH exposure during development. Results The synergistic effects of two model PAHs, an aryl hydrocarbon receptor (AHR) agonist (β-naphthoflavone) and a cytochrome P4501A (CYP1A) inhibitor (α-naphthoflavone), caused significant developmental delays, impaired cardiac function, severe morphological alterations and failure to hatch, leading to the deaths of reference embryos; resistant embryos were mostly unaffected. Unexpectedly, patterns of gene expression among normal and moderately deformed embryos were similar, and only severely deformed embryos showed a contrasting pattern of gene expression. Given the drastic morphological differences between reference and resistant embryos, a surprisingly low percentage of genes, 2.24% of 6,754 analyzed, show statistically significant differences in transcript levels during late organogenesis between the two embryo populations. Conclusions Our study demonstrates important contrasts in responses between reference and resistant natural embryo populations to synergistic effects of surrogate model PAHs that may be important in adaptive mechanisms mediating PAH effects during fish embryo development. These results suggest that statistically significant changes in gene expression of relatively few genes contribute to the phenotypic changes and large morphological differences exhibited by reference and resistant populations upon exposure to PAH pollutants. By correlating cardiac physiology and morphology with changes in gene expression patterns of reference and resistant embryos, we provide additional evidence for acquired resistance among embryos whose parents live at heavily contaminated sites.
Collapse
Affiliation(s)
- Goran Bozinovic
- Department of Environmental and Molecular Toxicology, North Carolina State University, Box 7633, Raleigh, NC 27695-7633, USA.
| | | | | | | | | |
Collapse
|
44
|
Ishiniwa H, Sakai M, Tohma S, Matsuki H, Takahashi Y, Kajiwara H, Sekijima T. Dioxin pollution disrupts reproduction in male Japanese field mice. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1335-1347. [PMID: 24026525 DOI: 10.1007/s10646-013-1120-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
Dioxins cause various adverse effects in animals including teratogenesis, induction of drug metabolizing enzymes, tumor promotion, and endocrine disruption. Above all, endocrine disruption is known to disturb reproduction in adult animals and may, also seriously impact their offspring. However, most previous studies have quantified the species-specific accumulation of dioxins, whereas few studies have addressed the physiological impacts of dioxins on wildlife, such as reduced reproductive function. Here we clarify an effect of endocrine disruption caused by dioxins on the Japanese field mouse, Apodemus speciosus. Japanese field mice collected from various sites polluted with dioxins accumulated high concentrations of dioxins in their livers. Some dioxin congeners, especially, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, 3,3',4,4',5-pentachloro biphenyl, 1,2,3,4,6,7,8-heptachlorodibenzofuran, and octachlorodibenzo-p-dioxin, which showed high biota-soil accumulation factors, contributed to concentration of dioxins in mouse livers with an increase of accumulation of total dioxins. As for physiological effects on the Japanese field mouse, high levels of cytochrome P450 1A1 (CYP1A1) mRNA, a drug metabolizing enzyme induced by dioxins, were found in the livers of mice captured at polluted sites. Furthermore, at such sites polluted with dioxins, increased CYP1A1 expression coincided with reduced numbers of active spermatozoa in mice. Thus, disruption in gametogenesis observed in these mice suggests that dioxins not only negatively impact reproduction among Japanese field mice, but might also act as a kind of selection pressure in a chemically polluted environment.
Collapse
Affiliation(s)
- Hiroko Ishiniwa
- Department of Environmental Science and Technology, Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku, Niigata City, 950-2181, Japan,
| | | | | | | | | | | | | |
Collapse
|
45
|
Santos EM, Hamilton PB, Coe TS, Ball JS, Cook AC, Katsiadaki I, Tyler CR. Population bottlenecks, genetic diversity and breeding ability of the three-spined stickleback (Gasterosteus aculeatus) from three polluted English Rivers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:264-271. [PMID: 24071362 DOI: 10.1016/j.aquatox.2013.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 07/02/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Pollution is a significant environmental pressure on fish populations in both freshwater and marine environments. Populations subjected to chronic exposure to pollutants can experience impacts ranging from altered reproductive capacity to changes in population genetic structure. Few studies, however, have examined the reproductive vigor of individuals within populations inhabiting environments characterized by chronic pollution. In this study we undertook an analysis of populations of three-spined sticklebacks (Gasterosteus aculeatus) from polluted sites, to determine levels of genetic diversity, assess for evidence of historic population genetic bottlenecks and determine the reproductive competitiveness of males from these locations. The sites chosen included locations in the River Aire, the River Tees and the River Birket, English rivers that have been impacted by pollution from industrial and/or domestic effluents for over 100 years. Male reproductive competitiveness was determined via competitive breeding experiments with males and females derived from a clean water site, employing DNA microsatellites to determine parentage outcome. Populations of stickleback collected from the three historically polluted sites showed evidence of recent population bottlenecks, although only the River Aire population showed low genetic diversity. In contrast, fish collected from two relatively unpolluted sites within the River Gowy and Houghton Springs showed weak, or no evidence of such bottlenecks. Nevertheless, males derived from polluted sites were able to reproduce successfully in competition with males derived from clean water exposures, indicating that these bottlenecks have not resulted in any substantial loss of reproductive fitness in males.
