1
|
Sarkar P, Boral A, Mitra D. Dissecting sequence-structure-function-diversity in plant cryptochromes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112381. [PMID: 39746451 DOI: 10.1016/j.plantsci.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Ubiquitous to every stratum of life, cryptochromes regulate numerous light dependent functions in terrestrial plants. These include light-dependent transcription, circadian rhythm, inhibition of hypocotyl elongation, programmed cell death, promotion of floral initiation, mediation of gravitropic response, responding to biotic and abiotic stress etc. There have been quite a few seminal reviews including on plant cryptochromes, focusing mostly on the detailed functional aspects. This review primarily focuses on understanding the link connecting sequence-structure hierarchy behind the functional diversity in plant cryptochromes. With available sequence information and 3D structure data, we hereby explore the molecular origin of functional diversity in both the subtypes i.e., CRY1 and CRY2. First, we discuss the structural details and functional distinctiveness of all subtypes of plant cryptochromes. Next we draw a comparison not just between two cryptochromes but also other Cryptochrome/Photolyase Family (CPF) members e.g. CRY-DASH/CRY3 and CPD/6-4 photolyases of plant origin. Further, by constructing a phylogenetic profile from multiple sequence alignment we investigate how a crucial activity like DNA repair is restricted to some members of CPF and not all. It is a well-known fact that the function of a protein is heavily if not solely guided by the structure-sequence relationship. Therefore, the resultant hypothesis as drawn from this comparative and collective study could predict functions of many under-studied plant cryptochromes when compared with their well-studied counterparts like Arabidopsis cryptochromes. An extensive sequence-structure-function analysis complemented with evolutionary studies and bibliographic survey is useful towards understanding the immensely diverse CPF.
Collapse
Affiliation(s)
- Pratichi Sarkar
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, WB 700009, India
| | - Aparna Boral
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, WB 700073, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, WB 700073, India.
| |
Collapse
|
2
|
Zgłobicki P, Hermanowicz P, Kłodawska K, Bażant A, Łabuz J, Grzyb J, Dutka M, Kowalska E, Jawor J, Leja K, Banaś AK. The photoreactivation of 6 - 4 photoproducts in chloroplast and nuclear DNA depends on the amount of the Arabidopsis UV repair defective 3 protein. BMC PLANT BIOLOGY 2024; 24:723. [PMID: 39080534 PMCID: PMC11287969 DOI: 10.1186/s12870-024-05439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND 6 - 4 photoproducts are the second most common UV-induced DNA lesions after cyclobutane pyrimidine dimers. In plants, they are mainly repaired by photolyases in a process called photoreactivation. While pyrimidine dimers can be deleterious, leading to mutagenesis or even cell death, 6 - 4 photoproducts can activate specific signaling pathways. Therefore, their removal is particularly important, especially for plants exposed to high UV intensities due to their sessile nature. Although photoreactivation in nuclear DNA is well-known, its role in plant organelles remains unclear. In this paper we analyzed the activity and localization of GFP-tagged AtUVR3, the 6 - 4 photoproduct specific photolyase. RESULTS Using transgenic Arabidopsis with different expression levels of AtUVR3, we confirmed a positive trend between these levels and the rate of 6 - 4 photoproduct removal under blue light. Measurements of 6 - 4 photoproduct levels in chloroplast and nuclear DNA of wild type, photolyase mutants, and transgenic plants overexpressing AtUVR3 showed that the photoreactivation is the main repair pathway responsible for the removal of these lesions in both organelles. The GFP-tagged AtUVR3 was predominantly located in nuclei with a small fraction present in chloroplasts and mitochondria of transgenic Arabidopsis thaliana and Nicotiana tabacum lines. In chloroplasts, this photolyase co-localized with the nucleoid marked by plastid envelope DNA binding protein. CONCLUSIONS Photolyases are mainly localized in plant nuclei, with only a small fraction present in chloroplasts and mitochondria. Despite this unbalanced distribution, photoreactivation is the primary mechanism responsible for the removal of 6 - 4 photoproducts from nuclear and chloroplast DNA in adult leaves. The amount of the AtUVR3 photolyase is the limiting factor influencing the photoreactivation rate of 6 - 4 photoproducts. The efficient photoreactivation of 6 - 4 photoproducts in 35S: AtUVR3-GFP Arabidopsis and Nicotiana tabacum is a promising starting point to evaluate whether transgenic crops overproducing this photolyase are more tolerant to high UV irradiation and how they respond to other abiotic and biotic stresses under field conditions.
