1
|
Schumann S, Scherthan H, Hartrampf PE, Göring L, Buck AK, Port M, Lassmann M, Eberlein U. Modelling the In Vivo and Ex Vivo DNA Damage Response after Internal Irradiation of Blood from Patients with Thyroid Cancer. Int J Mol Sci 2024; 25:5493. [PMID: 38791531 PMCID: PMC11122196 DOI: 10.3390/ijms25105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This work reports on a model that describes patient-specific absorbed dose-dependent DNA damage response in peripheral blood mononuclear cells of thyroid cancer patients during radioiodine therapy and compares the results with the ex vivo DNA damage response in these patients. Blood samples of 18 patients (nine time points up to 168 h post-administration) were analyzed for radiation-induced γ-H2AX + 53BP1 DNA double-strand break foci (RIF). A linear one-compartment model described the absorbed dose-dependent time course of RIF (Parameters: c characterizes DSB damage induction; k1 and k2 are rate constants describing fast and slow repair). The rate constants were compared to ex vivo repair rates. A total of 14 patient datasets could be analyzed; c ranged from 0.012 to 0.109 mGy-1, k2 from 0 to 0.04 h-1. On average, 96% of the damage is repaired quickly with k1 (range: 0.19-3.03 h-1). Two patient subgroups were distinguished by k1-values (n = 6, k1 > 1.1 h-1; n = 8, k1 < 0.6 h-1). A weak correlation with patient age was observed. While induction of RIF was similar among ex vivo and in vivo, the respective repair rates failed to correlate. The lack of correlation between in vivo and ex vivo repair rates and the applicability of the model to other therapies will be addressed in further studies.
Collapse
Affiliation(s)
- Sarah Schumann
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, 80937 Munich, Germany
| | - Philipp E. Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Lukas Göring
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, 80937 Munich, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
2
|
Sun M, Moquet J, Barnard S, Mancey H, Burling D, Baldwin-Cleland R, Monahan K, Latchford A, Lloyd D, Bouffler S, Badie C, Anyamene NA, Ainsbury E. In vitro study of radiosensitivity in colorectal cancer cell lines associated with Lynch syndrome. Front Public Health 2024; 12:1369201. [PMID: 38638480 PMCID: PMC11024246 DOI: 10.3389/fpubh.2024.1369201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Lynch syndrome patients have an inherited predisposition to cancer due to a deficiency in DNA mismatch repair (MMR) genes which could lead to a higher risk of developing cancer if exposed to ionizing radiation. This pilot study aims to reveal the association between MMR deficiency and radiosensitivity at both a CT relevant low dose (20 mGy) and a therapeutic higher dose (2 Gy). Methods Human colorectal cancer cell lines with (dMMR) or without MMR deficiency (pMMR) were analyzed before and after exposure to radiation using cellular and cytogenetic analyses i.e., clonogenic assay to determine cell reproductive death; sister chromatid exchange (SCE) assay to detect the exchange of DNA between sister chromatids; γH2AX assay to analyze DNA damage repair; and apoptosis analysis to compare cell death response. The advantages and limitations of these assays were assessed in vitro, and their applicability and feasibility investigated for their potential to be used for further studies using clinical samples. Results Results from the clonogenic assay indicated that the pMMR cell line (HT29) was significantly more radio-resistant than the dMMR cell lines (HCT116, SW48, and LoVo) after 2 Gy X-irradiation. Both cell type and radiation dose had a significant effect on the yield of SCEs/chromosome. When the yield of SCEs/chromosome for the irradiated samples (2 Gy) was normalized against the controls, no significant difference was observed between the cell lines. For the γH2AX assay, 0, 20 mGy and 2 Gy were examined at post-exposure time points of 30 min (min), 4 and 24 h (h). Statistical analysis revealed that HT29 was only significantly more radio-resistant than the MLH1-deficient cells lines, but not the MSH2-deficient cell line. Apoptosis analysis (4 Gy) revealed that HT29 was significantly more radio-resistant than HCT116 albeit with very few apoptotic cells observed. Discussion Overall, this study showed radio-resistance of the MMR proficient cell line in some assays, but not in the others. All methods used within this study have been validated; however, due to the limitations associated with cancer cell lines, the next step will be to use these assays in clinical samples in an effort to understand the biological and mechanistic effects of radiation in Lynch patients as well as the health implications.
Collapse
Affiliation(s)
- Mingzhu Sun
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Jayne Moquet
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Stephen Barnard
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Hannah Mancey
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - David Burling
- Intestinal Imaging Centre, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Rachel Baldwin-Cleland
- Intestinal Imaging Centre, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Kevin Monahan
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Andrew Latchford
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - David Lloyd
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Simon Bouffler
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Christophe Badie
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Nicola A. Anyamene
- East and North Hertfordshire National Health Service Trust, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Elizabeth Ainsbury
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
- Environmental Research Group Within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, United Kingdom
| |
Collapse
|
3
|
López JS, Pujol-Canadell M, Puig P, Armengol G, Barquinero JF. Evaluation of γ-H2AX foci distribution among different peripheral blood mononucleated cell subtypes. Int J Radiat Biol 2023; 99:1550-1558. [PMID: 36862979 DOI: 10.1080/09553002.2023.2187480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
INTRODUCTION The detection of γ-H2AX foci in peripheral blood mononucleated cells (PBMCs) has been incorporated as an early assay for biological dosimetry. However, overdispersion in the γ-H2AX foci distribution is generally reported. In a previous study from our group, it was suggested that overdispersion could be caused by the fact that when evaluating PBMCs, different cell subtypes are analyzed, and that these could differ in their radiosensitivity. This would cause a mixture of different frequencies that would result in the overdispersion observed. OBJECTIVES The objective of this study was to evaluate both the possible differences in the radiosensitivities of the different cell subtypes present in the PBMCs and to evaluate the distribution of γ-H2AX foci in each cell subtype. MATERIALS AND METHODS Peripheral blood samples from three healthy donors were obtained and total PBMCs, and CD3+, CD4+, CD8+, CD19+, and CD56+ cells were separated. Cells were irradiated with 1 and 2 Gy and incubated at 37 °C for 1, 2, 4, and 24 h. Sham-irradiated cells were also analyzed. γ-H2AX foci were detected after immunofluorescence staining and analyzed automatically using a Metafer Scanning System. For each condition, 250 nuclei were considered. RESULTS When the results from each donor were compared, no observable significant differences between donors were observed. When the different cell subtypes were compared, CD8+ cells showed the highest mean of γ-H2AX foci in all post-irradiation time points. The cell type that showed the lowest γ-H2AX foci frequency was CD56+. The frequencies observed in CD4+ and CD19+ cells fluctuated between CD8+ and CD56+ without any clear pattern. For all cell types evaluated, and at all post-irradiation times, overdispersion in γ-H2AX foci distribution was significant. Independent of the cell type evaluated the value of the variance was four times greater than that of the mean. CONCLUSION Although different PBMC subsets studied showed different radiation sensitivity, these differences did not explain the overdispersion observed in the γ-H2AX foci distribution after exposure to IR.
Collapse
Affiliation(s)
- Juan S López
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Mònica Pujol-Canadell
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Centre de Recerca Matemàtica, Bellaterra, Catalonia, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
4
|
Młynarczyk D, Puig P, Armero C, Gómez-Rubio V, Barquinero JF, Pujol-Canadell M. Radiation dose estimation with time-since-exposure uncertainty using the [Formula: see text]-H2AX biomarker. Sci Rep 2022; 12:19877. [PMID: 36400833 PMCID: PMC9674680 DOI: 10.1038/s41598-022-24331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
To predict the health effects of accidental or therapeutic radiation exposure, one must estimate the radiation dose that person received. A well-known ionising radiation biomarker, phosphorylated [Formula: see text]-H2AX protein, is used to evaluate cell damage and is thus suitable for the dose estimation process. In this paper, we present new Bayesian methods that, in contrast to approaches where estimation is carried out at predetermined post-irradiation times, allow for uncertainty regarding the time since radiation exposure and, as a result, produce more precise results. We also use the Laplace approximation method, which drastically cuts down on the time needed to get results. Real data are used to illustrate the methods, and analyses indicate that the models might be a practical choice for the [Formula: see text]-H2AX biomarker dose estimation process.
Collapse
Affiliation(s)
- Dorota Młynarczyk
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Carmen Armero
- Departament d’Estadística i Investigació Operativa, Universitat de València, València, Spain
| | - Virgilio Gómez-Rubio
- Department of Mathematics, School of Industrial Engineering, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Joan F. Barquinero
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mònica Pujol-Canadell
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
5
|
A deep learning model (FociRad) for automated detection of γ-H2AX foci and radiation dose estimation. Sci Rep 2022; 12:5527. [PMID: 35365702 PMCID: PMC8975967 DOI: 10.1038/s41598-022-09180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal form of damage to cells from irradiation. γ-H2AX (phosphorylated form of H2AX histone variant) has become one of the most reliable and sensitive biomarkers of DNA DSBs. However, the γ-H2AX foci assay still has limitations in the time consumed for manual scoring and possible variability between scorers. This study proposed a novel automated foci scoring method using a deep convolutional neural network based on a You-Only-Look-Once (YOLO) algorithm to quantify γ-H2AX foci in peripheral blood samples. FociRad, a two-stage deep learning approach, consisted of mononuclear cell (MNC) and γ-H2AX foci detections. Whole blood samples were irradiated with X-rays from a 6 MV linear accelerator at 1, 2, 4 or 6 Gy. Images were captured using confocal microscopy. Then, dose-response calibration curves were established and implemented with unseen dataset. The results of the FociRad model were comparable with manual scoring. MNC detection yielded 96.6% accuracy, 96.7% sensitivity and 96.5% specificity. γ-H2AX foci detection showed very good F1 scores (> 0.9). Implementation of calibration curve in the range of 0-4 Gy gave mean absolute difference of estimated doses less than 1 Gy compared to actual doses. In addition, the evaluation times of FociRad were very short (< 0.5 min per 100 images), while the time for manual scoring increased with the number of foci. In conclusion, FociRad was the first automated foci scoring method to use a YOLO algorithm with high detection performance and fast evaluation time, which opens the door for large-scale applications in radiation triage.
