1
|
He L, Lin F, Zhou Y, Dong M, Deng M, Li J, Jia N. Identification of hub genes related to DNA damage response in asthma via combinative bioinformatics strategy. J Int Med Res 2025; 53:3000605251332204. [PMID: 40288048 PMCID: PMC12035324 DOI: 10.1177/03000605251332204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
ObjectiveEmerging evidence has indicated the potential role of DNA damage response in asthma pathogenesis, but the underlying mechanisms remain elusive. Therefore, this study aimed to identify key diagnostic DNA damage response-related genes in asthma and explore their regulatory networks.MethodsDifferentially expressed genes between healthy individuals and patients with asthma were identified using the Gene Expression Omnibus database. Hub DNA damage response-related differentially expressed genes were determined via protein-protein interaction network and verified through gene expression analysis. Receiver operating characteristic curve was employed to identify diagnostic genes. Transcription factor-microRNA-target gene interactions were analyzed to uncover the regulatory networks in asthma pathogenesis. In this observational study, reverse transcription quantitative polymerase chain reaction was used to validate gene expression levels in healthy individuals and patients with asthma.ResultsSix of the nine hub genes (ATM, PCNA, CUL4A, PARP2, HLTF, and NBN) were identified as key diagnostic genes. These genes may contribute to asthma progression by regulating inflammatory pathways, such as cyclic GMP-AMP synthase-stimulator of interferon genes, senescence-associated secretory phenotype, autophagy, and apoptosis. Three microRNAs and eleven transcription factors were recognized as potential regulators. Reverse transcription quantitative polymerase chain reaction confirmed the downregulation of DNA damage response genes in asthma and revealed distinct expression patterns across different asthma endotypes.ConclusionSix DNA damage response-related genes may serve as diagnostic biomarkers for asthma, and the transcription factor-microRNA-DNA damage response gene network highlights the role of DNA damage response in asthmatic inflammation.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, P.R. China
- Guangzhou National Laboratory, Guangzhou International Bio Island, China
| | - Fangmei Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, P.R. China
| | - Yawen Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, P.R. China
| | - Meihua Dong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, P.R. China
| | - Mingfang Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, P.R. China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, P.R. China
- Guangzhou National Laboratory, Guangzhou International Bio Island, China
| | - Nan Jia
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, P.R. China
| |
Collapse
|
2
|
Li Y, Ye Y, Zhu X, Liu X, Li X, Zhao Y, Che X. Transcriptomic analysis reveals nanoplastics-induced apoptosis, autophagy and immune response in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174360. [PMID: 38960190 DOI: 10.1016/j.scitotenv.2024.174360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Increasing attention is being paid to the toxic physiological effects of nanoplastics (NPs) on aquatic organisms. However, few studies have systematically evaluated the regulatory mechanisms of NPs on immune response in crustaceans. In this study, a 28-day chronic exposure experiment was conducted in which shrimps were exposed to various 80-nm polystyrene NPs concentrations (0, 0.1, 1, 5 and 10 mg/L). Transcriptomic analysis was used to investigate the regulatory mechanisms of NPs in immune response of Litopenaeus vannamei. With increasing NPs concentration, the total hemocyte count (THC) content decreased, while phagocytosis rate (PR) and respiratory burst (RB) showed trends of first rising and then falling. High concentration (10 mg/L) of NPs caused the destruction of hepatopancreas tissue structure, the shedding of microvilli, the increase number of hepatocyte apoptosis and autophagy structure. With increasing NPs concentration, the lysozyme (Lys), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities first increased and then decrease, while contents of lipid peroxidation and malondialdehyde increased; the expression levels of Toll, MyD88, GPx, SOD, proPO, Lys, and ALF generally increased at first and then decreased. Transcriptional sequencing analysis showed that the pathway of differentially expressed genes in KEGG enrichment mainly included lysosome (ko04142), apoptosis (ko04210) pathways, indicating that the NPs mainly affected the immune regulatory mechanism. Further analysis by Gene Set Enrichment Analysis (GSEA) showed that the up-regulation pathways of NPs activation mainly included immune response-related pathways such as mitochondrial autophagy, DNA repair, autophagosomes signaling pathway. Our results indicated that NPs exposure induced oxidative stress, apoptosis and autophagy in shrimps. This study provides a basis for further understanding of the mechanisms of antioxidant immune regulation by NPs in shrimp and may serve as a reference for healthy ecological culture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinfeng Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
3
|
Sharma S, Dasgupta M, Vadaga BS, Kodgire P. Unfolding the symbiosis of AID, chromatin remodelers, and epigenetics-The ACE phenomenon of antibody diversity. Immunol Lett 2024; 269:106909. [PMID: 39128629 DOI: 10.1016/j.imlet.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Activation-induced cytidine deaminase (AID) is responsible for the initiation of somatic hypermutation (SHM) and class-switch recombination (CSR), which result in antibody affinity maturation and isotype switching, thus producing pathogen-specific antibodies. Chromatin dynamics and accessibility play a significant role in determining AID expression and its targeting. Chromatin remodelers contribute to the accessibility of the chromatin structure, thereby influencing the targeting of AID to Ig genes. Epigenetic modifications, including DNA methylation, histone modifications, and miRNA expression, profoundly impact the regulation of AID and chromatin remodelers targeting Ig genes. Additionally, epigenetic modifications lead to chromatin rearrangement and thereby can change AID expression levels and its preferential targeting to Ig genes. This interplay is symbolized as the ACE phenomenon encapsulates three interconnected aspects: AID, Chromatin remodelers, and Epigenetic modifications. This review emphasizes the importance of understanding the intricate relationship between these aspects to unlock the therapeutic potential of these molecular processes and molecules.
