1
|
Xie S, Ying Z, Xiu Z, Sun Y, Yang Q, Gao H, Fan W, Wu Y. Zinc oxide nanoparticles improve lactation and metabolism in dairy goats by modulating the rumen microbiota. Front Microbiol 2024; 15:1483680. [PMID: 39654678 PMCID: PMC11625748 DOI: 10.3389/fmicb.2024.1483680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
This study aimed to investigate the effects of dietary supplementation with zinc oxide nanoparticles (ZnONPs) on lactation, rumen microbiota, and metabolomics in dairy goats. Twenty Guanzhong dairy goats, with comparable milk yields and in the mid-lactation stage, were randomly divided into two groups, with 10 goats in each group. The control group was fed a standard diet, while the ZnONP group received the control diet plus 30 mg ZnONPs/kg DM. The pre-trial period lasted for 7 days, followed by a trial period of 30 days. The results showed that the addition of ZnONPs increased the milk yield and milk fat content (p < 0.05). The results of rumen microbial sequencing showed that the Chao1, Observed species, and PD_whole_tree indices of the ZnONP group were higher than those of the control group. The addition of ZnONPs altered the composition of the rumen microbiota, increasing the abundance of beneficial bacteria (Prevotella and Rikenellaceae_RC9_gut_group) and decreasing the abundance of the harmful bacterium Sediminispirochaeta. Non-targeted metabolomics analysis identified a total of 261 differential metabolites between the two groups, indicating changes in rumen metabolism. Further correlation analysis revealed a positive correlation between beneficial bacteria (Rikenellaceae RC9 gut group and Anaeroplasma) and metabolites such as nicotinamide riboside, inosine, and guanosine (p < 0.05). In addition, a positive correlation was observed between milk yield and beneficial bacteria (RF39 and Clostridia vadinBB60 group), as well as between milk fat content and Quinella (p < 0.05). In summary, ZnONP supplementation can improve the structure of the rumen microbiota in dairy goats, positively influencing milk yield, milk composition, and metabolism.
Collapse
Affiliation(s)
- Shan Xie
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Zaixiang Ying
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Ziqing Xiu
- College of Animal Science and Technology, Southwest University, Beibei, China
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Beibei, China
| | - Qinlin Yang
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China
| | - Hanyu Gao
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Wenqiao Fan
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| |
Collapse
|
2
|
Thoma T, Ma-Hock L, Schneider S, Honarvar N, Treumann S, Groeters S, Strauss V, Marxfeld H, Funk-Weyer D, Seiffert S, Wohlleben W, Dammann M, Wiench K, Lombaert N, Spirlet C, Vasquez M, Dewhurst N, Landsiedel R. Toxicological inhalation studies in rats to substantiate grouping of zinc oxide nanoforms. Part Fibre Toxicol 2024; 21:24. [PMID: 38760761 PMCID: PMC11100124 DOI: 10.1186/s12989-024-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/24/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.
Collapse
Affiliation(s)
| | - Lan Ma-Hock
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Steffen Schneider
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Silke Treumann
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Sibylle Groeters
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Volker Strauss
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Heike Marxfeld
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Svenja Seiffert
- BASF SE, Analytical and Material Science, Ludwigshafen am Rhein, Germany
| | - Wendel Wohlleben
- BASF SE, Analytical and Material Science, Ludwigshafen am Rhein, Germany
| | - Martina Dammann
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Karin Wiench
- BASF SE, Product Stewardship, Regulatory Toxicology Chemicals, Ludwigshafen am Rhein, Germany
| | | | | | | | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Salam MA, Alsultany FH, Al-Bermany E, Sabri MM, Abdali K, Ahmed NM. Impact of graphene oxide nanosheets and polymethyl methacrylate on nano/hybrid-based restoration dental filler composites: ultrasound behavior and antibacterial activity. J Ultrasound 2024:10.1007/s40477-023-00855-8. [PMID: 38324099 DOI: 10.1007/s40477-023-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024] Open
Abstract
PURPOSE Graphene-polymer nanocomposites significantly impact dental filler and antibacterial applications. The study aims to overcome some problems dental filers present and improve their properties and antibacterial activity. Synthesis graphene oxide (GO) and poly (methyl methacrylate) (PMMA) were used to reinforce two types of commercial hybrid/nano-dental fillings. METHODS Developed acoustic-solution-sonication-casting methods were applied to fabricate the new graphene-polymer-dental filler nanocomposites. The structure, morphology, rheological and mechanical properties, and antibacterial of the newly fabricated filling-PMMA/ GO nanocomposites were investigated. RESULTS Fourier transform infrared (FTIR) showed a significant interaction between the filling and the additional materials. The X-ray diffraction (XRD) analysis revealed a considerable change in crystalline behavior. Optical microscope (OM) with field emission scanning electron microscopy (FESEM) pictures demonstrated a substantial change in the morphology of the samples with a homogeneous and fine dispersion of the nanomaterials in the filler matrix. Multi-frequency ultrasound mechanical properties measured the ultrasonic velocity, absorption coefficient, compressibility, bulk modulus, and other mechanical properties that notably enhanced after GO contributed up to 325% of the ultrasonic absorption coefficient compared with hybrid/nano-fillers. Rheological properties were measured as viscosity, absorption coefficient, and specific viscosity, which significantly improved after adding PMMA and incorporating GO up to 57% of the viscosity, compared with hybrid/nano-fillers. The inhibition zone of moth bacteria, such as Enterococcus faecalis and E. staph bacteria, improved after the contribution of GO nanosheets up to 46%. CONCLUSION Nanofillers nanocomposites presented better properties and inhabitances zone diameter of antibacterial.