Collapse
|
6
|
Wanotayan R, Wongsanit S, Boonsirichai K, Sukapirom K, Buppaungkul S, Charoenphun P, Songprakhon P, Jangpatarapongsa K, Uttayarat P. Quantification of histone H2AX phosphorylation in white blood cells induced by ex vivo gamma irradiation of whole blood by both flow cytometry and foci counting as a dose estimation in rapid triage. PLoS One 2022; 17:e0265643. [PMID: 35320288 PMCID: PMC8942256 DOI: 10.1371/journal.pone.0265643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
A quick, reliable, and reproducible biological assay to distinguish individuals with possible life-threatening risk following radiological or nuclear incidents remains a quest in biodosimetry. In this paper, we examined the use of a γ-H2AX assay as an early dose estimation for rapid triage based on both flow cytometry and image analyses. In the experiment, whole blood from 11 donors was irradiated ex vivo inside a water phantom by gamma rays from Co-60 at 0.51 Gy/min. After the lysis of red blood cells, the white blood cells were collected for immunofluorescence labeling of γ-H2AX, CD45, and nuclear stained for signal collection and visualization. Analysis by flow cytometry showed that the relative γ-H2AX intensities of lymphocytes and granulocytes increased linearly with absorbed doses from 0 to 6 Gy with a large variation among individuals observed above 2 Gy. The relative γ-H2AX intensities of lymphocytes assessed by two different laboratories were highly correlated (ICC = 0.979). Using confocal microscopic images, γ-H2AX foci were observed to be discretely distributed inside the nuclei and to increase proportionally with doses from 0 to 2 Gy, whereas large plagues of merged foci appeared at 4 and 6 Gy, resulting in the saturation of foci counts above 4 Gy. The number of total foci per cell as well as the number of foci per plane were significantly different at 0 vs 1 and 2 vs 4 Gy doses (p < 0.01). Blind tests at 0.5 Gy and 1 Gy doses showed that dose estimation by flow cytometry had a mean absolute difference of less than 0.5 Gy from the actual value. In conclusion, while flow cytometry can provide a dose estimation with an uncertainty of 0.5 Gy at doses ≤ 1 Gy, foci counting can identify merged foci that are prominent at doses ≥ 4 Gy.
Collapse
Affiliation(s)
- Rujira Wanotayan
- Faculty of Medical Technology, Department of Radiological Technology, Mahidol University, Nakhon Pathom, Thailand
- * E-mail: , (PU); , (RW)
| | - Sarinya Wongsanit
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
| | - Kanokporn Boonsirichai
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
| | - Kasama Sukapirom
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Microparticle and Exosome in Diseases, Research Department, Bangkok, Thailand
| | - Sakchai Buppaungkul
- Secondary Standard Dosimetry Laboratory (SSDL), Bureau of Radiation and Medical Devices, Ministry of Public Health, Bangkok, Thailand
| | - Putthiporn Charoenphun
- Faculty of Medicine Ramathibodi Hospital, Division of Nuclear Medicine, Department of Diagnostic and Therapeutic Radiology, Mahidol University, Nakhon Pathom, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Faculty of Medicine Siriraj Hospital, Research Department, Mahidol University, Bangkok, Thailand
| | - Kulachart Jangpatarapongsa
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Nakhon Pathom, Thailand
| | - Pimpon Uttayarat
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
- * E-mail: , (PU); , (RW)
| |
Collapse
|
7
|
Circulating tRNA-Derived Small RNAs as Novel Radiation Biomarkers of Heavy Ion, Proton and X-ray Exposure. Int J Mol Sci 2021; 22:ijms222413476. [PMID: 34948273 PMCID: PMC8706565 DOI: 10.3390/ijms222413476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
The effective and minimally invasive radiation biomarkers are valuable for exposure scenarios in nuclear accidents or space missions. Recent studies have opened the new sight of circulating small non-coding RNA (sncRNA) as radiation biomarkers. The tRNA-derived small RNA (tsRNA) is a new class of sncRNA. It is more abundant than other kinds of sncRNAs in extracellular vesicles or blood, presenting great potential as promising biomarkers. However, the circulating tsRNAs in response to ionizing radiation have not been reported. In this research, Kunming mice were total-body exposed to 0.05-2 Gy of carbon ions, protons, or X-rays, and the RNA sequencing was performed to profile the expression of sncRNAs in serum. After conditional screening and validation, we firstly identified 5 tsRNAs including 4 tRNA-related fragments (tRFs) and 1 tRNA half (tiRNA) which showed a significant level decrease after exposure to three kinds of radiations. Moreover, the radiation responses of these 5 serum tsRNAs were reproduced in other mouse strains, and the sequences of them could be detected in serum of humans. Furthermore, we developed multi-factor models based on tsRNA biomarkers to indicate the degree of radiation exposure with high sensitivity and specificity. These findings suggest that the circulating tsRNAs can serve as new minimally invasive biomarkers and can make a triage or dose assessment from blood sample collection within 4 h in exposure scenarios.
Collapse
|
8
|
López JS, Pujol-Canadell M, Puig P, Ribas M, Carrasco P, Armengol G, Barquinero JF. Establishment and validation of surface model for biodosimetry based on γ-H2AX foci detection. Int J Radiat Biol 2021; 98:1-10. [PMID: 34705602 DOI: 10.1080/09553002.2022.1998706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In the event of a radiation accident detecting γ-H2AX foci is being accepted as fast method for triage and dose assessment. However, due to their disappearance kinetics, published calibrations have been constructed at specific post-irradiation times. OBJECTIVES To develop a surface, or tridimensional, model to estimate doses at times not included in the calibration analysis, and to validate it. MATERIALS AND METHODS Calibration data was obtained irradiating peripheral mononucleated cells from one donor with radiation doses ranging from 0 to 3 Gy, and γ -H2AX foci were detected microscopically using a semi-automatic method, at different post-irradiation times from 0.5 to 24 h. For validation, in addition to the above-mentioned donor, blood samples from another donor were also used. Validation was done within the range of doses and post-irradiation times used in the calibration. RESULTS The calibration data clearly shows that at each analyzed time, the γ-H2AX foci frequency increases as dose increases, and for each dose this frequency decreases with post-irradiation time. The γ-H2AX foci nucleus distribution was clearly overdispersed, for this reason to obtain bidimensional and tridimensional dose-effect relationships no probability distribution was assumed, and linear and non-linear least squares weighted regression was used. In the two validation exercises for most evaluated samples, the 95% confidence limits of the estimated dose were between ±0.5 Gy of the real dose. No major differences were observed between donors. CONCLUSION In case of a suspected overexposure to radiation, the surface model here presented allows a correct dose estimation using γ-H2AX foci as biomarker. The advantage of this surface model is that it can be used at any post-irradiation time, in our model between 0.5 and 24 h.
Collapse
Affiliation(s)
- Juan S López
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mònica Pujol-Canadell
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Montserrat Ribas
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pablo Carrasco
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan F Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
9
|
Errington A, Einbeck J, Cumming J, Rössler U, Endesfelder D. The effect of data aggregation on dispersion estimates in count data models. Int J Biostat 2021; 18:183-202. [PMID: 33962495 DOI: 10.1515/ijb-2020-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
For the modelling of count data, aggregation of the raw data over certain subgroups or predictor configurations is common practice. This is, for instance, the case for count data biomarkers of radiation exposure. Under the Poisson law, count data can be aggregated without loss of information on the Poisson parameter, which remains true if the Poisson assumption is relaxed towards quasi-Poisson. However, in biodosimetry in particular, but also beyond, the question of how the dispersion estimates for quasi-Poisson models behave under data aggregation have received little attention. Indeed, for real data sets featuring unexplained heterogeneities, dispersion estimates can increase strongly after aggregation, an effect which we will demonstrate and quantify explicitly for some scenarios. The increase in dispersion estimates implies an inflation of the parameter standard errors, which, however, by comparison with random effect models, can be shown to serve a corrective purpose. The phenomena are illustrated by γ-H2AX foci data as used for instance in radiation biodosimetry for the calibration of dose-response curves.
Collapse
Affiliation(s)
- Adam Errington
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Jochen Einbeck
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Jonathan Cumming
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Ute Rössler
- Bundesamt für Strahlenschutz (BfS), Oberschleissheim, Germany
| | | |
Collapse
|
10
|
Noubissi FK, McBride AA, Leppert HG, Millet LJ, Wang X, Davern SM. Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay. Sci Rep 2021; 11:8945. [PMID: 33903655 PMCID: PMC8076281 DOI: 10.1038/s41598-021-88296-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the histone protein H2AX to form γ-H2AX foci directly represents DNA double-strand break formation. Traditional γ-H2AX detection involves counting individual foci within individual nuclei. The novelty of this work is the application of a time-resolved fluorescence assay using dissociation-enhanced lanthanide fluorescence immunoassay for quantitative measurements of γ-H2AX. For comparison, standard fluorescence detection was employed and analyzed either by bulk fluorescent measurements or by direct foci counting using BioTek Spot Count algorithm and Gen 5 software. Etoposide induced DNA damage in A549 carcinoma cells was compared across all test platforms. Time resolved fluorescence detection of europium as a chelated complex enabled quantitative measurement of γ-H2AX foci with nanomolar resolution. Comparative bulk fluorescent signals achieved only micromolar sensitivity. Lanthanide based immunodetection of γ-H2AX offers superior detection and a user-friendly workflow. These approaches have the potential to improve screening of compounds that either enhance DNA damage or protect against its deleterious effects.
Collapse
Affiliation(s)
| | - Amber A McBride
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hannah G Leppert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Larry J Millet
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Sandra M Davern
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
11
|
Chilimoniuk J, Gosiewska A, Słowik J, Weiss R, Deckert PM, Rödiger S, Burdukiewicz M. countfitteR: efficient selection of count distributions to assess DNA damage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:528. [PMID: 33987226 DOI: 10.21037/atm-20-6363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background DNA double-strand breaks can be counted as discrete foci by imaging techniques. In personalized medicine and pharmacology, the analysis of counting data is relevant for numerous applications, e.g., for cancer and aging research and the evaluation of drug efficacy. By default, it is assumed to follow the Poisson distribution. This assumption, however, may lead to biased results and faulty conclusions in datasets with excess zero values (zero-inflation), a variance larger than the mean (overdispersion), or both. In such cases, the assumption of a Poisson distribution would skew the estimation of mean and variance, and other models like the negative binomial (NB), zero-inflated Poisson or zero-inflated NB distributions should be employed. The model chosen has an influence on the parameter estimation (mean value and confidence interval). Yet the choice of the suitable distribution model is not trivial. Methods To support, simplify and objectify this process, we have developed the countfitteR software as an R package. We used a Bayesian approach for distribution model selection and the shiny web application framework for interactive data analysis. Results We show the application of our software based on examples of DNA double-strand break count data from phenotypic imaging by multiplex fluorescence microscopy. In analyzing numerous datasets of molecular pharmacological markers (phosphorylated histone H2AX and p53 binding protein), countfitteR demonstrated an equal or superior statistical performance compared to the usually employed two-step procedure, with an overall power of up to 98%. In addition, it still gave information in cases with no result at all from the two-step procedure. In our data sample we found that the NB distribution was the most frequent, with the Poisson distribution taking second place. Conclusions countfitteR can perform an automated distribution model selection and thus support the data analysis and lead to objective statistically verifiable estimated values. Originally designed for the analysis of foci in biomedical image data, countfitteR can be used in a variety of areas where non-Poisson distributed counting data is prevalent.