Collapse
Affiliation(s)
- Saurav Sharma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mallar Dasgupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Bindu Sai Vadaga
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
4
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
5
|
He YS, Cao F, Musonye HA, Xu YQ, Gao ZX, Ge M, He T, Zhang P, Zhao CN, Wang P, Pan HF. Serum albumin mediates the associations between heavy metals and two novel systemic inflammation indexes among U.S. adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115863. [PMID: 38134642 DOI: 10.1016/j.ecoenv.2023.115863] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The effects of heavy metal exposure on immunological function have sparked widespread concern, but unequivocal evidence on the association between mixed metal exposure and novel systemic inflammatory indexes remains scarce. OBJECTIVES This study aimed to analyze the associations of heavy metals with two novel systemic inflammation indexes and the mediated effects of serum albumin. METHODS Nineteen metals were detected among 4082 U.S. adults based on the NHANES. A linear regression, restricted cubic splines (RCS) regression, weighted quantile sum (WQS), Quantile-based Gcomputation (qgcomp), and Bayesian kernel machine regression (BKMR) were conducted to evaluate the associations of single metal and mixed metals with systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) levels, respectively. A series of subgroup analyses were used to identify potentially vulnerable populations. Furthermore, we conducted mediation analyses to investigate the mediated effects of serum albumin on the associations of metals with SII and SIRI. RESULTS In the single-exposure model, exposure to various metals such as urinary Co, As, and serum Zn, Cu was associated with SII and SIRI (PFDR<0.05). Simultaneously, the above metals were linear positively correlated with SII and SIRI. Mixed-exposure analyses consistently showed that overall mixed urinary metal levels were positively pertinent for SII and SIRI levels, and the metal Co played a significant role in the urinary metal mixtures. Subgroup analyses showed that exposure to urinary Cd in men and elderly people increased SII and SIRI levels. The results of mediation analyses suggested the association of urinary metal mixture with SII and SIRI was mediated by albumin, and the proportion of mediation was 14.45% and 9.49%, respectively. CONCLUSIONS Our findings suggested that metal exposure is strongly associated with the levels of system inflammation indexes and that serum albumin is, in part, a mediator of this association.
Collapse
Affiliation(s)
- Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678, Furong Road, Hefei, Anhui, China; Department of clinical medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Harry Asena Musonye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230016 Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital, of Anhui Medical University, China; Anhui Provincial Institute of Translational Medicine, China.
| |
Collapse
|
6
|
Smith JT, Noren Hooten N, Mode NA, Zonderman AB, Ezike N, Kaushal S, Evans MK. Frailty, sex, and poverty are associated with DNA damage and repair in frail, middle-aged urban adults. DNA Repair (Amst) 2023; 129:103530. [PMID: 37437502 PMCID: PMC10807508 DOI: 10.1016/j.dnarep.2023.103530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/17/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Frailty is an age-related syndrome characterized by reduced recovery from stressors and increased risks of morbidity and mortality. Although frailty is usually studied in those over 65 years, our previous work showed that frailty is both present and a risk factor for premature mortality in midlife. We identified altered gene expression patterns and biological pathways associated with inflammation in frailty. Evidence suggests DNA oxidation damage related to inflammation accumulates with age, and that DNA repair capacity (DRC) declines with age and age-related conditions. We hypothesized that inter-individual differences in DNA oxidation damage and DRC are associated with frailty status and poverty level. Using the CometChip assay, we assessed baseline single-strand breaks and hydrogen peroxide (H2O2)-induced DNA oxidation damage and DRC in non-frail and frail middle-aged African American and White individuals with household incomes above and below poverty. Analysis of baseline single-strand breaks showed no associations with frailty, poverty, race, or sex. However, we identified an interaction between frailty and poverty in H2O2-induced DNA oxidation damage. We also identified interactions between sex and frailty as well as sex and poverty status with DRC. The social determinant of health, poverty, associates with DRC in men. Baseline DNA damage, H2O2-induced DNA damage as well as DRC were associated with serum cytokine levels. IL-10 levels were inversely associated with baseline DNA damage as well as H2O2-induced DNA damage, DRC was altered by IL-4 levels and sex, and by TNF-α levels in the context of sex and poverty status. This is the first evidence that DRC may be influenced by poverty status at midlife. Our data show that social determinants of health should be considered in examining biological pathways through which disparate age-related health outcomes become manifest.
Collapse
Affiliation(s)
- Jessica T Smith
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Nicolle A Mode
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| |
Collapse
|
7
|
Zhao S, Goewey Ruiz JA, Sebastian M, Kidane D. Defective DNA polymerase beta invoke a cytosolic DNA mediated inflammatory response. Front Immunol 2022; 13:1039009. [PMID: 36624848 PMCID: PMC9823925 DOI: 10.3389/fimmu.2022.1039009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Base excision repair (BER) has evolved to maintain the genomic integrity of DNA following endogenous and exogenous agent induced DNA base damage. In contrast, aberrant BER induces genomic instability, promotes malignant transformation and can even trigger cancer development. Previously, we have shown that deoxyribo-5'-phosphate (dRP) lyase deficient DNA polymerase beta (POLB) causes replication associated genomic instability and sensitivity to both endogenous and exogenous DNA damaging agents. Specifically, it has been established that this loss of dRP lyase function promotes inflammation associated gastric cancer. However, the way that aberrant POLB impacts the immune signaling and inflammatory responses is still unknown. Here we show that a dRP lyase deficient variant of POLB (Leu22Pro, or L22P) increases mitotic dysfunction associated genomic instability, which eventually leads to a cytosolic DNA mediated inflammatory response. Furthermore, poly(ADP-ribose) polymerase 1 inhibition exacerbates chromosomal instability and enhances the cytosolic DNA mediated inflammatory response. Our results suggest that POLB plays a significant role in modulating inflammatory signaling, and they provide a mechanistic basis for future potential cancer immunotherapies.