Collapse
Affiliation(s)
- Mohanad Abdul Salam
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
- Ministry of Education, Baghdad, Iraq
| | - Forat H Alsultany
- Medical Physics Department, Al-Mustaqbal University, Babil, 51001, Iraq
| | - Ehssan Al-Bermany
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq.
| | - Mohammed M Sabri
- Department of Physics, Faculty of Science and Health, Koya University, Koya, Kurdistan Region, KOY45, Iraq
| | | | - Naser Mahmoud Ahmed
- School of Physics, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
| |
Collapse
|
4
|
Møller P, Roursgaard M. Gastrointestinal tract exposure to particles and DNA damage in animals: A review of studies before, during and after the peak of nanotoxicology. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108491. [PMID: 38522822 DOI: 10.1016/j.mrrev.2024.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Humans ingest particles and fibers on daily basis. Non-digestible carbohydrates are beneficial to health and food additives are considered safe. However, titanium dioxide (E171) has been banned in the European Union because the European Food Safety Authority no longer considers it non-genotoxic. Ingestion of microplastics and nanoplastics are novel exposures; their potential hazardous effects to humans have been under the radar for many years. In this review, we have assessed the association between oral exposure to man-made particles/fibers and genotoxicity in gastrointestinal tract cells and secondary tissues. We identified a total of 137 studies on oral exposure to particles and fibers. This was reduced to 49 papers with sufficient quality and relevance, including exposures to asbestos, diesel exhaust particles, titanium dioxide, silver nanoparticles, zinc oxide, synthetic amorphous silica and certain other nanomaterials. Nineteen studies show positive results, 25 studies show null results, and 5 papers show equivocal results on genotoxicity. Recent studies seem to show null effects, whereas there is a higher proportion of positive genotoxicity results in early studies. Genotoxic effects seem to cluster in studies on diesel exhaust particles and titanium dioxide, whereas studies on silver nanoparticles, zinc oxide and synthetic amorphous silica seem to show mainly null effects. The most widely used genotoxic tests are the alkaline comet assay and micronucleus assay. There are relatively few results on genotoxicity using reliable measurements of oxidatively damaged DNA, DNA double strand breaks (γH2AX assay) and mutations. In general, evidence suggest that oral exposure to particles and fibers is associated with genotoxicity in animals.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark.
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark
| |
Collapse
|
5
|
Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128033. [PMID: 34999406 DOI: 10.1016/j.jhazmat.2021.128033] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In recent years, the proportion of organic and inorganic contaminants has increased rapidly due to growing human interference and represents a threat to ecosystems. The removal of these toxic pollutants from the environment is a difficult task. Physical, chemical and biological methods are implemented for the degradation of toxic pollutants from the environment. Among existing technologies, bioremediation in combination with nanotechnology is the most promising and cost-effective method for the removal of pollutants. Numerous studies have shown that exceptional characteristics of nanomaterials such as improved catalysis and adsorption properties as well as high reactivity have been subjects of great interest. There is an emerging trend of employing bacterial, fungal and algal cultures and their components, extracts or biomolecules as catalysts for the sustainable production of nanomaterials. They can serve as facilitators in the bioremediation of toxic compounds by immobilizing or inducing the synthesis of remediating microbial enzymes. Understanding the association between microorganisms, contaminants and nanoparticles (NPs) is of crucial importance. In this review, we focus on the removal of toxic pollutants using the cumulative effects of nanoparticles with microbial technology and their applications in different domains. Besides, we discuss how this novel nanobioremediation technique is significant and contributes towards sustainability.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Samiksha Joshi
- School of Agriculture Graphic Era Hill University Bhimtal, 263136, India
| | - Parul Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, G.B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Vinay Mohan Pathak
- Department of Microbiology, University of Delhi, South Campus, 110021, India; Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
6
|
Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells. TOXICS 2021; 9:toxics9050096. [PMID: 33925422 PMCID: PMC8146923 DOI: 10.3390/toxics9050096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12–1229 µmol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of 614 µmol/L and 1229 µmol/L, which was associated with an increased rate of apoptotic and dead cells. ZnO NP < 100 nm altered the cell cycle of LT97 cells but not that of Caco-2 cells. ZnO NP < 50 nm led to the formation of micronuclei in LT97 cells. The Ames test revealed no mutagenicity for both ZnO NP. Our results indicate the potential toxicity of ZnO NP after oral exposure, which should be considered before application.
