1
|
Boisvert L, Derr R, Osterlund T, Hendriks G, Brandsma I. Quantitative interpretation of ToxTracker dose-response data for potency comparisons and mode-of-action determination. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:132-143. [PMID: 36645179 DOI: 10.1002/em.22525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
ToxTracker is an in vitro mammalian stem cell-based reporter assay that detects activation of specific cellular signaling pathways (DNA damage, oxidative stress, and/or protein damage) upon chemical exposure using flow cytometry. Here we used quantitative methods to empirically analyze historical control data, and dose-response data across a wide range of reference chemicals. First, we analyzed historical control data to define a fold-change threshold for identification of a significant positive response. Next, we used the benchmark dose (BMD) combined-covariate approach for potency ranking of a set of more than 120 compounds; the BMD values were used for comparative identification of the most potent inducers of each reporter. Lastly, we used principal component analysis (PCA) to investigate functional and statistical relationships between the ToxTracker reporters. The PCA results, based on the BMD results for all substances, indicated that the DNA damage (Rtkn, Bscl2) and p53 (Btg2) reporters are functionally complementary and indicative of genotoxic stress. The oxidative stress (Srxn1 and Blvrb) and protein stress (Ddit3) reporters are independent indicators of cellular stress, and essential for toxicological profiling using the ToxTracker assay. Overall, dose-response modeling of multivariate ToxTracker data can be used for potency ranking and mode-of-action determination. In the future, IVIVE (in vitro to in vivo extrapolation) methods can be employed to determine in vivo AED (administered equivalent dose) values that can in turn be used for human health risk assessment.
Collapse
Affiliation(s)
- Lorrie Boisvert
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
2
|
Zhu X, Huo J, Zeng Z, Liu Y, Li R, Chen Y, Zhang L, Chen J. Determination of potential thresholds for N-ethyl-N-nitrosourea and ethyl methanesulfonate based on a multi-endpoint genotoxicity assessment platform in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85128-85142. [PMID: 35793016 PMCID: PMC9646607 DOI: 10.1007/s11356-022-21605-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The main goal of the study was to investigate the genotoxic response of N-ethyl-N-nitrosourea (ENU) and ethyl methanesulfonate (EMS) at low doses in a multi-endpoint genotoxicity assessment platform in rats and to derive potential thresholds and related metrics. Male Sprague-Dawley rats were treated by daily oral gavage for 28 consecutive days with ENU (0.25 ~ 8 mg/kg bw) and EMS (5 ~ 160 mg/kg bw), both with six closely spaced dose levels. Pig-a gene mutation assay, micronucleus test, and comet assay were performed in several timepoints. Then, the dose-response relationships were analyzed for possible points of departure (PoD) using the no observed genotoxic effect level and benchmark dose (BMD) protocols with different critical effect sizes (CES, 0.05, 0.1, 0.5, and 1SD). Overall, dose-dependent increases in all investigated endpoints were found for ENU and EMS. PoDs varied across genetic endpoints, timepoints, and statistical methods, and selecting an appropriate lower 95% confidence limit of BMD needs a comprehensive consideration of the mode of action of chemicals, the characteristics of tests, and the model fitting methods. Under the experimental conditions, the PoDs of ENU and EMS were 0.0036 mg/kg bw and 1.7 mg/kg bw, respectively.
Collapse
Affiliation(s)
- Xuejiao Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Zhu Zeng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Yunjie Liu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Ruirui Li
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yiyi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
4
|
Pottenger LH, Boysen G, Brown K, Cadet J, Fuchs RP, Johnson GE, Swenberg JA. Understanding the importance of low-molecular weight (ethylene oxide- and propylene oxide-induced) DNA adducts and mutations in risk assessment: Insights from 15 years of research and collaborative discussions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:100-121. [PMID: 30536466 PMCID: PMC6590209 DOI: 10.1002/em.22248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 05/11/2023]
Abstract
The interpretation and significance of DNA adduct data, their causal relationship to mutations, and their role in risk assessment have been debated for many years. An extended effort to identify key questions and collect relevant data to address them was focused on the ubiquitous low MW N7-alkyl/hydroxyalkylguanine adducts. Several academic, governmental, and industrial laboratories collaborated to gather new data aimed at better understanding the role and potential impact of these adducts in quantifiable genotoxic events (gene mutations/micronucleus). This review summarizes and evaluates the status of dose-response data for DNA adducts and mutations from recent experimental work with standard mutagenic agents and ethylene oxide and propylene oxide, and the importance for risk assessment. This body of evidence demonstrates that small N7-alkyl/hydroxyalkylguanine adducts are not pro-mutagenic and, therefore, adduct formation alone is not adequate evidence to support a mutagenic mode of action. Quantitative methods for dose-response analysis and derivation of thresholds, benchmark dose (BMD), or other points-of-departure (POD) for genotoxic events are now available. Integration of such analyses of genetox data is necessary to properly assess any role for DNA adducts in risk assessment. Regulatory acceptance and application of these insights remain key challenges that only the regulatory community can address by applying the many learnings from recent research. The necessary tools, such as BMDs and PODs, and the example datasets, are now available and sufficiently mature for use by the regulatory community. Environ. Mol. Mutagen. 60: 100-121, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- L. H. Pottenger
- Olin Corporation/Blue Cube Operations, LLC, retired, LHP TOX CONSULT, LLCMidlandMIUSA
| | - G. Boysen
- Department of Environmental and Occupational Health and The Winthrop P Rockefeller Cancer Institute University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - K. Brown
- Leicester Cancer Research CentreUniversity of LeicesterLeicesterUnited Kingdom
| | - J. Cadet
- Institut Nanosciences et Cryogénie, CEA‐GrenobleGrenobleFrance
- Université de SherbrookeSherbrookeCanada
| | - R. P. Fuchs
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068Marseille, 13009France
- CNRS, UMR7258Marseille, 13009France
- Institut Paoli‐CalmettesMarseille, 13009France
- Aix‐Marseille UniversityUM 105, 13284, MarseilleFrance
| | - G. E. Johnson
- Swansea University, Institute of Life SciencesSwanseaUnited Kingdom
| | - J. A. Swenberg
- University of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
5
|
Application of the in vivo Pig-a gene mutation assay to test the potential genotoxicity of p-phenylenediamine. Food Chem Toxicol 2018; 123:424-430. [PMID: 30439388 DOI: 10.1016/j.fct.2018.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/17/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022]
Abstract
Currently, it remains controversial whether p-phenylenediamine (PPD) is genotoxic. In this study, we evaluated the potential genotoxicity of PPD using the newly-developed Pig-a gene mutation assay. The results of three classical genetic toxicity tests (bacterial reverse mutation assay, mammalian cell chromosomal aberration test, and mammalian erythrocyte micronucleus test) are all positive, suggesting that PPD is potentially genotoxic. In Pig-a assay, Sprague-Dawley rats are orally administered with PPD for 28 consecutive days at three doses (12.5, 25, and 50 mg/kg/day). Our result shows that PPD (25 and 50 mg/kg/day) dose-dependently increases RETCD59- value over controls on Day 8. RETCD59- keeps increasing to the maximum on Day 15 and then decreases until Day 29. PPD also dose-dependently increase RBCCD59- value on Day 15, which keeps elevating until Day 29. The time-course of RETCD59- and RBCCD59- induced by PPD are similar with that induced by N-ethyl-N-nitrosourea (ENU) treatment for 3 days. Our data suggests that PPD has potential genotoxic effects, and the Pig-a assay is sensitive to assess mutagenicity. However, further investigation of the changes of RETCD59- and RBCCD59- induced by hair dyes containing PPD should be detected by Pig-a assay in occupational exposure population to confirm the safety of PPD usage.
