1
|
Cribb L, Sha R, Yiallourou S, Grima NA, Cavuoto M, Baril AA, Pase MP. Sleep regularity and mortality: a prospective analysis in the UK Biobank. eLife 2023; 12:RP88359. [PMID: 37995126 PMCID: PMC10666928 DOI: 10.7554/elife.88359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Background Irregular sleep-wake timing may cause circadian disruption leading to several chronic age-related diseases. We examined the relationship between sleep regularity and risk of all-cause, cardiovascular disease (CVD), and cancer mortality in 88,975 participants from the prospective UK Biobank cohort. Methods The sleep regularity index (SRI) was calculated as the probability of an individual being in the same state (asleep or awake) at any two time points 24 hr apart, averaged over 7 days of accelerometry (range 0-100, with 100 being perfectly regular). The SRI was related to the risk of mortality in time-to-event models. Results The mean sample age was 62 years (standard deviation [SD], 8), 56% were women, and the median SRI was 60 (SD, 10). There were 3010 deaths during a mean follow-up of 7.1 years. Following adjustments for demographic and clinical variables, we identified a non-linear relationship between the SRI and all-cause mortality hazard (p [global test of spline term]<0.001). Hazard ratios, relative to the median SRI, were 1.53 (95% confidence interval [CI]: 1.41, 1.66) for participants with SRI at the 5th percentile (SRI = 41) and 0.90 (95% CI: 0.81, 1.00) for those with SRI at the 95th percentile (SRI = 75), respectively. Findings for CVD mortality and cancer mortality followed a similar pattern. Conclusions Irregular sleep-wake patterns are associated with higher mortality risk. Funding National Health and Medical Research Council of Australia (GTN2009264; GTN1158384), National Institute on Aging (AG062531), Alzheimer's Association (2018-AARG-591358), and the Banting Fellowship Program (#454104).
Collapse
Affiliation(s)
- Lachlan Cribb
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Ramon Sha
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Stephanie Yiallourou
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Natalie A Grima
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Marina Cavuoto
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
- National Ageing Research InstituteMelbourneAustralia
| | - Andree-Ann Baril
- Douglas Mental Health University Institute, McGill UniversityMontrealCanada
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
- Harvard T.H. Chan School of Public Health, Harvard UniversityBostonUnited States
| |
Collapse
|
2
|
Rojo D, Dal Cengio L, Badner A, Kim S, Sakai N, Greene J, Dierckx T, Mehl LC, Eisinger E, Ransom J, Arellano-Garcia C, Gumma ME, Soyk RL, Lewis CM, Lam M, Weigel MK, Damonte VM, Yalçın B, Jones SE, Ollila HM, Nishino S, Gibson EM. BMAL1 loss in oligodendroglia contributes to abnormal myelination and sleep. Neuron 2023; 111:3604-3618.e11. [PMID: 37657440 PMCID: PMC10873033 DOI: 10.1016/j.neuron.2023.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Myelination depends on the maintenance of oligodendrocytes that arise from oligodendrocyte precursor cells (OPCs). We show that OPC-specific proliferation, morphology, and BMAL1 are time-of-day dependent. Knockout of Bmal1 in mouse OPCs during development disrupts the expression of genes associated with circadian rhythms, proliferation, density, morphology, and migration, leading to changes in OPC dynamics in a spatiotemporal manner. Furthermore, these deficits translate into thinner myelin, dysregulated cognitive and motor functions, and sleep fragmentation. OPC-specific Bmal1 loss in adulthood does not alter OPC density at baseline but impairs the remyelination of a demyelinated lesion driven by changes in OPC morphology and migration. Lastly, we show that sleep fragmentation is associated with increased prevalence of the demyelinating disorder multiple sclerosis (MS), suggesting a link between MS and sleep that requires further investigation. These findings have broad mechanistic and therapeutic implications for brain disorders that include both myelin and sleep phenotypes.
Collapse
Affiliation(s)
- Daniela Rojo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Louisa Dal Cengio
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anna Badner
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samuel Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jacob Greene
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tess Dierckx
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lindsey C Mehl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ella Eisinger
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Julia Ransom
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Caroline Arellano-Garcia
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Biology Graduate Program, Stanford University, Palo Alto, CA 94305, USA
| | - Mohammad E Gumma
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Rebecca L Soyk
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Cheyanne M Lewis
- Neuroscience Graduate Program, Stanford University, Palo Alto, CA 94305, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Maya K Weigel
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Stem Cell Biology and Regenerative Medicine Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Belgin Yalçın
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samuel E Jones
- Institute for Molecular Medicine, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Hanna M Ollila
- Institute for Molecular Medicine, HiLIFE, University of Helsinki, Helsinki 00014, Finland; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
3
|
Cribb L, Sha R, Yiallourou S, Grima NA, Cavuoto M, Baril AA, Pase MP. Sleep Regularity and Mortality: A Prospective Analysis in the UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.14.23288550. [PMID: 37131603 PMCID: PMC10153326 DOI: 10.1101/2023.04.14.23288550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Irregular sleep-wake timing may cause circadian disruption leading to several chronic age-related diseases. We examined the relationship between sleep regularity and risk of all-cause, cardiovascular disease (CVD), and cancer mortality in 88,975 participants from the prospective UK Biobank cohort. Methods The sleep regularity index (SRI) was calculated as the probability of an individual being in the same state (asleep or awake) at any two time points 24 hours apart, averaged over 7-days of accelerometry (range 0-100, with 100 being perfectly regular). The SRI was related to the risk of mortality in time-to-event models. Findings The mean sample age was 62 years (SD, 8), 56% were women, and the median SRI was 60 (SD, 10). There were 3010 deaths during a mean follow-up of 7.1 years. Following adjustments for demographic and clinical variables, we identified a non-linear relationship between the SRI and all-cause mortality hazard (p [global test of spline term] < 0·001). Hazard Ratios, relative to the median SRI, were 1·53 (95% confidence interval [CI]: 1·41, 1·66) for participants with SRI at the 5th percentile (SRI = 41) and 0·90 (95% CI: 0·81, 1·00) for those with SRI at the 95th percentile (SRI = 75), respectively. Findings for CVD mortality and cancer mortality followed a similar pattern. Conclusions Irregular sleep-wake patterns are associated with higher mortality risk. Funding National Health and Medical Research Council of Australia (GTN2009264; GTN1158384), National Institute on Aging (AG062531), Alzheimer's Association (2018-AARG-591358), and the Banting Fellowship Program (#454104).
Collapse
Affiliation(s)
- Lachlan Cribb
- Turner Institute for Brain and Mental Health, Monash University, Melbourne Australia
| | - Ramon Sha
- Turner Institute for Brain and Mental Health, Monash University, Melbourne Australia
| | - Stephanie Yiallourou
- Turner Institute for Brain and Mental Health, Monash University, Melbourne Australia
| | - Natalie A Grima
- Turner Institute for Brain and Mental Health, Monash University, Melbourne Australia
| | - Marina Cavuoto
- Turner Institute for Brain and Mental Health, Monash University, Melbourne Australia
- National Ageing Research Institute, Melbourne, Australia
| | - Andree-Ann Baril
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, Monash University, Melbourne Australia
- Harvard T.H. Chan School of Public Health, Harvard University, MA, USA
| |
Collapse
|
4
|
HINOURA TAKUJI, MUKAI SHOICHIRO, KAMOTO TOSHIYUKI, KURODA YOSHIKI. PER3 polymorphisms and their association with prostate cancer risk in Japanese men. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E489-E495. [PMID: 34604590 PMCID: PMC8451342 DOI: 10.15167/2421-4248/jpmh2021.62.2.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/18/2021] [Indexed: 12/24/2022]
Abstract
Introduction Prostate cancer (PCa) is one of the most common cancers affecting men globally. Although PER3 has been suggested as a risk factor for cancer development, there are few reports elucidating the relationship between PER3 and PCa. We investigated the association between PER3 polymorphisms (rs2640908 and VNTR) and susceptibility to PCa in the Japanese population. Methods Eighty three patients with PCa and 122 controls participated in this study. We analyzed rs2640908 and VNTR polymorphisms by using PCR-Restriction Fragment Length Polymorphism (PCR-RFLP). Results Compared to the C/C genotype with the rs2640908 polymorphism, the T/T (OR: 0.35, 95% CI: 0.15-0.81, P = 0.02) and C/T + T/T (OR: 0.46, 95% CI: 0.24-0.88, P = 0.02) genotypes had a significantly lower risk of PCa. TT (OR: 0.29, 95% CI: 0.10-0.77, P = 0.02) and CT + TT (OR: 0.47, 95% CI: 0.23-0.97, P = 0.04) also had significant protection against PCa in the smoker group. Significantly, we observed an association between smoking and rs2640908 polymorphism in this study. However, no association between the VNTR polymorphisms and PCa was detected. Conclusions Our results suggest that PER3 rs2640908 polymorphisms influence an individual's susceptibility to PCa.