Collapse
|
7
|
Mahmoud MAM, Yahia D, Abdel-Magiud DS, Darwish MHA, Abd-Elkareem M, Mahmoud UT. Broiler welfare is preserved by long-term low-dose oral exposure to zinc oxide nanoparticles: preliminary study. Nanotoxicology 2021; 15:605-620. [PMID: 33792477 DOI: 10.1080/17435390.2021.1905099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The potential public health risk through utilizing of zinc oxide nanoparticles (ZnO NPs) in food constitutes the major obstacle to the expansion of nanoparticle (NP) in food industry. Liver histology, bone marrow and liver genotoxicity, immunity, and oxidant status were investigated upon long-term ZnO NPs feed supplementation. One hundred and sixty male IR (Indian River) chicks were randomly allocated to one of the four dietary treatments: control, ZnO NPs at 10, 20, or 40 mg/kg for 42 days. This study revealed non-significant hepatic histopathological alterations and DNA damage and the treatment had no influence on body and organ weights, liver enzymes, lipid peroxidation (MDA), IgG, IgM, and interferon gamma (IFN-γ). This study suggests that low-dose (< 40 mg/kg diet) long-term ZnO NPs supplementation to broiler chicks has no observed potential adverse effects on normal histology of the liver, blood physiology, immune system, and DNA damage of liver and bone marrows, which are critical features for validating ZnO NPs for use in food. Further studies are required to evaluate the probable withdrawal period of ZnO NPs before approval as a dietary supplement in broiler or livestock diets.
Collapse
Affiliation(s)
- Manal A M Mahmoud
- Department of Animal Hygiene and Environmental sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doaa S Abdel-Magiud
- Department of Forensic and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Madeha H A Darwish
- Department of Animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Usama T Mahmoud
- Department of Animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Poier N, Hochstöger J, Hackenberg S, Scherzad A, Bregenzer M, Schopper D, Kleinsasser N. Effects of Zinc Oxide Nanoparticles in HUVEC: Cyto- and Genotoxicity and Functional Impairment After Long-Term and Repetitive Exposure in vitro. Int J Nanomedicine 2020; 15:4441-4452. [PMID: 32606688 PMCID: PMC7319515 DOI: 10.2147/ijn.s246797] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose The present study focuses on threshold levels for cytotoxicity after long-term and repetitive exposure for HUVEC as a model for the specific microvascular endothelial system. Furthermore, possible genotoxic effects and functional impairment caused by ZnO NPs in HUVEC are elucidated. Methods Thresholds for cytotoxic effects are determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Annexin V assay. To demonstrate DNA damage, single-cell microgel electrophoresis (comet) assay is performed after exposure to sub-cytotoxic concentrations of ZnO NPs. The proliferation assay, dot blot assay and capillary tube formation assay are also carried out to analyze functional impairment. Results NPs showed to be spherical in shape with an average size of 45–55 nm. Long-term exposure as well as repetitive exposure with ZnO NPs exceeding 25 µg/mL lead to decreased viability in HUVEC. In addition, DNA damage was indicated by the comet assay after long-term and repetitive exposure. Twenty-four hours after long-term exposure, the proliferation assay does not show any difference between negative control and exposed cells. Forty-eight hours after exposure, HUVEC show an inverse concentration-related ability to proliferate. The dot blot assay provides evidence that ZnO NPs lead to a decreased release of VEGF, while capillary tube formation assay shows restriction in the ability of HUVEC to build tubes and meshes as a first step in angiogenesis. Conclusion Sub-cytotoxic concentrations of ZnO NPs lead to DNA damage and functional impairment in HUVEC. Based on these data, ZnO NPs may affect neo-angiogenesis. Further investigation based on tissue cultures is required to elucidate the impact of ZnO NPs on human cell systems.