Collapse
|
6
|
Multi-laboratory evaluation of 1,3-propane sultone, N -propyl- N -nitrosourea, and mitomycin C in the Pig-a mutation assay in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:62-68. [DOI: 10.1016/j.mrgentox.2018.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
|
7
|
Igl BW, Dertinger SD, Dobrovolsky VN, Raschke M, Sutter A, Vonk R. A statistical approach for analyzing data from the in vivo Pig-a gene mutation assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:33-44. [PMID: 29875075 DOI: 10.1016/j.mrgentox.2018.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 10/17/2022]
Abstract
The in vivo Pig-a gene mutation assay serves to evaluate the genotoxic potential of chemicals. In the rat blood-based assay, the lack of CD59 on the surface of erythrocytes is quantified via fluorophore-labeled antibodies in conjunction with flow cytometric analysis to determine the frequency of Pig-a mutant phenotype cells. The assay has achieved regulatory relevance as it is suggested as an in vivo follow-up test for Ames mutagens in the recent ICH M7 [25] step 4 document. However, very little work exists regarding suitable statistical approaches for analyzing Pig-a data. In the current report, we present a statistical strategy based on a two factor model involving 'treatment' and 'time' incl. their interaction and a baseline covariate for log proportions to compare treatment and vehicle data per time point as well as in time. In doing so, multiple contrast tests allow us to discover time-related changes within and between treatment groups in addition to multiple treatment comparisons to a control group per single time point. We compare our proposed strategy with the results of classical Dunnett and Wilcoxon-Mann-Whitney tests using two data sets describing the mode of action of Chlorambucil and Glycidyl methacrylate both analyzed in a 28-day treatment schedule.
Collapse
Affiliation(s)
| | | | - Vasily N Dobrovolsky
- National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | - Richardus Vonk
- Research and Clinical Sciences Statistics, Bayer AG, Berlin, Germany
| |
Collapse
|
8
|
Moore MM, Schoeny RS, Becker RA, White K, Pottenger LH. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol 2018; 48:312-337. [PMID: 29431554 DOI: 10.1080/10408444.2017.1423462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) are frameworks starting with a molecular initiating event (MIE), followed by key events (KEs) linked by KE relationships (KERs), ultimately resulting in a specific adverse outcome. Relevant data for the pathway and each KE/KER are evaluated to assess biological plausibility, weight-of-evidence, and confidence. We aimed to describe an AOP relevant to chemicals directly inducing mutation in cancer critical gene(s), via the formation of chemical-specific pro-mutagenic DNA adduct(s), as an early critical step in tumor etiology. Such chemicals have mutagenic modes-of-action (MOA) for tumor induction. To assist with developing this AOP, Aflatoxin B1 (AFB1) was selected as a case study because it has a rich database and is considered to have a mutagenic MOA. AFB1 information was used to define specific KEs, KERs, and to inform development of a generic AOP for mutagen-induced hepatocellular carcinoma (HCC). In assessing the AFB1 information, it became clear that existing data are, in fact, not optimal and for some KEs/KERs, the definitive data are not available. In particular, while there is substantial information that AFB1 can induce mutations (based on a number of mutation assays), the definitive evidence - the ability to induce mutation in the cancer critical gene(s) in the tumor target tissue - is not available. Thus, it is necessary to consider the patterns of results in the weight-of-evidence for KEs and KERs. It was important to determine whether there was sufficient evidence that AFB1 can induce the necessary critical mutations early in the carcinogenic process, which was the case.