Collapse
Affiliation(s)
- Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Paweł Hermanowicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30-387, Poland
| | - Kinga Kłodawska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Justyna Łabuz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30-387, Poland
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Małgorzata Dutka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Joanna Jawor
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Katarzyna Leja
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Łojasiewicza 11, Kraków, 30-348, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
3
|
Ihalainen JA, Dogan B, Kurttila M, Zeng Y, van Elsas JD, Nissinen R. Multifaceted photoreceptor compositions in dual phototrophic systems - A genomic analysis. J Mol Biol 2024; 436:168412. [PMID: 38135178 DOI: 10.1016/j.jmb.2023.168412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
For microbes and their hosts, sensing of external cues is essential for their survival. For example, in the case of plant associated microbes, the light absorbing pigment composition of the plant as well as the ambient light conditions determine the well-being of the microbe. In addition to light sensing, some microbes can utilize xanthorhodopsin based proton pumps and bacterial photosynthetic complexes that work in parallel for energy production. They are called dual phototrophic systems. Light sensing requirements in these type of systems are obviously demanding. In nature, the photosensing machinery follows mainly the same composition in all organisms. However, the specific role of each photosensor in specific light conditions is elusive. In this study, we provide an overall picture of photosensors present in dual phototrophic systems. We compare the genomes of the photosensor proteins from dual phototrophs to those from similar microbes with "single" phototrophicity or microbes without phototrophicity. We find that the dual phototrophic bacteria obtain a larger variety of photosensors than their light inactive counterparts. Their rich domain composition and functional repertoire remains similar across all microbial photosensors. Our study calls further investigations of this particular group of bacteria. This includes protein specific biophysical characterization in vitro, microbiological studies, as well as clarification of the ecological meaning of their host microbial interactions.
Collapse
Affiliation(s)
- Janne A Ihalainen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Batuhan Dogan
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Moona Kurttila
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Yonghui Zeng
- University of Copenhagen, Department of Plant and Environmental Sciences, 2100 Copenhagen, Denmark
| | - Jan Dirk van Elsas
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, 9747 AG Groningen, the Netherlands
| | - Riitta Nissinen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland; University of Turku, Department of Biology, 20500 Turku, Finland
| |
Collapse
|
4
|
Nascimento NS, Torres-Obreque KM, Oliveira CA, Rabelo J, Baby AR, Long PF, Young AR, Rangel-Yagui CDO. Enzymes for dermatological use. Exp Dermatol 2024; 33:e15008. [PMID: 38284197 DOI: 10.1111/exd.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Skin is the ultimate barrier between body and environment and prevents water loss and penetration of pathogens and toxins. Internal and external stressors, such as ultraviolet radiation (UVR), can damage skin integrity and lead to disorders. Therefore, skin health and skin ageing are important concerns and increased research from cosmetic and pharmaceutical sectors aims to improve skin conditions and provide new anti-ageing treatments. Biomolecules, compared to low molecular weight drugs and cosmetic ingredients, can offer high levels of specificity. Topically applied enzymes have been investigated to treat the adverse effects of sunlight, pollution and other external agents. Enzymes, with a diverse range of targets, present potential for dermatological use such as antioxidant enzymes, proteases and repairing enzymes. In this review, we discuss enzymes for dermatological applications and the challenges associated in this growing field.
