1
|
Abe J, Chau K, Mojiri A, Wang G, Oikawa M, Samanthapudi VSK, Osborn AM, Ostos-Mendoza KC, Mariscal-Reyes KN, Mathur T, Jain A, Herrmann J, Yusuf SW, Krishnan S, Deswal A, Lin SH, Kotla S, Cooke JP, Le NT. Impacts of Radiation on Metabolism and Vascular Cell Senescence. Antioxid Redox Signal 2025. [PMID: 40233257 DOI: 10.1089/ars.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Significance: This review investigates how radiation therapy (RT) increases the risk of delayed cardiovascular disease (CVD) in cancer survivors. Understanding the mechanisms underlying radiation-induced CVD is essential for developing targeted therapies to mitigate these effects and improve long-term outcomes for patients with cancer. Recent Advances: Recent studies have primarily focused on metabolic alterations induced by irradiation in various cancer cell types. However, there remains a significant knowledge gap regarding the role of chronic metabolic alterations in normal cells, particularly vascular cells, in the progression of CVD after RT. Critical Issues: This review centers on RT-induced metabolic alterations in vascular cells and their contribution to senescence accumulation and chronic inflammation across the vasculature post-RT. We discuss key metabolic pathways, including glycolysis, the tricarboxylic acid cycle, lipid metabolism, glutamine metabolism, and redox metabolism (nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/NADPH). We further explore the roles of regulatory proteins such as p53, adenosine monophosphate-activated protein kinase, and mammalian target of rapamycin in driving these metabolic dysregulations. The review emphasizes the impact of immune-vascular crosstalk mediated by the senescence-associated secretory phenotype, which perpetuates metabolic dysfunction, enhances chronic inflammation, drives senescence accumulation, and causes vascular damage, ultimately contributing to cardiovascular pathogenesis. Future Directions: Future research should prioritize identifying therapeutic targets within these metabolic pathways or the immune-vascular interactions influenced by RT. Correcting metabolic dysfunction and reducing chronic inflammation through targeted therapies could significantly improve cardiovascular outcomes in cancer survivors. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Venkata S K Samanthapudi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Tammay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
2
|
Liang Y, Wang L, Amoresa ME, Jiang Z, Yu B, Li J, Lu M. Feasibility of remote robot empowered teleultrasound scanning for radioactive patients. Sci Rep 2025; 15:4098. [PMID: 39900945 PMCID: PMC11790871 DOI: 10.1038/s41598-024-76441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/14/2024] [Indexed: 02/05/2025] Open
Abstract
To investigate the feasibility of robot-assisted teleultrasound diagnosis for radioactive patients compared with conventional ultrasound diagnosis. In this prospective study (ChineseClinicalTrials.gov identifier, ChiCTR2200057253), 32 radioactive patients were examined by conventional ultrasound and MGIUS-R3 robot-assisted ultrasound from March 2022 to June 2022. After two scans, patients completed a satisfaction survey, including comfort score, fear score, tension score and pain score. The durations of both scans were recorded, and sonographers wore lead apron to prevent the radiation during the conventional examination. Subsequently, the ultrasonic images saved by sonographers were diagnosed and scored. Finally, we evaluated the feasibility of the robot-assisted teleultrasound diagnosis system regarding patients' satisfaction, examination duration, image quality and diagnostic consistency via χ2 test, Kappa consistency test and Wilcoxon signed-rank test. Among 32 patients (mean age, 54.9 ± 9.8 [SD]; 16 women), 29 had consistent diagnoses and 3 had inconsistent diagnoses between two scans, but the diagnostic consistency was good (Kappa = 0.818, P < 0.001). In addition, there was no statistical difference between two scans with regard to image quality score (29.28 ± 0.47vs29.31 ± 0.44, P = 0.97), comfort score (10vs10, P > 0.99), tension score (0vs0, P > 0.99) and fear score (0.09vs0, P = 0.32). Although 7 patients felt slightly painful during teleultrasound scan, the pain intensity was acceptable (0.31vs0, P = 0.02). The mean duration of teleultrasound examinations was 11.1 min (6-24 min), which was longer than 5.9 min (2-17 min) of conventional examinations (P < 0.001). Comparing robot-assisted teleultrasound and conventional ultrasound, there was no evidence of differences regarding patients' satisfaction and image quality, and the diagnostic consistency was remarkable.