Collapse
Affiliation(s)
- Martha M Moore
- a Ramboll Environ US Corporation , Little Rock , AR , USA
| | | | | | | | | |
Collapse
|
9
|
Galloway SM. International regulatory requirements for genotoxicity testing for pharmaceuticals used in human medicine, and their impurities and metabolites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:296-324. [PMID: 28299826 DOI: 10.1002/em.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The process of developing international (ICH) guidelines is described, and the main guidelines reviewed are the ICH S2(R1) guideline that includes the genotoxicity test battery for human pharmaceuticals, and the ICH M7 guideline for assessing and limiting potentially mutagenic impurities and degradation products in drugs. Key aspects of the guidelines are reviewed in the context of drug development, for example the incorporation of genotoxicity assessment into non-clinical toxicity studies, and ways to develop and assess weight of evidence. In both guidelines, the existence of "thresholds" or non-linear dose responses for genotoxicity plays a part in the strategies. Differences in ICH S2(R1) protocol recommendations from OECD guidelines are highlighted and rationales explained. The use of genotoxicity data during clinical development and in assessment of carcinogenic potential is also described. There are no international guidelines on assessment of potentially genotoxic metabolites, but some approaches to safety assessment are discussed for these. Environ. Mol. Mutagen. 58:296-324, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
10
|
Dose–response relationship of temozolomide, determined by the Pig-a, comet, and micronucleus assay. Arch Toxicol 2017; 91:2443-2453. [DOI: 10.1007/s00204-016-1923-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 11/25/2022]
|
11
|
Kyoya T, Hori M, Terada M. Evaluation of the in vivo mutagenicity of melamine by the RBC Pig-a assay and PIGRET assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:43-48. [PMID: 27931813 DOI: 10.1016/j.mrgentox.2016.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The Pig-a assay is a new in vivo genotoxicity test for detecting mutagens in the bodies of animals, using the endogenous Pig-a gene as the target. There are two types of Pig-a assays: the red blood cell (RBC) Pig-a assay, which uses RBCs, and the PIGRET assay, which uses reticulocytes. The Japanese Environmental Mutagen Society-Mammalian Mutagenicity Study Group collaborative study of the Pig-a assay was carried out to investigate the usefulness of the PIGRET assay. The mutagenicity of melamine was evaluated as part of this study. Eight-week-old male Crl:CD (SD) rats were administered a single gavage dose of melamine as a non-genotoxic bladder carcinogen. Blood samples were collected at the first, second and fourth weeks after administration, and the RBC Pig-a assay and PIGRET assays were conducted using these samples. Three dose levels were used in the study: the highest dose was 2000mg/kg, which is generally used as the maximum dose in in vivo genotoxicity testing, and 1000 and 500mg/kg were also used. As a positive control, a group of rats was administered a single dose of N-nitroso-N-ethylurea (ENU) by gavage at 40mg/kg. The Pig-a mutant frequencies (Pig-a MFs) did not increase in any of the melamine groups throughout the experimental period in either the RBC Pig-a assay or the PIGRET assay. Both the RBC Pig-a and PIGRET assays revealed significant increases in the Pig-a MFs in the ENU group, starting at day 7 after a single administration. Therefore, these two assays, when evaluated after a single administration, can be used to determine that melamine is non-mutagenic.
Collapse
Affiliation(s)
- Takahiro Kyoya
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan.
| | - Masami Hori
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan
| | - Megumi Terada
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd. 3360 Kamo, Kikugawa-shi, Shizuoka, 439-0031, Japan
| |
Collapse
|
12
|
Itoh S, Hattori C, Nakayama S, Hanamoto A. PIGRET assay can detect mutagenicity of ethyl methanesulfonate much earlier than RBC Pig-a assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:102-105. [PMID: 27931801 DOI: 10.1016/j.mrgentox.2015.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
The comparison between the original red blood cell (RBC) Pig-a assay, which measures Pig-a mutant RBCs, and the PIGRET assay, which uses reticulocytes, was conducted using in vivo mutagenesis by ethyl methanesulfonate (EMS) as a part of a collaborative study by the Mammalian Mutagenicity Study Group in the Japanese Environmental Mutagen Society. Three dose levels of EMS (180, 360, and 720mg/kg) were administered once by oral gavage to 8-week-old male Crl:CD(SD) rats, and peripheral blood was sampled at 0 (1 day before dosing), 1, 2, and 4 weeks after dosing with EMS. As a result, a statistically significant increase in the mutant frequency of the Pig-a gene was observed from 2 weeks after dosing and a higher value was obtained on week 4 at the highest dose only in the RBC Pig-a assay. In the PIGRET assay, on the other hand, a statistically significant increase in Pig-a mutant frequency was obtained at the highest dose from 1 week after dosing, and it decreased on weeks 2 and 4 compared to the value at week 1. The Pig-a mutant frequency appeared to reach a plateau 1 week after dosing in the PIGRET assay and it might continue to increase even after week 4 in the RBC Pig-a assay. These results indicate that the PIGRET assay can detect Pig-a mutants much earlier than the original RBC Pig-a assay, and it can enable judgement of mutagenicity of EMS within 1 week after a single dosing.
Collapse
Affiliation(s)
- Satoru Itoh
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Chiharu Hattori
- Biologics Pharmacology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shiho Nakayama
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Akiharu Hanamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
13
|
Fahrer J, Kaina B. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens. Food Chem Toxicol 2016; 106:583-594. [PMID: 27693244 DOI: 10.1016/j.fct.2016.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O6-methylguanine (O6-MeG), which are removed by base excision repair (BER) and O6-methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER). Both O6-MeG and HCA-induced DNA adducts are linked to the occurrence of KRAS and APC mutations in colorectal tumors of rodents and humans, thereby driving CRC initiation and progression. In this review, we focus on DNA repair pathways removing DNA lesions induced by NOC and HCA and assess their role in protecting against mutagenicity and carcinogenicity in the large intestine. We further discuss the impact of DNA repair on the dose-response relationship in colorectal carcinogenesis in view of recent studies, demonstrating the existence of 'no effect' point of departures (PoDs), i.e. thresholds for genotoxicity and carcinogenicity. The available data support the threshold concept for NOC with DNA repair being causally involved.
Collapse
Affiliation(s)
- Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
14
|
Lovsin Barle E, Winkler GC, Glowienke S, Elhajouji A, Nunic J, Martus HJ. Setting Occupational Exposure Limits for Genotoxic Substances in the Pharmaceutical Industry. Toxicol Sci 2016; 151:2-9. [PMID: 27207978 PMCID: PMC4914798 DOI: 10.1093/toxsci/kfw028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the pharmaceutical industry, genotoxic drug substances are developed for life-threatening indications such as cancer. Healthy employees handle these substances during research, development, and manufacturing; therefore, safe handling of genotoxic substances is essential. When an adequate preclinical dataset is available, a risk-based decision related to exposure controls for manufacturing is made following a determination of safe health-based limits, such as an occupational exposure limit (OEL). OELs are calculated for substances based on a threshold dose-response once a threshold is identified. In this review, we present examples of genotoxic mechanisms where thresholds can be demonstrated and OELs can be calculated, including a holistic toxicity assessment. We also propose a novel approach for inhalation Threshold of Toxicological Concern (TTC) limit for genotoxic substances in cases where the database is not adequate to determine a threshold.