Collapse
Affiliation(s)
- Natália Santos Nascimento
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Karin Mariana Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Camila Areias Oliveira
- Laboratory of Analytical Validation and Development, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Jheniffer Rabelo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Antony R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
5
|
Qu C, Li N, Liu T, He Y, Miao J. Preparation of CPD Photolyase Nanoliposomes Derived from Antarctic Microalgae and Their Effect on UVB-Induced Skin Damage in Mice. Int J Mol Sci 2022; 23:ijms232315148. [PMID: 36499473 PMCID: PMC9738781 DOI: 10.3390/ijms232315148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
UVB radiation is known to trigger the block of DNA replication and transcription by forming cyclobutane pyrimidine dimer (CPD), which results in severe skin damage. CPD photolyase, a kind of DNA repair enzyme, can efficiently repair CPDs that are absent in humans and mice. Although exogenous CPD photolyases have beneficial effects on skin diseases, the mechanisms of CPD photolyases on the skin remain unknown. Here, this study prepared CPD photolyase nanoliposomes (CPDNL) from Antarctic Chlamydomonas sp. ICE-L, which thrives in harsh, high-UVB conditions, and evaluated their protective mechanisms against UVB-induced damage in mice. CPDNL were optimized using response surface methodology, characterized by a mean particle size of 105.5 nm, with an encapsulation efficiency of 63.3%. Topical application of CPDNL prevented UVB-induced erythema, epidermal thickness, and wrinkles in mice. CPDNL mitigated UVB-induced DNA damage by significantly decreasing the CPD concentration. CPDNL exhibited antioxidant properties as they reduced the production of reactive oxygen species (ROS) and malondialdehyde. Through activation of the NF-κB pathway, CPDNL reduced the expression of pro-inflammatory cytokines including IL-6, TNF-α, and COX-2. Furthermore, CPDNL suppressed the MAPK signaling activation by downregulating the mRNA and protein expression of ERK, JNK, and p38 as well as AP-1. The MMP-1 and MMP-2 expressions were also remarkably decreased, which inhibited the collagen degradation. Therefore, we concluded that CPDNL exerted DNA repair, antioxidant, anti-inflammation, and anti-wrinkle properties as well as collagen protection via regulation of the NF-κB/MAPK/MMP signaling pathways in UVB-induced mice, demonstrating that Antarctic CPD photolyases have the potential for skincare products against UVB and photoaging.
Collapse
Affiliation(s)
- Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products Research and Development Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Nianxu Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Tianlong Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products Research and Development Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
- Correspondence: ; Tel.: +86-532-88967430
| |
Collapse
|
6
|
Wang Z, Li Z, Lei Y, Liu Y, Feng Y, Chen D, Ma S, Xiao Z, Hu M, Deng J, Wang Y, Zhang Q, Huang Y, Yang Y. Recombinant Photolyase-Thymine Alleviated UVB-Induced Photodamage in Mice by Repairing CPD Photoproducts and Ameliorating Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122312. [PMID: 36552521 PMCID: PMC9774824 DOI: 10.3390/antiox11122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclobutane pyrimidine dimers (CPDs) are the main mutagenic DNA photoproducts caused by ultraviolet B (UVB) radiation and represent the major cause of photoaging and skin carcinogenesis. CPD photolyase can efficiently and rapidly repair CPD products. Therefore, they are candidates for the prevention of photodamage. However, these photolyases are not present in placental mammals. In this study, we produced a recombinant photolyase-thymine (rPHO) from Thermus thermophilus (T. thermophilus). The rPHO displayed CPD photorepair activity. It prevented UVB-induced DNA damage by repairing CPD photoproducts to pyrimidine monomers. Furthermore, it inhibited UVB-induced ROS production, lipid peroxidation, inflammatory responses, and apoptosis. UVB-induced wrinkle formation, epidermal hyperplasia, and collagen degradation in mice skin was significantly inhibited when the photolyase was applied topically to the skin. These results demonstrated that rPHO has promising protective effects against UVB-induced photodamage and may contribute to the development of anti-UVB skin photodamage drugs and cosmetic products.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China
| | - Yaling Lei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuan Liu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuqing Feng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Siying Ma
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Yuxin Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Correspondence: (Y.H.); (Y.Y.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- TYRAN Cosmetics Innovation Research Institute, Jinan University, Guangzhou 511447, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Correspondence: (Y.H.); (Y.Y.)