Collapse
Affiliation(s)
- Ying Liang
- Department of Ultrasound Medical Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Wang
- Department of Ultrasound Medical Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Zirui Jiang
- Department of Health Physics and Diagnostic, University of Nevada, Reno, USA
| | - Bo Yu
- IMABOT SHENZHEN MEDICAL CO., LTD, Shenzhen, China
| | - Jiami Li
- Department of Ultrasound Medical Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Man Lu
- Department of Ultrasound Medical Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Zong X, Zhu L, Wang Y, Wang J, Gu Y, Liu Q. Cohort Studies and Multi-omics Approaches to Low-Dose Ionizing Radiation-Induced Cardiovascular Disease: A Comprehensive Review. Cardiovasc Toxicol 2025; 25:148-165. [PMID: 39538046 DOI: 10.1007/s12012-024-09943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The effect of low-dose ionizing radiation exposure on the risk of cardiovascular disease (CVD) represents a significant concern in the field of radiation protection. The prevailing approach to mitigating the adverse effects of low-dose or low-dose-rate radiation does not currently incorporate the potential risk of CVD, despite the possibility that such risk may be a substantial contributor to overall health hazards. Current evidence suggests a potential association between radiation exposure and CVD; however, the overall findings remain inconclusive. This is particularly due to the uncertainty surrounding the influence of significant non-radiation risk factors on the associations reported in epidemiological studies. It is difficult to discern the underlying connection in observational epidemiology when there is substantial variation in baseline risk factors. The paucity of epidemiological research in this domain is being partially offset by the advancement of multi-omics approaches. These methods assist in identifying radiosensitive targets, comprehending underlying biological processes, and pinpointing biomarkers. This, in turn, fortifies the evidence gleaned from epidemiological studies. In this review, we delve into the body of epidemiological research pertaining to CVD induced by low-dose ionizing radiation and the application of multi-omics techniques. The integration of these two methodologies holds the promise of identifying specific molecules or biological pathways that can be employed to validate endpoints related to radiation risk assessment.
Collapse
Affiliation(s)
- Xumin Zong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Lin Zhu
- School of Basic Medical Sciences, Weifang Medical University, Shandong, 261000, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
4
|
Cha ES, Lee D, Sung H, Jang WI, Kwon TE, Jeong HY, Seo S. Risks of Circulatory Diseases among Korean Radiation Workers Exposed to Low-dose Radiation. Radiat Res 2024; 202:649-661. [PMID: 39149818 DOI: 10.1667/rade-23-00148.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
High-dose radiation has been widely recognized as a risk factor for circulatory diseases. There is increasing evidence for risk of circulatory diseases in response to low and moderate radiation doses in recent years, but the results are not always consistent. We aimed to evaluate the associations between low-dose radiation exposure (<0.1 Gy) and the incidence of circulatory disease in a large cohort of Korean radiation workers. We collected data from a cohort of 187,001 radiation workers monitored for personal radiation dose since 1984 and linked with the National Health Insurance Service data from 2002 to 2021. Excess relative risks (ERRs) per 100 mGy were calculated to quantify the radiation dose-response relationship. The mean duration of follow-up was 13.3 years. A total of 12,705 cases of cerebrovascular disease (CeVD) and 19,647 cases of ischemic heart disease (IHD) were diagnosed during the follow-up period (2002-2021). The average cumulative heart dose was 4.10 mGy, ranging from 0 to 992.62 mGy. The ERR per 100 mGy with 10-year lagged cumulative heart doses was estimated at -0.094 (95% CI -0.248, 0.070) for CeVD and -0.173 (95% CI -0.299, -0.041) for IHD. The ERRs were not significantly changed after adjusting for confounding factors such as smoking, income, blood pressure, body mass index, and blood glucose level. A linear quadratic model was found to provide a better fit for the ERR of CeVD and IHD than a linear model (P = 0.009 and 0.030, respectively). There were no statistically significant variations in ERR/100 mGy estimates for either CeVD or IHD in terms of sex, attained age, and duration of employment; however, heterogeneity in the ERR/100 mGy estimates for CeVD among occupations was observed (P = 0.001). Our study did not find conclusive evidence supporting the association between occupational low-dose radiation and an increased risk of circulatory diseases. The significant negative ERR estimates for IHD need further investigation with a more extended follow-up period.