Collapse
Affiliation(s)
- Nikolaus Poier
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, Linz 4021, Austria.,Medical Faculty, Johannes Kepler University Linz, Linz 4040, Austria
| | - Johannes Hochstöger
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, Linz 4021, Austria.,Medical Faculty, Johannes Kepler University Linz, Linz 4040, Austria
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg 97080, Germany
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg 97080, Germany
| | - Maximilian Bregenzer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg 97080, Germany
| | - Dominik Schopper
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, Linz 4021, Austria.,Medical Faculty, Johannes Kepler University Linz, Linz 4040, Austria
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, Linz 4021, Austria.,Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Würzburg 97080, Germany
| |
Collapse
|
9
|
ÜNAL F, DEMIRTAŞ KORKMAZ F, SULUDERE Z, EROL Ö, YÜZBAŞIOĞLU D. Genotoxicity of Two Nanoparticles: Titanium Dioxide and Zinc Oxide. GAZI UNIVERSITY JOURNAL OF SCIENCE 2020. [DOI: 10.35378/gujs.826911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Panyala A, Chinde S, Kumari SI, Rahman MF, Mahboob M, Kumar JM, Grover P. Comparative study of toxicological assessment of yttrium oxide nano- and microparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis 2020; 34:181-201. [PMID: 30753658 DOI: 10.1093/mutage/gey044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/25/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
Despite their enormous advantages, nanoparticles (NPs) have elicited disquiet over their safety. Among the numerous NPs, yttrium oxide (Y2O3) NPs are utilised in many applications. However, knowledge about their toxicity is limited, and it is imperative to investigate their potential adverse effects. Therefore, this study explored the effect of 28 days of repeated oral exposure of Wistar rats to 30, 120 and 480 mg/kg body weight (bw) per day of Y2O3 NPs and microparticles (MPs). Before initiation of the study, characterisation of the particles by transmission electron microscopy, dynamic light scattering, Brunauer-Emmett-Teller and laser Doppler velocimetry was undertaken. Genotoxicity was evaluated using the comet and micronucleus (MN) assays. Biochemical markers aspartate transaminase, alanine transaminase, alkaline phosphatase, malondialdehyde, superoxide dismutase, reduced glutathione, catalase and lactate dehydrogenase in serum, liver and kidney were determined. Bioaccumulation of the particles was analysed by inductively coupled plasma optical emission spectrometry. The results of the comet and MN assays showed significant differences between the control and groups treated with 120 and 480 mg/kg bw/day Y2O3 NPs. Significant biochemical alterations were also observed at 120 and 480 mg/kg bw/day. Haematological and histopathological changes were documented. Yttrium (Y) biodistribution was detected in liver, kidney, blood, intestine, lungs, spleen, heart and brain in a dose- and the organ-dependent manner in both the particles. Further, the highest levels of Y were found in the liver and the lowest in the brain of the treated rats. More of the Y from NPs was excreted in the urine than in the faeces. Furthermore, NP-treated rats exhibited much higher absorption and tissue accumulation. These interpretations furnish rudimentary data of the apparent genotoxicity of NPs and MPs of Y2O3 as well as the biodistribution of Y. A no-observed adverse effect level of 30 mg/kg bw/day was found after oral exposure of rats to Y2O3 NPs.
Collapse
Affiliation(s)
- Archana Panyala
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Srinivas Chinde
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Srinivas Indu Kumari
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Mohammad Fazlur Rahman
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Mohammed Mahboob
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Jerald Mahesh Kumar
- Animal House Facility, CSIR - Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Paramjit Grover
- Toxicology Unit, Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Nezamabadi V, Akhgar MR, Tahamipour B, Rajaei P. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles by Artemisia aucheri Extract. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2426. [PMID: 33542941 PMCID: PMC7856401 DOI: 10.30498/ijb.2020.151379.2426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Green approach to nanoparticles, including metal oxides Because of an inevitable disadvantage of physical or chemical synthesis routes is attractive nowadays. ZnO nanoparticles play a key role in the medicals and drugs area. Objectives In this study, biosynthesis of ZnO nanoparticles with new approach to enhanced the Antimicrobial properties against gram-negative and gram-positive was performed by use of a new type of plant extract, Artemisia aucheri, in an environmentally friendly, cost-effective, simple procedure way. Materials and Methods By adding Zn(NO3)2 to A. aucheri methanol extract followed by stirring The resulted solution and final heat treatment in 200 °C the ZnO nanoparticles were synthesized. Disc diffusion method was applied to evaluation the Antimicrobial properties of the extract and nanoparticles towards resistance into Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive). Results X-ray diffraction pattern (XRD) result showed all of the peaks proportion to ZnO and no other peaks were detected, also demonstrated nanostructure nature with crystallite size about 9 nm. In the Fourier transform infrared spectroscopy (FTIR), there is a band in the 550 cm-1 which is corresponded to ZnO. Also 76 nm average particle size obtained by DLS experiments. Energy-dispersive X-ray spectroscopy (EDS) analysis showed strong peaks for Zn and O, support supposition of ZnO nanoparticles. Field emission scanning electron microscopy (FESEM) images indicated spherical rounded particles with the size of average 30 nm. Antibacterial tests showed effective diameter about 11 and 10 mm for plant extract and also 7 and 5 mm for ZnO nanoparticles against E. coli (gram-negative) and S. aureus (gram-positive) in agar disc diffusion method, respectively. Conclusions Biosynthesized ZnO nanoparticles could be a good candidate for antibacterial activity, both against E. coli (gram-negative) and S. aureus (gram-positive) especially for versus E. coli.