Collapse
Affiliation(s)
- TAKUJI HINOURA
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - SHOICHIRO MUKAI
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - TOSHIYUKI KAMOTO
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - YOSHIKI KURODA
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Correspondence: Yoshiki Kuroda, Department of Public Health, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki city, Miyazaki 889-1692, Japan - Tel.: +81-985-85-0874 - Fax: +81-985-85-6258 - E-mail:
| |
Collapse
|
5
|
Jedrzejczak-Silicka M, Kordas M, Konopacki M, Rakoczy R. Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)-An In Vitro Wound Healing Study. Int J Mol Sci 2021; 22:5785. [PMID: 34071384 PMCID: PMC8199476 DOI: 10.3390/ijms22115785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Since the effect of MFs (magnetic fields) on various biological systems has been studied, different results have been obtained from an insignificant effect of weak MFs on the disruption of the circadian clock system. On the other hand, magnetic fields, electromagnetic fields, or electric fields are used in medicine. The presented study was conducted to determine whether a low-frequency RMF (rotating magnetic field) with different field parameters could evoke the cellular response in vitro and is possible to modulate the cellular response. The cellular metabolic activity, ROS and Ca2+ concentration levels, wound healing assay, and gene expression analyses were conducted to evaluate the effect of RMF. It was shown that different values of magnetic induction (B) and frequency (f) of RMF evoke a different response of cells, e.g., increase in the general metabolic activity may be associated with the increasing of ROS levels. The lower intracellular Ca2+ concentration (for 50 Hz) evoked the inability of cells to wound closure. It can be stated that the subtle balance in the ROS level is crucial in the wound for the effective healing process, and it is possible to modulate the cellular response to the RMF in the context of an in vitro wound healing.
Collapse
Affiliation(s)
- Magdalena Jedrzejczak-Silicka
- Laboratory of Cytogenetics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Marian Kordas
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| | - Maciej Konopacki
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| | - Rafał Rakoczy
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Avenue 42, 71-065 Szczecin, Poland; (M.K.); (M.K.)
| |
Collapse
|
6
|
Ruby CL, Major RJ, Hinrichsen RD. Regulation of tissue regeneration by the circadian clock. Eur J Neurosci 2021; 53:3576-3597. [PMID: 33893679 DOI: 10.1111/ejn.15244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Circadian rhythms are regulated by a highly conserved transcriptional/translational feedback loop that maintains approximately 24-hr periodicity from cellular to organismal levels. Much research effort is being devoted to understanding how the outputs of the master clock affect peripheral oscillators, and in turn, numerous biological processes. Recent studies have revealed roles for circadian timing in the regulation of numerous cellular behaviours in support of complex tissue regeneration. One such role involves the interaction between the circadian clockwork and the cell cycle. The molecular mechanisms that control the cell cycle create a system of regulation that allows for high fidelity DNA synthesis, mitosis and apoptosis. In recent years, it has become clear that clock gene products are required for proper DNA synthesis and cell cycle progression, and conversely, elements of the cell cycle cascade feedback to influence molecular circadian timing mechanisms. It is through this crosstalk that the circadian system orchestrates stem cell proliferation, niche exit and control of the signalling pathways that govern differentiation and self-renewal. In this review, we discuss the evidence for circadian control of tissue homeostasis and repair and suggest new avenues for research.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Robert J Major
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | | |
Collapse
|
7
|
Barbosa Vieira TK, Jurema da Rocha Leão M, Pereira LX, Alves da Silva LC, Pereira da Paz BB, Santos Ferreira RJ, Feitoza CC, Fernandes Duarte AK, Barros Ferreira Rodrigues AK, Cavalcanti de Queiroz A, Fireman de Farias K, Del Vechio Koike B, de Sales Marques C, Alberto de Carvalho Fraga C. Correlation between circadian rhythm related genes, type 2 diabetes, and cancer: Insights from metanalysis of transcriptomics data. Mol Cell Endocrinol 2021; 526:111214. [PMID: 33610641 DOI: 10.1016/j.mce.2021.111214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Clock genes work as an auto-regulated transcription-translational loop of circadian genes that drives the circadian rhythms in each cell and they are essential to physiological requests. Since metabolism is a dynamic process, it involves several physiological variables that circadian cycling. The clock genes alterations can affect multiple systems concomitantly, because they constitute the promoter factors for relevant metabolic pathways. Considering the intertwined structure of signaling, regulatory, and metabolic processes within a cell, we employed a genome-scale biomolecular network. Accordingly, a meta-analysis of diabetic-associated transcriptomic datasets was performed, and the core information on differentially expressed genes (DEGs) was obtained by statistical analyses. In the current study, meta-analysis was performed on type 2 diabetes, circadian rhythm-related genes, and breast, bladder, liver, pancreas, colon and rectum cancer-associated transcriptome data using the integration of gene expression profiles with genome-scale biomolecular networks in diabetes samples. First, we detected downregulated and upregulated DEGs in mouse cortex and hypothalamus samples of mice with sleep deprivation. In summary, upregulated genes active genes associated with oxidative phosphorylation, cancer and diabetes, mainly in hypothalamus specimens. In cortex, we observed mainly downregulation of immune system. DEGs were combined with 214 circadian rhythm related genes to type 2 DM and cancer samples. We observed that several common genes deregulated in both diseases. Klf10, Ntkr3, Igf1, Usp2, Ezh2 were both downregulated in type 2 DM and cancer samples, while Arntl2 and Agrp were upregulated. It seems that the changes in mRNA are contributing to the phenotypic changes in type 2 DM, resulting in phenotypic changes associated with the malignant transformation. Taking those genes to perform a survival analysis, we found only Igf1, Usp2 and Arntl2 genes associated with patient outcomes. While Igf1 and Usp2 downregulation had a negative impact, Arntl2 upregulation was associated with poor survival both in BLCA and BRCA cancer samples. Our data stimulate efforts in news studies to achieve the experimental and clinical validation about these biomolecules.
Collapse
Affiliation(s)
- Thaysa Kelly Barbosa Vieira
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Myra Jurema da Rocha Leão
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Luciana Xavier Pereira
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | | - Bruno Batista Pereira da Paz
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Ricardo Jansen Santos Ferreira
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Christiane Cavalcante Feitoza
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Ana Kelly Fernandes Duarte
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | | - Aline Cavalcanti de Queiroz
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Karol Fireman de Farias
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Bruna Del Vechio Koike
- Federal University of the São Francisco Valley, Petrolina. Av. José de Sá Maniçoba, S/N - Centro, Petrolina, PE, 56304-917, Brazil
| | - Carolinne de Sales Marques
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | |
Collapse
|
8
|
Arata Y, Takagi H. Quantitative Studies for Cell-Division Cycle Control. Front Physiol 2019; 10:1022. [PMID: 31496950 PMCID: PMC6713215 DOI: 10.3389/fphys.2019.01022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
The cell-division cycle (CDC) is driven by cyclin-dependent kinases (CDKs). Mathematical models based on molecular networks, as revealed by molecular and genetic studies, have reproduced the oscillatory behavior of CDK activity. Thus, one basic system for representing the CDC is a biochemical oscillator (CDK oscillator). However, genetically clonal cells divide with marked variability in their total duration of a single CDC round, exhibiting non-Gaussian statistical distributions. Therefore, the CDK oscillator model does not account for the statistical nature of cell-cycle control. Herein, we review quantitative studies of the statistical properties of the CDC. Over the past 70 years, studies have shown that the CDC is driven by a cluster of molecular oscillators. The CDK oscillator is coupled to transcriptional and mitochondrial metabolic oscillators, which cause deterministic chaotic dynamics for the CDC. Recent studies in animal embryos have raised the possibility that the dynamics of molecular oscillators underlying CDC control are affected by allometric volume scaling among the cellular compartments. Considering these studies, we discuss the idea that a cluster of molecular oscillators embedded in different cellular compartments coordinates cellular physiology and geometry for successful cell divisions.
Collapse
Affiliation(s)
| | - Hiroaki Takagi
- Department of Physics, School of Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
9
|
Juutilainen J, Herrala M, Luukkonen J, Naarala J, Hore PJ. Magnetocarcinogenesis: is there a mechanism for carcinogenic effects of weak magnetic fields? Proc Biol Sci 2019; 285:rspb.2018.0590. [PMID: 29794049 DOI: 10.1098/rspb.2018.0590] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Extremely low-frequency (ELF) magnetic fields have been classified as possibly carcinogenic, mainly based on rather consistent epidemiological findings suggesting a link between childhood leukaemia and 50-60 Hz magnetic fields from power lines. However, causality is not the only possible explanation for the epidemiological associations, as animal and in vitro experiments have provided only limited support for carcinogenic effects of ELF magnetic fields. Importantly, there is no generally accepted biophysical mechanism that could explain such effects. In this review, we discuss the possibility that carcinogenic effects are based on the radical pair mechanism (RPM), which seems to be involved in magnetoreception in birds and certain other animals, allowing navigation in the geomagnetic field. We review the current understanding of the RPM in magnetoreception, and discuss cryptochromes as the putative magnetosensitive molecules and their possible links to cancer-relevant biological processes. We then propose a hypothesis for explaining the link between ELF fields and childhood leukaemia, discuss the strengths and weaknesses of the current evidence, and make proposals for further research.