Collapse
Affiliation(s)
- Eun Shil Cha
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Dalnim Lee
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Hyoju Sung
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Won Il Jang
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Tae-Eun Kwon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Ho Yeon Jeong
- Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Seoul, South Korea
| | - Songwon Seo
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| |
Collapse
|
5
|
Sato T, Matsuya Y, Hamada N. Evaluation of relative biological effectiveness for diseases of the circulatory system based on microdosimetry. JOURNAL OF RADIATION RESEARCH 2024; 65:500-506. [PMID: 38924483 PMCID: PMC11262868 DOI: 10.1093/jrr/rrae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/04/2024] [Indexed: 06/28/2024]
Abstract
In the next decade, the International Commission on Radiological Protection (ICRP) will issue the next set of general recommendations, for which evaluation of relative biological effectiveness (RBE) for various types of tissue reactions would be needed. ICRP has recently classified diseases of the circulatory system (DCS) as a tissue reaction, but has not recommended RBE for DCS. We therefore evaluated the mean and uncertainty of RBE for DCS by applying a microdosimetric kinetic model specialized for RBE estimation of tissue reactions. For this purpose, we analyzed several RBE data for DCS determined by past animal experiments and evaluated the radius of the subnuclear domain best fit to each experiment as a single free parameter included in the model. Our analysis suggested that RBE for DCS tends to be lower than that for skin reactions, and their difference was borderline significant due to large variances of the evaluated parameters. We also found that RBE for DCS following mono-energetic neutron irradiation of the human body is much lower than that for skin reactions, particularly at the thermal energy and around 1 MeV. This tendency is considered attributable not only to the intrinsic difference of neutron RBE between skin reactions and DCS but also to the difference in the contributions of secondary γ-rays to the total absorbed doses between their target organs. These findings will help determine RBE by ICRP for preventing tissue reactions.
Collapse
Affiliation(s)
- Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Shirakata 2-4, Tokai, Ibaraki 319-1195, Japan
- Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047, Japan
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Shirakata 2-4, Tokai, Ibaraki 319-1195, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Nobuyuki Hamada
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Iwado-kita 2-11-1, Komae, Tokyo 201-8511, Japan
| |
Collapse
|
6
|
Nguyen MTH, Imanishi M, Li S, Chau K, Banerjee P, Velatooru LR, Ko KA, Samanthapudi VSK, Gi YJ, Lee LL, Abe RJ, McBeath E, Deswal A, Lin SH, Palaskas NL, Dantzer R, Fujiwara K, Borchrdt MK, Turcios EB, Olmsted-Davis EA, Kotla S, Cooke JP, Wang G, Abe JI, Le NT. Endothelial activation and fibrotic changes are impeded by laminar flow-induced CHK1-SENP2 activity through mechanisms distinct from endothelial-to-mesenchymal cell transition. Front Cardiovasc Med 2023; 10:1187490. [PMID: 37711550 PMCID: PMC10499395 DOI: 10.3389/fcvm.2023.1187490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023] Open
Abstract
Background The deSUMOylase sentrin-specific isopeptidase 2 (SENP2) plays a crucial role in atheroprotection. However, the phosphorylation of SENP2 at T368 under disturbed flow (D-flow) conditions hinders its nuclear function and promotes endothelial cell (EC) activation. SUMOylation has been implicated in D-flow-induced endothelial-to-mesenchymal transition (endoMT), but the precise role of SENP2 in counteracting this process remains unclear. Method We developed a phospho-specific SENP2 S344 antibody and generated knock-in (KI) mice with a phospho-site mutation of SENP2 S344A using CRISPR/Cas9 technology. We then investigated the effects of SENP2 S344 phosphorylation under two distinct flow patterns and during hypercholesteremia (HC)-mediated EC activation. Result Our findings demonstrate that laminar flow (L-flow) induces phosphorylation of SENP2 at S344 through the activation of checkpoint kinase 1 (CHK1), leading to the inhibition of ERK5 and p53 SUMOylation and subsequent suppression of EC activation. We observed a significant increase in lipid-laden lesions in both the aortic arch (under D-flow) and descending aorta (under L-flow) of female hypercholesterolemic SENP2 S344A KI mice. In male hypercholesterolemic SENP2 S344A KI mice, larger lipid-laden lesions were only observed in the aortic arch area, suggesting a weaker HC-mediated atherogenesis in male mice compared to females. Ionizing radiation (IR) reduced CHK1 expression and SENP2 S344 phosphorylation, attenuating the pro-atherosclerotic effects observed in female SENP2 S344A KI mice after bone marrow transplantation (BMT), particularly in L-flow areas. The phospho-site mutation SENP2 S344A upregulates processes associated with EC activation, including inflammation, migration, and proliferation. Additionally, fibrotic changes and up-regulated expression of EC marker genes were observed. Apoptosis was augmented in ECs derived from the lungs of SENP2 S344A KI mice, primarily through the inhibition of ERK5-mediated expression of DNA damage-induced apoptosis suppressor (DDIAS). Summary In this study, we have revealed a novel mechanism underlying the suppressive effects of L-flow on EC inflammation, migration, proliferation, apoptosis, and fibrotic changes through promoting CHK1-induced SENP2 S344 phosphorylation. The phospho-site mutation SENP2 S344A responds to L-flow through a distinct mechanism, which involves the upregulation of both mesenchymal and EC marker genes.