Collapse
Affiliation(s)
- Jarosław Chilimoniuk
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.,Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Alicja Gosiewska
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Jadwiga Słowik
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Romano Weiss
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - P Markus Deckert
- Faculty of Medicine and Psychology, Brandenburg Medical School Theodor Fontane, and Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Stefan Rödiger
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.,Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Michał Burdukiewicz
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.,Medical University of Białystok, Białystok, Poland
| |
Collapse
|
12
|
Köcher S, Volquardsen J, Perugachi Heinsohn A, Petersen C, Roggenbuck D, Rothkamm K, Mansour WY. Fully automated counting of DNA damage foci in tumor cell culture: A matter of cell separation. DNA Repair (Amst) 2021; 102:103100. [PMID: 33812230 DOI: 10.1016/j.dnarep.2021.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 11/17/2022]
Abstract
Analysis and quantification of residual, unrepaired DNA double-strand breaks by detecting damage-associated γH2AX or 53BP1 foci is a promising approach to evaluate radiosensitivity or radiosensitization in tumor cells. Manual foci quantification by eye is well-established but unsatisfactory due to inconsistent foci numbers between different observers, lack of information about foci size and intensity and the time-consuming scoring process. Therefore, automated foci counting is an important goal. Several software solutions for automated foci counting in separately acquired fluorescence microscopy images have been established. The AKLIDES NUK technology by Medipan combines automated microscopy and image processing/ counting, enabling affordable high throughput foci analysis as a routine application. Using this machine, automated foci counting is well established for lymphocytes but has not yet been reported for adherent tumor cells with their irregularly shaped nuclei and heterogeneous foci textures. Here we aimed to use the AKLIDES NUK system for adherent tumor cells growing in clusters. We identified cell separation as a critical step to ensure fast and reliable automated nuclei detection. We validated our protocol for the fully automated quantification of (i) the IR-dose dependent increase and (ii) the ATM as well as PARP inhibitor-induced radiosensitization. Collectively, with this protocol the AKLIDES NUK system facilitates cost effective, fast and high throughput quantitative fluorescence microscopic analysis of DNA damage induced foci such as γH2AX and 53BP1 in adherent tumor cells.
Collapse
Affiliation(s)
- S Köcher
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - J Volquardsen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Perugachi Heinsohn
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Senftenberg, Germany
| | - K Rothkamm
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Y Mansour
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Tumor Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Potential application of γ-H2AX as a biodosimetry tool for radiation triage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108350. [PMID: 34083048 DOI: 10.1016/j.mrrev.2020.108350] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023]
Abstract
Radiation triage and biological dosimetry are two initial steps in the medical management of exposed individuals following radiological accidents. Well established biodosimetry methods such as the dicentric (DC) assay, micronucleus (MN) assay, and fluorescence in-situ hybridization (FISH) translocation assay (for residual damage) have been used for this purpose for several decades. Recent advances in scoring methodology and networking among established laboratories have increased triage capacity; however, these methods still have limitations in analysing large sample numbers, particularly because of the ∼ 48 h minimum culture time required prior to analysis. Hence, there is a need for simple, and high throughput markers to identify exposed individuals in case of radiological/nuclear emergencies. In recent years, a few markers were identified, one being phosphorylated histone 2AX (γ-H2AX), which measured a nuclear foci or nuclear staining intensity that was found to be suitable for triage. Measurement of γ-H2AX foci formed at and around the sites of DNA double-strand breaks is a rapid and sensitive biodosimetry method which does not require culturing and is thus promising for the analysis of a large number of samples. In this review, we have summarized the recent developments of γ-H2AX assay in radiation triage and biodosimetry, focusing chiefly on: i) the importance of baseline frequency and reported values among different laboratories, ii) the influence of known and unknown variables on dose estimation, iii) quality assurance such as inter-laboratory comparison between scorers and scoring methods, and iv) current limitations and potential for future development.
Collapse
|
14
|
Radiation Biomarkers in Large Scale Human Health Effects Studies. J Pers Med 2020; 10:jpm10040155. [PMID: 33023046 PMCID: PMC7712754 DOI: 10.3390/jpm10040155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Following recent developments, the RENEB network (Running the European Network of biological dosimetry and physical retrospective dosimetry) is in an excellent position to carry out large scale molecular epidemiological studies of ionizing radiation effects, with validated expertise in the dicentric, fluorescent in situ hybridization (FISH)-translocation, micronucleus, premature chromosome condensation, gamma-H2AX foci and gene expression assays. Large scale human health effects studies present complex challenges such as the practical aspects of sample logistics, assay costs, effort, effect modifiers and quality control/assurance measures. At Public Health England, the dicentric, automated micronucleus and gamma-H2AX radiation-induced foci assays have been tested for use in a large health effects study. The results of the study and the experience gained in carrying out such a large scale investigation provide valuable information that could help minimise random and systematic errors in biomarker data sets for health surveillance analyses going forward.
Collapse
|
15
|
Visweswaran S, Joseph S, Dhanasekaran J, Paneerselvam S, Annalakshmi O, Jose MT, Perumal V. Exposure of patients to low doses of X-radiation during neuro-interventional imaging and procedures: Dose estimation and analysis of γ-H2AX foci and gene expression in blood lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 856-857:503237. [PMID: 32928370 DOI: 10.1016/j.mrgentox.2020.503237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022]
Abstract
Radiation has widespread applications in medicine. However, despite the benefits of medical radiation exposures, adverse long-term health effects are cause for concern. Protein and gene biomarkers are early indicators of cellular response after low-dose exposure. We examined DNA damage by quantifying γ-H2AX foci and expression of twelve candidate genes in the blood lymphocytes of patients exposed to low doses of X-radiation during neuro-interventional procedures. Entrance surface dose (ESD; 10.92-1062.55 mGy) was measured by thermoluminescence dosimetry (TLD). Absorbed dose was estimated using γ-H2AX focus frequency and gene expression, with in vitro dose-response curves generated for the same biomarkers. γ-H2AX foci in post-exposure samples were significantly higher than in pre-exposure samples. Among the genes analysed, FDXR, ATM, BCL2, MDM2, TNFSF9, and PCNA showed increased expression; CDKN1A, DDB2, SESN1, BAX, and TNFRSF10B showed unchanged or decreased expression. Absorbed dose, estimated based on γ-H2AX focus frequency and gene expression changes, did not show any correlation with measured ESD. Patients undergoing interventional procedures receive considerable radiation doses, resulting in DNA damage and altered gene expression. Medical procedures should be carried out using the lowest radiation doses possible without compromising treatment.
Collapse
Affiliation(s)
- Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - Santhosh Joseph
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - Jagadeesan Dhanasekaran
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - S Paneerselvam
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - O Annalakshmi
- Radiation Safety Division Unit, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, 603102, Tamil Nadu, India
| | - M T Jose
- Radiation Safety Division Unit, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, 603102, Tamil Nadu, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India.
| |
Collapse
|
16
|
Bryant J, White L, Coen N, Shields L, McClean B, Meade AD, Lyng FM, Howe O. MicroRNA Analysis of ATM-Deficient Cells Indicate PTEN and CCDN1 as Potential Biomarkers of Radiation Response. Radiat Res 2020; 193:520-530. [PMID: 32216710 DOI: 10.1667/rr15462.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/06/2020] [Indexed: 11/03/2022]
Abstract
Genetic and epigenetic profile changes associated with individual radiation sensitivity are well documented and have led to enhanced understanding of the mechanisms of the radiation-induced DNA damage response. However, the search continues to identify reliable biomarkers of individual radiation sensitivity. Herein, we report on a multi-biomarker approach using traditional cytogenetic biomarkers, DNA damage biomarkers and transcriptional microRNA (miR) biomarkers coupled with their potential gene targets to identify radiosensitivity in ataxia-telangiectasia mutated (ATM)-deficient lymphoblastoid cell lines (LCL); ATM-proficient cell lines were used as controls. Cells were 0.05 and 0.5 Gy irradiated, using a linear accelerator, with sham-irradiated cells as controls. At 1 h postirradiation, cells were fixed for γ-H2AX analysis as a measurement of DNA damage, and cytogenetic analysis using the G2 chromosomal sensitivity assay, G-banding and FISH techniques. RNA was also isolated for genetic profiling by microRNA (miR) and RT-PCR analysis. A panel of 752 miR were analyzed, and potential target genes, phosphatase and tensin homolog (PTEN) and cyclin D1 (CCND1), were measured. The cytogenetic assays revealed that although the control cell line had functional cell cycle checkpoints, the radiosensitivity of the control and AT cell lines were similar. Analysis of DNA damage in all cell lines, including an additional control cell line, showed elevated γ-H2AX levels for only one AT cell line. Of the 752 miR analyzed, eight miR were upregulated, and six miR were downregulated in the AT cells compared to the control. Upregulated miR-152-3p, miR-24-5p and miR-92-15p and all downregulated miR were indicated as modulators of PTEN and CCDN1. Further measurement of both genes validated their potential role as radiation-response biomarkers. The multi-biomarker approach not only revealed potential candidates for radiation response, but provided additional mechanistic insights into the response in AT-deficient cells.