Collapse
Affiliation(s)
- Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Herrala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Causton HC. Metabolic rhythms: A framework for coordinating cellular function. Eur J Neurosci 2018; 51:1-12. [PMID: 30548718 DOI: 10.1111/ejn.14296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
Circadian clocks are widespread among eukaryotes and generally involve feedback loops coupled with metabolic processes and redox balance. The organising power of these oscillations has not only allowed organisms to anticipate day-night cycles, but also acts to temporally compartmentalise otherwise incompatible processes, enhance metabolic efficiency, make the system more robust to noise and propagate signals among cells. While daily rhythms and the function of the circadian transcription-translation loop have been the subject of extensive research over the past four decades, cycles of shorter period and respiratory oscillations, with which they are intertwined, have received less attention. Here, we describe features of yeast respiratory oscillations, which share many features with daily and 12 hr cellular oscillations in animal cells. This relatively simple system enables the analysis of dynamic rhythmic changes in metabolism, independent of cellular oscillations that are a product of the circadian transcription-translation feedback loop. Knowledge gained from studying ultradian oscillations in yeast will lead to a better understanding of the basic mechanistic principles and evolutionary origins of oscillatory behaviour among eukaryotes.
Collapse
Affiliation(s)
- Helen C Causton
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York
| |
Collapse
|
11
|
Hassan A, Ahmad J, Ashraf H, Ali A. Modeling and analysis of the impacts of jet lag on circadian rhythm and its role in tumor growth. PeerJ 2018; 6:e4877. [PMID: 29892500 PMCID: PMC5994163 DOI: 10.7717/peerj.4877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms maintain a 24 h oscillation pattern in metabolic, physiological and behavioral processes in all living organisms. Circadian rhythms are organized as biochemical networks located in hypothalamus and peripheral tissues. Rhythmicity in the expression of circadian clock genes plays a vital role in regulating the process of cell division and DNA damage control. The oncogenic protein, MYC and the tumor suppressor, p53 are directly influenced by the circadian clock. Jet lag and altered sleep/wake schedules prominently affect the expression of molecular clock genes. This study is focused on developing a Petri net model to analyze the impacts of long term jet lag on the circadian clock and its probable role in tumor progression. The results depict that jet lag disrupts the normal rhythmic behavior and expression of the circadian clock proteins. This disruption leads to persistent expression of MYC and suppressed expression of p53. Thus, it is inferred that jet lag altered circadian clock negatively affects the expressions of cell cycle regulatory genes and contribute in uncontrolled proliferation of tumor cells.
Collapse
Affiliation(s)
- Azka Hassan
- Research Center for Modeling and Simulation (RCMS), National University of Scinces and Technology (NUST), Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation (RCMS), National University of Scinces and Technology (NUST), Islamabad, Pakistan
| | - Hufsah Ashraf
- Research Center for Modeling and Simulation (RCMS), National University of Scinces and Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
12
|
Qian J, Thomas AP, Schroeder AM, Rakshit K, Colwell CS, Matveyenko AV. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2017; 313:E213-E221. [PMID: 28465284 PMCID: PMC5582890 DOI: 10.1152/ajpendo.00406.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/09/2023]
Abstract
Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1) behavioral circadian rhythms, 2) photic entrainment of circadian activity, 3) SCN and peripheral tissue molecular clock function, and 4) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Circadian Rhythm/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Disease Progression
- Islet Amyloid Polypeptide/genetics
- Islet Amyloid Polypeptide/metabolism
- Light
- Male
- Period Circadian Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Transgenic
- Suprachiasmatic Nucleus/metabolism
- Suprachiasmatic Nucleus/pathology
Collapse
Affiliation(s)
- Jingyi Qian
- Departments of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Anthony P Thomas
- Department of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Analyne M Schroeder
- Departments of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher S Colwell
- Departments of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This study aims to discuss possible reasons why research to date has not forged direct links between light at night, acute melatonin suppression or circadian disruption, and risks for disease. RECENT FINDINGS Data suggest that irregular light-dark patterns or light exposures at the wrong circadian time can lead to circadian disruption and disease risks. However, there remains an urgent need to: (1) specify light stimulus in terms of circadian rather than visual response; (2) when translating research from animals to humans, consider species-specific spectral and absolute sensitivities to light; (3) relate the characteristics of photometric measurement of light at night to the operational characteristics of the circadian system; and (4) examine how humans may be experiencing too little daytime light, not just too much light at night. SUMMARY To understand the health effects of light-induced circadian disruption, we need to measure and control light stimulus during the day and at night.
Collapse
Affiliation(s)
- Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, 12180,
| |
Collapse
|
14
|
Direction-Dependent Effects of Combined Static and ELF Magnetic Fields on Cell Proliferation and Superoxide Radical Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5675086. [PMID: 28497056 PMCID: PMC5405400 DOI: 10.1155/2017/5675086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Proliferation of human umbilical vein endothelial cells was stimulated by a nearly vertical 60 or 120 μT static magnetic field (MF) in comparison to cells that were shielded against MFs. When the static field was combined with an extremely low frequency (ELF) MF (18 Hz, 30 μT), proliferation was suppressed by a horizontal but not by a vertical ELF field. As these results suggested that the effects of an ELF MF depend on its direction in relation to the static MF, independent experiments were carried out to confirm such dependence using 50 Hz MFs and a different experimental model. Cytosolic superoxide level in rat glioma C6 cells exposed in the presence of a nearly vertical 33 μT static MF was increased by a horizontal 50 Hz, 30 μT MF, but not affected by a vertical 50 Hz MF. The results suggest that a weak ELF MF may interact with the static geomagnetic field in producing biological effects, but the effect depends on the relative directions of the static and ELF MFs.
Collapse
|
15
|
Ruscitto C, Ogden J. The impact of an implementation intention to improve mealtimes and reduce jet lag in long-haul cabin crew. Psychol Health 2016; 32:61-77. [DOI: 10.1080/08870446.2016.1240174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Abstract
Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, and link this to increased tumour risk in women who work irregular shift patterns. Understanding the influence of circadian rhythms on breast cancer could lead to more efficacious therapies, reformed public health policy and improved patient outcome.
Collapse
Affiliation(s)
- Victoria Blakeman
- Faculty of Biology, Medicine and Health, and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jack L Williams
- Faculty of Biology, Medicine and Health, and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Qing-Jun Meng
- Faculty of Biology, Medicine and Health, and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Charles H Streuli
- Faculty of Biology, Medicine and Health, and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
17
|
Cheng S, Jiang Z, Wang Z, Cornelissen G. Non-transcriptional/translational regulations of the circadian system. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms. Curr Biol 2015; 25:1056-62. [PMID: 25866393 PMCID: PMC4406945 DOI: 10.1016/j.cub.2015.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment [1, 2]. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms [1, 3, 4]. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla [3, 5]. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate [6]. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins [7–9]. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast [10]. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock. Yeast respiratory oscillations (YROs) share features with circadian rhythms Changes that alter the period of circadian rhythms have the same effect on YROs Oxidation cycles of peroxiredoxins are a characteristic of both oscillations Mechanistic similarities between these cycles may reflect a common origin
Collapse
|
19
|
Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 2014; 10:739. [PMID: 25028488 PMCID: PMC4299496 DOI: 10.15252/msb.20145218] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the
range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we
estimated the mutual interactions between the two oscillators by time-lapse imaging of single
mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in
dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell
divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP
reporter expression. In principle, such synchrony may be caused by either unidirectional or
bidirectional coupling. While gating of cell division by the circadian cycle has been most studied,
our data combined with stochastic modeling unambiguously show that the reverse coupling is
predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations
showed that the two interacting cellular oscillators adopt a synchronized state that is highly
robust over a wide range of parameters. These findings have implications for circadian function in
proliferative tissues, including epidermis, immune cells, and cancer.
Collapse
Affiliation(s)
- Jonathan Bieler
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rosamaria Cannavo
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kyle Gustafson
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cedric Gobet
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
20
|
Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett 2014; 588:2477-83. [PMID: 24911207 DOI: 10.1016/j.febslet.2014.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/14/2023]
Abstract
Circadian rhythms enable organisms to co-ordinate biological processes with the predictable 24 h cycle of day and night. Given that molecular clocks that coordinate such biological timing have evolved in almost all organisms, it is clear that being synchronous with the external environment confers competitive advantage. Conversely, it is apparent that being out of phase is detrimental, resulting in a number of clinical conditions, many of which are linked to metabolic dysfunction. The canonical clockwork involves a core set of genes that negatively regulate themselves through a so-called transcription translation feedback loop. However, recent studies describing evolutionarily conserved oscillations in redox reactions link circadian rhythms to metabolic processes, and in particular, redox pathways. In this review we describe the evidence for the interaction between transcriptional loops, redox and metabolism in mammals and suggest the clock may be potential target for the treatment of disease.