Collapse
Affiliation(s)
| | | | | | | | - Jana Nunic
- Lek Pharmaceuticals D.D, Verovškova 57, 1526 Ljubljana, Slovenia
| | | |
Collapse
|
15
|
Roberts DJ, McKeon M, Xu Y, Stankowski LF. Comparison of integrated genotoxicity endpoints in rats after acute and subchronic oral doses of 4-nitroquinoline-1-oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:17-27. [PMID: 26407646 PMCID: PMC7362388 DOI: 10.1002/em.21981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 05/16/2023]
Abstract
During interlaboratory validation trials for the Pig-a gene mutation assay we assessed the genotoxicity of 4-nitroquinoline-1-oxide (4NQO) across endpoints in multiple tissues: induction of Pig-a mutant red blood cells (RBCs) and reticulocytes (RETs); micronucleated RETs (MN RETs); and DNA damage in blood and liver via the alkaline Comet assay (%tail intensity [TI]). In a previous subchronic toxicity study with 28 daily doses, biologically meaningful increases were observed only for Pig-a mutant RBCs/RETs while marginal increases in the frequency of MN RET were observed, and other clastogenic endpoints were negative. Follow up acute studies were performed using the same cumulative doses (0, 35, 70, 105, and 140 mg/kg) administered in a bolus, or split over three equal daily doses, with samples collected up to 1 month after the last dose. Both of the acute dosing regimens produced similar results, in that endpoints were either positive or negative, regardless of 1 or 3 daily doses, but the three consecutive daily dose regimen yielded more potent responses in TI (in liver and blood) and Pig-a mutant frequencies. In these acute studies the same cumulative doses of 4NQO induced positive responses in clastogenic endpoints that were negative or inconclusive using a subchronic study design. Additionally, a positive control group using combination doses of cyclophosphamide and ethyl methanesulfonate was employed to assess assay validity and potentially identify a future positive control treatment for integrated genetic toxicity studies.
Collapse
Affiliation(s)
- Daniel J Roberts
- Bristol-Myers Squibb, New Brunswick, NJ, USA
- Joint Graduate Program of Toxicology, Rutgers, NJ, USA
| | | | - Yong Xu
- BioReliance Corporation, Rockville, MD, USA
| | | |
Collapse
|
16
|
Zeller A, Tang L, Dertinger SD, Funk J, Duran-Pacheco G, Guérard M. A proposal for a novel rationale for critical effect size in dose–response analysis based on a multi-endpointin vivostudy with methyl methanesulfonate. Mutagenesis 2015; 31:239-53. [DOI: 10.1093/mutage/gev077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Ji Z, LeBaron MJ, Schisler MR, Zhang F, Bartels MJ, Gollapudi BB, Pottenger LH. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU. Mutagenesis 2015; 31:297-308. [PMID: 26040483 DOI: 10.1093/mutage/gev035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents.
Collapse
|
18
|
Gollapudi BB, Lynch AM, Heflich RH, Dertinger SD, Dobrovolsky VN, Froetschl R, Horibata K, Kenyon MO, Kimoto T, Lovell DP, Stankowski LF, White PA, Witt KL, Tanir JY. The in vivo Pig-a assay: A report of the International Workshop On Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:23-35. [DOI: 10.1016/j.mrgentox.2014.09.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
|
19
|
Snodin D, Teasdale A. Mutagenic Alkyl-Sulfonate Impurities in Sulfonic Acid Salts: Reviewing the Evidence and Challenging Regulatory Perceptions. Org Process Res Dev 2015. [DOI: 10.1021/op500397h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Snodin
- Xiphora Biopharma Consulting, Bristol, BS6 7BG, U.K
| | | |
Collapse
|
20
|
Coffing SL, Kenyon MO, Ackerman JI, Shutsky TJ, Dobo KL. Evaluation of the in vivo mutagenicity of isopropyl methanesulfonate in acute and 28-day studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:322-332. [PMID: 25229874 DOI: 10.1002/em.21910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 06/03/2023]
Abstract
Understanding the mutagenic dose response could prove beneficial in the management of pharmaceutically relevant impurities. For most alkyl ester impurities, such as isopropyl methanesulfonate (IPMS), little in vivo mutagenicity data exist for dose analysis. The likelihood of a sublinear dose response for IPMS was assessed by comparing the Swain Scott constant, the SN 1/SN 2 reaction mechanism and the O(6) :N(7) guanine adduct ratio to that of more well-known alkyl esters. Based on available information, IPMS was predicted to have a mutagenic profile most like ethyl nitrosourea. To test this hypothesis, mature male Wistar Han rats were administered IPMS using acute (single administration at 3.5 to 56 mg/kg) or subchronic (28 days at 0.125 to 2 mg/kg/day) exposures. The in vivo Pig-a mutation assay was used to identify mutant phenotype reticulocyte (Ret) and red blood cell (RBC) populations. The maximum mutant response occurred approximately 15 and 28 days after the last dose administration in the mutant Ret and RBC populations respectively in the acute study and on Day 29 and 56 in the mutant Ret and RBC populations, respectively, in the subchronic study. A comparison of RBC mutant frequencies from acute and subchronic protocols suggests a sublinear response; however, this was not substantiated by statistical analysis. A No Observed Effect Level (NOEL) of 0.25 mg/kg/day resulted in a Permitted Daily Exposure equivalent to the Threshold of Toxicological Concern. An estimate of the NOEL based on the previously mentioned factors, in practice, would have pre-empted further investigation of the potent mutagen IPMS.
Collapse
Affiliation(s)
- Stephanie L Coffing
- Pfizer Worldwide Research and Development, Genetic Toxicology, Groton, Connecticut
| | | | | | | | | |
Collapse
|
21
|
Kenyon MO, Coffing SL, Ackerman JI, Gunther WC, Dertinger SD, Criswell K, Dobo KL. Compensatory erythropoiesis has no impact on the outcome of the in vivo Pig-a mutation assay in rats following treatment with the haemolytic agent 2-butoxyethanol. Mutagenesis 2015; 30:325-34. [PMID: 25820171 DOI: 10.1093/mutage/geu051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Pig-a assay has rapidly gained international interest as a useful tool for assessing the mutagenic potential of compounds in vivo. Although a large number of compounds, including both mutagens and non-mutagens, have been tested in the rat Pig-a assay in haematopoietic cells, there is limited understanding of how perturbations in haematopoiesis affect assay performance. Of particular concern is the possibility that regenerative haematopoiesis alone, without exposure to a genotoxic agent, could result in elevated Pig-a mutant cell frequencies. To address this concern, Wistar-Han rats were dosed by oral gavage with a non-genotoxic haemolytic agent, 2-butoxyethanol (2-BE). Dose levels ranging from 0 to 450 mg/kg were tested using both single administration and 28-day treatment regimens. Haematology parameters were assessed at minimum within the first 24h of treatment and 8 days after the final administration. Pig-a mutant frequencies were assessed on Days 15 and ~30 for both treatment protocols and also on Days 43 and 57 for the 28-day protocol. Even at doses of 2-BE that induced marked intravascular lysis and strong compensatory erythropoiesis, the average Pig-a mutant phenotype red blood cell and reticulocyte frequencies were within the historical vehicle control distribution. 2-BE therefore showed no evidence of in vivo mutagenicity in these studies. The data suggest that perturbations in haematopoiesis alone do not lead to an observation of increased mutant frequency in the Pig-a assay.