Collapse
Affiliation(s)
- Shengyuan Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| | - Julia A. Goewey Ruiz
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| | - Manu Sebastian
- Dept. of Veterinary Medicine & Surgery, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
- Dept. of Translational Molecular Pathology, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, United States
| |
Collapse
|
8
|
Managing Cancer Drug Resistance from the Perspective of Inflammation. JOURNAL OF ONCOLOGY 2022; 2022:3426407. [PMID: 36245983 PMCID: PMC9553519 DOI: 10.1155/2022/3426407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
The development of multidrug resistance in cancer chemotherapy is a major obstacle to the effective treatment of human malignant tumors. Several epidemiological studies have demonstrated that inflammation is closely related to cancer and plays a key role in the development of both solid and liquid tumors. Therefore, targeting inflammation and the molecules involved in the inflammatory process may be a good strategy for treating drug-resistant tumors. In this review, we discuss the molecular mechanisms underlying inflammation in regulating anticancer drug resistance by modulating drug action and drug-mediated cell death pathways. Inflammation alters the effectiveness of drugs through modulation of the expression of multidrug efflux transporters (e.g., ABCG2, ABCB1, and ABCC1) and drug-metabolizing enzymes (e.g., CYP1A2 and CYP3A4). In addition, inflammation can protect cancer cells from drug-mediated cell death by regulating DNA damage repair, downstream adaptive response (e.g., apoptosis, autophagy, and oncogenic bypass signaling), and tumor microenvironment. Intriguingly, manipulating inflammation may affect drug resistance through various molecular mechanisms validated by in vitro/in vivo models. In this review, we aim to summarize the underlying molecular mechanisms that inflammation participates in cancer drug resistance and discuss the potential clinical strategies targeting inflammation to overcome drug resistance.
Collapse
|
9
|
Guo X, Sha Y, Lv W, Pu X, Liu X, Luo Y, Hu J, Wang J, Li S, Zhao Z. Sex differences in rumen fermentation and microbiota of Tibetan goat. Microb Cell Fact 2022; 21:55. [PMID: 35392919 PMCID: PMC8991483 DOI: 10.1186/s12934-022-01783-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The gut microbiota play an important role in maintaining host metabolism, the immune system and health, while sex, genotype, diet and health have specific effects on the composition of the gut microbiota. Therefore, to explore the sex differences in the structure and function of rumen microbiota in Tibetan goats, herein we analyzed sex differences in rumen fermentation parameters, rumen microbiota and the expression of genes related to VFA transport in Tibetan goats. RESULTS The results showed that the contents of acetic acid and propionic acid in the rumen of TGM (Tibetan goat male) were significantly higher than those in TGFm (Tibetan goat female) (P < 0.05), and total VFAs was significantly higher in TGM than TGFm (P < 0.05). Expression of the VFA transport-related genes DRA, AE2, MCT-1, NHE1, and NHE2 in the rumen epithelium of TGFm was significantly higher than that in TGM. Analysis of the composition and structure of the rumen microbiota revealed significant sex differences. At the phylum level, Firmicutes and Bacteroidetes were the dominant phyla in Tibetan goats. In addition, Fibrobacteres and Spirochaetes had significantly greater relative abundances in TGFm than in TGM (P < 0.05). At the genus level, the relative abundance of Fibrobacter, Ruminococcus_1 and Pyramidobacter was significantly higher in TGFm than in TGM (P < 0.05). The functional prediction results showed that replication, recombination and repair, RNA processing and modification were mainly enriched in TGFm (P < 0.05). CONCLUSIONS Correlation analysis revealed significant associations of some rumen microbiota with the fermentation product VFAs and VFA transport-related genes. We concluded that yearling TGM and TGFm have distinct fermentation and metabolism abilities when adapting to the plateau environment, which provides a certain sex reference basis for Tibetan goat adaptation to the plateau environment.
Collapse
Affiliation(s)
- Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weibing Lv
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoning Pu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yuzhu Luo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhidong Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
10
|
Mamdani H, Matosevic S, Khalid AB, Durm G, Jalal SI. Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Front Immunol 2022; 13:823618. [PMID: 35222404 PMCID: PMC8864096 DOI: 10.3389/fimmu.2022.823618] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, lung cancer treatment has undergone a major paradigm shift. A greater understanding of lung cancer biology has led to the development of many effective targeted therapies as well as of immunotherapy. Immune checkpoint inhibitors (ICIs) have shown tremendous benefit in the treatment of non-small cell lung cancer (NSCLC) and are now being used as first-line therapies in metastatic disease, consolidation therapy following chemoradiation in unresectable locally advanced disease, and adjuvant therapy following surgical resection and chemotherapy in resectable disease. Despite these benefits, predicting who will respond to ICIs has proven to be difficult and there remains a need to discover new predictive immunotherapy biomarkers. Furthermore, resistance to ICIs in lung cancer is frequent either because of a lack of response or disease progression after an initial response. The utility of ICIs in the treatment of small cell lung cancer (SCLC) remains limited to first-line treatment of extensive stage disease in combination with chemotherapy with modest impact on overall survival. It is thus important to explore and exploit additional targets to reap the full benefits of immunotherapy in the treatment of lung cancer. Here, we will summarize the current state of immunotherapy in lung cancer, discuss novel targets, and explore the intersection between DNA repair defects and immunotherapy.
Collapse
Affiliation(s)
- Hirva Mamdani
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Ahmed Bilal Khalid
- Department of Internal Medicine, Indiana University, Indianapolis, IN, United States
| | - Gregory Durm
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shadia I. Jalal
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
11
|
Fischer S, Hamed M, Emmert S, Wolkenhauer O, Fuellen G, Thiem A. The Prognostic and Predictive Role of Xeroderma Pigmentosum Gene Expression in Melanoma. Front Oncol 2022; 12:810058. [PMID: 35174087 PMCID: PMC8841870 DOI: 10.3389/fonc.2022.810058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Background Assessment of immune-specific markers is a well-established approach for predicting the response to immune checkpoint inhibitors (ICIs). Promising candidates as ICI predictive biomarkers are the DNA damage response pathway genes. One of those pathways, which are mainly responsible for the repair of DNA damage caused by ultraviolet radiation, is the nucleotide excision repair (NER) pathway. Xeroderma pigmentosum (XP) is a hereditary disease caused by mutations of eight different genes of the NER pathway, or POLH, here together named the nine XP genes. Anecdotal evidence indicated that XP patients with melanoma or other skin tumors responded impressively well to anti-PD-1 ICIs. Hence, we analyzed the expression of the nine XP genes as prognostic and anti-PD-1 ICI predictive biomarkers in melanoma. Methods We assessed mRNA gene expression in the TCGA-SKCM dataset (n = 445) and two pooled clinical melanoma cohorts of anti-PD-1 ICI (n = 75). In TCGA-SKCM, we applied hierarchical clustering on XP genes to reveal clusters, further utilized as XP cluster scores. In addition, out of 18 predefined genes representative of a T cell inflamed tumor microenvironment, the TIS score was calculated. Besides these scores, the XP genes, immune-specific single genes (CD8A, CXCL9, CD274, and CXCL13) and tumor mutational burden (TMB) were cross-correlated. Survival analysis in TCGA-SKCM was conducted for the selected parameters. Lastly, the XP response prediction value was calculated for the two pooled anti-PD-1 cohorts by classification models. Results In TCGA-SKCM, expression of the XP genes was divided into two clusters, inversely correlated with immune-specific markers. A higher ERCC3 expression was associated with improved survival, particularly in younger patients. The constructed models utilizing XP genes, and the XP cluster scores outperformed the immune-specific gene-based models in predicting response to anti-PD-1 ICI in the pooled clinical cohorts. However, the best prediction was achieved by combining the immune-specific gene CD274 with three XP genes from both clusters. Conclusion Our results suggest pre-therapeutic XP gene expression as a potential marker to improve the prediction of anti-PD-1 response in melanoma.