Collapse
Affiliation(s)
- I Robinson
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - A B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
21
|
Luo Y, Wang F, Chen LA, Chen XW, Chen ZJ, Liu PF, li FF, Li CY, Liang W. Deregulated expression of cry1 and cry2 in human gliomas. Asian Pac J Cancer Prev 2013; 13:5725-8. [PMID: 23317246 DOI: 10.7314/apjcp.2012.13.11.5725] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Growing evidence shows that deregulation of the circadian clock plays an important role in the development of malignant tumors, including gliomas. However, the molecular mechanisms of gene chnages controlling circadian rhythm in glioma cells have not been explored. Using real time polymerase chain reaction and immunohistochemistry techniques, we examined the expression of two important clock genes, cry1 and cry2, in 69 gliomas. In this study, out of 69 gliomas, 38 were cry1-positive, and 51 were cry2-positive. The expression levels of cry1 and cry2 in glioma cells were significantly different from the surrounding non-glioma cells (P<0.01). The difference in the expression rate of cry1 and cry 2 in high-grade (grade III and IV) and low-grade (grade 1 and II) gliomas was non-significant (P>0.05) but there was a difference in the intensity of immunoactivity for cry 2 between high-grade gliomas and low-grade gliomas (r=-0.384, P=0.021). In this study, we found that the expression of cry1 and cry2 in glioma cells was much lower than in the surrounding non-glioma cells. Therefore, we suggest that disturbances in cry1 and cry2 expression may result in the disruption of the control of normal circadian rhythm, thus benefiting the survival of glioma cells. Differential expression of circadian clock genes in glioma and non-glioma cells may provide a molecular basis for the chemotherapy of gliomas.
Collapse
Affiliation(s)
- Yong Luo
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lengyel Z, Battyáni Z, Szekeres G, Csernus V, Nagy AD. Circadian clocks and tumor biology: what is to learn from human skin biopsies? Gen Comp Endocrinol 2013; 188:67-74. [PMID: 23608545 DOI: 10.1016/j.ygcen.2013.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 01/27/2023]
Abstract
Some of the components of the circadian molecular clock have been shown to link directly to tumor suppression. Most studies on human tumorous biopsies with consistently down-regulated clock gene expression suggested a protective role for these genes against cancer formation. To highlight some limitations of this hypothesis we review these data in light of recent evidences from animal research, epidemiologic studies, and clinical data on skin tumors. We emphasize the role of circadian rhythmic orchestration in cellular metabolism with a potential in cancer development.
Collapse
Affiliation(s)
- Zsuzsanna Lengyel
- Department of Dermatology, Medical School, University of Pécs, H-7624 Pécs, Kodály Z.u. 20, Hungary.
| | | | | | | | | |
Collapse
|
23
|
O'Neill JS, Maywood ES, Hastings MH. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol 2013:67-103. [PMID: 23604476 DOI: 10.1007/978-3-642-25950-0_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circadian clocks drive the daily rhythms in our physiology and behaviour that adapt us to the 24-h solar and social worlds. Because they impinge upon every facet of metabolism, their acute or chronic disruption compromises performance (both physical and mental) and systemic health, respectively. Equally, the presence of such rhythms has significant implications for pharmacological dynamics and efficacy, because the fate of a drug and the state of its therapeutic target will vary as a function of time of day. Improved understanding of the cellular and molecular biology of circadian clocks therefore offers novel approaches for therapeutic development, for both clock-related and other conditions. At the cellular level, circadian clocks are pivoted around a transcriptional/post-translational delayed feedback loop (TTFL) in which the activation of Period and Cryptochrome genes is negatively regulated by their cognate protein products. Synchrony between these, literally countless, cellular clocks across the organism is maintained by the principal circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. Notwithstanding the success of the TTFL model, a diverse range of experimental studies has shown that it is insufficient to account for all properties of cellular pacemaking. Most strikingly, circadian cycles of metabolic status can continue in human red blood cells, devoid of nuclei and thus incompetent to sustain a TTFL. Recent interest has therefore focused on the role of oscillatory cytosolic mechanisms as partners to the TTFL. In particular, cAMP- and Ca²⁺-dependent signalling are important components of the clock, whilst timekeeping activity is also sensitive to a series of highly conserved kinases and phosphatases. This has led to the view that the 'proto-clock' may have been a cytosolic, metabolic oscillation onto which evolution has bolted TTFLs to provide robustness and amplify circadian outputs in the form of rhythmic gene expression. This evolutionary ascent of the clock has culminated in the SCN, a true pacemaker to the innumerable clock cells distributed across the body. On the basis of findings from our own and other laboratories, we propose a model of the SCN pacemaker that synthesises the themes of TTFLs, intracellular signalling, metabolic flux and interneuronal coupling that can account for its unique circadian properties and pre-eminence.
Collapse
Affiliation(s)
- John S O'Neill
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, UK.
| | | | | |
Collapse
|
24
|
Parent MÉ, El-Zein M, Rousseau MC, Pintos J, Siemiatycki J. Night work and the risk of cancer among men. Am J Epidemiol 2012; 176:751-9. [PMID: 23035019 DOI: 10.1093/aje/kws318] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Night work might influence cancer risk, possibly via suppression of melatonin release. In a population-based case-control study conducted in Montreal, Quebec, Canada, between 1979 and 1985, job histories, including work hours, were elicited from 3,137 males with incident cancer at one of 11 anatomic sites and from 512 controls. Compared with men who never worked at night, the adjusted odds ratios among men who ever worked at night were 1.76 (95% confidence interval (CI): 1.25, 2.47) for lung cancer, 2.03 (95% CI: 1.43, 2.89) for colon cancer, 1.74 (95% CI: 1.22, 2.49) for bladder cancer, 2.77 (95% CI: 1.96, 3.92) for prostate cancer, 2.09 (95% CI: 1.40, 3.14) for rectal cancer, 2.27 (95% CI: 1.24, 4.15) for pancreatic cancer, and 2.31 (95% CI: 1.48, 3.61) for non-Hodgkin's lymphoma. Equivocal evidence or no evidence was observed for cancers of the stomach (odds ratio (OR) = 1.34, 95% CI: 0.85, 2.10), kidney (OR = 1.42, 95% CI: 0.86, 2.35), and esophagus (OR = 1.51, 95% CI: 0.80, 2.84) and for melanoma (OR = 1.04, 95% CI: 0.49, 2.22). There was no evidence of increasing risk with increasing duration of night work, with risks generally being increased across all duration categories. Results suggest that night work may increase cancer risk at several sites among men.
Collapse
|
25
|
Xia HC, Wang F, Li YH, Li ZK, Cao SZ, Li CY, Niu ZF. The circadian gene expression of Per1 and Per2 and their influence on radiotherapeutic sensitivity of glioma in vitro. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Per2 plays a key role in regulating the circadian rhythm in mammals. However, the circadian clock gene expression of Per1 and Per2 and its influence on radiotherapeutic sensitivity of C6 glioma cells in vitro have not been explored. Aim: To investigate the rhythm expression of circadian gene Per1 and Per2, and examine the influence on radiotherapeutic sensitivity of two important clock genes in C6 glioma cells. Materials & methods: The cultured C6 glioma cells and NIH3T3 cells were stimulated by phorbol 12-myristate 13-acetate (PMA). The expression of Per1 and Per2 at the indicated times were examined with a method for the absolute quantification of cDNA using real-time PCR. The cultured cell were given x-irradiation at the indicated times and the cell-cycle, apoptosis and proliferation were examined by flow cytometry. Results: We report here that PMA treatment of C6 rat glioma cells induces circadian expression of Per2, and that during periods of high expression, cells are blocked at the G2/M transition and are more sensitive to x-irradiation. PMA treatment of NIH3T3 cells induced circadian expression of Per1 and Per2, but high Per expression did not block the cell cycle or render the cells more sensitive to irradiation. Conclusion: Our results suggest that Per2 expression may increase the efficacy of radiotherapy against glioma.
Collapse
Affiliation(s)
- He-Chun Xia
- Department of Neurosurgery, Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| | - Fan Wang
- Department of Neurosurgery, The First People’s Hospital of Jingmen, Jingmen, China
| | - Yan-Hui Li
- Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Zhang-Ke Li
- Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Shuan-Zhu Cao
- Department of Neurosurgery, The Central Hospital of Cangzhou, Cangzhou, China
| | - Cai-Yan Li
- Department of Microorganism, The Second People’s Hospital of Jingmen, Jingmen, China
| | - Zhan-Feng Niu
- Department of Neurosurgery, Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
26
|
Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci U S A 2012; 109:4774-9. [PMID: 22421133 DOI: 10.1073/pnas.1118959109] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the biological phenomena that fall within the emerging field of "quantum biology" is the suggestion that magnetically sensitive chemical reactions are responsible for the magnetic compass of migratory birds. It has been proposed that transient radical pairs are formed by photo-induced electron transfer reactions in cryptochrome proteins and that their coherent spin dynamics are influenced by the geomagnetic field leading to changes in the quantum yield of the signaling state of the protein. Despite a variety of supporting evidence, it is still not clear whether cryptochromes have the properties required to respond to magnetic interactions orders of magnitude weaker than the thermal energy, k(B)T. Here we demonstrate that the kinetics and quantum yields of photo-induced flavin-tryptophan radical pairs in cryptochrome are indeed magnetically sensitive. The mechanistic origin of the magnetic field effect is clarified, its dependence on the strength of the magnetic field measured, and the rates of relevant spin-dependent, spin-independent, and spin-decoherence processes determined. We argue that cryptochrome is fit for purpose as a chemical magnetoreceptor.