Collapse
Affiliation(s)
- Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
Clark BW, Cooper EM, Stapleton HM, Di Giulio RT. Compound- and mixture-specific differences in resistance to polycyclic aromatic hydrocarbons and PCB-126 among Fundulus heteroclitus subpopulations throughout the Elizabeth River estuary (Virginia, USA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10556-66. [PMID: 24003986 PMCID: PMC4079253 DOI: 10.1021/es401604b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Industries Superfund Site (Elizabeth River, Portsmouth, VA, USA) are resistant to the acute toxicity and cardiac teratogenesis caused by high levels of polycyclic aromatic hydrocarbons (PAHs) from creosote. The resistance is linked to down regulation of the aryl hydrocarbon receptor (AHR) pathway. We investigated the association between CYP1 activity, as a marker of potential AHR pathway suppression, and contaminant resistance in killifish subpopulations from sites throughout the estuary that varied significantly in PAH contamination level. Adult killifish and sediments were collected from seven sites across approximately 13.7 km in river length within the estuary and from a nearby reference site. Sediment PAH levels were determined using gas chromatography mass spectrometry. Embryos obtained via manual spawning were exposed to individual AHR agonists and PAH mixtures 24 h post fertilization (hpf); CYP1 activity was determined by in ovo ethoxyresorufin-o-deethylase (EROD) at 96 hpf, and cardiac deformity severity was scored at 144 hpf. The total PAH levels measured among the sites varied from approximately 200 to 125,000 ng/g dry sediment. Overall, the resistance to teratogenesis was strongest in the subpopulations from sites in or closest to the major PAH contamination sites, but even embryos from less-contaminated sites within the Elizabeth River demonstrated at least partial resistance to many challenges. Surprisingly, all of the subpopulations tested were highly resistant to PCB-126 (3,3',4,4',5-pentachlorobiphenyl). However, the degree of CYP1 activity response varied significantly among subpopulations and did not always correlate strongly with resistance to teratogenesis; some subpopulations resisted the cardiac teratogenesis caused by the challenges at doses that still elicited strong EROD induction. Our results suggest that there is variation in the adaptive phenotype exhibited by laboratory-spawned embryos from killifish subpopulations throughout the estuary. Furthermore, the results show that contaminants have affected killifish subpopulations throughout the estuary, even in sites with lower levels of PAHs.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/enzymology
- Adaptation, Physiological
- Animals
- Cytochrome P-450 CYP1A1/metabolism
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/enzymology
- Embryonic Development/drug effects
- Fundulidae/abnormalities
- Fundulidae/physiology
- Geologic Sediments/analysis
- Heart Defects, Congenital/chemically induced
- Heart Defects, Congenital/enzymology
- Polychlorinated Biphenyls/toxicity
- Polycyclic Aromatic Hydrocarbons/analysis
- Polycyclic Aromatic Hydrocarbons/toxicity
- Receptors, Aryl Hydrocarbon/metabolism
- Teratogens/analysis
- Teratogens/toxicity
- Virginia
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Bryan W. Clark
- Nicholas School of the Environment, Levine Science Research Building, Duke University, Durham, NC, 27713, USA
- Corresponding author:
| | - Ellen M. Cooper
- Nicholas School of the Environment, Levine Science Research Building, Duke University, Durham, NC, 27713, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Levine Science Research Building, Duke University, Durham, NC, 27713, USA
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Levine Science Research Building, Duke University, Durham, NC, 27713, USA
| |
Collapse
|
47
|
Houde M, Douville M, Despatie SP, De Silva AO, Spencer C. Induction of gene responses in St. Lawrence River northern pike (Esox lucius) environmentally exposed to perfluorinated compounds. CHEMOSPHERE 2013; 92:1195-200. [PMID: 23453599 DOI: 10.1016/j.chemosphere.2013.01.099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/31/2013] [Indexed: 05/06/2023]
Abstract
Municipal waste water effluents (MWWEs) are important sources of chemical contamination for aquatic environments. This study investigated the presence and effects of perfluorinated compounds (PFCs) in environmentally exposed northern pike (Esox lucius) collected upstream and downstream a major municipal waste water treatment plant (WWTP) in the St. Lawrence River, Canada. Twelve PFCs, including the newly detected perfluoroethylcyclohexane sulfonate (PFECHS), were quantified in fish muscle, liver, and plasma. Additionally, the expression of eight genes and the activity of three biomarkers were analyzed in fish tissues at both sites. Mean ∑PFC concentration in fish plasma collected upstream the WWTP was 185ng/g w.w. compared to 545ng/g w.w. downstream the point of release. PFECHS was quantified for the first time in St. Lawrence River fish (mean plasma concentration in MWWE fish: 5.07±4.72ng/g w.w.). Results of transcriptomic responses were tissue-specific and indicated significant up-regulation for metallothionein (MT) in blood and MT, glutathion-S-transferase (GST), superoxide dismutase (SOD), and cytochromes P450 1A1 (CYP1A1) in gill tissue of fish collected in the MWWE suggesting greater stress responses for organisms at this location. Significant relationships were found between vitellogenin (Vtg) gene expression in liver, Vtg activity in plasma and perfluorotridecanoic acid (PFTrA), perfluorotetradecanoic acid (PFTeA), and perfluorodecane sulfonate (PFDS) plasma concentrations. The possible endocrine effects of these PFCs should be further investigated.