Collapse
Affiliation(s)
- Sarah Fischer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany.,Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.,Leibniz-Institute for Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Alexander Thiem
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
12
|
Peng P, Yu H, Xing C, Tao B, Li C, Huang J, Ning G, Zhang B, Feng S. Exosomes-mediated phenotypic switch of macrophages in the immune microenvironment after spinal cord injury. Biomed Pharmacother 2021; 144:112311. [PMID: 34653754 DOI: 10.1016/j.biopha.2021.112311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023] Open
Abstract
Although accumulating evidence indicated that modulating macrophage polarization could ameliorate the immune microenvironment and facilitate the repair of spinal cord injury (SCI), the underlying mechanism of macrophage phenotypic switch is still poorly understood. Exosomes (Exos), a potential tool of cell-to-cell communication, may play important roles in cell reprogramming. Herein, we investigated the roles of macrophages-derived exosomes played for macrophage polarization in the SCI immune microenvironment. In this study, we found the fraction of M2 macrophages was markedly decreased after SCI. Moreover, the M2 macrophages-derived exosomes could increase the percentage of M2 macrophages, decrease that of M1 macrophages while the M1 macrophages-derived exosomes acted oppositely. According to the results of in silico analyses and molecular experiments verification, this phenotypic switch might be mediated by the exosomal miRNA-mRNA network, in which the miR-23a-3p/PTEN/PI3K/AKT axis might play an important role. In conclusion, our study suggests macrophage polarization that regulated by various interventions might be mediated by their own exosomes at last. Moreover, M2 macrophages-derived exosomes could promote M2 macrophage polarization via the potential miRNA-mRNA network. Considering its potential of modulating polarization, M2 macrophages-derived exosomes may be a promising therapeutic agent for SCI repair.
Collapse
Affiliation(s)
- Peng Peng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Yu
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cong Xing
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Tao
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Li
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingyuan Huang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangzhi Ning
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
13
|
The Potential Role of Korean Mistletoe Extract as an Anti-Inflammatory Supplementation. J Immunol Res 2021; 2021:2183427. [PMID: 34307692 PMCID: PMC8263236 DOI: 10.1155/2021/2183427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/20/2021] [Indexed: 01/21/2023] Open
Abstract
Korean mistletoe has anti-inflammatory and antioxidant functions and may be a useful training supplement. We investigated the effect of Korean mistletoe extract (KME) on inflammatory markers after high-intensity exercise by 20 university male rowers (KME group vs. CON group) consuming 110 mL KME/dose (2 times a day over 8 weeks). Blood samples were collected for measurement of serum cytokine levels at baseline, immediately after exercise, and following 30 minutes of recovery. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP) were used as markers for inflammation. After supplementation, IL-6 and TNF-α levels were significantly lowered in the KME group than in the CON group at baseline, immediately after exercise, and following 30 minutes of recovery. KME can reduce high-strength exercise-induced increases in the levels of serum inflammatory cytokines in active individuals and improve anti-inflammatory functions.
Collapse
|
14
|
Significance of base excision repair to human health. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:163-193. [PMID: 34507783 DOI: 10.1016/bs.ircmb.2021.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative and alkylating DNA damage occurs under normal physiological conditions and exogenous exposure to DNA damaging agents. To counteract DNA base damage, cells have evolved several defense mechanisms that act at different levels to prevent or repair DNA base damage. Cells combat genomic lesions like these including base modifications, abasic sites, as well as single-strand breaks, via the base excision repair (BER) pathway. In general, the core BER process involves well-coordinated five-step reactions to correct DNA base damage. In this review, we will uncover the current understanding of BER mechanisms to maintain genomic stability and the biological consequences of its failure due to repair gene mutations. The malfunction of BER can often lead to BER intermediate accumulation, which is genotoxic and can lead to different types of human disease. Finally, we will address the use of BER intermediates for targeted cancer therapy.