Collapse
Affiliation(s)
- Michelle O Kenyon
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Stephanie L Coffing
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Joel I Ackerman
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - William C Gunther
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | | | - Kay Criswell
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| | - Krista L Dobo
- Pfizer Worldwide Research and Development, Genetic Toxicology, Eastern Point Road, MS-8274-1317, Groton, CT 06340, USA and Litron Laboratories, 3500 Winton Place, Rochester, NY 14623, USA
| |
Collapse
|
22
|
Guérard M, Baum M, Bitsch A, Eisenbrand G, Elhajouji A, Epe B, Habermeyer M, Kaina B, Martus H, Pfuhler S, Schmitz C, Sutter A, Thomas A, Ziemann C, Froetschl R. Assessment of mechanisms driving non-linear dose–response relationships in genotoxicity testing. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:181-201. [DOI: 10.1016/j.mrrev.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 01/15/2023]
|
23
|
Gunther WC, Coffing SL, Dickinson DA, Engel ME, Fiedler RD, O'Lone SD, Sanok KE, Thiffeault CJ, Shutsky TJ, Schuler MJ, Dobo KL. Evaluation of the Pig-a, micronucleus, and comet assay endpoints in a 28-day study with ethyl methanesulfonate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:492-499. [PMID: 24599777 DOI: 10.1002/em.21863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Ethyl methanesulfonate (EMS) was evaluated as part of the validation effort for the rat Pig-a mutation assay and compared with other well-established in vivo genotoxicity endpoints. Male Sprague-Dawley (SD) rats were given a daily dose of 0, 6.25, 12.5, 25, 50, or 100 mg/kg/day EMS for 28 days, and evaluated for a variety of genotoxicity endpoints in peripheral blood, liver, and colon. Blood was sampled pre-dose (Day 1) and at various time points up to Day 105. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD59-) and RET(CD59-) frequencies. The first statistically significant increases in mutant frequencies were seen in RETs on Day 15 and in RBCs on Day 29 with the maximum RET(CD59-) on Day 29 and of RBC(CD59-) on Day 55. The lowest dose producing a statistically significant increase of RET(CD59-) was 12.5 mg/kg on Day 55 and 25 mg/kg for RBC(CD59-) on Day 55. EMS also induced significant increases in % micronucleated RETs (MN-RETs) in peripheral blood on Days 3, 15, and 28. No statistically significant increases in micronuclei were seen in liver or colon. Results from the in vivo Comet assay on Day 29 showed generally weak increases in DNA damage in all tissues evaluated with little evidence for accumulation of damage seen over time. The results with EMS indicate that the assessment of RBC(CD59-) and/or RET(CD59-) in the Pig-a assay could be a useful and sensitive endpoint for a repeat dose protocol and complements other genotoxicity endpoints.
Collapse
Affiliation(s)
- William C Gunther
- Pfizer Global Research and Development, Genetic Toxicology, Groton, Connecticut
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cao X, Mittelstaedt RA, Pearce MG, Allen BC, Soeteman-Hernández LG, Johnson GE, Bigger CAH, Heflich RH. Quantitative dose-response analysis of ethyl methanesulfonate genotoxicity in adult gpt-delta transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:385-99. [PMID: 24535894 DOI: 10.1002/em.21854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/25/2023]
Abstract
The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10 s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds.
Collapse
Affiliation(s)
- Xuefei Cao
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Johnson NM, Egner PA, Baxter VK, Sporn MB, Wible RS, Sutter TR, Groopman JD, Kensler TW, Roebuck BD. Complete protection against aflatoxin B(1)-induced liver cancer with a triterpenoid: DNA adduct dosimetry, molecular signature, and genotoxicity threshold. Cancer Prev Res (Phila) 2014; 7:658-65. [PMID: 24662598 DOI: 10.1158/1940-6207.capr-13-0430] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In experimental animals and humans, aflatoxin B1 (AFB1) is a potent hepatic toxin and carcinogen. The synthetic oleanane triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), a powerful activator of Keap1-Nrf2 signaling, protects against AFB1-induced toxicity and preneoplastic lesion formation (GST-P-positive foci). This study assessed and mechanistically characterized the chemoprotective efficacy of CDDO-Im against AFB1-induced hepatocellular carcinoma (HCC). A lifetime cancer bioassay was undertaken in F344 rats dosed with AFB1 (200 μg/kg rat/day) for four weeks and receiving either vehicle or CDDO-Im (three times weekly), one week before and throughout the exposure period. Weekly, 24-hour urine samples were collected for analysis of AFB1 metabolites. In a subset of rats, livers were analyzed for GST-P foci. The comparative response of a toxicogenomic RNA expression signature for AFB1 was examined. CDDO-Im completely protected (0/20) against AFB1-induced liver cancer compared with a 96% incidence (22/23) observed in the AFB1 group. With CDDO-Im treatment, integrated level of urinary AFB1-N(7)-guanine was significantly reduced (66%) and aflatoxin-N-acetylcysteine, a detoxication product, was consistently elevated (300%) after the first AFB1 dose. In AFB1-treated rats, the hepatic burden of GST-P-positive foci increased substantially (0%-13.8%) over the four weeks, but was largely absent with CDDO-Im intervention. The toxicogenomic RNA expression signature characteristic of AFB1 was absent in the AFB1 + CDDO-Im-treated rats. The remarkable efficacy of CDDO-Im as an anticarcinogen is established even in the face of a significant aflatoxin adduct burden. Consequently, the absence of cancer requires a concept of a threshold for DNA damage for cancer development.