Collapse
Affiliation(s)
- Jane Bryant
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute
| | - Lisa White
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Natasha Coen
- Department of Clinical Genetics, Division of Cytogenetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Laura Shields
- Medical Physics Department, St Luke's Radiation Oncology Centre, Rathgar, Dublin 6, Ireland
| | - Brendan McClean
- Medical Physics Department, St Luke's Radiation Oncology Centre, Rathgar, Dublin 6, Ireland
| | - Aidan D Meade
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Fiona M Lyng
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Orla Howe
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| |
Collapse
|
17
|
Bucher M, Duchrow L, Endesfelder D, Roessler U, Gomolka M. Comparison of inexperienced operators and experts in γH2A.X and 53BP1 foci assay for high-throughput biodosimetry approaches in a mass casualty incident. Int J Radiat Biol 2020; 96:1263-1273. [PMID: 32673132 DOI: 10.1080/09553002.2020.1793024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE In case of population exposure by ionizing radiation, a fast and reliable dose assessment of exposed and non-exposed individuals is crucial important. In initial triage, physicians have to take fast decisions whom to treat with adequate medical care. In addition, worries about significant exposure can be taken away from hundreds to thousands non- or low exposed individuals. Studies have shown that the γH2A.X radiation-induced foci assay is a promising test for fast triage decisions. However, in a large-scale scenario most biodosimetry laboratories will quickly reach their capacity limit. The aim of this study was to evaluate the benefit of inexperienced experimenters to speed up the foci assay and manual foci scoring. MATERIALS AND METHODS The participants of two training courses performed the radiation-induced foci assay (γH2A.X) under the guidance of experts and scored foci (γH2A.X and 53BP1) on sham-irradiated and irradiated blood samples (0.05-1.5 Gy). The outcome of laboratory experiments and manual foci scoring by 26 operators with basic experience in laboratory work was statistically analyzed in comparison to the results from experts. RESULTS Inexperienced operators prepared slides with significant dose-effects (0, 0.1 and 1.0 Gy) for semi-automatic microscopic analyses. Manual foci scoring by inexperienced scorer resulted in a dose-effect curve for γH2A.X, 53BP1 and co-localized foci. In addition, inexperienced scorers were able to distinguish low irradiation doses from unirradiated cells. While 53BP1 foci scoring was in accordance to the expert counting, differences between beginners and expert increased for γH2A.X or co-localized foci. CONCLUSIONS In case of a large-scale radiation event, inexperienced staff is useful to support laboratories in slide preparation for semi-automatic foci counting as well as γH2A.X and 53BP1 manual foci scoring for triage-mode biodosimetry. Slides can be clearly classified in the non-, low- or high-exposed category.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Lukas Duchrow
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Ute Roessler
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Maria Gomolka
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| |
Collapse
|
18
|
Swartz HM, Flood AB, Singh VK, Swarts SG. Scientific and Logistical Considerations When Screening for Radiation Risks by Using Biodosimetry Based on Biological Effects of Radiation Rather than Dose: The Need for Prior Measurements of Homogeneity and Distribution of Dose. HEALTH PHYSICS 2020; 119:72-82. [PMID: 32175928 PMCID: PMC7269859 DOI: 10.1097/hp.0000000000001244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An effective medical response to a large-scale radiation event requires prompt and effective initial triage so that appropriate care can be provided to individuals with significant risk for severe acute radiation injury. Arguably, it would be advantageous to use injury rather than radiation dose for the initial assessment; i.e., use bioassays of biological damage. Such assays would be based on changes in intrinsic biological response elements; e.g., up- or down-regulation of genes, proteins, metabolites, blood cell counts, chromosomal aberrations, micronuclei, micro-RNA, cytokines, or transcriptomes. Using a framework to evaluate the feasibility of biodosimetry for triaging up to a million people in less than a week following a major radiation event, Part 1 analyzes the logistical feasibility and clinical needs for ensuring that biomarkers of organ-specific injury could be effectively used in this context. We conclude that the decision to use biomarkers of organ-specific injury would greatly benefit by first having independent knowledge of whether the person's exposure was heterogeneous and, if so, what was the dose distribution (to determine which organs were exposed to high doses). In Part 2, we describe how these two essential needs for prior information (heterogeneity and dose distribution) could be obtained by using in vivo nail dosimetry. This novel physical biodosimetry method can also meet the needs for initial triage, providing non-invasive, point-of-care measurements made by non-experts with immediate dose estimates for four separate anatomical sites. Additionally, it uniquely provides immediate information as to whether the exposure was homogeneous and, if not, it can estimate the dose distribution. We conclude that combining the capability of methods such as in vivo EPR nail dosimetry with bioassays to predict organ-specific damage would allow effective use of medical resources to save lives.
Collapse
Affiliation(s)
- Harold M. Swartz
- Dept of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
- Dept of Medicine/Radiation Oncology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Ann Barry Flood
- Dept of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Vijay K. Singh
- Dept. Pharmacology & Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Steven G. Swarts
- Dept of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Wei W, Bai H, Feng X, Hua J, Long K, He J, Zhang Y, Ding N, Wang J, Zhou H. Serum Proteins as New Biomarkers for Whole-Body Exposure to High- and Low-LET Ionizing Radiation. Dose Response 2020; 18:1559325820914172. [PMID: 32273832 PMCID: PMC7113486 DOI: 10.1177/1559325820914172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 02/02/2023] Open
Abstract
Exposure to ionizing radiation is a major threat to human health and public security. Since the inherent limitations of current methods for indicating radiation exposure, new minimally invasive biomarkers that can be easily and quickly detected at an early stage are needed for optimal medical treatment. Serum proteins are attractive biomarkers and some radiosensitive proteins have been found, but the proteins in response to low-dose and high-linear energy transfer (LET) radiation have not been reported. In this study, mice were whole body exposed to a variety doses of carbon ions and X-rays. We performed Mouse Antibody Array to detect serum proteins expression profiles at 24 hours postirradiation. After conditional screening, insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-1 (IGFBP-1), and IGFBP-3 were further validated using enzyme-linked immunosorbent assay. After exposure to 0.05 to 1 Gy of carbon ions and 0.5 to 4 Gy of X-rays, only IGFBP-3 showed obvious increase with increased doses, both carbon ions and X-rays. Further, IGFBP-3 was detected for observation of its time-dependent changes. The results showed the expression difference of IGFBP-3 presented from 6 to 24 hours post-irradiation by carbon ions and X-rays. Moreover, the receiver–operating characteristic analysis showed that serum IGFBP-3 is efficient to triage exposed individuals with high sensitivity and specificity. These results suggest that serum IGFBP-3 is extremely sensitive to high- and low-LET ionizing radiation and is able to respond at an early stage, which could serve as a novel minimally invasive indicator for radiation exposure.
Collapse
Affiliation(s)
- Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hao Bai
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Feng
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Kaiqin Long
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
20
|
Hohmann T, Kessler J, Vordermark D, Dehghani F. Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay. PLoS One 2020; 15:e0229620. [PMID: 32101565 PMCID: PMC7043763 DOI: 10.1371/journal.pone.0229620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation induces amongst other the most critical type of DNA damage: double-strand breaks (DSBs). Efficient repair of such damage is crucial for cell survival and genomic stability. The analysis of DSB associated foci assays is often performed manually or with automatic systems. Manual evaluation is time consuming and subjective, while most automatic approaches are prone to changes in experimental conditions or to image artefacts. Here, we examined multiple machine learning models, namely a multi-layer perceptron classifier (MLP), linear support vector machine classifier (SVM), complement naive bayes classifier (cNB) and random forest classifier (RF), to correctly classify γH2AX foci in manually labeled images containing multiple types of artefacts. All models yielded reasonable agreements to the manual rating on the training images (Matthews correlation coefficient >0.4). Afterwards, the best performing models were applied on images obtained under different experimental conditions. Thereby, the MLP model produced the best results with an F1 Score >0.9. As a consequence, we have demonstrated that the used approach is sufficient to mimic manual counting and is robust against image artefacts and changes in experimental conditions.
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Germany
- * E-mail:
| | - Jacqueline Kessler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Germany
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Germany
| |
Collapse
|
21
|
Rassamegevanon T, Löck S, Baumann M, Krause M, von Neubeck C. Comparable radiation response of ex vivo and in vivo irradiated tumor samples determined by residual γH2AX. Radiother Oncol 2019; 139:94-100. [PMID: 31445839 DOI: 10.1016/j.radonc.2019.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/16/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE a) To investigate if an ex vivo cultured and irradiated tumor biopsy reflects and predicts the radiation response of the corresponding in vivo irradiated tumor measured with the DNA double strand break marker γH2AX foci. MATERIALS AND METHODS Five human head and neck squamous cell carcinoma (hHNSCC) xenograft models were used. Fine needle biopsies were taken from anesthetized tumor-bearing NMRI nude mice prior to in vivo single dose irradiation (0, 2, 4, or 8 Gy) under ambient blood flow. Biopsies were ex vivo reoxygenated and irradiated with equivalent doses. Tumors and biopsies were fixed 24 h post irradiation, and γH2AX foci were assessed in oxygenated tumor regions. RESULTS Linear regression analysis showed comparable slopes of the residual γH2AX foci dose-response curves in four out of five hHNSCC models when in vivo and ex vivo cohorts were compared. The slopes from ex vivo biopsies and in vivo tumors could classify the respective tumor model as sensitive or resistant according to the intrinsic radiation sensitivity (TCD50). CONCLUSION The ability of ex vivo irradiated tumor biopsies to reflect and predict the intrinsic radiation response of in vivo tumors increases the translational potential of the ex vivo γH2AX foci assay as a diagnostic tool for clinical practice.
Collapse
Affiliation(s)
- Treewut Rassamegevanon
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany.
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Cläre von Neubeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Raavi V, Surendran J, Karthik K, Paul SFD, Thayalan K, Arunakaran J, Venkatachalam P. Measurement of γ-H2AX foci, miRNA-101, and gene expression as a means to quantify radiation-absorbed dose in cancer patients who had undergone radiotherapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:69-80. [PMID: 30467642 DOI: 10.1007/s00411-018-0767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Radiological accidents and nuclear terrorism pose an increased threat to members of the public who, following such an event, would need to be assessed for medical care by fast triage. Assay methods such as chromosome aberrations (CA), cytokinesis-block micronucleus (CBMN) and fluorescence in situ hybridization (FISH) techniques have been well established for dose estimation and their potential for handling more samples has also been proved with automation. However, culturing of lymphocytes is an inevitable step, which limits the potential of these markers for triage. In vitro analysis of gamma-H2AX (γ-H2AX), gene and microRNA (miRNA) markers do not require culturing of lymphocytes, and as such have been suggested as attractive tools for triage. Despite studies reporting in vitro dose-response curves, limited evidence is available evaluating the suitability of these assays in real situations. In this study, we have measured the absorbed dose using γ-H2AX, gene (GADD45A, FDXR, and CDKN1A) and miRNA-101 expression in blood samples of cancer patients (n = 20) who had undergone partial-body radiotherapy and compared with the derived equivalent whole-body doses (EWBD). The obtained results from all patients showed a significant (p < 0.05) increase of γ-H2AX foci in post-irradiated as compared to pre-irradiated samples. Moreover, estimated doses using γ-H2AX foci showed a correlation with the derived EWBD (r2 = 0.60, p = 0.0003) and was also shown to be dependent on the irradiated body volume. Consistent with γ-H2AX foci frequency, an increase in fold change expression of genes and miRNA-101 was observed. However, the estimated dose significantly varied among the subjects and showed poor correlation (r2 = 0.09, 0.04, 0.01 and 0.03 for GADD45A, FDXR, CDKN1A and miRNA-101, respectively) with EWBD. The overall results suggest that the established in vitro γ-H2AX assay is suitable for the detection of radiation exposure and can also provide an estimate of the dose in in vivo irradiated samples. The genes and miRNA-101 markers showed increased expression; nevertheless, there is a need for further improvements to measure doses accurately using these markers.