Collapse
Affiliation(s)
- Vida Nezamabadi
- Department of Chemistry, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Mohammad Reza Akhgar
- Department of Chemistry, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Batool Tahamipour
- Young Researchers and Elite Club, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Peyman Rajaei
- Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| |
Collapse
|
12
|
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. NANO-MICRO LETTERS 2020; 12:45. [PMID: 34138283 PMCID: PMC7770847 DOI: 10.1007/s40820-020-0383-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023]
Abstract
Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Dhivya Selvaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arti Nile
- Department of Bioresources and Food Science, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, Macau SAR, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Micronuclei Detection by Flow Cytometry as a High-Throughput Approach for the Genotoxicity Testing of Nanomaterials. NANOMATERIALS 2019; 9:nano9121677. [PMID: 31771274 PMCID: PMC6956333 DOI: 10.3390/nano9121677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Abstract
Thousands of nanomaterials (NMs)-containing products are currently under development or incorporated in the consumer market, despite our very limited understanding of their genotoxic potential. Taking into account that the toxicity and genotoxicity of NMs strongly depend on their physicochemical characteristics, many variables must be considered in the safety evaluation of each given NM. In this scenario, the challenge is to establish high-throughput methodologies able to generate rapid and robust genotoxicity data that can be used to critically assess and/or predict the biological effects associated with those NMs being under development or already present in the market. In this study, we have evaluated the advantages of using a flow cytometry-based approach testing micronucleus (MNs) induction (FCMN assay). In the frame of the EU NANoREG project, we have tested six different NMs—namely NM100 and NM101 (TiO2NPs), NM110 (ZnONPs), NM212 (CeO2NPs), NM300K (AgNPs) and NM401 (multi-walled carbon nanotubes (MWCNTs)). The obtained results confirm the ability of AgNPs and MWCNTs to induce MN in the human bronchial epithelial BEAS-2B cell line, whereas the other tested NMs retrieved non-significant increases in the MN frequency. Based on the alignment of the results with the data reported in the literature and the performance of the FCMN assay, we strongly recommend this assay as a reference method to systematically evaluate the potential genotoxicity of NMs.
Collapse
|
14
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
15
|
Gao CH, Mortimer M, Zhang M, Holden PA, Cai P, Wu S, Xin Y, Wu Y, Huang Q. Impact of metal oxide nanoparticles on in vitro DNA amplification. PeerJ 2019; 7:e7228. [PMID: 31293839 PMCID: PMC6599668 DOI: 10.7717/peerj.7228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Polymerase chain reaction (PCR) is used as an in vitro model system of DNA replication to assess the genotoxicity of nanoparticles (NPs). Prior results showed that several types of NPs inhibited PCR efficiency and increased amplicon error frequency. In this study, we examined the effects of various metal oxide NPs on inhibiting PCR, using high- vs. low-fidelity DNA polymerases; we also examined NP-induced DNA mutation bias at the single nucleotide level. The effects of seven major types of metal oxide NPs (Fe2O3, ZnO, CeO2, Fe3O4, Al2O3, CuO, and TiO2) on PCR replication via a low-fidelity DNA polymerase (Ex Taq) and a high-fidelity DNA polymerase (Phusion) were tested. The successfully amplified PCR products were subsequently sequenced using high-throughput amplicon sequencing. Using consistent proportions of NPs and DNA, we found that the effects of NPs on PCR yield differed depending on the DNA polymerase. Specifically, the efficiency of the high-fidelity DNA polymerase (Phusion) was significantly inhibited by NPs during PCR; such inhibition was not evident in reactions with Ex Taq. Amplicon sequencing showed that the overall error rate of NP-amended PCR was not significantly different from that of PCR without NPs (p > 0.05), and NPs did not introduce single nucleotide polymorphisms during PCR. Thus, overall, NPs inhibited PCR amplification in a DNA polymerase-specific manner, but mutations were not introduced in the process.
Collapse
Affiliation(s)
- Chun-Hui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Ming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Patricia A Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Shan Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yuexing Xin
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Akbaba GB, Türkez H. Investigation of the Genotoxicity of Aluminum Oxide, β-Tricalcium Phosphate, and Zinc Oxide Nanoparticles In Vitro. Int J Toxicol 2018; 37:216-222. [PMID: 29727252 DOI: 10.1177/1091581818775709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to investigate the genotoxicity of aluminum oxide (Al2O3), β-tricalcium phosphate (β-TCP) (Ca3(PO4)2), and zinc oxide (ZnO) nanoparticles (NPs) that were 4.175, 9.058, and 19.8 nm sized, respectively, on human peripheral blood lymphocytes using micronucleus (MN) and chromosome aberration (CA) techniques. Aluminum oxide and β-TCP NPs did not show genotoxic effects on human peripheral blood cultures in vitro, even at the highest concentrations; therefore, these materials may be suitable for use as biocompatible materials. It was observed that, even at a very low dose (≥12.5 ppm), ZnO NPs had led to genotoxicity. In addition, at high concentrations (500 ppm and above), ZnO NPs caused mortality of lymphocytes. For these reasons, it was concluded that ZnO NPs are not appropriate for using as a biocompatible biomaterial.