Collapse
|
15
|
Meng Y, Wang K, Wang T, Tu Y, Gong S, Zhang Y, Zhang G, Au W, Christiani DC, Xia ZL. Early occupational exposure to lead on neutrophil-to-lymphocyte ratio and genotoxicity. ENVIRONMENT INTERNATIONAL 2021; 151:106448. [PMID: 33618327 DOI: 10.1016/j.envint.2021.106448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lead (Pb) is known to induce detrimental health effects in exposed populations, including hematotoxicity and genotoxicity. Complete blood count (CBC) is a cost-effective and easy way to determine toxicity, and variations in proportion of different types of leukocytes: neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) are further evidence of hematotoxicity. However, few studies have been conducted to systematically evaluate effects of occupational Pb exposure on NLR and LMR, and their associations with genotoxicity. OBJECTIVES Our study was aimed to systematically assess the effects of current occupational Pb exposure on NLR and LMR, and their associations with genotoxicity. METHODS Our investigation was performed on 1176 workers from a newly built battery factory in North China. The workers had just entered their current job position in recent years and most of them had no previous history of occupational exposure to Pb. Blood lead levels (BLLs) and leukocytes indices were detected for all participants. Cytokinesis-blocked micronucleus assay (MN; n = 675) and alkaline comet assay (% tail DNA; n = 869) were used to assess genotoxicity. Multivariate linear and Poisson regression analyses were conducted to examine associations between leukocytes indices, genotoxic biomarkers and BLLs with adjustment for covariates. Spearman correlation and mediation analyses were used to investigate relationships between NLR and genotoxicity. RESULTS Among all the exposed workers, NLR increased with increasing BLLs. However, WBC and LMR did not change significantly. Significant and dose-dependent increases in both MN frequencies and % tail DNA were observed among groups with different exposure doses. Compared with the normal NLR group (1.48 ≤ NLR < 4.58), the high NLR group (NLR ≥ 4.58) had higher % tail DNA. In addition, there was a significant and positive association between NLR and % tail DNA among all the workers, and % tail DNA mediated 15% of the effect of Pb on increasing NLR. CONCLUSION Our large-scale population study shows that Pb exposure increased NLR and induced genotoxicity. There was an association between elevated NLR and DNA damage. In addition, the mediation effect of % tail DNA on the relationship between BLLs and NLR provided mechanistic evidence that certain mechanisms, e.g. inflammation, may be involved in elevation of NLR from Pb exposure. Therefore, NLR may be a convenient and sensitive biomarker for indication of Pb toxicity. Further studies are needed to validate the proposed mechanism and NLR as a biomarker.
Collapse
Affiliation(s)
- Yu Meng
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Kan Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Yuting Tu
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Shiyang Gong
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Yunxia Zhang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Guanghui Zhang
- Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan Province, China
| | - William Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania, and University of Texas Medical Branch, Galveston, TX, USA
| | - David C Christiani
- Environmental Medicine and Epidemiology Program, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China.
| |
Collapse
|
16
|
Fontes-Dantas FL, da Fontoura Galvão G, Veloso da Silva E, Alves-Leon S, Cecília da Silva Rêgo C, Garcia DG, Marques SA, Blanco Martinez AM, Reis da Silva M, Marcondes de Souza J. Novel CCM1 (KRIT1) Mutation Detection in Brazilian Familial Cerebral Cavernous Malformation: Different Genetic Variants in Inflammation, Oxidative Stress, and Drug Metabolism Genes Affect Disease Aggressiveness. World Neurosurg 2020; 138:535-540.e8. [DOI: 10.1016/j.wneu.2020.02.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/27/2022]
|
17
|
DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. Int J Mol Sci 2019; 21:ijms21010055. [PMID: 31861764 PMCID: PMC6982230 DOI: 10.3390/ijms21010055] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
The DNA damage response and repair (DDR/R) network, a sum of hierarchically structured signaling pathways that recognize and repair DNA damage, and the immune response to endogenous and/or exogenous threats, act synergistically to enhance cellular defense. On the other hand, a deregulated interplay between these systems underlines inflammatory diseases including malignancies and chronic systemic autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Patients with these diseases are characterized by aberrant immune response to self-antigens with widespread production of autoantibodies and multiple-tissue injury, as well as by the presence of increased oxidative stress. Recent data demonstrate accumulation of endogenous DNA damage in peripheral blood mononuclear cells from these patients, which is related to (a) augmented DNA damage formation, at least partly due to the induction of oxidative stress, and (b) epigenetically regulated functional abnormalities of fundamental DNA repair mechanisms. Because endogenous DNA damage accumulation has serious consequences for cellular health, including genomic instability and enhancement of an aberrant immune response, these results can be exploited for understanding pathogenesis and progression of systemic autoimmune diseases, as well as for the development of new treatments.
Collapse
|
18
|
Pinheiro DML, de Oliveira AHS, Coutinho LG, Fontes FL, de Medeiros Oliveira RK, Oliveira TT, Faustino ALF, Lira da Silva V, de Melo Campos JTA, Lajus TBP, de Souza SJ, Agnez-Lima LF. Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation. Free Radic Biol Med 2019; 130:8-22. [PMID: 30366059 DOI: 10.1016/j.freeradbiomed.2018.10.432] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress generated during inflammation is associated with a wide range of pathologies. Resveratrol (RESV) displays anti-inflammatory and antioxidant activities, being a candidate for the development of adjuvant therapies for several inflammatory diseases. Despite this potential, the cellular responses induced by RESV are not well known. In this work, transcriptomic analysis was performed following lipopolysaccharide (LPS) stimulation of monocyte cultures in the presence of RESV. Induction of an inflammatory response was observed after LPS treatment and the addition of RESV led to decreases in expression of the inflammatory mediators, tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), without cytotoxicity. RNA sequencing revealed 823 upregulated and 2098 downregulated genes (cutoff ≥2.0 or ≤-2.0) after RESV treatment. Gene ontology analysis showed that the upregulated genes were associated with metabolic processes and the cell cycle, consistent with normal cell growth and differentiation under an inflammatory stimulus. The downregulated genes were associated with inflammatory responses, gene expression, and protein modification. The prediction of master regulators using the iRegulon tool showed nuclear respiratory factor 1 (NRF1) and GA-binding protein alpha subunit (GABPA) as the main regulators of the downregulated genes. Using immunoprecipitation and protein expression assays, we observed that RESV was able to decrease protein acetylation patterns, such as acetylated apurinic/apyrimidinic endonuclease-1/reduction-oxidation factor 1 (APE1/Ref-1), and increase histone methylation. In addition, reductions in p65 (nuclear factor-kappa B (NF-κB) subunit) and lysine-specific histone demethylase-1 (LSD1) expression were observed. In conclusion, our data indicate that treatment with RESV caused significant changes in protein acetylation and methylation patterns, suggesting the induction of deacetylase and reduction of demethylase activities that mainly affect regulatory cascades mediated by NF-кB and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling. NRF1 and GABPA seem to be the main regulators of the transcriptional profile observed after RESV treatment.