Collapse
Affiliation(s)
- Natalie M Johnson
- Authors' Affiliations: Department of Environmental Health Sciences, Bloomberg School of Public Health
| | - Patricia A Egner
- Authors' Affiliations: Department of Environmental Health Sciences, Bloomberg School of Public Health
| | - Victoria K Baxter
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Michael B Sporn
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Ryan S Wible
- W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, Tennessee; and
| | - Thomas R Sutter
- W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, Tennessee; and
| | - John D Groopman
- Authors' Affiliations: Department of Environmental Health Sciences, Bloomberg School of Public Health
| | - Thomas W Kensler
- Authors' Affiliations: Department of Environmental Health Sciences, Bloomberg School of Public Health; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bill D Roebuck
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire;
| |
Collapse
|
26
|
Tang L, Guérard M, Zeller A. Quantitative assessment of the dose-response of alkylating agents in DNA repair proficient and deficient ames tester strains. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:15-23. [PMID: 24273186 DOI: 10.1002/em.21825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
Mutagenic and clastogenic effects of some DNA damaging agents such as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been demonstrated to exhibit a nonlinear or even "thresholded" dose-response in vitro and in vivo. DNA repair seems to be mainly responsible for these thresholds. To this end, we assessed several mutagenic alkylators in the Ames test with four different strains of Salmonella typhimurium: the alkyl transferases proficient strain TA1535 (Ogt+/Ada+), as well as the alkyl transferases deficient strains YG7100 (Ogt+/Ada-), YG7104 (Ogt-/Ada+) and YG7108 (Ogt-/Ada-). The known genotoxins EMS, MMS, temozolomide (TMZ), ethylnitrosourea (ENU) and methylnitrosourea (MNU) were tested in as many as 22 concentration levels. Dose-response curves were statistically fitted by the PROAST benchmark dose model and the Lutz-Lutz "hockeystick" model. These dose-response curves suggest efficient DNA-repair for lesions inflicted by all agents in strain TA1535. In the absence of Ogt, Ada is predominantly repairing methylations but not ethylations. It is concluded that the capacity of alkyl-transferases to successfully repair DNA lesions up to certain dose levels contributes to genotoxicity thresholds.
Collapse
Affiliation(s)
- Leilei Tang
- pRED, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | |
Collapse
|
27
|
Itoh S, Nagata M, Hattori C, Takasaki W. In Vivo Mutagenicity of Ethyl Methanesulfonate Detected by Pig-a and PIGRET Assays. Genes Environ 2014. [DOI: 10.3123/jemsge.2014.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Mutagenic impurities in pharmaceuticals: a critique of the derivation of the cancer TTC (Threshold of Toxicological Concern) and recommendations for structural-class-based limits. Regul Toxicol Pharmacol 2013; 67:299-316. [PMID: 23988886 DOI: 10.1016/j.yrtph.2013.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 11/20/2022]
Abstract
The cancer TTC (Threshold of Toxicological Concern) concept is currently employed as an aid to risk assessment of potentially mutagenic impurities (PMIs) in food, cosmetics and other sectors. Within the pharmaceutical industry the use of one default cancer TTC limit of 1.5 μg/day for PMIs is being increasingly questioned. Its derivation, originally in the context of foodstuffs, can be broken down into five key elements: dataset composition; determination of carcinogenicity/mutagenicity status and carcinogenic potency (based on TD₅₀s) of compounds in the dataset; linear extrapolation of carcinogenic potencies; evaluation of the more potent compounds in each structural category, and presence of representative structural alerts amongst the more potent compounds. A detailed evaluation reveals that the derivation process is distorted by the use of the lowest statistically significant TD₅₀s (which can produce a false-carcinogen phenomenon) and by employing linear extrapolation for non-mutagenic carcinogens. By correcting for these two factors, it is concluded that only around 50% of conventional structural-alert categories were adequately addressed and that limits higher than the default value appear to be justified in many cases. Using similar criteria for PMIs in pharmaceuticals, four distinct potency categories of conventional structural alerts can be distinguished, ranging from alerts with questionable validity to those with high potency, which are considered to provide a range of flexible and pragmatic limits for such impurities.
Collapse
|
29
|
Hoffmann GR, Moczula AV, Laterza AM, Macneil LK, Tartaglione JP. Adaptive response to hydrogen peroxide in yeast: induction, time course, and relationship to dose-response models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:384-396. [PMID: 23740476 DOI: 10.1002/em.21785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The assay for trp5 gene conversion and ilv1-92 reversion in Saccharomyces cerevisiae strain D7 was used to characterize the induction of an adaptive response by hydrogen peroxide (H(2)O(2)). Effects of a small priming dose on the genotoxic effects of a larger challenge dose were measured in exponential cultures and in early stationary phase. An adaptive response, indicated by smaller convertant and revertant frequencies after the priming dose, occurred at lower priming and challenge doses in young, well-aerated cultures. Closely spaced priming doses from 0.000975 to 2 mM, followed by a 1 mM challenge, showed that the induction of the adaptive response is biphasic. In exponential cultures it was maximal with a priming dose of 0.125-0.25 mM. Very small priming doses were insufficient to induce the adaptive response, whereas higher doses contributed to damage. A significant adaptive response was detected when the challenge dose was administered 10-20 min after the priming exposure. It was fully expressed within 45 min, and the yeast began to return to the nonadapted state after 4-6 hr. Because of the similarity of the biphasic induction to hormetic curves and the proposal that adaptive responses are a manifestation of hormesis, we evaluated whether the low doses of H(2)O(2) that induce the adaptive response show a clear hormetic response without a subsequent challenge dose. Hormesis was not evident, but there was an apparent threshold for genotoxicity at or slightly below 0.125 mM. The results are discussed with respect to linear, threshold, and hormesis dose-response models.
Collapse
Affiliation(s)
- George R Hoffmann
- Department of Biology, College of the Holy Cross, Worcester, MA 01610-2395, USA.
| | | | | | | | | |
Collapse
|
30
|
Guérard M, Koenig J, Festag M, Dertinger SD, Singer T, Schmitt G, Zeller A. Assessment of the genotoxic potential of azidothymidine in the comet, micronucleus, and Pig-a assay. Toxicol Sci 2013; 135:309-16. [PMID: 23811826 DOI: 10.1093/toxsci/kft148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genotoxic potential of azidothymidine (Zidovudine, AZT), chosen as a model compound for nucleotide analogs, was comprehensively assessed in vivo for gene mutation, clastogenicity, and DNA breakage endpoints. Male Wistar rats were treated by oral gavage over 7 days with AZT at dose levels of 2×0 (control), 2×250, 2×500, and 2×1000mg/kg/day with a final single dose given on day 8. DNA damage was then evaluated with the comet assay in liver, stomach, and peripheral blood and with the micronucleus test in bone marrow and peripheral blood (by flow cytometry) in the same animals. After a treatment-free period of upto 42 days, the Pig-a gene mutation assay was performed in peripheral blood of the high-dose animals. In the comet assay as well as the micronucleus test, AZT caused a considerable dose-dependent increase in DNA damage in all tissues evaluated and was highly cytotoxic to bone marrow and peripheral blood cells. These data are well in line with published results. Surprisingly, AZT did not significantly increase the number of Pig-a mutant cells. We speculate that two factors likely contributed to this negative result: a predominance of large deletions caused by AZT, and the relatively low statistical power of the first-generation scoring method used for this study.