Collapse
Affiliation(s)
- Giray Buğra Akbaba
- 1 Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Hasan Türkez
- 2 Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
17
|
Scherzad A, Meyer T, Kleinsasser N, Hackenberg S. Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs. MATERIALS 2017; 10:ma10121427. [PMID: 29240707 PMCID: PMC5744362 DOI: 10.3390/ma10121427] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 01/18/2023]
Abstract
Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.
Collapse
Affiliation(s)
- Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Till Meyer
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Norbert Kleinsasser
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany.
| |
Collapse
|
18
|
Srivastav AK, Kumar A, Prakash J, Singh D, Jagdale P, Shankar J, Kumar M. Genotoxicity evaluation of zinc oxide nanoparticles in Swiss mice after oral administration using chromosomal aberration, micronuclei, semen analysis, and RAPD profile. Toxicol Ind Health 2017; 33:821-834. [PMID: 28950792 DOI: 10.1177/0748233717717842] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The expanded uses of zinc oxide nanoparticles (ZnO NPs) have grown rapidly in the field of nanotechnology. Thus, rising production of nanoparticles (NPs) increases the possible risks to the environment and occupationally exposed humans. Hence, it is indispensable to appraise the safety toxicity including genotoxicity for these NPs. In the present study, we have evaluated the genotoxic effect of ZnO NPs after oral administration to Swiss mice at dose levels of 300 and 2000 mg/kg body weight. These doses were administered for 2 days at 24 h apart. Chromosomal aberration (CA) and micronucleus tests were conducted following Organization for Economic Co-operation and Development guidelines. DNA damage was evaluated at 0, 24, 48, and 72 h posttreatment using a randomly amplified polymorphic DNA (RAPD) assay; additionally, semen analyses were also performed at 34.5 days post oral exposure. The reactive oxygen species (ROS), 8-oxo-2'-deoxyguanosine and CAs were increased ( p < 0.05) at the highest dosage (2000 mg/kg) of ZnO NPs compared to controls. Aberrant sperm morphology with reduced sperm count and motility were also present ( p < 0.05) in the high-dose group. Based on the RAPD assay, the genomic template stability within the high-dose group (<90%) was less than the controls (100%). The results suggested that ZnO NPs are mildly genotoxic in a dose-related manner and this toxicity were induced by generation of ROS.
Collapse
Affiliation(s)
- Anurag Kumar Srivastav
- 1 Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,2 Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Akhilesh Kumar
- 3 Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Jyoti Prakash
- 2 Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- 3 Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Pankaj Jagdale
- 3 Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Jai Shankar
- 4 Electron Microscopy Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Mahadeo Kumar
- 1 Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Abstract
Toxicological tests of a xenobiotic play a key role to determine the safety of the new compound before it reaches the market. In this review article, we describe the main types of toxicological studies that can be performed in vivo to detect a possible undesired effect of a xenobiotic with especial emphasis on the data available for the different types of nanoparticles. The different procedures described in this review allow to obtain valuable information about the possible toxic effects of a xenobiotic to minimize the possible risks for patients once the compound has been approved for therapeutic use.
Collapse
Affiliation(s)
- L. Romero-Castillo
- Unidad Asociada Neurodeath, School of Medicine, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - I. Posadas
- Unidad Asociada Neurodeath, School of Medicine, Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad Asociada Neurodeath, School of Pharmacy, Universidad de Castilla-La Mancha, Albacete, Spain
| | - V. Ceña
- Unidad Asociada Neurodeath, School of Medicine, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Anand AS, Prasad DN, Singh SB, Kohli E. Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:180-186. [PMID: 28064146 DOI: 10.1016/j.jhazmat.2016.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 05/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are commonly used nanomaterials (NMs) with versatile applications from high-end technologies to household products. This pervasive utilisation has brought human in the close interface with nanoparticles (NPs), hence questioning their safety prior to usage is a must. In this study, we have assessed the effects of chronic exposure to ZnO NPs (<50nm) on the model organism Drosophila melanogaster. Potential toxic effects were studied by evaluating longevity, climbing ability, oxidative stress and DNA fragmentation. Ensuing exposure, the F0 (parent), F1, F2, F3 and F4 generation flies were screened for the aberrant phenotype. Flies exposed to ZnO NPs showed distinctive phenotypic changes, like deformed segmented thorax and single or deformed wing, which were transmitted to the offspring's in subsequent generations. The unique abnormal phenotype is evident of chronic toxicity induced by ZnO NPs, although appalling, it strongly emphasize the importance to understand NPs toxicity for safer use.