Collapse
Affiliation(s)
- Venkateswarlu Raavi
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - J Surendran
- Department of Radiation Oncology, Kamakshi Memorial Hospital, Pallikaranai, Chennai, 600 100, India
| | - K Karthik
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India
| | - K Thayalan
- Department of Radiation Oncology, Kamakshi Memorial Hospital, Pallikaranai, Chennai, 600 100, India
| | - J Arunakaran
- Department of Endocrinology, Dr. ALM PGIBMS, University of Madras, Taramani, Chennai, 600 113, India
| | - Perumal Venkatachalam
- Department of Human Genetics, Sri Ramachandra Medical College and Research Institute (Deemed to be University), Porur, Chennai, 600 116, India.
| |
Collapse
|
23
|
Einbeck J, Ainsbury EA, Sales R, Barnard S, Kaestle F, Higueras M. A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay. PLoS One 2018; 13:e0207464. [PMID: 30485322 PMCID: PMC6261578 DOI: 10.1371/journal.pone.0207464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
Abstract
Over the last decade, the γ–H2AX focus assay, which exploits the phosphorylation of the H2AX histone following DNA double–strand–breaks, has made considerable progress towards acceptance as a reliable biomarker for exposure to ionizing radiation. While the existing literature has convincingly demonstrated a dose–response effect, and also presented approaches to dose estimation based on appropriately defined calibration curves, a more widespread practical use is still hampered by a certain lack of discussion and agreement on the specific dose–response modelling and uncertainty quantification strategies, as well as by the unavailability of implementations. This manuscript intends to fill these gaps, by stating explicitly the statistical models and techniques required for calibration curve estimation and subsequent dose estimation. Accompanying this article, a web applet has been produced which implements the discussed methods.
Collapse
Affiliation(s)
- Jochen Einbeck
- Department of Mathematical Sciences, Durham University, Durham, United Kingdom
- * E-mail:
| | - Elizabeth A. Ainsbury
- Public Health England, Chemical and Environmental Hazards, Chilton, Didcot, United Kingdom
| | - Rachel Sales
- Department of Mathematical Sciences, Durham University, Durham, United Kingdom
| | - Stephen Barnard
- Public Health England, Chemical and Environmental Hazards, Chilton, Didcot, United Kingdom
| | - Felix Kaestle
- Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Oberschleissheim, Germany
| | - Manuel Higueras
- Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja, Spain
- Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain
| |
Collapse
|
24
|
Lengert N, Mirsch J, Weimer RN, Schumann E, Haub P, Drossel B, Löbrich M. AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair. Sci Rep 2018; 8:17282. [PMID: 30470760 PMCID: PMC6251879 DOI: 10.1038/s41598-018-35660-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
Double-strand breaks (DSBs) are the most lethal DNA damages induced by ionising radiation (IR) and their efficient repair is crucial to limit genomic instability. The cellular DSB response after low IR doses is of particular interest but its examination requires the analysis of high cell numbers. Here, we present an automated DSB quantification method based on the analysis of γH2AX and 53BP1 foci as markers for DSBs. We establish a combination of object properties, combined in the object evaluation parameter (OEP), which correlates with manual object classification. Strikingly, OEP histograms show a bi-modal distribution with two maxima and a minimum in between, which correlates with the manually determined transition between background signals and foci. We used algorithms to detect the minimum, thus separating foci from background signals and automatically assessing DSB levels. To demonstrate the validity of this method, we analyzed over 600.000 cells to verify results of previous studies showing that DSBs induced by low doses are less efficiently repaired compared with DSBs induced by higher doses. Thus, the automated foci counting method, called AutoFoci, provides a valuable tool for high-throughput image analysis of thousands of cells which will prove useful for many biological screening approaches.
Collapse
Affiliation(s)
- Nicor Lengert
- Theory of Complex Systems, Darmstadt University of Technology, Hochschulstr. 6, 64289, Darmstadt, Germany.
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Schnittspahnstr. 13, 64287, Darmstadt, Germany
| | - Ratna N Weimer
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Schnittspahnstr. 13, 64287, Darmstadt, Germany
| | - Eik Schumann
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Schnittspahnstr. 13, 64287, Darmstadt, Germany
| | - Peter Haub
- Image Consulting, 68804, Altlußheim, Germany
| | - Barbara Drossel
- Theory of Complex Systems, Darmstadt University of Technology, Hochschulstr. 6, 64289, Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Schnittspahnstr. 13, 64287, Darmstadt, Germany.
| |
Collapse
|
25
|
Rassamegevanon T, Löck S, Baumann M, Krause M, von Neubeck C. Heterogeneity of γH2AX Foci Increases in Ex Vivo Biopsies Relative to In Vivo Tumors. Int J Mol Sci 2018; 19:E2616. [PMID: 30181446 PMCID: PMC6163410 DOI: 10.3390/ijms19092616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
The biomarker for DNA double stand breaks, gammaH2AX (γH2AX), holds a high potential as an intrinsic radiosensitivity predictor of tumors in clinical practice. Here, two published γH2AX foci datasets from in and ex vivo exposed human head and neck squamous cell carcinoma (hHNSCC) xenografts were statistically re-evaluated for the effect of the assay setting (in or ex vivo) on cellular geometry and the degree of heterogeneity in γH2AX foci. Significant differences between the nucleus areas of in- and ex vivo exposed samples were found. However, the number of foci increased linearly with nucleus area in irradiated samples of both settings. Moreover, irradiated tumor cells showed changes of nucleus area distributions towards larger areas compared to unexposed samples, implying cell cycle alteration after radiation exposure. The number of residual γH2AX foci showed a higher degree of intra-tumoral heterogeneity in the ex vivo exposed samples relative to the in vivo exposed samples. In the in vivo setting, the highest intra-tumoral heterogeneity was observed in initial γH2AX foci numbers (foci detected 30 min following irradiation). These results suggest that the tumor microenvironment and the culture condition considerably influence cellular adaptation and DNA damage repair.
Collapse
Affiliation(s)
- Treewut Rassamegevanon
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Michael Baumann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Mechthild Krause
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany.
| | - Cläre von Neubeck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Swarts SG, Sidabras JW, Grinberg O, Tipikin DS, Kmiec M, Petryakov S, Schreiber W, Wood VA, Williams BB, Flood AB, Swartz HM. Developments in Biodosimetry Methods for Triage With a Focus on X-band Electron Paramagnetic Resonance In Vivo Fingernail Dosimetry. HEALTH PHYSICS 2018; 115:140-150. [PMID: 29787440 PMCID: PMC5967651 DOI: 10.1097/hp.0000000000000874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Instrumentation and application methodologies for rapidly and accurately estimating individual ionizing radiation dose are needed for on-site triage in a radiological/nuclear event. One such methodology is an in vivo X-band, electron paramagnetic resonance, physically based dosimetry method to directly measure the radiation-induced signal in fingernails. The primary components under development are key instrument features, such as resonators with unique geometries that allow for large sampling volumes but limit radiation-induced signal measurements to the nail plate, and methodological approaches for addressing interfering signals in the nail and for calibrating dose from radiation-induced signal measurements. One resonator development highlighted here is a surface resonator array designed to reduce signal detection losses due to the soft tissues underlying the nail plate. Several surface resonator array geometries, along with ergonomic features to stabilize fingernail placement, have been tested in tissue-equivalent nail models and in vivo nail measurements of healthy volunteers using simulated radiation-induced signals in their fingernails. These studies demonstrated radiation-induced signal detection sensitivities and quantitation limits approaching the clinically relevant range of ≤ 10 Gy. Studies of the capabilities of the current instrument suggest that a reduction in the variability in radiation-induced signal measurements can be obtained with refinements to the surface resonator array and ergonomic features of the human interface to the instrument. Additional studies are required before the quantitative limits of the assay can be determined for triage decisions in a field application of dosimetry. These include expanded in vivo nail studies and associated ex vivo nail studies to provide informed approaches to accommodate for a potential interfering native signal in the nails when calculating the radiation-induced signal from the nail plate spectral measurements and to provide a method for calibrating dose estimates from the radiation-induced signal measurements based on quantifying experiments in patients undergoing total-body irradiation or total-skin electron therapy.
Collapse
Affiliation(s)
- Steven G. Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32618
| | - Jason W. Sidabras
- Max Planck for Chemical Energy Conversion, Biophysical Chemistry, Mülheim, Germany
| | - Oleg Grinberg
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | | | - Maciej Kmiec
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Sergey Petryakov
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Wilson Schreiber
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Victoria A. Wood
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | | | - Ann Barry Flood
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| | - Harold M. Swartz
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, 03755
| |
Collapse
|
27
|
Tumor heterogeneity determined with a γH2AX foci assay: A study in human head and neck squamous cell carcinoma (hHNSCC) models. Radiother Oncol 2017; 124:379-385. [PMID: 28739384 DOI: 10.1016/j.radonc.2017.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to analyze the intra-tumoral heterogeneity of γH2AX foci in tumor specimens following ex vivo radiation to evaluate the potential of γH2AX foci as predictors for radiosensitivity. MATERIAL AND METHODS γH2AX foci were quantified in tumor specimens of 3hHNSCC tumor models with known differences in radiosensitivity after reoxygenation in culture medium (10h, 24h), single dose exposure (0Gy, 4Gy), and fixation 24h post-irradiation. Multiple, equally treated samples of the same tumor were analyzed for foci, normalized and fitted in a linear mixed-effects model. RESULTS The ex vivo reoxygenation time had no significant effect on γH2AX foci counts. A significant intra model heterogeneity could be shown for FaDu (p=0.033) but not for SKX (p=0.167) and UT-SCC-5 (p=0.082) tumors, respectively. All tumor models showed a significant intra-tumoral heterogeneity between specimens of the same tumor (p<0.01) or among microscopic fields of a particular tumor specimen (p<0.0001). CONCLUSION Similar results for ex vivo γH2AX foci between 10h and 24h reoxygenation time support the applicability of the assay in a clinical setting. The high intra-tumoral heterogeneity underlines the necessity of multiple analyzable samples per patient and therewith the need for an automated foci analysis.