Collapse
|
27
|
Martino TA, Tata N, Simpson JA, Vanderlaan R, Dawood F, Kabir MG, Khaper N, Cifelli C, Podobed P, Liu PP, Husain M, Heximer S, Backx PH, Sole MJ. The primary benefits of angiotensin-converting enzyme inhibition on cardiac remodeling occur during sleep time in murine pressure overload hypertrophy. J Am Coll Cardiol 2011; 57:2020-8. [PMID: 21565639 DOI: 10.1016/j.jacc.2010.11.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Our objective was to test the hypothesis that there is a significant diurnal variation for the therapeutic benefit of angiotensin-converting enzyme (ACE) inhibitors on pressure-overload cardiovascular hypertrophy. BACKGROUND Physiological and molecular processes exhibit diurnal rhythms that may affect efficacy of disease treatment (chronotherapy). Evidence suggests that the heart primarily remodels during sleep. Although a growing body of clinical and epidemiological evidence suggests that the timing of therapy, such as ACE inhibition, alters diurnal blood pressure patterns in patients with hypertension, the benefits of chronotherapy on myocardial and vascular remodeling have not been studied. METHODS We examined the effects of the short-acting ACE inhibitor, captopril, on the structure and function of cardiovascular tissue subjected to pressure overload by transverse aortic constriction (TAC) in mice. Captopril (15 mg/kg intraperitoneally) or placebo was administered at either murine sleep time or wake time for 8 weeks starting 1 week after surgery. RESULTS TAC mice given captopril at sleep time had improved cardiac function and significantly decreased heart: body weight ratios, myocyte cross-sectional areas, intramyocardial vascular medial wall thickness, and perivascular collagen versus TAC mice given captopril or placebo during wake time. Captopril induced similar drops in blood pressure at sleep or wake time, suggesting that time-of-day differences were not attributable to blood pressure changes. These beneficial effects of captopril were correlated with diurnal changes in ACE mRNA expression in the heart. CONCLUSIONS The ACE inhibitor captopril benefited cardiovascular remodeling only when administered during sleep; wake-time captopril ACE inhibition was identical to that of placebo. These studies support the hypothesis that the heart (and vessels) remodel during sleep time and also illustrate the importance of diurnal timing for some cardiovascular therapies.
Collapse
Affiliation(s)
- Tami A Martino
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mueller AD, Mear RJ, Mistlberger RE. Inhibition of hippocampal neurogenesis by sleep deprivation is independent of circadian disruption and melatonin suppression. Neuroscience 2011; 193:170-81. [PMID: 21771640 DOI: 10.1016/j.neuroscience.2011.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 01/08/2023]
Abstract
Procedures that restrict or fragment sleep can inhibit neurogenesis in the hippocampus of adult rodents, although the underlying mechanism is unknown. We showed that rapid-eye-movement (REM) sleep deprivation (RSD) by the platform-over-water method inhibits hippocampal cell proliferation in adrenalectomized rats with low-dose corticosterone clamp. This procedure also greatly disrupts daily behavioral rhythms. Given recent evidence for circadian clock regulation of cell proliferation, we asked whether disruption of circadian rhythms might play a role in the anti-neurogenic effects of sleep loss. Male Sprague-Dawley rats were subjected to a 4-day RSD procedure or were exposed to constant bright light (LL) for 4 days or 10 weeks, a non-invasive procedure for eliminating circadian rhythms of behavior and physiology in this species. Proliferating cells in the granule cell layer of the dentate gyrus were identified by immunolabeling for the thymidine analogue 5-bromo-2-deoxyuridine. Consistent with our previous results, the RSD procedure suppressed cell proliferation by ∼50%. By contrast, although LL attenuated or eliminated daily rhythms of activity and sleep-wake without affecting daily amounts of REM sleep, cell proliferation was not affected. Melatonin, a nocturnally secreted neurohormone that is inhibited by light, has been shown to promote survival of new neurons. We found that 3-weeks of LL eliminated daily rhythms and decreased plasma melatonin by 88% but did not significantly affect either total cell survival or survival of new neurons (doublecortin+). Finally, we measured cell proliferation rates at the beginning and near the end of the daily light period in rats entrained to a 12:12 light/lark (LD) cycle, but did not detect a daily rhythm. These results indicate that the antineurogenic effect of RSD is not secondary to disruption of circadian rhythms, and provide no evidence that hippocampal cell proliferation and survival are regulated by the circadian system or by nocturnal secretion of pineal melatonin.
Collapse
Affiliation(s)
- A D Mueller
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | |
Collapse
|
29
|
Koštál V. Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? JOURNAL OF INSECT PHYSIOLOGY 2011; 57:538-556. [PMID: 21029738 DOI: 10.1016/j.jinsphys.2010.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
The photoperiodic calendar is a seasonal time measurement system which allows insects to cope with annual cycles of environmental conditions. Seasonal timing of entry into diapause is the most often studied photoperiodic response of insects. Research on insect photoperiodism has an approximately 80-year-old tradition. Despite that long history, the physiological mechanisms underlying functionality of the photoperiodic calendar remain poorly understood. Thus far, a consensus has not been reached on the role of another time measurement system, the biological circadian clock, in the photoperiodic calendar. Are the two systems physically separated and functionally independent, or do they cooperate, or is it a single system with dual output? The relationship between calendar and clock functions are the focus of this review, with particular emphasis on the potential roles of circadian clock genes, and the circadian clock system as a whole, in the transduction pathway for photoperiodic token stimulus to the overt expression of facultative diapause.
Collapse
Affiliation(s)
- Vladimír Koštál
- Institute of Entomology, Academy of Sciences of the Czech Republic, Department of Ecophysiology, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
30
|
Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 2011; 9:e1000595. [PMID: 21364973 PMCID: PMC3043000 DOI: 10.1371/journal.pbio.1000595] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/11/2011] [Indexed: 11/19/2022] Open
Abstract
The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.
Collapse
Affiliation(s)
- Guillaume Rey
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Bâtiment Génopode, Université de Lausanne, Lausanne, Switzerland
| | - François Cesbron
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Jacques Rougemont
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Bâtiment Génopode, Université de Lausanne, Lausanne, Switzerland
| | - Hans Reinke
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Universität Düsseldorf, Düsseldorf, Germany
- Leibniz Institute for Molecular Preventive Medicine, Universität Düsseldorf, Düsseldorf, Germany
| | - Michael Brunner
- Biochemistry Center, Universität Heidelberg, Heidelberg, Germany
| | - Felix Naef
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Bâtiment Génopode, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Conway-Campbell BL, Sarabdjitsingh RA, McKenna MA, Pooley JR, Kershaw YM, Meijer OC, de Kloet ER, Lightman SL. Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus. J Neuroendocrinol 2010; 22:1093-1100. [PMID: 20649850 PMCID: PMC4968637 DOI: 10.1111/j.1365-2826.2010.02051.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In vivo glucocorticoid (GC) secretion exhibits a distinctive ultradian rhythmicity. The lipophilic hormone can rapidly diffuse into cells, although only the pulse peak is of sufficient amplitude to activate the low affinity glucocorticoid receptor (GR). Discrete pulses readily access brain regions such as the hippocampus where GR expression is enriched and known to regulate neuronal function, including memory and learning processes. In the present study, we have tested the hypothesis that GR brain targets are responsive to ultradian GC rhythmicity. We have used adrenalectomised rats replaced with pulses of corticosterone to determine the transcriptional effects of ultradian pulses in the hippocampus. Confocal microscopy confirmed that each GC pulse results in transient GR nuclear localisation in hippocampal CA1 neurones. Concomitant GR activation and DNA binding was demonstrated by synthetic glucocorticoid response element oligonucleotide binding, and verified for the Clock gene Period 1 promoter region by chromatin immunoprecipitation assays. Strikingly each GC pulse induced a 'burst' of transcription of Period 1 measured by heterogeneous nuclear RNA quantitative polymerase chain reaction. The net effect of pulsatile GC exposure on accumulation of the mature transcript was also assessed, revealing a plateau of mRNA levels throughout the time course of pulsatile exposure, indicating the pulse timing works optimally for steady state Per1 expression. The plateau dropped to baseline within 120 min of the final pulse, indicating a relatively short half-life for hippocampal Per1. The significance of this strict temporal control is that any perturbation to the pulse frequency or duration would have rapid quantitative effects on the levels of Per1. This in turn could affect hippocampal function, especially circadian related memory and learning processes.
Collapse
Affiliation(s)
- B. L. Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - R. A. Sarabdjitsingh
- Department of Medical Pharmacology, LACDR and Leiden University Medical Centre, The Netherlands
| | - M. A. McKenna
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - J. R. Pooley
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Y. M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - O. C. Meijer
- Department of Medical Pharmacology, LACDR and Leiden University Medical Centre, The Netherlands
| | - E. R. de Kloet
- Department of Medical Pharmacology, LACDR and Leiden University Medical Centre, The Netherlands
| | - S. L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
32
|
Martin AM, Elliott JA, Duffy P, Blake CM, Ben Attia S, Katz LM, Browne JA, Gath V, McGivney BA, Hill EW, Murphy BA. Circadian regulation of locomotor activity and skeletal muscle gene expression in the horse. J Appl Physiol (1985) 2010; 109:1328-36. [PMID: 20847133 DOI: 10.1152/japplphysiol.01327.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Circadian rhythms are innate 24-h cycles in behavioral and biochemical processes that permit physiological anticipation of daily environmental changes. Elucidating the relationship between activity rhythms and circadian patterns of gene expression may contribute to improved human and equine athletic performance. Six healthy, untrained mares were studied to determine whether locomotor activity behavior and skeletal muscle gene expression reflect endogenous circadian regulation. Activity was recorded for three consecutive 48-h periods: as a group at pasture (P), and individually stabled under a light-dark (LD) cycle and in constant darkness (DD). Halter-mounted Actiwatch-L data-loggers recorded light exposure and motor activity. Analysis of mean activity (average counts/min, activity bouts/day, average bout length) and cosinor parameters (acrophase, amplitude, mesor, goodness of fit) revealed a predominantly ultradian (8.9 ± 0.7 bouts/24 h) and weakly circadian pattern of activity in all three conditions (P, LD, DD). A more robust circadian pattern was observed during LD and DD. Muscle biopsies were obtained from the middle gluteal muscles every 4 h for 24 h under DD. One-way qRT-PCR results confirmed the circadian expression (P < 0.05) of six core clock genes (Arntl, Per1, Per2, Nr1d1, Nr1d2, Dbp) and the muscle-specific transcript, Myf6. Additional genes, Ucp3, Nrip1, and Vegfa, demonstrated P values approaching significance. These findings demonstrate circadian regulation of muscle function and imply that human management regimes may strengthen, or unmask, equine circadian behavioral outputs. As exercise synchronizes circadian rhythms, our findings provide a basis for future work determining peak times for training and competing horses, to reduce injury and to achieve optimal performance.