Collapse
Affiliation(s)
- Melanie Guérard
- * F. Hoffmann-La Roche AG, Non-Clinical Safety, 4070 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Heard PL, Rubitski EE, Spellman RA, Schuler MJ. Phenolphthalein induces centrosome amplification and tubulin depolymerization in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:308-316. [PMID: 23677914 DOI: 10.1002/em.21781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/27/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Aneuploidy is a major cause of human reproductive failure and plays a large role in cancer. Phenolphthalein (PHT) induces tumors in rodents but its primary mechanism does not seem to be DNA damage. In heterozygous TSG-p53(®) mice, PHT induces lymphomas and also micronuclei (MN), many containing kinetochores (K), implying chromosome loss (aneuploidy). The induction of aneuploidy would be compatible with the loss of the normal p53 gene seen in the lymphomas. In this study, we confirm PHT's aneugenicity and determine the aneugenic mechanism of PHT by combining traditional genetic toxicology assays with image and flow cytometry methods. The data revealed that PHT induces tubulin polymerization abnormalities and deregulates the centrosome duplication cycle causing centrosome amplification. We also show that one of the consequences of these events is apoptosis.
Collapse
Affiliation(s)
- Pamela L Heard
- Pfizer Worldwide Research and Development, Genetic Toxicology Center of Emphasis, Groton, Connecticut, USA.
| | | | | | | |
Collapse
|
32
|
Walker DM, Patrick O'Neill J, Tyson FL, Walker VE. The stress response resolution assay. I. Quantitative assessment of environmental agent/condition effects on cellular stress resolution outcomes in epithelium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:268-280. [PMID: 23554083 DOI: 10.1002/em.21772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 06/02/2023]
Abstract
The events or factors that lead from normal cell function to conditions and diseases such as aging or cancer reflect complex interactions between cells and their environment. Cellular stress responses, a group of processes involved in homeostasis and adaptation to environmental change, contribute to cell survival under stress and can be resolved with damage avoidance or damage tolerance outcomes. To investigate the impact of environmental agents/conditions upon cellular stress response outcomes in epithelium, a novel quantitative assay, the "stress response resolution" (SRR) assay, was developed. The SRR assay consists of pretreatment with a test agent or vehicle followed later by a calibrated stress conditions exposure step (here, using 6-thioguanine). Pilot studies conducted with a spontaneously-immortalized murine mammary epithelial cell line pretreated with vehicle or 20 µg N-ethyl-N-nitrososurea/ml medium for 1 hr, or two hTERT-immortalized human bronchial epithelial cell lines pretreated with vehicle or 100 µM zidovudine/lamivudine for 12 days, found minimal alterations in cell morphology, survival, or cell function through 2 weeks post-exposure. However, when these pretreatments were followed 2 weeks later by exposure to calibrated stress conditions of limited duration (for 4 days), significant alterations in stress resolution were observed in pretreated cells compared with vehicle-treated control cells, with decreased damage avoidance survival outcomes in all cell lines and increased damage tolerance outcomes in two of three cell lines. These pilot study results suggest that sub-cytotoxic pretreatments with chemical mutagens have long-term adverse impact upon the ability of cells to resolve subsequent exposure to environmental stressors.
Collapse
Affiliation(s)
- Dale M Walker
- Experimental Pathology Laboratories, Inc., Herndon, VA, USA
| | | | | | | |
Collapse
|
33
|
Determination of compound-specific acceptable daily intakes for 11 mutagenic carcinogens used in pharmaceutical synthesis. Regul Toxicol Pharmacol 2013; 65:201-13. [DOI: 10.1016/j.yrtph.2012.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 11/16/2012] [Accepted: 11/21/2012] [Indexed: 11/23/2022]
|
34
|
Thomas AD, Jenkins GJS, Kaina B, Bodger OG, Tomaszowski KH, Lewis PD, Doak SH, Johnson GE. Influence of DNA repair on nonlinear dose-responses for mutation. Toxicol Sci 2013; 132:87-95. [PMID: 23288051 PMCID: PMC3576011 DOI: 10.1093/toxsci/kfs341] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recent evidence has challenged the default assumption that all DNA-reactive alkylating agents exhibit a linear dose-response. Emerging evidence suggests that the model alkylating agents methyl- and ethylmethanesulfonate and methylnitrosourea (MNU) and ethylnitrosourea observe a nonlinear dose-response with a no observed genotoxic effect level (NOGEL). Follow-up mechanistic studies are essential to understand the mechanism of cellular tolerance and biological relevance of such NOGELs. MNU is one of the most mutagenic simple alkylators. Therefore, understanding the mechanism of mutation induction, following low-dose MNU treatment, sets precedence for weaker mutagenic alkylating agents. Here, we tested MNU at 10-fold lower concentrations than a previous study and report a NOGEL of 0.0075 µg/ml (72.8nM) in human lymphoblastoid cells, quantified through the hypoxanthine (guanine) phosphoribosyltransferase assay (OECD 476). Mechanistic studies reveal that the NOGEL is dependent upon repair of O6-methylguanine (O6MeG) by the suicide enzyme O6MeG-DNA methyltransferase (MGMT). Inactivation of MGMT sensitizes cells to MNU-induced mutagenesis and shifts the NOGEL to the left on the dose axis.
Collapse
Affiliation(s)
- Adam D Thomas
- Institute of Life Science, College of Medicine, Swansea University, SA2 8PP, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Karnan S, Konishi Y, Ota A, Takahashi M, Damdindorj L, Hosokawa Y, Konishi H. Simple monitoring of gene targeting efficiency in human somatic cell lines using the PIGA gene. PLoS One 2012; 7:e47389. [PMID: 23056640 PMCID: PMC3466256 DOI: 10.1371/journal.pone.0047389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/11/2012] [Indexed: 12/31/2022] Open
Abstract
Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines.