Collapse
Affiliation(s)
- Avnika Singh Anand
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, 110054, India
| | - Dipti N Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, 110054, India
| | - Shashi Bala Singh
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, 110054, India
| | - Ekta Kohli
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, 110054, India.
| |
Collapse
|
21
|
Ghosh M, Sinha S, Jothiramajayam M, Jana A, Nag A, Mukherjee A. Cyto-genotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte cells in vitro and Swiss albino male mice in vivo. Food Chem Toxicol 2016; 97:286-296. [PMID: 27658325 DOI: 10.1016/j.fct.2016.09.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 11/17/2022]
Abstract
ZnO-np has immense potential and application in cosmetic and health care sectors. Hence it was imperative to assess the toxicity/safety of these nanoparticles. In this study, we have evaluated the effects of ZnO-np in human peripheral blood mononuclear cells (PBMCs) in vitro and in Swiss albino male mice in vivo for cyto-genotoxicity and oxidative damage. In vitro results showed that ZnO-nps were weakly genotoxic, induced significant decrease in mitochondrial membrane potential and was capable of ROS generation, leading to apoptosis. In bone marrow cells in vivo, reduction of mitochondrial membrane potential (MMP), increased oxidative stress and G0/G1 cell cycle arrest was observed along with chromosome aberrations and micronuclei formation. In liver cells DNA damage and induction of oxidative stress with concurrent decrease in inhibition of antioxidant enzymes were noted. These in vitro and in vivo results demonstrated that ZnO-np induced genotoxic response and ROS production leading to apoptotic cell death and established a good co-relation between the two biological systems. More importantly, the results stress on the need of multiple endpoint assay-approaches, with an in vitro-in vivo study design to assess nanoparticle toxicology.
Collapse
Affiliation(s)
- Manosij Ghosh
- Cell Biology and Genetic Toxicology Laboratory, CAS- Department of Botany, University of Calcutta, Kolkata, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, India.
| | - Sonali Sinha
- Cell Biology and Genetic Toxicology Laboratory, CAS- Department of Botany, University of Calcutta, Kolkata, India
| | - Manivannan Jothiramajayam
- Cell Biology and Genetic Toxicology Laboratory, CAS- Department of Botany, University of Calcutta, Kolkata, India
| | - Aditi Jana
- Cell Biology and Genetic Toxicology Laboratory, CAS- Department of Botany, University of Calcutta, Kolkata, India
| | - Anish Nag
- Cell Biology and Genetic Toxicology Laboratory, CAS- Department of Botany, University of Calcutta, Kolkata, India
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, CAS- Department of Botany, University of Calcutta, Kolkata, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, India.
| |
Collapse
|
22
|
Carmona ER, Inostroza-Blancheteau C, Rubio L, Marcos R. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicol Ind Health 2016; 32:1987-2001. [DOI: 10.1177/0748233715599472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide nanoparticles (ZnONP) are manufactured on a large scale and can be found in a variety of consumer products, such as sunscreens, lotions, paints and food additives. Few studies have been carried out on its genotoxic potential and related mechanisms in whole organisms. In the present study, the in vivo genotoxic activity of ZnONP and its bulk form was assayed using the wing-spot test and comet assay in Drosophila melanogaster. Additionally, a lipid peroxidation analysis using the thiobarbituric acid assay was also performed. Results obtained with the wing-spot test showed a lack of genotoxic activity of both ZnO forms. However, when both particle sizes were tested in the comet assay using larvae haemocytes, a significant increase in DNA damage was observed for ZnONP treatments but only at the higher dose applied. In addition, the lipid peroxidation assay showed significant malondialdehyde (MDA) induction for both ZnO forms, but the induction of MDA for ZnONP was higher for the ZnO bulk, suggesting that the observed DNA strand breaks could be induced by mediated oxidative stress. The overall data suggest that the potential genotoxicity of ZnONP in Drosophila can be considered weak according to the lack of mutagenic and recombinogenic effects and the induction of primary DNA damage only at high toxic doses of ZnONP. This study is the first assessing the genotoxic and oxidative stress potential of nano and bulk ZnO particles in Drosophila.
Collapse
Affiliation(s)
- Erico R Carmona
- Grupo de Genotoxicología, Núcleo de Investigación en Estudios Ambientales, Facultad de Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Católica de Temuco, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de Temuco, Temuco, Chile
| | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
23
|
Effect of particle size and dispersion status on cytotoxicity and genotoxicity of zinc oxide in human bronchial epithelial cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 805:7-18. [DOI: 10.1016/j.mrgentox.2016.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 01/26/2023]
|
24
|
García-Hevia L, Valiente R, Martín-Rodríguez R, Renero-Lecuna C, González J, Rodríguez-Fernández L, Aguado F, Villegas JC, Fanarraga ML. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. NANOSCALE 2016; 8:10963-10973. [PMID: 27228212 DOI: 10.1039/c6nr00391e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.