Collapse
Affiliation(s)
- Magali Houde
- Environment Canada, Centre Saint-Laurent, 105 McGill Street, Montreal, QC, Canada H2Y 2E7.
| | | | | | | | | |
Collapse
|
48
|
Gall ML, Holmes SP, Dafforn KA, Johnston EL. Differential tolerance to copper, but no evidence of population-level genetic differences in a widely-dispersing native barnacle. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:929-937. [PMID: 23508295 DOI: 10.1007/s10646-013-1063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 06/01/2023]
Abstract
Despite many estuaries having high levels of metal pollution, species are found to persist in these stressful environments. Populations of estuarine invertebrates exposed to toxic concentrations of such metals may be under selection. However, in species with a wide-dispersal potential, any short-term results of localized selection may be counteracted by external recruitment from populations not under selection. The barnacle Amphibalanus variegatus is found in nearshore coastal environments as well as sheltered embayments and estuaries, including metal-impacted estuaries, from New South Wales, Australia to Western Australia. The fertilised eggs of A. variegatus are brooded internally and released as larvae (nauplii), which remain in the water-column for ~14 days before settling. Hence the species has a considerable dispersal capacity. The purpose of this study was to examine whether populations of A. variegatus from metal-impacted sites, displayed a greater tolerance to a toxicant (copper) than reference populations. Adult barnacles where collected from twenty sites within two metal-impacted and fourteen sites within two reference estuaries. Within 24 h, adults were induced to spawn and the offspring were exposed to copper in a laboratory assay. Larvae collected from the metal-impacted estuaries demonstrated a greater tolerance to copper compared to those from reference sites. To determine if selection/localised in the metal impacted sites was occurring, the genetic structure of populations at three sites was examined using an AFLP methodology. No evidence of unique population identity and or selection (outlier loci) was detected suggesting that: (1) the tolerance displayed in the assay was derived from acclimation during development; and/or (2) that the populations are open preventing the fixation of any unique alleles.
Collapse
Affiliation(s)
- Mailie L Gall
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
49
|
Harbeitner RC, Hahn ME, Timme-Laragy AR. Differential sensitivity to pro-oxidant exposure in two populations of killifish (Fundulus heteroclitus). ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:387-401. [PMID: 23329125 PMCID: PMC3573531 DOI: 10.1007/s10646-012-1033-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 05/06/2023]
Abstract
New Bedford Harbor (MA, U.S.A.; NBH) is a Superfund site inhabited by Atlantic killifish (Fundulus heteroclitus) with altered aryl hydrocarbon receptor (Ahr) signaling, leading to resistance to effects of polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The Ahr is a transcription factor that regulates gene expression of many Phase I and II detoxifying enzymes and interacts with Nrf2, a transcription factor that regulates the response to oxidative stress. This study tested the hypothesis that PCB-resistant killifish exhibit altered sensitivity to oxidative stress. Killifish F(1) embryos from NBH and a clean reference site (Scorton Creek, MA, U.S.A.; SC) were exposed to model pro-oxidant and Nrf2-activator, tert-butylhydroquinone (tBHQ). Embryos were exposed at specific embryonic developmental stages (5, 7, and 9 days post fertilization) and toxicity was assessed, using a deformity score, survival, heart rate, and gene expression to compare sensitivity between PCB -resistant and -sensitive (reference) populations. Acute exposure to tBHQ resulted in transient reduction in heart rate in NBH and SC F(1) embryos. However, embryos from NBH were more sensitive to tBHQ, with more frequent and severe deformities, including pericardial edema, tail deformities, small body size, and reduced pigment and erythrocytes. NBH embryos had lower basal expression of antioxidant genes catalase and glutathione-S-transferase alpha (gsta), and upon exposure to tBHQ, exhibited lower levels of expression of catalase, gsta, and superoxide dismutase compared to controls. This result suggests that adaptation to tolerate PCBs has altered the sensitivity of NBH fish to oxidative stress during embryonic development, demonstrating a cost of the PCB resistance adaptation.
Collapse
Affiliation(s)
- Rachel C Harbeitner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
50
|
Effects on Fish of Polycyclic Aromatic HydrocarbonS (PAHS) and Naphthenic Acid Exposures. FISH PHYSIOLOGY 2013. [DOI: 10.1016/b978-0-12-398254-4.00004-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|