Collapse
|
28
|
Wei W, He J, Wang J, Ding N, Wang B, Lin S, Zhang X, Hua J, Li H, Hu B. Serum microRNAs as Early Indicators for Estimation of Exposure Degree in Response to Ionizing Irradiation. Radiat Res 2017. [DOI: 10.1667/rr14702.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bing Wang
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sulan Lin
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xurui Zhang
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - He Li
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Burong Hu
- Key Laboratory of Space Radiobiology of Gansu Province and Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
29
|
Basheerudeen SAS, Kanagaraj K, Jose M, Ozhimuthu A, Paneerselvam S, Pattan S, Joseph S, Raavi V, Perumal V. Entrance surface dose and induced DNA damage in blood lymphocytes of patients exposed to low-dose and low-dose-rate X-irradiation during diagnostic and therapeutic interventional radiology procedures. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 818:1-6. [DOI: 10.1016/j.mrgentox.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023]
|
30
|
Hasan Basri IK, Yusuf D, Rahardjo T, Nurhayati S, Tetriana D, Ramadhani D, Alatas Z, Purnami S, Kisnanto T, Lusiyanti Y, Syaifudin M. Study of γ-H2AX as DNA double strand break biomarker in resident living in high natural radiation area of Mamuju, West Sulawesi. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 171:212-216. [PMID: 28282532 DOI: 10.1016/j.jenvrad.2017.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/16/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
High expression of phospho histone γ-H2AX, a sensitive marker of double stranded DNA damage, is believed to be an indication of defective DNA repair pathway or genomic instability that may cause mutations and ultimately cancer. DNA damage can be caused by ionizing radiation exposure. Beside in medical treatment/diagnosis or industry, ionizing radiation exposure can also be found in naturally in regions of high natural back ground radiation. In this study we collect the blood from 45 volunteers living in Mamuju, a region with highest natural radiation in Indonesia (dose of ∼7 mSv/year). Subjects were grouped as high natural background area (HNBA) (n = 37) and control area (n = 8). The expression γ-H2AX foci were evaluated by one of researcher fluorescence microscope examination. Our results show that the average foci numbers per cell were in the normal range. While not statistical different, the average of γ-H2AX foci in exposed area higher in the exposed compared to the control area, 0.31 versus 0.13 (p > 0.05), respectively. Moreover, there was also no statistical difference of average γ-H2AX foci between man and woman, old and young people in exposed and control area (p > 0.05). In this preliminary study we find that γ-H2AX foci (and thus DNA double strand break) frequency in residents living in the HNBA of Mamuju, West Sulawesi, show a trend towards higher (albeit not significant) average values relative to the control area. More research is needed to further scrutinize these observations.
Collapse
Affiliation(s)
- Iin Kurnia Hasan Basri
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia.
| | - Darlina Yusuf
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Tur Rahardjo
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Siti Nurhayati
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Devita Tetriana
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Dwi Ramadhani
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Zubaidah Alatas
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Sofiati Purnami
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Teja Kisnanto
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Yanti Lusiyanti
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| | - Mukh Syaifudin
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, Jl. Lebakbulus Raya No. 49, Jakarta Indonesia
| |
Collapse
|
31
|
Wilkins RC, Rodrigues MA, Beaton-Green LA. The Application of Imaging Flow Cytometry to High-Throughput Biodosimetry. Genome Integr 2017; 8:7. [PMID: 28250914 PMCID: PMC5320785 DOI: 10.4103/2041-9414.198912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodosimetry methods, including the dicentric chromosome assay, the cytokinesis-block micronucleus assay and the γH2AX marker of DNA damage are used to determine the dose of ionizing radiation. These techniques are particularly useful when physical dosimetry is absent or questioned. While these assays can be very sensitive and specific, the standard methods need to be adapted to increase sample throughput in the case of a large-scale radiological/nuclear event. Recent modifications to the microscope-based assays have resulted in some increased throughput, and a number of biodosimetry networks have been, and continue to be, established and strengthened. As the imaging flow cytometer (IFC) is a technology that can automatically image and analyze processed blood samples for markers of radiation damage, the microscope-based biodosimetry techniques can be modified for the IFC for high-throughput biological dosimetry. Furthermore, the analysis templates can be easily shared between networked biodosimetry laboratories for increased capacity and improved standardization. This review describes recent advances in IFC methodology and their application to biodosimetry.
Collapse
Affiliation(s)
- Ruth C. Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Lindsay A. Beaton-Green
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Serdar B, Brindley S, Dooley G, Volckens J, Juarez-colunga E, Gan R. Short-term markers of DNA damage among roofers who work with hot asphalt. Environ Health 2016; 15:99. [PMID: 27765036 PMCID: PMC5072307 DOI: 10.1186/s12940-016-0182-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Roofers are at increased risk for various malignancies and their occupational exposures to polycyclic aromatic hydrocarbons (PAHs) have been considered as important risk factors. The overall goal of this project was to investigate the usefulness of phosphorylated histone H2AX (γH2AX) as a short-term biomarker of DNA damage among roofers. METHODS Blood, urine, and dermal wipe samples were collected from 20 roofers who work with hot asphalt before and after 6 h of work on Monday and Thursday of the same week (4 sampling periods). Particle-bound and gas-phase PAHs were collected using personal monitors during work hours. γH2AX was quantified in peripheral lymphocytes using flow cytometry and 8-hydroxy-2-deoxyguanosine (8-OHdG) was assessed in urine using ELISA. General linear mixed models were used to evaluate associations between DNA damage and possible predictors (such as sampling period, exposure levels, work- and life-style factors). Differences in mean biomarker and DNA damage levels were tested via ANOVA contrasts. RESULTS Exposure measurements did not show an association with any of the urinary biomarkers or the measures of DNA damage. Naphthalene was the most abundant PAH in gas-phase, while benzo(e)pyrene was the most abundant particle-bound PAH. Post-shift levels of γH2AX and 8-OHdG were higher on both study days, when compared to pre-shift levels. Cigarette smoking was a predictor of γH2AX and urinary creatinine was a predictor of urinary 8-OHdG. Between-subject variance to total variance ratio was 35.3 % for γH2ax and 4.8 % for 8-OHdG. CONCLUSION γH2AX is a promising biomarker of DNA damage in occupational epidemiology studies. It has a lower within-subject variation than urinary 8-OHdG and can easily be detected in large scale groups. Future studies that explore the kinetics of H2AX phosphorylation in relation to chemical exposures may reveal the transient and persistent nature of this sensitive biomarker of early DNA damage.
Collapse
Affiliation(s)
- Berrin Serdar
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, USA
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mail Stop B119-V20, 12850 East Montview Boulevard, Rm. V20-3126, Aurora, CO 80045 USA
| | - Stephen Brindley
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| | - Greg Dooley
- Analytical Toxicology Laboratory, Center for Environmental Medicine, Colorado State University, Fort Collins, USA
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, USA
| | - Elizabeth Juarez-colunga
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| | - Ryan Gan
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| |
Collapse
|
33
|
Ainsbury EA, Higueras M, Puig P, Einbeck J, Samaga D, Barquinero JF, Barrios L, Brzozowska B, Fattibene P, Gregoire E, Jaworska A, Lloyd D, Oestreicher U, Romm H, Rothkamm K, Roy L, Sommer S, Terzoudi G, Thierens H, Trompier F, Vral A, Woda C. Uncertainty of fast biological radiation dose assessment for emergency response scenarios. Int J Radiat Biol 2016; 93:127-135. [PMID: 27572921 DOI: 10.1080/09553002.2016.1227106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. MATERIALS AND METHODS Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. RESULTS The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. CONCLUSIONS Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK
| | - Manuel Higueras
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK.,b Universitat Autonoma de Barcelona , Barcelona , Spain
| | - Pedro Puig
- b Universitat Autonoma de Barcelona , Barcelona , Spain
| | - Jochen Einbeck
- c Department of Mathematical Sciences , Durham University , Durham , UK
| | - Daniel Samaga
- d Bundesamt für Strahlenschutz (BfS) , Munich , Germany
| | | | | | - Beata Brzozowska
- e Stockholm University , Centre for Radiation Protection Research, Department of Molecular Bioscience, The Wenner-Gren Institute , Stockholm , Sweden.,f University of Warsaw , Faculty of Physics, Department of Biomedical Physics , Warsaw , Poland
| | | | - Eric Gregoire
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Alicja Jaworska
- i Norwegian Radiation Protection Authority (NRPA) , Østerås , Norway
| | - David Lloyd
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK
| | | | - Horst Romm
- d Bundesamt für Strahlenschutz (BfS) , Munich , Germany
| | - Kai Rothkamm
- a Public Health England Centre for Radiation , Chemical and Environmental Hazards (PHE) , Chilton , UK.,j University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Laurence Roy
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Sylwester Sommer
- k Institute of Nuclear Chemistry and Technology (ICHTJ) , Warsaw , Poland
| | - Georgia Terzoudi
- l National Centre for Scientific Research Demokritos , Athens , Greece
| | | | - Francois Trompier
- h Institut de radioprotection et de sûreté nucléaire (IRSN) , Paris , France
| | - Anne Vral
- m Ghent University , Ghent , Belgium
| | - Clemens Woda
- n Helmholtz Zentrum München (HMGU) , Neuherberg , Germany
| |
Collapse
|
34
|
Moquet J, Barnard S, Staynova A, Lindholm C, Monteiro Gil O, Martins V, Rößler U, Vral A, Vandevoorde C, Wojewódzka M, Rothkamm K. The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). Int J Radiat Biol 2016; 93:58-64. [DOI: 10.1080/09553002.2016.1207822] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Albena Staynova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Carita Lindholm
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Octávia Monteiro Gil
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Vanda Martins
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Ute Rößler
- Bundesamt für Strahlenschutz, Oberschleissheim, Germany
| | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Charlot Vandevoorde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
- Themba LABS, National Research Foundation, Somerset West, South Africa
| | - Maria Wojewódzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
- Department of Radiotherapy & Radio-Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Raavi V, Basheerudeen SAS, Jagannathan V, Joseph S, Chaudhury NK, Venkatachalam P. Frequency of gamma H2AX foci in healthy volunteers and health workers occupationally exposed to X-irradiation and its relevance in biological dosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:339-47. [PMID: 27287768 DOI: 10.1007/s00411-016-0658-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/01/2016] [Indexed: 05/19/2023]
Abstract
Gamma-H2AX (γ-H2AX) assay is a marker to measure double-strand breaks in the deoxyribonucleic acid. Variables such as age, oxidative stress, temperature, genetic factors and inter-individual variation have been reported to influence the baseline γ-H2AX focus levels. Therefore, knowledge on baseline frequency of γ-H2AX foci in a targeted population would facilitate reliable radiation triage and dose estimation. The objective of the present study was to establish the baseline data using blood samples from healthy volunteers (n = 130) differing in age, occupation and lifestyle as well as from occupationally exposed health workers (n = 20). The γ-H2AX focus assay was performed using epifluorescence microscopy. In vitro dose-response curve for γ-H2AX foci was constructed in blood samples (n = 3) exposed to X-rays (30 min post-exposure). The mean γ-H2AX focus frequency obtained in healthy volunteers was 0.042 ± 0.001 and showed an age-related increase (p < 0.001). Significantly higher (p < 0.005) focus frequencies were observed in health workers (0.066 ± 0.005) than in healthy volunteers. A sub-group analysis did not show a significant (p > 0.1) difference in γ-H2AX focus frequency among sexes. Blood exposed in vitro to X-rays showed dose-dependent increase in γ-H2AX foci frequency (Y = 0.1902 ± 0.1363 + 2.9020 ± 0.3240 * D). Baseline frequency of γ-H2AX foci obtained from different age groups showed a significant (p < 0.01) influence on the dose-response coefficients. The overall results demonstrated that the γ-H2AX assay can be used as a reliable biomarker for radiation triage and estimating the radiation absorbed dose by considering variables such as age, occupation and lifestyle factors.