Collapse
Affiliation(s)
| | - Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil; Chemistry Department, New York University, New York, NY, United States
| | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil; Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, São Paulo do Potengi, Brazil
| | - Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | | | - Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - André Luís Fonseca Faustino
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | - Vandeclécio Lira da Silva
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | | | - Tirzah Braz Petta Lajus
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), IMD, UFRN, Brazil
| | | |
Collapse
|
19
|
Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A, Crucian B, Wu H. Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells. Int J Mol Sci 2018; 19:ijms19113689. [PMID: 30469384 PMCID: PMC6275019 DOI: 10.3390/ijms19113689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the β2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alan H Feiveson
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | | | - AnneMarie Kay Brinda
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Brian Crucian
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | - Honglu Wu
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| |
Collapse
|
20
|
Hadwiger LA, Tanaka K. DNA Damage and Chromatin Conformation Changes Confer Nonhost Resistance: A Hypothesis Based on Effects of Anti-cancer Agents on Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:1056. [PMID: 30087685 PMCID: PMC6066612 DOI: 10.3389/fpls.2018.01056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
Over the last decades, medical research has utilized DNA altering procedures in cancer treatments with the objective of killing cells or suppressing cell proliferation. Simultaneous research related to enhancing disease resistance in plants reported that alterations in DNA can enhance defense responses. These two opposite perspectives have in common their effects on the center for gene transcription, the nuclear chromatin. A review of selected research from both anticancer- and plant defense-related research provides examples of some specific DNA altering actions: DNA helical distortion, DNA intercalation, DNA base substitution, DNA single cleavage by DNases, DNA alkylation/methylation, and DNA binding/exclusion. The actions of the pertinent agents are compared, and their proposed modes of action are described in this study. Many of the DNA specific agents affecting resistance responses in plants, e.g., the model system using pea endocarp tissue, are indeed anticancer agents. The tumor cell death or growth suppression in cancer cells following high level treatments may be accompanied with chromatin distortions. Likewise, in plants, DNA-specific agents activate enhanced expression of many genes including defense genes, probably due to the chromatin alterations resulting from the agents. Here, we propose a hypothesis that DNA damage and chromatin structural changes are central mechanisms in initiating defense gene transcription during the nonhost resistance response in plants.
Collapse
Affiliation(s)
- Lee A. Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
21
|
Coutinho LG, de Oliveira AHS, Witwer M, Leib SL, Agnez-Lima LF. DNA repair protein APE1 is involved in host response during pneumococcal meningitis and its expression can be modulated by vitamin B6. J Neuroinflammation 2017; 14:243. [PMID: 29233148 PMCID: PMC5727666 DOI: 10.1186/s12974-017-1020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
Background The production of reactive oxygen species (ROS) during pneumococcal meningitis (PM) leads to severe DNA damage in the neurons and is the major cause of cell death during infection. Hence, the use of antioxidants as adjuvant therapy has been investigated. Previous studies have demonstrated the possible participation of apurinic/apyrimidinic endonuclease (APE1) during PM. The aims of this study were to investigate the APE1 expression in the cortical and hippocampal tissues of infant Wistar rats infected with Streptococcus pneumoniae and its association with cell death and understand the role of vitamin B6 (vitB6) as a protective factor against cell death. Methods APE1 expression and oxidative stress markers were analyzed at two-time points, 20 and 24 h post infection (p.i.), in the cortex (CX) and hippocampus (HC) of rats supplemented with vitB6. Statistical analyses were performed by the nonparametric Kruskal–Wallis test using Dunn’s post test. Results Our results showed high protein levels of APE1 in CX and HC of infected rats. In the CX, at 20 h p.i., vitB6 supplementation led to the reduction of expression of APE1 and apoptosis-inducing factor, while no significant changes in the transcript levels of caspase-3 were observed. Furthermore, levels of carbonyl content and glutamate in the CX were reduced by vitB6 supplementation at the same time point of 20 h p.i.. Since our data showed a significant effect of vitB6 on the CX at 20 h p.i. rather than that at 24 h p.i., we evaluated the effect of administering a second dose of vitB6 at 18 h p.i. and sacrifice at 24 h p.i.. Reduction in the oxidative stress and APE1 levels were observed, although the latter was not significant. Although the levels of APE1 was not significantly changed in the HC with vitB6 adjuvant therapy, vitB6 supplementation prevented the formation of the truncated form of APE1 (34 kDa) that is associated with apoptosis. Conclusions Our data suggest that PM affects APE1 expression, which can be modulated by vitB6. Additionally, vitB6 contributes to the reduction of glutamate and ROS levels. Besides the potential to reduce cell death and oxidative stress during neuroinflammation, vitB6 showed enhanced effect on the CX than on the HC during PM.
Collapse
Affiliation(s)
- Leonam G Coutinho
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-900, Brazil.,Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, Natal, Brazil
| | | | - Matthias Witwer
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland
| | - Lucymara F Agnez-Lima
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
22
|
Seifermann M, Epe B. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free Radic Biol Med 2017; 107:258-265. [PMID: 27871818 DOI: 10.1016/j.freeradbiomed.2016.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023]
Abstract
The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mutagenic DNA modification generated by endogenous or exogenous reactive oxygen species (ROS), has distinct roles in the regulation of both transcription and signal transduction. Thus, the activation of transcription by the estrogen receptor, NF-κB, MYC and other transcription factors was shown to depend on the presence of 8-oxoG in the promoter regions and its recognition by the DNA repair glycosylase OGG1. The lysine-specific histone demethylase LSD1, which produces H2O2 as a by-product, was indentified as a local generator of 8-oxoG in some of these cases. In addition, a complex of OGG1 with the excised free substrate base was demonstrated to act as a guanine nucleotide exchange factor (GEF) for small GTPases such as Ras, Rac and Rho, thus stimulating signal transduction. The various findings and intriguing novel mechanisms suggested will be described and compared in this review.