Collapse
Affiliation(s)
- Ann-Marie Martin
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Miller D, Bierman A, Figueiro MG, Schernhammer ES, Rea MS. Ecological measurements of light exposure, activity, and circadian disruption. LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2010; 42:271-284. [PMID: 23504497 PMCID: PMC3596178 DOI: 10.1177/1477153510367977] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Circadian rhythms are biological rhythms that repeat at approximately 24 hours. In humans, circadian rhythms have an average period of 24.2 hours. The 24-hour patterns of light and dark on the retina synchronize circadian rhythms to the local time on earth. Lighting characteristics affecting circadian rhythms are very different than those affecting visual responses. Lack of synchronization between the endogenous clock and the local time has been associated with a host of maladies. Therefore, it is important to measure circadian light exposures over the course of the 24-hour day and to be able to assess circadian entrainment and disruption in actual living environments. Presented is an overview of the recently developed Daysimeter, a personal measurement device for recording activity and circadian light-exposure. When the Daysimeter is worn on the head, two light sensors near the eye are used to estimate circadian light (CLA) exposures over extended periods of time. Phasor analysis combines the measured periodic activity-rest patterns with the measured periodic light-dark patterns to assess behavioural circadian entrainment/disruption. As shown, day-shift and rotating-shift nurses exhibit remarkably different levels of behavioural circadian entrainment/disruption. These new ecological measurement and analysis techniques may provide important insights into the relationship between circadian disruption and well-being.
Collapse
Affiliation(s)
- D Miller
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180 USA
| | - A Bierman
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180 USA
| | - MG Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180 USA
| | - ES Schernhammer
- Brigham and Women's Hospital and Harvard Medical School, Channing Laboratory, 3rd Floor, 181 Longwood Avenue, Boston, MA 02115 USA
| | - MS Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180 USA
| |
Collapse
|
34
|
Geusz ME, Blakely KT, Hiler DJ, Jamasbi RJ. Elevated mPer1 gene expression in tumor stroma imaged through bioluminescence. Int J Cancer 2010; 126:620-30. [PMID: 19637242 DOI: 10.1002/ijc.24788] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor stroma has significant effects on cancer cell growth and metastasis. Interactions between cancer and stromal cells shape tumor progression through poorly understood mechanisms. One factor regulating tumor growth is the circadian timing system that generates daily physiological rhythms throughout the body. Clock genes such as mPer1 serve in molecular timing events of circadian oscillators and when mutated can disrupt circadian rhythms and accelerate tumor growth. Stimulation of mPer1 by cytokines suggests that the timing of circadian oscillators may be altered by these tumor-derived signals. To explore tumor and stromal interactions, the pattern of mPer1 expression was imaged in tumors generated through subcutaneous injection of Lewis lung carcinoma (LLC) cells. Several imaging studies have used bioluminescent cancer cell lines expressing firefly luciferase to image tumor growth in live mice. In contrast, this study used non-bioluminescent cancer cells to produce tumors within transgenic mice expressing luciferase controlled by the mPer1 gene promoter. Bioluminescence originated only in host cells and was significantly elevated throughout the tumor stroma. It was detected through the skin of live mice or by imaging the tumor directly. No effects on the circadian timing system were detected during three weeks of tumor growth according to wheel-running rhythms. Similarly, no effects on mPer1 expression outside the tumor were found. These results suggest that mPer1 activity may play a localized role in the interactions between cancer and stromal cells. The effects might be exploited clinically by targeting the circadian clock genes of stromal cells.
Collapse
Affiliation(s)
- Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0208, USA.
| | | | | | | |
Collapse
|
35
|
Reddy AB, O'Neill JS. Healthy clocks, healthy body, healthy mind. Trends Cell Biol 2010; 20:36-44. [PMID: 19926479 PMCID: PMC2808409 DOI: 10.1016/j.tcb.2009.10.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 01/24/2023]
Abstract
Circadian rhythms permeate mammalian biology. They are manifested in the temporal organisation of behavioural, physiological, cellular and neuronal processes. Whereas it has been shown recently that these approximately 24-hour cycles are intrinsic to the cell and persist in vitro, internal synchrony in mammals is largely governed by the hypothalamic suprachiasmatic nuclei that facilitate anticipation of, and adaptation to, the solar cycle. Our timekeeping mechanism is deeply embedded in cell function and is modelled as a network of transcriptional and/or post-translational feedback loops. Concurrent with this, we are beginning to understand how this ancient timekeeper interacts with myriad cell systems, including signal transduction cascades and the cell cycle, and thus impacts on disease. An exemplary area where this knowledge is rapidly expanding and contributing to novel therapies is cancer, where the Period genes have been identified as tumour suppressors. In more complex disorders, where aetiology remains controversial, interactions with the clockwork are only now starting to be appreciated.
Collapse
Affiliation(s)
- Akhilesh B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge CB2 OQQ, UK.
| | | |
Collapse
|
36
|
Harris SR, Henbest KB, Maeda K, Pannell JR, Timmel CR, Hore P, Okamoto H. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J R Soc Interface 2009; 6:1193-205. [PMID: 19324677 PMCID: PMC2817153 DOI: 10.1098/rsif.2008.0519] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/09/2009] [Indexed: 11/21/2022] Open
Abstract
The scientific literature describing the effects of weak magnetic fields on living systems contains a plethora of contradictory reports, few successful independent replication studies and a dearth of plausible biophysical interaction mechanisms. Most such investigations have been unsystematic, devoid of testable theoretical predictions and, ultimately, unconvincing. A recent study, of magnetic responses in the model plant Arabidopsis thaliana, however, stands out; it has a clear hypothesis-that seedling growth is magnetically sensitive as a result of photoinduced radical-pair reactions in cryptochrome photoreceptors-tested by measuring several cryptochrome-dependent responses, all of which proved to be enhanced in a magnetic field of intensity 500 muT. The potential importance of this study in the debate on putative effects of extremely low-frequency electromagnetic fields on human health prompted us to subject it to the 'gold standard' of independent replication. With experimental conditions chosen to match those of the original study, we have measured hypocotyl lengths and anthocyanin accumulation for Arabidopsis seedlings grown in a 500 microT magnetic field, with simultaneous control experiments at 50 microT. Additionally, we have determined hypocotyl lengths of plants grown in 50 microT, 1 mT and approximately 100 mT magnetic fields (with zero-field controls), measured gene (CHS, HY5 and GST) expression levels, investigated blue-light intensity effects and explored the influence of sucrose in the growth medium. In no case were consistent, statistically significant magnetic field responses detected.
Collapse
Affiliation(s)
- Sue-Re Harris
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Kevin B. Henbest
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Kiminori Maeda
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - John R. Pannell
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Christiane R. Timmel
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - P.J. Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Haruko Okamoto
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
37
|
Kostál V, Simůnková P, Kobelková A, Shimada K. Cell cycle arrest as a hallmark of insect diapause: changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:875-883. [PMID: 19879357 DOI: 10.1016/j.ibmb.2009.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/08/2009] [Accepted: 10/16/2009] [Indexed: 05/28/2023]
Abstract
The division cycle of CNS cells was arrested in G0/G1 (86.6%) and G2 (12.8%) phases in diapausing larvae of Chymomyza costata. A two-step response was observed when the diapause was induced by transferring the 3rd instar larvae from long-day to short-day conditions: first, the proportion of G2-arrested cells increased rapidly within a single day after transfer; and second, the increase of G0/G1-arrested cells started with a delay of 5 days after transfer. The changes of relative mRNA levels of seven different genes, which code for important cell cycle regulatory factors [Cyclins D and E, kinases Wee1 and Myt1, phosphatase Cdc25 (String), Dacapo (p27), and PCNA] were followed using qRT-PCR technique. Two reference genes (Rp49 and ss-tubulin) served as a background. Significant transcriptional responses to photoperiodic transfer were observed for two genes: while the relative levels of dacapo mRNA increased during the rapid entry into the G2 arrest, the pcna expression was significantly downregulated during the delayed onset of G0/G1 arrest. In addition, moderate transcriptional upregulations of the genes coding for two inhibitory kinases, wee1 and myt1 accompanied the entry into diapause. The other genes were expressed equally in all photoperiodic conditions.