| |
Collapse
|
7
|
Ramírez-Gamboa D, Díaz-Zamorano AL, Meléndez-Sánchez ER, Reyes-Pardo H, Villaseñor-Zepeda KR, López-Arellanes ME, Sosa-Hernández JE, Coronado-Apodaca KG, Gámez-Méndez A, Afewerki S, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Photolyase Production and Current Applications: A Review. Molecules 2022; 27:molecules27185998. [PMID: 36144740 PMCID: PMC9505440 DOI: 10.3390/molecules27185998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The photolyase family consists of flavoproteins with enzyme activity able to repair ultraviolet light radiation damage by photoreactivation. DNA damage by the formation of a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct can lead to multiple affections such as cellular apoptosis and mutagenesis that can evolve into skin cancer. The development of integrated applications to prevent the negative effects of prolonged sunlight exposure, usually during outdoor activities, is imperative. This study presents the functions, characteristics, and types of photolyases, their therapeutic and cosmetic applications, and additionally explores some photolyase-producing microorganisms and drug delivery systems.
Collapse
Affiliation(s)
- Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Humberto Reyes-Pardo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Ana Gámez-Méndez
- Department of Basic Sciences, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte, San Pedro Garza Garcia 66238, Mexico
| | - Samson Afewerki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| |
Collapse
|
8
|
An ML, Miao JL. Genetic and Molecular Characterization of a Dash Cryptochrome Homologous Gene from Antarctic Diatom Phaeodactylum tricornutum ICE-H. Mol Biol 2022. [DOI: 10.1134/s0026893322060024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wang X, He Y, Deng Y, Zuo Z, Li D, Chen F, Qu C, Miao J. A diguanylate cyclase regulates biofilm formation in Rhodococcus sp. NJ-530 from Antarctica. 3 Biotech 2022; 12:27. [PMID: 35036275 PMCID: PMC8710177 DOI: 10.1007/s13205-021-03093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023] Open
Abstract
Biofilms represent a protective survival mode in which bacteria adapt themselves to the natural environment for survival purposes. Biofilm formation is regulated by 3,5-cyclic diguanylic acid (c-di-GMP), which is a universal second messenger molecule in bacteria. Diguanylate cyclase (DGC) catalyses c-di-GMP intracellular synthesis, which plays important roles in bacterial adaptation to the natural environment. In this study, the DGC gene was first cloned from Antarctic Rhodococcus sp. NJ-530. DGC contained 948 nucleotides and encoded 315 amino acids with a molecular weight of 34.6 KDa and an isoelectric point of 5.58. qRT-PCR demonstrated that the DGC expression level was significantly affected by lower salinity and temperature. Consistently, more biofilm formation occurred under the same stress. It has been shown that Rhodococcus sp. NJ-530 can adapt to the extreme environment in Antarctica, which is closely related to biofilm formation. These results provide an important reference for studying the adaptive mechanism of Antarctic microorganisms to this extreme environment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03093-z.
Collapse
Affiliation(s)
- Xixi Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Yashan Deng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Zhicong Zuo
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Dan Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
| | - Fushan Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, No. 6 of Xianxialing Road, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
10
|
Wang H, Liu H, Yu Q, Fan F, Liu S, Feng G, Zhang P. A CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans is involved in the resistance to UV-B radiation and salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:235-244. [PMID: 34385002 DOI: 10.1016/j.plaphy.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 05/24/2023]
Abstract
In Antarctic continent, the organisms are exposed to high ultraviolet (UV) radiation because of damaged stratospheric ozone. UV causes DNA lesions due to the accumulation of photoproducts. Photolyase can repair UV-damaged DNA in a light-dependent process by electron transfer mechanism. Here, we isolated a CPD photolyase gene PnPHR1 from Antarctic moss Pohlia nutans, which encodes a protein of theoretical molecular weight of 69.1 KDa. The expression level of PnPHR1 was increased by UV-B irradiation. Enzyme activity assay in vitro showed that PnPHR1 exhibited photoreactivation activity, which can repair CPD photoproducts in a light-dependent manner. The complementation assay of repair-deficient E. coli strain SY2 demonstrated that PnPHR1 gene enhanced the survival rate of SY2 strain after UV-B radiation. Additionally, overexpression of PnPHR1 enhanced the Arabidopsis resistance to UV-B radiation and salinity stress, which also conferred plant tolerance to oxidative stress by decreasing ROS production and increasing ROS clearance. Our work shows that PnPHR1 encodes an active CPD photolyase, which may participate in the adaptation of P. nutans to polar environments.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongwei Liu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China; Medical Administration Department, Shinan District Health Bureau, Qingdao, 266073, China