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yuko Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Miyuki Takahashi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Lkhagvasuren Damdindorj
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- * E-mail:
| |
Collapse
|
36
|
Existe-t-il une dose seuil pour les effets génotoxiques ? ARCH MAL PROF ENVIRO 2012. [DOI: 10.1016/j.admp.2012.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Dobrovolsky VN, Heflich RH, Ferguson SA. The frequency of Pig-a mutant red blood cells in rats exposed in utero to N-ethyl-N-nitrosourea. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:440-50. [PMID: 22730214 DOI: 10.1002/em.21704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/21/2012] [Accepted: 05/01/2012] [Indexed: 05/23/2023]
Abstract
The Pig-a assay has been developed as a rapid sensitive measure of gene mutation in adult rats; however, no data exist on its ability to detect mutation following in utero exposures or in neonatal animals. Pregnant Sprague-Dawley rats were treated daily on gestational days 12-18 with oral doses of 0, 6, or 12 mg/kg/day N-ethyl-N-nitrosourea (ENU); following parturition, the offspring and dams were monitored over a period of 5 months for the frequency of CD59-deficient erythrocytes as a marker of Pig-a mutation. Significant dose-related increases in Pig-a mutant red blood cells (RBCs) were observed in ENU-treated dams. However, only very weak increases in RBC Pig-a mutant frequency (MF) were noted in offspring treated in utero with the lower ENU dose. The higher ENU dose produced extremely variable responses in the offspring as a function of age, even among littermates, ranging from a steady low or moderately high Pig-a MF to a rapidly increasing or decreasing Pig-a MF. The manifestation kinetics of Pig-a mutant RBCs in the offspring suggest that the change from predominantly hepatic to predominantly bone marrow erythropoiesis that occurs during early development may have contributed to this variability. Our results indicate that using the RBC Pig-a model for mutation detection in animals treated in utero may require analysis of multiple offspring from the same litter to account for potential "jack pot" effects, and that detection of the earliest treatment effect (i.e., in neonates using the hepatic RBC fraction) may require optimization of blood processing.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | |
Collapse
|
38
|
Kimoto T, Chikura S, Suzuki-Okada K, Kobayashi XM, Itano Y, Miura D, Kasahara Y. Effective use of the Pig-a gene mutation assay for mutagenicity screening: measuring CD59-deficient red blood cells in rats treated with genotoxic chemicals. J Toxicol Sci 2012; 37:943-55. [DOI: 10.2131/jts.37.943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Schuler M, Gollapudi BB, Thybaud V, Kim JH. Need and potential value of the Pig-ain vivo mutation assay-a HESI perspective. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:685-689. [PMID: 21976154 DOI: 10.1002/em.20687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 05/31/2023]
Abstract
The Health and Environmental Sciences Institute (HESI), a global branch of the International Life Sciences Institute (ILSI), initiated a project committee entitled "Relevance and Follow-up of Positive Results from In Vitro Genetic Toxicity Testing (IVGT)" with the overall objective of improving the scientific basis for the interpretation of results from genetic toxicology testing. The IVGT committee has also recognized the need to develop follow-up strategies for determining the relevance of in vitro test results to human health, and moving genetic toxicology testing from the sole purpose of hazard identification toward a more quantitative risk assessment approach. In this context, a group of experts evaluated the potential utility of the emerging in vivo mutational assessment model commonly known as the Pig-a gene mutation assay to follow-up positive in vitro genetic toxicology findings and to generate robust dose-response data for quantitative assessment of the in vivo mutagenicity. The IVGT experts participating in this effort represented academia, industry, and government agencies from across the globe and addressed such issues as the optimal sample size and experimental design for generating robust dose-response data. This expert group concluded that the emerging Pig-a gene mutation assay holds great promise as an in vivo mutagenicity assay, either as a stand-alone study or integrated into repeat-dose toxicology studies, and therefore supports further validation of the model.
Collapse
Affiliation(s)
- Maik Schuler
- Pfizer Global Research and Development, Drug Safety Research and Development, Groton, Connecticut, USA
| | | | | | | |
Collapse
|
40
|
Cammerer Z, Bhalli JA, Cao X, Coffing SL, Dickinson D, Dobo KL, Dobrovolsky VN, Engel M, Fiedler RD, Gunther WC, Heflich RH, Pearce MG, Shaddock JG, Shutsky T, Thiffeault CJ, Schuler M. Report on stage III Pig-a mutation assays using N-ethyl-N-nitrosourea-comparison with other in vivo genotoxicity endpoints. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:721-730. [PMID: 22167886 DOI: 10.1002/em.20686] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
N-Ethyl-N-nitrosourea (ENU) was evaluated as part of the Stage III trial for the rat Pig-a gene mutation assay. Groups of six- to eight-week-old male Sprague Dawley (SD) or Fischer 344 (F344) rats were given 28 daily doses of the phosphate buffered saline vehicle, or 2.5, 5, or 10 mg/kg ENU, and evaluated for a variety of genotoxicity endpoints in peripheral blood, spleen, liver, and colon. Blood was sampled predose (Day-1) and at various time points up to Day 57. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD592-) and RET(CD592-) frequencies. Consistent with the results from a reference laboratory, RBC(CD592-) and RET(CD592-) frequencies increased in a dose and time-dependent manner, producing significant increases at all doses by Day 15, with similar frequencies seen in both rat strains. ENU also induced small but significant increases in % micronucleated RETs on Days 4 and 29. No significant increases in micronuclei were seen in the liver or colon of the ENU-treated SD rats. Hprt and Pig-a lymphocyte mutation assays conducted on splenocytes from Day 56 F344 rats detected two- to fourfold stronger responses for Hprt than Pig-a mutations. Results from the in vivo Comet assay in SD rats at Day 29 showed generally weak increases in DNA damage in all tissues evaluated. The results with ENU indicate that the Pig-a RET and RBC assays are reproducible, transferable, and complement other genotoxicity endpoints that could potentially be integrated into 28-day repeat dose rat studies.
Collapse
Affiliation(s)
- Zoryana Cammerer
- Pfizer Global Research and Development, Genetic Toxicology Center of Emphasis, Groton, Connecticut 06350, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|