Collapse
Affiliation(s)
- Vladimír Kostál
- Biology Centre ASCR, Institute of Entomology, 370 05 Ceské Budejovice, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Guess J, Burch JB, Ogoussan K, Armstead CA, Zhang H, Wagner S, Hebert JR, Wood P, Youngstedt SD, Hofseth LJ, Singh UP, Xie D, Hrushesky WJM. Circadian disruption, Per3, and human cytokine secretion. Integr Cancer Ther 2009; 8:329-36. [PMID: 19926609 DOI: 10.1177/1534735409352029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circadian disruption has been linked with inflammation, an established cancer risk factor. Per3 clock gene polymorphisms have also been associated with circadian disruption and with increased cancer risk. Patients completed a questionnaire and provided a blood sample prior to undergoing a colonoscopy (n = 70). Adjusted mean serum cytokine concentrations (IL-6, TNF-alpha, gamma-INF, IL-1ra, IL-1-beta, VEGF) were compared among patients with high and low scores for fatigue (Multidimensional Fatigue Inventory), depressive symptoms (Beck Depression Inventory II), or sleep disruption (Pittsburgh Sleep Quality Index), or among patients with different Per3 clock gene variants. Poor sleep was associated with elevated VEGF, and fatigue-related reduced activity was associated with elevated TNF-alpha concentrations. Participants with the 4/5 or 5/5 Per3 variable tandem repeat sequence had elevated IL-6 concentrations compared to those with the 4/4 genotype. Biological processes linking circadian disruption with cancer remain to be elucidated. Increased inflammatory cytokine secretion may play a role.
Collapse
Affiliation(s)
- Jaclyn Guess
- Department of Epidemiology and Biostatistics, Cancer Prevention and Control Program, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Glucocorticoids, hormones produced by the adrenal gland cortex, perform numerous functions in body homeostasis and the response of the organism to external stressors. One striking feature of their regulation is a diurnal release pattern, with peak levels linked to the start of the activity phase. This release is under control of the circadian clock, an endogenous biological timekeeper that acts to prepare the organism for daily changes in its environment. Circadian control of glucocorticoid production and secretion involves a central pacemaker in the hypothalamus, the suprachiasmatic nucleus, as well as a circadian clock in the adrenal gland itself. Central circadian regulation is mediated via the hypothalamic-pituitary-adrenal axis and the autonomic nervous system, while the adrenal gland clock appears to control sensitivity of the gland to the adrenocorticopic hormone (ACTH). The rhythmically released glucocorticoids in turn might contribute to synchronisation of the cell-autonomous clocks in the body and interact with them to time physiological dynamics in their target tissues around the day.
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
40
|
Altinok A, Lévi F, Goldbeter A. Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. Eur J Pharm Sci 2008; 36:20-38. [PMID: 19041394 DOI: 10.1016/j.ejps.2008.10.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use an automaton model for the cell cycle to assess the toxicity of various circadian patterns of anticancer drug delivery so as to enhance the efficiency of cancer chronotherapy. Based on the sequential transitions between the successive phases G1, S (DNA replication), G2, and M (mitosis) of the cell cycle, the model allows us to simulate the distribution of cell cycle phases as well as entrainment by the circadian clock. We use the model to evaluate circadian patterns of administration of two anticancer drugs, 5-fluorouracil (5-FU) and oxaliplatin (l-OHP). We first consider the case of 5-FU, which exerts its cytotoxic effects on cells in S phase. We compare various circadian patterns of drug administration differing by the time of maximum drug delivery. The model explains why minimum cytotoxicity is obtained when the time of peak delivery is close to 4a.m., which temporal pattern of drug administration is used clinically for 5-FU. We also determine how cytotoxicity is affected by the variability in duration of cell cycle phases and by cell cycle length in the presence or absence of entrainment by the circadian clock. The results indicate that the same temporal pattern of drug administration can have minimum cytotoxicity toward one cell population, e.g. of normal cells, and at the same time can display high cytotoxicity toward a second cell population, e.g. of tumour cells. Thus the model allows us to uncover factors that may contribute to improve simultaneously chronotolerance and chronoefficacy of anticancer drugs. We next consider the case of oxaliplatin, which, in contrast to 5-FU, kills cells in different phases of the cell cycle. We incorporate into the model the pharmacokinetics of plasma thiols and intracellular glutathione, which interfere with the action of the drug by forming with it inactive complexes. The model shows how circadian changes in l-OHP cytotoxicity may arise from circadian variations in the levels of plasma thiols and glutathione. Corroborating experimental and clinical results, the simulations of the model account for the observation that the temporal profiles minimizing l-OHP cytotoxicity are in antiphase with those minimizing cytotoxicity for 5-FU.
Collapse
Affiliation(s)
- Atilla Altinok
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, Brussels, Belgium
| | | | | |
Collapse
|
41
|
Klein BM, Andrews JB, Bannan BA, Nazario-Toole AE, Jenkins TC, Christensen KD, Oprisan SA, Meyer-Bernstein EL. Phospholipase C beta 4 in mouse hepatocytes: rhythmic expression and cellular distribution. COMPARATIVE HEPATOLOGY 2008; 7:8. [PMID: 18957089 PMCID: PMC2583973 DOI: 10.1186/1476-5926-7-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 10/28/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Circadian regulated physiological processes have been well documented in the mammalian liver. Phospholipases are important mediators of both cytoplasmic and nuclear signaling mechanisms in hepatocytes, and despite a potentially critical role for these enzymes in regulating the temporal aspect of hepatic physiology, their involvement in the circadian liver clock has not been the subject of much investigation. The phospholipase C beta4 (PLCbeta4) enzyme is of particular interest as it has been linked to circadian clock function. In general, there is no knowledge of the role of the PLCbeta4 isozyme in mammalian hepatocytes as this is the first report of its expression in the mammalian liver. RESULTS We found that in the liver of mice housed on a light:dark cycle, PLCbeta4 protein underwent a significant circadian rhythm with a peak occurring during the early night. In constant darkness, the protein rhythm was more robust and peaked around dusk. We also observed a significant oscillation in plcbeta4 gene expression in the livers of mice housed in both photoperiodic and constant dark conditions. The cellular distribution of the protein in hepatocytes varied over the course of the circadian day with PLCbeta4 primarily cytoplasmic around dusk and nuclear at dawn. CONCLUSION Our results indicate that PLCbeta4 gene and protein expression is regulated by a circadian clock in the mouse liver and is not dependent on the external photoperiod. A light-independent daily translocation of PLCbeta4 implies that it may play a key role in nuclear signaling in hepatocytes and serve as a daily temporal cue for physiological processes in the liver.
Collapse
Affiliation(s)
- Brittany M Klein
- Department of Biology and Program in Neuroscience, College of Charleston, Charleston, SC 29424, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lévi F, Altinok A, Clairambault J, Goldbeter A. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3575-3598. [PMID: 18644767 DOI: 10.1098/rsta.2008.0114] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The circadian timing system (CTS) controls drug metabolism and cellular proliferation over the 24 hour day through molecular clocks in each cell. These cellular clocks are coordinated by a hypothalamic pacemaker, the suprachiasmatic nuclei, that generates or controls circadian physiology. The CTS plays a role in cancer processes and their treatments through the downregulation of malignant growth and the generation of large and predictable 24 hour changes in toxicity and efficacy of anti-cancer drugs. The tight interactions between circadian clocks, cell division cycle and pharmacology pathways have supported sinusoidal circadian-based delivery of cancer treatments. Such chronotherapeutics have been mostly implemented in patients with metastatic colorectal cancer, the second most common cause of death from cancer. Stochastic and deterministic models of the interactions between circadian clock, cell cycle and pharmacology confirmed the poor therapeutic value of both constant-rate and wrongly timed chronomodulated infusions. An automaton model for the cell cycle revealed the critical roles of variability in circadian entrainment and cell cycle phase durations in healthy tissues and tumours for the success of properly timed circadian delivery schedules. The models showed that additional therapeutic strategy further sets the constraints for the identification of the most effective chronomodulated schedules.