Collapse
Affiliation(s)
- Lorena García-Hevia
- Grupo de Nanomedicina-IDIVAL, Facultad de Medicina, Herrera Oria s/n, 39011 Santander, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu J, Feng X, Wei L, Chen L, Song B, Shao L. The toxicology of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol 2016; 46:348-84. [DOI: 10.3109/10408444.2015.1137864] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Aude-Garcia C, Dalzon B, Ravanat JL, Collin-Faure V, Diemer H, Strub JM, Cianferani S, Van Dorsselaer A, Carrière M, Rabilloud T. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. J Proteomics 2016; 134:174-185. [DOI: 10.1016/j.jprot.2015.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
|
27
|
Alaraby M, Annangi B, Hernández A, Creus A, Marcos R. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:166-174. [PMID: 25917694 DOI: 10.1016/j.jhazmat.2015.04.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
This study planned to determine the range of biological effects associated with ZnO-NP exposure using Drosophila melanogaster as an in vivo model. In addition, ZnCl2 was used to determine the potential role of Zn ions alone. Toxicity, internalization through the intestinal barrier, gene expression changes, ROS production, and genotoxicity were the end-points evaluated. No toxicity or oxidative stress induction was observed in D. melanogaster larvae, whether using ZnO-NPs or ZnCl2. Internalization of ZnO-NPs through the intestinal barrier was observed. No significant changes in the frequency of mutant clones (wing-spot test) or percentage of DNA in tail (comet assay) were observed although significant changes in Hsp70 and p53 gene expression were detected. Our study shows that ZnO-NPs do not induce toxicity or genotoxicity in D. melanogaster, although uptake occurs and altered gene expression is observed.
Collapse
Affiliation(s)
- Mohamed Alaraby
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag, Egypt
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Amadeu Creus
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Madrid, Spain.
| |
Collapse
|
28
|
Assessment of the genotoxic potential of two zinc oxide sources (amorphous and nanoparticles) using the in vitro micronucleus test and the in vivo wing somatic mutation and recombination test. Food Chem Toxicol 2015; 84:55-63. [DOI: 10.1016/j.fct.2015.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/24/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022]
|
29
|
Saptarshi SR, Duschl A, Lopata AL. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine (Lond) 2015; 10:2075-92. [PMID: 26135328 DOI: 10.2217/nnm.15.44] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) have useful physicochemical advantages, and are used extensively. This has raised concerns regarding their potential toxicity. ZnO NP attributes that contribute to cytotoxicity and immune reactivity, however, seem to vary across literature considerably. Largely, dissolution and generation of reactive oxygen species appear to be the most commonly reported paradigms. Moreover, ZnO NP size and shape may also contribute toward their overall nano-bio interactions. Analysis is further complicated by factors such as adsorption of proteins on the NP surface, which may influence their bioreactivity. The main aim of this review is to give a systematic overview of the postulates explaining cytotoxic, inflammatory and genotoxic effects of ZnO NPs when exposed to different types of cells in vitro and in vivo.
Collapse
Affiliation(s)
- Shruti R Saptarshi
- Molecular Immunology Group, Department of Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, Centre for Biodiscovery & Molecular Development of Therapeutics, James Cook University, Townsville, Queensland, Australia
| | - Albert Duschl
- Department of Molecular Biology, Faculty of Natural Sciences, University of Salzburg, Salzburg, Austria
| | - Andreas L Lopata
- Molecular Immunology Group, Department of Molecular & Cell Biology, College of Public Health, Medical & Veterinary Sciences, Centre for Biodiscovery & Molecular Development of Therapeutics, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
30
|
Srivastava V, Gusain D, Sharma YC. Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01610] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Deepak Gusain
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Yogesh Chandra Sharma
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| |
Collapse
|
31
|
Gwak GH, Lee WJ, Paek SM, Oh JM. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions. Colloids Surf B Biointerfaces 2015; 127:137-42. [DOI: 10.1016/j.colsurfb.2015.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
32
|
Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. NANOSCALE 2015; 7:2154-98. [PMID: 25580680 DOI: 10.1039/c4nr06670g] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Collapse
Affiliation(s)
- Nazanin Golbamaki
- Laboratory of Environmental Chemistry and Toxicology at the Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kim KM, Song JH, Kim MK, Chung ST, Jeong J, Yang JY, Choi AJ, Choi HJ, Oh JM. Physicochemical analysis methods for nanomaterials considering their toxicological evaluations. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-014-0039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Recent toxicological investigations of metal or metal oxide nanoparticles in mammalian models in vitro and in vivo: DNA damaging potential, and relevant physicochemical characteristics. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0013-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|