Collapse
Affiliation(s)
- Venkateswarlu Raavi
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | | | | | - Santosh Joseph
- Department of Neuro Interventional Radiology, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Nabo Kumar Chaudhury
- Chemical Radio Protector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Brig Mazumdar Road, Timarpur, Delhi, 110 054, India
| | - Perumal Venkatachalam
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India.
| |
Collapse
|
36
|
Flood AB, Ali AN, Boyle HK, Du G, Satinsky VA, Swarts SG, Williams BB, Demidenko E, Schreiber W, Swartz HM. Evaluating the Special Needs of The Military for Radiation Biodosimetry for Tactical Warfare Against Deployed Troops: Comparing Military to Civilian Needs for Biodosimetry Methods. HEALTH PHYSICS 2016; 111:169-82. [PMID: 27356061 PMCID: PMC4930006 DOI: 10.1097/hp.0000000000000538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this paper is to delineate characteristics of biodosimetry most suitable for assessing individuals who have potentially been exposed to significant radiation from a nuclear device explosion when the primary population targeted by the explosion and needing rapid assessment for triage is civilians vs. deployed military personnel. The authors first carry out a systematic analysis of the requirements for biodosimetry to meet the military's needs to assess deployed troops in a warfare situation, which include accomplishing the military mission. Then the military's special capabilities to respond and carry out biodosimetry for deployed troops in warfare are compared and contrasted systematically, in contrast to those available to respond and conduct biodosimetry for civilians who have been targeted by terrorists, for example. Then the effectiveness of different biodosimetry methods to address military vs. civilian needs and capabilities in these scenarios was compared and, using five representative types of biodosimetry with sufficient published data to be useful for the simulations, the number of individuals are estimated who could be assessed by military vs. civilian responders within the timeframe needed for triage decisions. Analyses based on these scenarios indicate that, in comparison to responses for a civilian population, a wartime military response for deployed troops has both more complex requirements for and greater capabilities to use different types of biodosimetry to evaluate radiation exposure in a very short timeframe after the exposure occurs. Greater complexity for the deployed military is based on factors such as a greater likelihood of partial or whole body exposure, conditions that include exposure to neutrons, and a greater likelihood of combined injury. These simulations showed, for both the military and civilian response, that a very fast rate of initiating the processing (24,000 d) is needed to have at least some methods capable of completing the assessment of 50,000 people within a 2- or 6-d timeframe following exposure. This in turn suggests a very high capacity (i.e., laboratories, devices, supplies and expertise) would be necessary to achieve these rates. These simulations also demonstrated the practical importance of the military's superior capacity to minimize time to transport samples to offsite facilities and use the results to carry out triage quickly. Assuming sufficient resources and the fastest daily rate to initiate processing victims, the military scenario revealed that two biodosimetry methods could achieve the necessary throughput to triage 50,000 victims in 2 d (i.e., the timeframe needed for injured victims), and all five achieved the targeted throughput within 6 d. In contrast, simulations based on the civilian scenario revealed that no method could process 50,000 people in 2 d and only two could succeed within 6 d.
Collapse
Affiliation(s)
- Ann Barry Flood
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Arif N. Ali
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA
| | - Holly K. Boyle
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gaixin Du
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | | | - Steven G. Swarts
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL
| | - Benjamin B. Williams
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Radiation Oncology Division, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Wilson Schreiber
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Harold M. Swartz
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Radiation Oncology Division, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
37
|
Borràs M, Armengol G, De Cabo M, Barquinero JF, Barrios L. Comparison of methods to quantify histone H2AX phosphorylation and its usefulness for prediction of radiosensitivity. Int J Radiat Biol 2015; 91:915-24. [DOI: 10.3109/09553002.2015.1101501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Perumal V, Sekaran TSG, Raavi V, Basheerudeen SAS, Kanagaraj K, Chowdhury AR, Paul SFD. Radiation signature on exposed cells: Relevance in dose estimation. World J Radiol 2015; 7:266-278. [PMID: 26435777 PMCID: PMC4585950 DOI: 10.4329/wjr.v7.i9.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/03/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.
Collapse
|
39
|
Menegakis A, De Colle C, Yaromina A, Hennenlotter J, Stenzl A, Scharpf M, Fend F, Noell S, Tatagiba M, Brucker S, Wallwiener D, Boeke S, Ricardi U, Baumann M, Zips D. Residual γH2AX foci after ex vivo irradiation of patient samples with known tumour-type specific differences in radio-responsiveness. Radiother Oncol 2015; 116:480-5. [PMID: 26297183 DOI: 10.1016/j.radonc.2015.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 02/01/2023]
Abstract
PURPOSE To apply our previously published residual ex vivo γH2AX foci method to patient-derived tumour specimens covering a spectrum of tumour-types with known differences in radiation response. In addition, the data were used to simulate different experimental scenarios to simplify the method. MATERIALS AND METHODS Evaluation of residual γH2AX foci in well-oxygenated tumour areas of ex vivo irradiated patient-derived tumour specimens with graded single doses was performed. Immediately after surgical resection, the samples were cultivated for 24h in culture medium prior to irradiation and fixed 24h post-irradiation for γH2AX foci evaluation. Specimens from a total of 25 patients (including 7 previously published) with 10 different tumour types were included. RESULTS Linear dose response of residual γH2AX foci was observed in all specimens with highly variable slopes among different tumour types ranging from 0.69 (95% CI: 1.14-0.24) to 3.26 (95% CI: 4.13-2.62) for chondrosarcomas (radioresistant) and classical seminomas (radiosensitive) respectively. Simulations suggest that omitting dose levels might simplify the assay without compromising robustness. CONCLUSION Here we confirm clinical feasibility of the assay. The slopes of the residual foci number are well in line with the expected differences in radio-responsiveness of different tumour types implying that intrinsic radiation sensitivity contributes to tumour radiation response. Thus, this assay has a promising potential for individualized radiation therapy and prospective validation is warranted.
Collapse
Affiliation(s)
- Apostolos Menegakis
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Tübingen, Germany.
| | - Chiara De Colle
- Department of Oncology, Radiation Oncology, University of Turin, Italy
| | - Ala Yaromina
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Joerg Hennenlotter
- Department of Urology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Marcus Scharpf
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Falko Fend
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Susan Noell
- Department of Neurosurgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Sara Brucker
- Department of and Research Institute for Women's Health, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Diethelm Wallwiener
- Department of and Research Institute for Women's Health, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Tübingen, Germany
| | - Umberto Ricardi
- Department of Oncology, Radiation Oncology, University of Turin, Italy
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Dresden, Germany; Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Sites Tübingen, Germany
| |
Collapse
|
40
|
Vandevoorde C, Gomolka M, Roessler U, Samaga D, Lindholm C, Fernet M, Hall J, Pernot E, El-Saghire H, Baatout S, Kesminiene A, Thierens H. EPI-CT: in vitro assessment of the applicability of the γ-H2AX-foci assay as cellular biomarker for exposure in a multicentre study of children in diagnostic radiology. Int J Radiat Biol 2015; 91:653-63. [PMID: 25968559 DOI: 10.3109/09553002.2015.1047987] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To conduct a feasibility study on the application of the γ-H2AX foci assay as an exposure biomarker in a prospective multicentre paediatric radiology setting. MATERIALS AND METHODS A set of in vitro experiments was performed to evaluate technical hurdles related to biological sample collection in a paediatric radiology setting (small blood sample volume), processing and storing of blood samples (effect of storing blood at 4°C), the reliability of foci scoring for low-doses (merge γ-H2AX/53BP1 scoring), as well as the impact of contrast agent administration as potential confounding factor. Given the exploratory nature of this study and the ethical constraints related to paediatric blood sampling, blood samples from adult volunteers were used for these experiments. In order to test the feasibility of pooling the γ-H2AX data when different centres are involved in an international multicentre study, two intercomparison studies in the low-dose range (10-500 mGy) were performed. RESULTS Determination of the number of X-ray induced γ-H2AX foci is feasible with one 2 ml blood sample pre- and post-computed tomography (CT) scan. Lymphocyte isolation and fixation on slides is necessary within 5 h of blood sampling to guarantee reliable results. The possible enhancement effect of contrast medium on the induction of DNA DSB in a patient study can be ruled out if radiation doses and the contrast agent concentration are within diagnostic ranges. The intercomparison studies using in vitro irradiated blood samples showed that the participating laboratories, executing successfully the γ-H2AX foci assay in lymphocytes, were able to rank blind samples in order of lowest to highest radiation dose based on mean foci/cell counts. The dose response of all intercomparison data shows that a dose point of 10 mGy could be distinguished from the sham-irradiated control (p = 0.006). CONCLUSIONS The results demonstrate that it is feasible to apply the γ-H2AX foci assay as a cellular biomarker of exposure in a multicentre prospective study in paediatric CT imaging after validating it in an in vivo international pilot study on paediatric patients.
Collapse
Affiliation(s)
| | - Maria Gomolka
- b Federal Office for Radiation Protection , BfS , Germany
| | - Ute Roessler
- b Federal Office for Radiation Protection , BfS , Germany
| | - Daniel Samaga
- b Federal Office for Radiation Protection , BfS , Germany
| | | | | | - Janet Hall
- e Centre de Recherche en Cancérologie de Lyon - UMR Inserm 1052 - CNRS 5286 , France
| | - Eileen Pernot
- f Centre for Research in Environmental Epidemiology , CREAL , Spain
- g Universitat Pompeu Fabra (UPF) , Barcelona , Spain
- h CIBER Epidemiología y salud P ublica (CIBERESP) , Barcelona , Spain
| | | | - Sarah Baatout
- i Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN , Belgium
| | | | | |
Collapse
|
41
|
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:491-504. [PMID: 25773265 DOI: 10.1002/em.21944] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.
Collapse
Affiliation(s)
- Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Radiotherapy, Laboratory of Radiation Biology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Zohaib Rana
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Susanne Burdak-Rothkamm
- Department of Cellular Pathology, Oxford University Hospitals, Headley Way, Headington, Oxford, United Kingdom
| |
Collapse
|
42
|
Wojewodzka M, Sommer S, Kruszewski M, Sikorska K, Lewicki M, Lisowska H, Wegierek-Ciuk A, Kowalska M, Lankoff A. Defining Blood Processing Parameters for Optimal Detection of γ-H2AX Foci: A Small Blood Volume Method. Radiat Res 2015; 184:95-104. [PMID: 26121226 DOI: 10.1667/rr13897.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biodosimetric methods used to measure the effects of radiation are critical for estimating the health risks to irradiated individuals or populations. The direct measurement of radiation-induced γ-H2AX foci in peripheral blood lymphocytes is one approach that provides a useful end point for triage. Despite the documented advantages of the γ-H2AX assay, there is considerable variation among laboratories regarding foci formation in the same exposure conditions and cell lines. Taking this into account, the goal of our study was to evaluate the influence of different blood processing parameters on the frequency of γ-H2AX foci and optimize a small blood volume protocol for the γ-H2AX assay, which simulates the finger prick blood collection method. We found that the type of fixative, temperature and blood processing time markedly affect the results of the γ-H2AX assay. In addition, we propose a protocol for the γ-H2AX assay that may serve as a potential guideline in the event of large-scale radiation incidents.