Collapse
Affiliation(s)
- Marco Seifermann
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| |
Collapse
|
23
|
Shi G, Abbott KN, Wu W, Salter RD, Keyel PA. Dnase1L3 Regulates Inflammasome-Dependent Cytokine Secretion. Front Immunol 2017; 8:522. [PMID: 28533778 PMCID: PMC5420570 DOI: 10.3389/fimmu.2017.00522] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/19/2017] [Indexed: 12/22/2022] Open
Abstract
Pediatric-onset systemic lupus erythematosus arises in humans and mice lacking the endonuclease Dnase1L3. When Dnase1L3 is absent, DNA from circulating apoptotic bodies is not cleared, leading to anti-DNA antibody production. Compared to early anti-DNA and anti-chromatin responses, other autoantibody responses and general immune activation in Dnase1L3−/− mice are greatly delayed. We investigated the possibility that immune activation, specifically inflammasome activation, is regulated by Dnase1L3. Here, we report that Dnase1L3 inhibition blocked both NLR family, pyrin domain containing 3 (NLRP3) and NLRC4 inflammasome-mediated release of high-mobility group box 1 protein and IL-1β. In contrast to IL-1β release, Dnase1L3 inhibition only mildly impaired NLRP3-dependent pyroptosis, as measured by propidium iodide uptake or LDH release. Mechanistically, we found that Dnase1L3 was needed to promote apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) nuclear export and speck formation. Our results demonstrate that Dnase1L3 inhibition separates cytokine secretion from pyroptosis by targeting ASC. These findings suggest that Dnase1L3 is necessary for cytokine secretion following inflammasome activation.
Collapse
Affiliation(s)
- Guilan Shi
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kennady N Abbott
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Wenbo Wu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Russell D Salter
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Zyba SJ, Shenvi SV, Killilea DW, Holland TC, Kim E, Moy A, Sutherland B, Gildengorin V, Shigenaga MK, King JC. A moderate increase in dietary zinc reduces DNA strand breaks in leukocytes and alters plasma proteins without changing plasma zinc concentrations. Am J Clin Nutr 2017; 105:343-351. [PMID: 28003206 PMCID: PMC5267297 DOI: 10.3945/ajcn.116.135327] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Food fortification has been recommended to improve a population's micronutrient status. Biofortification techniques modestly elevate the zinc content of cereals, but few studies have reported a positive impact on functional indicators of zinc status. OBJECTIVE We determined the impact of a modest increase in dietary zinc that was similar to that provided by biofortification programs on whole-body and cellular indicators of zinc status. DESIGN Eighteen men participated in a 6-wk controlled consumption study of a low-zinc, rice-based diet. The diet contained 6 mg Zn/d for 2 wk and was followed by 10 mg Zn/d for 4 wk. To reduce zinc absorption, phytate was added to the diet during the initial period. Indicators of zinc homeostasis, including total absorbed zinc (TAZ), the exchangeable zinc pool (EZP), plasma and cellular zinc concentrations, zinc transporter gene expression, and other metabolic indicators (i.e., DNA damage, inflammation, and oxidative stress), were measured before and after each dietary-zinc period. RESULTS TAZ increased with increased dietary zinc, but plasma zinc concentrations and EZP size were unchanged. Erythrocyte and leukocyte zinc concentrations and zinc transporter expressions were not altered. However, leukocyte DNA strand breaks decreased with increased dietary zinc, and the level of proteins involved in DNA repair and antioxidant and immune functions were restored after the dietary-zinc increase. CONCLUSIONS A moderate 4-mg/d increase in dietary zinc, similar to that which would be expected from zinc-biofortified crops, improves zinc absorption but does not alter plasma zinc. The repair of DNA strand breaks improves, as do serum protein concentrations that are associated with the DNA repair process. This trial was registered at clinicaltrials.gov as NCT02861352.
Collapse
Affiliation(s)
- Sarah J Zyba
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Swapna V Shenvi
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - David W Killilea
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Tai C Holland
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Elijah Kim
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Adrian Moy
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Barbara Sutherland
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Virginia Gildengorin
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Mark K Shigenaga
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Janet C King
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, CA
| |
Collapse
|
25
|
Kawashima Y, Yamaguchi N, Teshima R, Narahara H, Yamaoka Y, Anai H, Nishida Y, Hanada K. Detection of DNA double-strand breaks by pulsed-field gel electrophoresis. Genes Cells 2016; 22:84-93. [PMID: 27976495 DOI: 10.1111/gtc.12457] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/07/2016] [Indexed: 02/03/2023]
Abstract
A DNA double-strand break (DSB) is one of the most cytotoxic DNA lesions because unrepaired DSBs cause chromosomal aberrations and cell death. Although many physiological DSBs occur at DNA replication sites, the molecular mechanisms underlying this remain poorly understood. There was therefore a need to develop a highly specific method to detect DSB fragments containing DNA replication sites. Here we investigated whether pulsed-field gel electrophoresis (PFGE) combined with visualization of DNA replication sites by immunoblotting using halogenized deoxyuridines, such as BrdU and IdU, was sufficient for this detection. Our methodology enabled us to reproduce previously reported data. In addition, this methodology was also applied to the detection of bacterial infection-induced DSBs on human chromosomal DNA. Based on our findings, we propose that this strategy combining PFGE with immunoblot analysis will be applicable to studies analyzing the mechanistic details of DNA repair, the DNA damage response and the activity of DNA-damaging agents.