| | - Qian Yu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, 266061, China
| | - Guihua Feng
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
11
|
An M, Qu C, Miao J, Sha Z. Two class II CPD photolyases, PiPhr1 and PiPhr2, with CPD repair activity from the Antarctic diatom Phaeodactylum tricornutum ICE-H. 3 Biotech 2021; 11:377. [PMID: 34367869 DOI: 10.1007/s13205-021-02927-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Two gene of class II photolyases, PiPhr1 (1833 bp) and PiPhr2 (1809 bp), from the Antarctic diatom Phaeodactylum tricornutum ICE-H were cloned, the recombinant proteins expressed and purified. The molecular weight of the recombinant photolyases were determined to be 68 kDa with a pI of 9.04 and 68.82 with a pI of 7.31, respectively. Activity studies showed that both the recombinant enzymes were involved in the repair DNA damaged by UV light, that is they were most likely photolyases involved in photorepair of DNA. Further confirmation of this function was demonstrated by the increased expression of PiPhr1 and PiPhr2 after exposure to UV radiation, blue light and dark conditions by qRT-PCR. In summary, PiPhr1 and PiPhr2 were up regulated by UVB irradiation and blue light at 0.5 h and 3 h. Longtime (3 h) exposure to dark also increased the expression of PiPhr1 and PiPhr2. In vitro photoreactivation assays showed that PiPhr1 and PiPhr2 could repair CPDs utilizing blue light. This is the first time CPD Class II photolyase has been reported from Antarctic diatom. These results will add to the knowledge of the diatom CPF family and assist in understanding the functional role of these genes in Antarctic diatoms. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02927-0.
Collapse
Affiliation(s)
- Meiling An
- College of Life Sciences, Qingdao University, Qingdao, 266071 China
| | - Changfeng Qu
- First Institute of Oceanography, Ministry of Natural Resource, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinlai Miao
- First Institute of Oceanography, Ministry of Natural Resource, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Zhenxia Sha
- College of Life Sciences, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
12
|
An M, Qu C, Miao J, Sha Z. A Class II CPD Photolyase and a 6-4 Photolyase with Photorepair Activity from the Antarctic Moss Pohlia nutans M211. Photochem Photobiol 2021; 97:1527-1533. [PMID: 34166538 DOI: 10.1111/php.13478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/22/2021] [Indexed: 01/25/2023]
Abstract
Antarctic mosses are the dominant vegetation in the Antarctic continent. Because of stratospheric ozone depletion, they can withstand physiological extreme UV. The formation of CPD and 6-4PP is one of the most harmful damages of UV to DNA. DNA damage can interfere with replication and transcription, resulting in mutation and death. Two types of photolyase, CPD photolyase and 6-4 photolyase, are capable of specific binding CPD or 6-4PP and repairing these lesions. However, there is little research on photolyase in Antarctic moss. Here, we isolated a gene encoding class II CPD photolyase (PnCPDPhr) and a gene encoding 6-4 photolyase (Pn6-4Phr) from Antarctic moss P. nutans M211. When exposed to UVB, CPDs accumulated in gametophytes and the gene expressions of PnCPDPhr and Pn6-4Phr were both up-regulated. In addition, the in vitro expression and photoreactivation assays of PnCPDPhr and Pn6-4Phr were performed. Our results demonstrated that PnCPDPhr and Pn6-4Phr have an effective activity of DNA repair. This is the first study to determine the CPD accumulation in Antarctic moss as well as the first report isolating CPD photolyase and 6-4 photolyase from Antarctic moss. These results will enrich the knowledge of photolyase family and benefit the exploitation of functioning gene in Antarctic moss.
Collapse
Affiliation(s)
- Meiling An
- College of Life Sciences, Qingdao University, Qingdao, China.,First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China
| | - Changfeng Qu
- First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinlai Miao
- First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenxia Sha
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Ramírez N, Serey M, Illanes A, Piumetti M, Ottone C. Immobilization strategies of photolyases: Challenges and perspectives for DNA repairing application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 215:112113. [PMID: 33383556 DOI: 10.1016/j.jphotobiol.2020.112113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/19/2020] [Indexed: 02/08/2023]
Abstract
Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.