Collapse
Affiliation(s)
- Maria Wojewodzka
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Sylwester Sommer
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Marcin Kruszewski
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland;,b Faculty of Medicine, University of Information Technology and Management in Rzeszow, 35-225 Rzeszow, Poland
| | - Katarzyna Sikorska
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Maciej Lewicki
- c Faculty of Physics and Astronomy, University of Wroclaw, 0-204 Wroclaw, Poland; and
| | - Halina Lisowska
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Aneta Wegierek-Ciuk
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Magdalena Kowalska
- d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| | - Anna Lankoff
- a Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland;,d Jan Kochanowski University, Institute of Biology, Department of Radiobiology and Immunology, 25-406 Kielce, Poland
| |
Collapse
|
43
|
Antonelli F, Campa A, Esposito G, Giardullo P, Belli M, Dini V, Meschini S, Simone G, Sorrentino E, Gerardi S, Cirrone GAP, Tabocchini MA. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiat Res 2015; 183:417-31. [PMID: 25844944 DOI: 10.1667/rr13855.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The spatial distribution of radiation-induced DNA breaks within the cell nucleus depends on radiation quality in terms of energy deposition pattern. It is generally assumed that the higher the radiation linear energy transfer (LET), the greater the DNA damage complexity. Using a combined experimental and theoretical approach, we examined the phosphorylation-dephosphorylation kinetics of radiation-induced γ-H2AX foci, size distribution and 3D focus morphology, and the relationship between DNA damage and cellular end points (i.e., cell killing and lethal mutations) after exposure to gamma rays, protons, carbon ions and alpha particles. Our results showed that the maximum number of foci are reached 30 min postirradiation for all radiation types. However, the number of foci after 0.5 Gy of each radiation type was different with gamma rays, protons, carbon ions and alpha particles inducing 12.64 ± 0.25, 10.11 ± 0.40, 8.84 ± 0.56 and 4.80 ± 0.35 foci, respectively, which indicated a clear influence of the track structure and fluence on the numbers of foci induced after a dose of 0.5 Gy for each radiation type. The γ-H2AX foci persistence was also dependent on radiation quality, i.e., the higher the LET, the longer the foci persisted in the cell nucleus. The γ-H2AX time course was compared with cell killing and lethal mutation and the results highlighted a correlation between cellular end points and the duration of γ-H2AX foci persistence. A model was developed to evaluate the probability that multiple DSBs reside in the same gamma-ray focus and such probability was found to be negligible for doses lower than 1 Gy. Our model provides evidence that the DSBs inside complex foci, such as those induced by alpha particles, are not processed independently or with the same time constant. The combination of experimental, theoretical and simulation data supports the hypothesis of an interdependent processing of closely associated DSBs, possibly associated with a diminished correct repair capability, which affects cell killing and lethal mutation.
Collapse
Affiliation(s)
- F Antonelli
- a Health and Technology Department, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zahnreich S, Ebersberger A, Kaina B, Schmidberger H. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiat Res 2015; 183:432-46. [DOI: 10.1667/rr13911.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Anne Ebersberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
45
|
Barnard S, Ainsbury EA, Al-hafidh J, Hadjidekova V, Hristova R, Lindholm C, Monteiro Gil O, Moquet J, Moreno M, Rößler U, Thierens H, Vandevoorde C, Vral A, Wojewódzka M, Rothkamm K. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. RADIATION PROTECTION DOSIMETRY 2015; 164:265-270. [PMID: 25118318 DOI: 10.1093/rpd/ncu259] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
In the event of a mass casualty radiation incident, the gamma-H2AX foci assay could be a useful tool to estimate radiation doses received by individuals. The rapid processing time of blood samples of just a few hours and the potential for batch processing, enabling high throughput, make the assay ideal for early triage categorisation to separate the 'worried well' from the low and critically exposed by quantifying radiation-induced foci in peripheral blood lymphocytes. Within the RENEB framework, 8 European laboratories have taken part in the first European gamma-H2AX biodosimetry exercise, which consisted of a telescoring comparison of 200 circulated foci images taken from 8 samples, and a comparison of 10 fresh blood lymphocyte samples that were shipped overnight to participating labs 4 or 24 h post-exposure. Despite large variations between laboratories in the dose-response relationship for foci induction, the obtained results indicate that the network should be able to use the gamma-H2AX assay for rapidly identifying the most severely exposed individuals within a cohort who could then be prioritised for accurate chromosome dosimetry.
Collapse
Affiliation(s)
- S Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - E A Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - J Al-hafidh
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - V Hadjidekova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - R Hristova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - C Lindholm
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - O Monteiro Gil
- Instituto Superior Técnico, Universidade de Lisboa, CTN, Grupo de Protecção e Segurança Radiológica, Bobadela-LRS, Portugal
| | - J Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - M Moreno
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - U Rößler
- Bundesamt für Strahlenschutz, Oberschleissheim, Germany
| | - H Thierens
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - C Vandevoorde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - A Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - M Wojewódzka
- Institute of Nuclear Chemistry and Technology, Center for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - K Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| |
Collapse
|
46
|
Jaworska A, Ainsbury EA, Fattibene P, Lindholm C, Oestreicher U, Rothkamm K, Romm H, Thierens H, Trompier F, Voisin P, Vral A, Woda C, Wojcik A. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. RADIATION PROTECTION DOSIMETRY 2015; 164:165-169. [PMID: 25274532 DOI: 10.1093/rpd/ncu294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the event of a large-scale radiological emergency, the triage of individuals according to their degree of exposure forms an important initial step of the accident management. Although clinical signs and symptoms of a serious exposure may be used for radiological triage, they are not necessarily radiation specific and can lead to a false diagnosis. Biodosimetry is a method based on the analysis of radiation-induced changes in cells of the human body or in portable electronic devices and enables the unequivocal identification of exposed people who should receive medical treatment. The MULTIBIODOSE (MBD) consortium developed and validated several biodosimetric assays and adapted and tested them as tools for biological dose assessment in a mass-casualty event. Different biodosimetric assays were validated against the 'gold standard' of biological dosimetry-the dicentric assay. The assays were harmonised in such a way that, in an emergency situation, they can be run in parallel in a network of European laboratories. The aim of this guidance is to give a concise overview of the developed biodosimetric tools as well as how and when they can be used in an emergency situation.
Collapse
Affiliation(s)
- Alicja Jaworska
- Department of Monitoring and Research, Norwegian Radiation Protection Authority, Oesteraas, Norway
| | - Elizabeth A Ainsbury
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, Oxon, UK
| | - Paola Fattibene
- Department Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carita Lindholm
- Department of Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Ursula Oestreicher
- Department Radiation Protection and Health, Bundesamt fuer Strahlenschutz, Oberschleissheim, Germany
| | - Kai Rothkamm
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, Oxon, UK
| | - Horst Romm
- Department Radiation Protection and Health, Bundesamt fuer Strahlenschutz, Oberschleissheim, Germany
| | - Hubert Thierens
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Francois Trompier
- Department of Radiobiology and Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France
| | - Philippe Voisin
- Department of Radiobiology and Epidemiology, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-roses, France
| | - Anne Vral
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Clemens Woda
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
47
|
Gerić M, Gajski G, Garaj-Vrhovac V. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:13-21. [PMID: 24780228 DOI: 10.1016/j.ecoenv.2014.03.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
48
|
Flood AB, Boyle HK, Du G, Demidenko E, Nicolalde RJ, Williams BB, Swartz HM. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events. RADIATION PROTECTION DOSIMETRY 2014; 159:77-86. [PMID: 24729594 PMCID: PMC4067227 DOI: 10.1093/rpd/ncu120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans.
Collapse
Affiliation(s)
- Ann Barry Flood
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Holly K Boyle
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Gaixin Du
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Eugene Demidenko
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | | | | | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| |
Collapse
|
49
|
Moquet J, Barnard S, Rothkamm K. Gamma-H2AX biodosimetry for use in large scale radiation incidents: comparison of a rapid '96 well lyse/fix' protocol with a routine method. PeerJ 2014; 2:e282. [PMID: 24688860 PMCID: PMC3961158 DOI: 10.7717/peerj.282] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 01/09/2023] Open
Abstract
Following a radiation incident, preliminary dose estimates made by γ-H2AX foci analysis can supplement the early triage of casualties based on clinical symptoms. Sample processing time is important when many individuals need to be rapidly assessed. A protocol was therefore developed for high sample throughput that requires less than 0.1 ml blood, thus potentially enabling finger prick sampling. The technique combines red blood cell lysis and leukocyte fixation in one step on a 96 well plate, in contrast to the routine protocol, where lymphocytes in larger blood volumes are typically separated by Ficoll density gradient centrifugation with subsequent washing and fixation steps. The rapid '96 well lyse/fix' method reduced the estimated sample processing time for 96 samples to about 4 h compared to 15 h using the routine protocol. However, scoring 20 cells in 96 samples prepared by the rapid protocol took longer than for the routine method (3.1 versus 1.5 h at zero dose; 7.0 versus 6.1 h for irradiated samples). Similar foci yields were scored for both protocols and consistent dose estimates were obtained for samples exposed to 0, 0.2, 0.6, 1.1, 1.2, 2.1 and 4.3 Gy of 250 kVp X-rays at 0.5 Gy/min and incubated for 2 h. Linear regression coefficients were 0.87 ± 0.06 (R (2) = 97.6%) and 0.85 ± 0.05 (R (2) = 98.3%) for estimated versus actual doses for the routine and lyse/fix method, respectively. The lyse/fix protocol can therefore facilitate high throughput processing for γ-H2AX biodosimetry for use in large scale radiation incidents, at the cost of somewhat longer foci scoring times.
Collapse
Affiliation(s)
- Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards , Chilton, Didcot, Oxfordshire , UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards , Chilton, Didcot, Oxfordshire , UK
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards , Chilton, Didcot, Oxfordshire , UK
| |
Collapse
|
50
|
Ainsbury EA, Al-Hafidh J, Bajinskis A, Barnard S, Barquinero JF, Beinke C, de Gelder V, Gregoire E, Jaworska A, Lindholm C, Lloyd D, Moquet J, Nylund R, Oestreicher U, Roch-Lefévre S, Rothkamm K, Romm H, Scherthan H, Sommer S, Thierens H, Vandevoorde C, Vral A, Wojcik A. Inter- and intra-laboratory comparison of a multibiodosimetric approach to triage in a simulated, large scale radiation emergency. Int J Radiat Biol 2013; 90:193-202. [DOI: 10.3109/09553002.2014.868616] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|