Collapse
Affiliation(s)
- Yuri Kawashima
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nahomi Yamaguchi
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Rie Teshima
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hirofumi Anai
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshihiro Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Katsuhiro Hanada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
26
|
Kim MK, Yun KJ, Lim DH, Kim J, Jang YP. Anti-Inflammatory Properties of Flavone di-C-Glycosides as Active Principles of Camellia Mistletoe, Korthalsella japonica. Biomol Ther (Seoul) 2016; 24:630-637. [PMID: 27302962 PMCID: PMC5098543 DOI: 10.4062/biomolther.2016.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/02/2016] [Accepted: 03/24/2016] [Indexed: 11/05/2022] Open
Abstract
The chemical components and biological activity of Camellia mistletoe, Korthalsella japonica (Loranthaceae) are relatively unknown compared to other mistletoe species. Therefore, we investigated the phytochemical properties and biological activity of this parasitic plant to provide essential preliminary scientific evidence to support and encourage its further pharmaceutical research and development. The major plant components were chromatographically isolated using high-performance liquid chromatography and their structures were elucidated using tandem mass spectrometry and nuclear magnetic resonance anlysis. Furthermore, the anti-inflammatory activity of the 70% ethanol extract of K. japonica (KJ) and its isolated components was evaluated using a nitric oxide (NO) assay and western blot analysis for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Three flavone di-C-glycosides, lucenin-2, vicenin-2, and stellarin-2 were identified as major components of KJ, for the first time. KJ significantly inhibited NO production and reduced iNOS and COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 cells at 100 µg/ mL while similar activity were observed with isolated flavone C-glycosides. In conclusion, KJ has a simple secondary metabolite profiles including flavone di-C-glycosides as major components and has a strong potential for further research and development as a source of therapeutic anti-inflammatory agents.
Collapse
Affiliation(s)
- Min Kyoung Kim
- Departments of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Kwang Jun Yun
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Da Hae Lim
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Jinju Kim
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Young Pyo Jang
- Departments of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447,
Republic of Korea
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447,
Republic of Korea
| |
Collapse
|
27
|
The immune receptor Trem1 cooperates with diminished DNA damage response to induce preleukemic stem cell expansion. Leukemia 2016; 31:423-433. [PMID: 27568523 DOI: 10.1038/leu.2016.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/26/2016] [Accepted: 08/09/2016] [Indexed: 12/30/2022]
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Here we investigate the relationship between DNA damage response (DDR) and leukemogenesis using the Fanca knockout mouse model. We found that chronic exposure of the Fanca-/- hematopoietic stem cells to DNA crosslinking agent mitomycin C in vivo leads to diminished DDR, and the emergence/expansion of pre-leukemia stem cells (pre-LSCs). Surprisingly, although genetic correction of Fanca deficiency in the pre-LSCs restores DDR and reduces genomic instability, but fails to prevent pre-LSC expansion or delay leukemia development in irradiated recipients. Furthermore, we identified transcription program underlying dysregulated DDR and cell migration, myeloid proliferation, and immune response in the Fanca-/- pre-LSCs. Forced expression of the downregulated DNA repair genes, Rad51c or Trp53i13, in the Fanca-/- pre-LSCs partially rescues DDR but has no effect on leukemia, whereas shRNA knockdown of the upregulated immune receptor genes Trem1 or Pilrb improves leukemia-related survival, but not DDR or genomic instability. Furthermore, Trem1 cooperates with diminished DDR in vivo to promote Fanca-/- pre-LSC expansion and leukemia development. Our study implicates diminishing DDR as a root cause of FA leukemogenesis, which subsequently collaborates with other signaling pathways for leukemogenic transformation.
Collapse
|
28
|
DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis 2016; 7:e2316. [PMID: 27468692 PMCID: PMC4973345 DOI: 10.1038/cddis.2016.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023]
Abstract
EZH2 is a histone methyltransferase whose functions in stem cells and tumor cells are well established. Accumulating evidence shows that EZH2 has critical roles in T cells and could be a promising therapeutic target for several immune diseases. To further reveal the novel functions of EZH2 in human T cells, protein co-immunoprecipitation combined mass spectrometry was conducted and several previous unknown EZH2-interacting proteins were identified. Of them, we focused on a DNA damage responsive protein, Ku80, because of the limited knowledge regarding EZH2 in the DNA damage response. Then, we demonstrated that instead of being methylated by EZH2, Ku80 bridges the interaction between the DNA-dependent protein kinase (DNA-PK) complex and EZH2, thus facilitating EZH2 phosphorylation. Moreover, EZH2 histone methyltransferase activity was enhanced when Ku80 was knocked down or DNA-PK activity was inhibited, suggesting DNA-PK-mediated EZH2 phosphorylation impairs EZH2 histone methyltransferase activity. On the other hand, EZH2 inhibition increased the DNA damage level at the late phase of T-cell activation, suggesting EZH2 involved in genomic integrity maintenance. In conclusion, our study is the first to demonstrate that EZH2 is phosphorylated by the DNA damage responsive complex DNA-PK and regulates DNA damage-mediated T-cell apoptosis, which reveals a novel functional crosstalk between epigenetic regulation and genomic integrity.
Collapse
|
29
|
Abstract
Various cell death mechanisms are integral to host defense in both plants and mammals. Plant defense against biotrophic pathogens is associated with programmed cell death (PCD) of the infected cell. This effector-triggered PCD is partly analogous to pyroptosis, an inflammatory host cell death process that plays a crucial role in defense against microbial infections in mammals. Plant effector-triggered PCD also shares with mammalian apoptosis the involvement of cell-cycle regulators as signaling components. Here we explore the similarities between these different cell death programs as they relate to host defense and their relationship to the cell cycle.
Collapse
|
30
|
Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett 2016; 387:95-105. [PMID: 27037062 DOI: 10.1016/j.canlet.2016.03.042] [Citation(s) in RCA: 638] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
Extensive research over the past half a century indicates that reactive oxygen species (ROS) play an important role in cancer. Although low levels of ROS can be beneficial, excessive accumulation can promote cancer. One characteristic of cancer cells that distinguishes them from normal cells is their ability to produce increased numbers of ROS and their increased dependence on an antioxidant defense system. ROS are produced as a byproduct intracellularly by mitochondria and other cellular elements and exogenously by pollutants, tobacco, smoke, drugs, xenobiotics, and radiation. ROS modulate various cell signaling pathways, which are primarily mediated through the transcription factors NF-κB and STAT3, hypoxia-inducible factor-1α, kinases, growth factors, cytokines and other proteins, and enzymes; these pathways have been linked to cellular transformation, inflammation, tumor survival, proliferation, invasion, angiogenesis, and metastasis of cancer. ROS are also associated with epigenetic changes in genes, which is helpful in diagnosing diseases. This review considers the role of ROS in the various stages of cancer development. Finally, we provide evidence that nutraceuticals derived from Mother Nature are highly effective in eliminating cancer cells.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|