Collapse
Affiliation(s)
- Nicolás Ramírez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marcela Serey
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Marco Piumetti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| |
Collapse
|
14
|
A (6-4)-photolyase from the Antarctic bacterium Sphingomonas sp. UV9: recombinant production and in silico features. Extremophiles 2020; 24:887-896. [PMID: 32960344 DOI: 10.1007/s00792-020-01202-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Photolyases are proteins that enzymatically repair the UV-induced DNA damage by a protein-DNA electron transfer mechanism. They repair either cyclobutane pyrimidine dimers or pyrimidine (6-4) pyrimidone photoproducts or just (6-4)-photoproducts. In this work, we report the production and partial characterization of a recombinant (6-4)-photolyase (SphPhrB97) from a bacterial psychrotolerant Antarctic isolate identified as Sphingomonas sp. strain UV9. The spectrum analysis and the in silico study of SphPhrB97 suggest that this enzyme has similar features as compared to the (6-4)-photolyase from Agrobacterium tumefaciens (4DJA; PhrB), including the presence of three cofactors: FAD, DMRL (6,7-dimethyl-8-(1'-D-ribityl) lumazine), and an Fe-S cluster. The homology model of SphPhrB97 predicts that the DNA-binding pocket (area and volume) is larger as compared to (6-4)-photolyases from mesophilic microbes. Based on sequence comparison and on the homology model, we propose an electron transfer pathway towards the FAD cofactor involving the residues Trp342, Trp390, Tyr40, Tyr391, and Tyr399. The phylogenetic tree performed using curated and well-characterized prokaryotic (6-4)-photolyases suggests that SphPhrB97 may have an ancient evolutionary origin. The results suggest that SphPhrB97 is a cold-adapted enzyme, ready to cope with the UV irradiation stress found in a hostile environment, such as Antarctica.
Collapse
|
15
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Tanaka Y, Uchi H, Furue M. Antioxidant cinnamaldehyde attenuates UVB-induced photoaging. J Dermatol Sci 2019; 96:151-158. [PMID: 31735467 DOI: 10.1016/j.jdermsci.2019.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation disrupts skin through several deleterious actions, such as induction of reactive oxygen species (ROS), DNA damage, and collagen degradation. Cinnamaldehyde (CIN) is a major constituent of the cinnamon and it possesses potent antioxidative activity; however, it is unclear whether CIN is capable of inhibiting the adverse effects of UVB. OBJECTIVE To investigate protective effects of CIN against UVB-induced photodamage. METHODS HaCaT keratinocytes were pretreated with CIN, irradiated with UVB, and assessed for the ROS production by flow cytometry and for the DNA damage by ELISA. As in vivo mouse model, Hos:HR-1 hairless mice were treated with ointments containing DMSO or CIN and irradiated multiple times with UVB. After 10 weeks of irradiation, wrinkle formation, epidermal thickness, infiltrating cell number, malondialdehyde amount, collagen amount, MAP kinase signaling, and related gene expressions (Hmox1, Col1a1, Mmp1a, and Mmp13) were analyzed. RESULTS CIN significantly reduced the ROS production and accelerated the repair of DNA damage pyrimidine(6-4)pyrimidone photoproducts in UVB-irradiated human keratinocytes in vitro. In the mouse model, topical application of CIN significantly inhibited wrinkle formation, epidermal hyperplasia, and dermal inflammatory cell infiltration. The antioxidative process was significantly promoted in the CIN-applied site, as evidenced by upregulation of the antioxidative enzyme Hmox1 as well as the reduced accumulation of malondialdehyde. In addition, topical application of CIN normalized the UVB-induced collagen/Col1a1 downregulation and the UVB-induced Mmp13 upregulation, implying the prevention of UVB-induced collagen degradation. CONCLUSIONS CIN and CIN-containing herbal agents may exert potent protective effects against UVB exposure on skin.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Uchi
- Department of Dermatology, National Hospital organization Kyushu Cancer Center, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan; Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|