Collapse
Affiliation(s)
- Francis Lévi
- INSERM, U776 'Rythmes biologiques et cancers', Villejuif 94807, France.
| | | | | | | |
Collapse
|
43
|
Hastings MH, Maywood ES, O'Neill JS. Cellular Circadian Pacemaking and the Role of Cytosolic Rhythms. Curr Biol 2008; 18:R805-R815. [DOI: 10.1016/j.cub.2008.07.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Almon RR, Yang E, Lai W, Androulakis IP, DuBois DC, Jusko WJ. Circadian variations in rat liver gene expression: relationships to drug actions. J Pharmacol Exp Ther 2008; 326:700-16. [PMID: 18562560 PMCID: PMC2561907 DOI: 10.1124/jpet.108.140186] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronopharmacology is an important but under-explored aspect of therapeutics. Rhythmic variations in biological processes can influence drug action, including pharmacodynamic responses, due to circadian variations in the availability or functioning of drug targets. We hypothesized that global gene expression analysis can be useful in the identification of circadian-regulated genes involved in drug action. Circadian variations in gene expression in rat liver were explored using Affymetrix gene arrays. A rich time series involving animals analyzed at 18 time points within the 24-h cycle was generated. Of the more than 15,000 probe sets on these arrays, 265 exhibited oscillations with a 24-h frequency. Cluster analysis yielded five distinct circadian clusters, with approximately two thirds of the transcripts reaching maximal expression during the dark/active period of the animal. Of the 265 probe sets, 107 were identified as having potential therapeutic importance. The expression levels of clock genes were also investigated in this study. Five clock genes exhibited circadian variation in the liver, and data suggest that these genes may also be regulated by corticosteroids.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, 107 Hochstetter Hall, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Gery S, Koeffler HP. The role of circadian regulation in cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:459-64. [PMID: 18419305 DOI: 10.1101/sqb.2007.72.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proper circadian regulation is essential for the well being of the organism, and disruption of circadian rhythms is associated with pathological conditions including cancer. In mammals, the core clock genes, Per1 and Per2, are key regulators of circadian rhythms both in the central clock in the hypothalamous and in peripheral tissues. Recent findings revealed molecular links between Per genes and cellular components that control fundamental cellular processes such as cell division and DNA damage. New data also shed light on mechanisms by which circadian oscillators operate in peripheral organs to influence tissue-dependent metabolic and hormonal pathways. Circadian cycles are linked to basic cellular functions, as well as to tissue-specific processes through the control of gene expression and protein interactions. By controlling global networks such as chromatin remolding and protein families, which themselves regulate a broad range of cellular functions, circadian regulation impinges upon almost all major physiological pathways. These molecular insights illustrate how disregulation of circadian rhythms might influence the susceptibility to cancer development and provide further support for the emerging role of circadian genes in tumor suppression.
Collapse
Affiliation(s)
- S Gery
- Unniversity of California School of Medicine, Los Angeles, California 90048, USA
| | | |
Collapse
|
46
|
Almon RR, Yang E, Lai W, Androulakis IP, Ghimbovschi S, Hoffman EP, Jusko WJ, Dubois DC. Relationships between circadian rhythms and modulation of gene expression by glucocorticoids in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1031-47. [PMID: 18667713 DOI: 10.1152/ajpregu.90399.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence and maintenance of biological rhythms linked to the 24-h light-dark cycle are essential to the health and functioning of an organism. Although much is known concerning central clock mechanisms, much less is known about control in peripheral tissues. In this study, circadian regulation of gene expression was examined in rat skeletal muscle. A rich time series involving 54 animals euthanized at 18 distinct time points within the 24-h cycle was performed, and mRNA expression in gastrocnemius muscles was examined using Affymetrix gene arrays. Data mining identified 109 genes that were expressed rhythmically, which could be grouped into eight distinct temporal clusters within the 24-h cycle. These genes were placed into 11 functional categories, which were examined within the context of temporal expression. Transcription factors involved in the regulation of central rhythms were examined, and eight were found to be rhythmically expressed in muscle. Because endogenous glucocorticoids are a major effector of circadian rhythms, genes identified here were compared with those identified in previous studies as glucocorticoid regulated. Of the 109 genes identified here as circadian rhythm regulated, only 55 were also glucocorticoid regulated. Examination of transcription factors involved in circadian control suggests that corticosterone may be the initiator of their rhythmic expression patterns in skeletal muscle.
Collapse
Affiliation(s)
- Richard R Almon
- Dept. of Biological Sciences, State Univ. of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hartley PS, John Sheward W, French K, Horn JM, Holmes MC, Harmar AJ. Food-entrained rhythmic expression of PER2 and BMAL1 in murine megakaryocytes does not correlate with circadian rhythms in megakaryopoiesis. J Thromb Haemost 2008; 6:1144-52. [PMID: 18419744 DOI: 10.1111/j.1538-7836.2008.02978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circadian rhythms control a vast array of biological processes in a broad spectrum of organisms. The contribution of circadian rhythms to the development of megakaryocytes and the regulation of platelet biology has not been defined. OBJECTIVES This study tested the hypothesis that murine megakaryocytes exhibit hallmarks of circadian control. METHODS Mice expressing a PER2::LUCIFERASE circadian reporter protein and C57BI/6 mice were used to establish if megakaryocytes expressed circadian genes in vitro and in vivo. Mice were also subjected to 3 weeks on a restricted feeding regime to separate food-entrained from light-entrained circadian rhythms. Quantitative real time polymerase chain reaction (PCR), flow cytometry and imunohistochemistry were employed to analyse gene expression, DNA content and cell-cycle behavior in megakaryocytes collected from mice over a 24-h period. RESULTS Megakaryocytes exhibited rhythmic expression of the clock genes mPer2 and mBmal1 and circadian rhythms in megakaryopoiesis. mPer2 and mBmal1 expression phase advanced 8 h to coincide with the availability of food; however, food availability had a more complex effect on megakaryopoiesis, leading to a significant overall increase in megakaryocyte ploidy levels and cell-cycle activity. CONCLUSIONS Normal megakaryopoiesis requires synchrony between food- and light-entrained circadian oscillators.
Collapse
Affiliation(s)
- P S Hartley
- Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Ohkura N, Oishi K, Sudo T, Hayashi H, Shikata K, Ishida N, Matsuda J, Horie S. CLOCK regulates circadian platelet activity. Thromb Res 2008; 123:523-7. [PMID: 18433843 DOI: 10.1016/j.thromres.2008.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/16/2008] [Accepted: 03/06/2008] [Indexed: 12/01/2022]
Affiliation(s)
- Naoki Ohkura
- Teikyo University, Sagamiko, Sagamihara, Kanagawa 229-0195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Photoperiodic Induction of Diapause Requires Regulated Transcription oftimelessin the Larval Brain ofChymomyza costata. J Biol Rhythms 2008; 23:129-39. [DOI: 10.1177/0748730407313364] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photoperiodic signal stimulates induction of larval diapause in Chymomyza costata. Larvae of NPD strain ( npd-mutants) do not respond to photoperiod. Our previous results indicated that the locus npd could code for the timeless gene and its product might represent a molecular link between circadian and photoperiodic clock systems. Here we present results of tim mRNA (real time-PCR) and TIM protein (immunohistochemistry) analyses in the larval brain. TIM protein was localized in 2 neurons of each brain hemisphere of the 4-d-old 3rd instar wild-type larvae. In a marked contrast, no TIM neurons were detected in the brain of 4-day-old 3rd instar npd -mutant larvae and the level of tim transcripts was approximately 10-fold lower in the NPD than in the wild-type strain. Daily changes in tim expression and TIM presence appeared to be under photoperiodic control in the wild-type larvae. Clear daily oscillations of tim transcription were observed during the development of 3rd instars under the short-day conditions. Daily oscillations were less apparent under the long-day conditions, where a gradual increase of tim transcript abundance appeared as a prevailing trend. Analysis of the genomic structure of tim gene revealed that npd-mutants carry a 1855 bp-long deletion in the 5′-UTR region. This deletion removed the start of transcription and promoter regulatory motifs E-box and TER-box. The authors hypothesize that this mutation was responsible for dramatic reduction of tim transcription rates, disruption of circadian clock function, and disruption of photoperiodic calendar function in npd-mutant larvae of C. costata.
Collapse
|
50
|
Kiyohara YB, Nishii K, Ukai-Tadenuma M, Ueda HR, Uchiyama Y, Yagita K. Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy. Nucleic Acids Res 2008; 36:e23. [PMID: 18252768 PMCID: PMC2275109 DOI: 10.1093/nar/gkn018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/27/2007] [Accepted: 01/12/2008] [Indexed: 11/13/2022] Open
Abstract
In mammals, the expression of 5-10% of genes occurs with circadian fluctuation in various organs and tissues. This cyclic transcription is thought to be directly or indirectly regulated through circadian transcriptional/translational feedback loops consisting of a set of clock genes. Among the clock genes in mammals, expression of the Dbp mRNA robustly oscillates both in vivo and in culture cells. Here, we present circadian enhancer detection strategy using prokaryotic transposon system. The mDbp promoter drives reporter gene expression in robust circadian cycles in rat-1 fibroblasts. To identify the circadian enhancer generating this robust rhythm, we developed a prokaryotic transposon-based enhancer detecting vector for in vitro transposition. Using this system, we identified a strong circadian enhancer region containing the CATGTG sequence in the 5' flanking region of the mDbp gene; this enhancer region is critical for the ability of the mDbp promoter to drive robust oscillation in living cells. This enhancer is classified as a CANNTG type non-canonical E-box. These findings strongly suggest that CANNTG-type non-canonical E-boxes may contribute, at least in part, to the regulation of robust circadian gene expression. Furthermore, these data may help explain the wider effects of the CLOCK/BMAL1 complex in control of clock output genes.
Collapse
Affiliation(s)
- Yota B. Kiyohara
- Department of Cell Biology and Neuroscience, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, COE Unit of Circadian System, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 and Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Keigo Nishii
- Department of Cell Biology and Neuroscience, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, COE Unit of Circadian System, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 and Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maki Ukai-Tadenuma
- Department of Cell Biology and Neuroscience, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, COE Unit of Circadian System, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 and Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroki R. Ueda
- Department of Cell Biology and Neuroscience, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, COE Unit of Circadian System, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 and Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, COE Unit of Circadian System, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 and Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuhiro Yagita
- Department of Cell Biology and Neuroscience, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, COE Unit of Circadian System, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 and Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|