Collapse
Affiliation(s)
- Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi, Vietnam
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shengyu Li
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Loka reddy Velatooru
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Young J. Gi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ling-Ling Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rei J. Abe
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elena McBeath
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mae K. Borchrdt
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Estefani Berrios Turcios
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
7
|
Azimzadeh O, Merl-Pham J, Subramanian V, Oleksenko K, Krumm F, Mancuso M, Pasquali E, Tanaka IB, Tanaka S, Atkinson MJ, Tapio S, Moertl S. Late Effects of Chronic Low Dose Rate Total Body Irradiation on the Heart Proteome of ApoE -/- Mice Resemble Premature Cardiac Ageing. Cancers (Basel) 2023; 15:3417. [PMID: 37444528 DOI: 10.3390/cancers15133417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Recent epidemiologic studies support an association between chronic low-dose radiation exposure and the development of cardiovascular disease (CVD). The molecular mechanisms underlying the adverse effect of chronic low dose exposure are not fully understood. To address this issue, we have investigated changes in the heart proteome of ApoE deficient (ApoE-/-) C57Bl/6 female mice chronically irradiated for 300 days at a very low dose rate (1 mGy/day) or at a low dose rate (20 mGy/day), resulting in cumulative whole-body doses of 0.3 Gy or 6.0 Gy, respectively. The heart proteomes were compared to those of age-matched sham-irradiated ApoE-/- mice using label-free quantitative proteomics. Radiation-induced proteome changes were further validated using immunoblotting, enzyme activity assays, immunohistochemistry or targeted transcriptomics. The analyses showed persistent alterations in the cardiac proteome at both dose rates; however, the effect was more pronounced following higher dose rates. The altered proteins were involved in cardiac energy metabolism, ECM remodelling, oxidative stress, and ageing signalling pathways. The changes in PPARα, SIRT, AMPK, and mTOR signalling pathways were found at both dose rates and in a dose-dependent manner, whereas more changes in glycolysis and ECM remodelling were detected at the lower dose rate. These data provide strong evidence for the possible risk of cardiac injury following chronic low dose irradiation and show that several affected pathways following chronic irradiation overlap with those of ageing-associated heart pathology.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Section of Radiation Biology, Federal Office of Radiation Protection (BfS), 85764 Nauenberg, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Munich, Germany
| | - Vikram Subramanian
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kateryna Oleksenko
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Franziska Krumm
- Section of Radiation Biology, Federal Office of Radiation Protection (BfS), 85764 Nauenberg, Germany
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00196 Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00196 Rome, Italy
| | - Ignacia B Tanaka
- Institute for Environmental Sciences (IES), Rokkasho, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Institute for Environmental Sciences (IES), Rokkasho, Aomori 039-3212, Japan
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Radiation Oncology, Klinikum rechts der Isar, Technical University, 80333 Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Simone Moertl
- Section of Radiation Biology, Federal Office of Radiation Protection (BfS), 85764 Nauenberg, Germany
| |
Collapse
|
8
|
Little MP, Azizova TV, Richardson DB, Tapio S, Bernier MO, Kreuzer M, Cucinotta FA, Bazyka D, Chumak V, Ivanov VK, Veiga LHS, Livinski A, Abalo K, Zablotska LB, Einstein AJ, Hamada N. Ionising radiation and cardiovascular disease: systematic review and meta-analysis. BMJ 2023; 380:e072924. [PMID: 36889791 PMCID: PMC10535030 DOI: 10.1136/bmj-2022-072924] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE To systematically review and perform a meta-analysis of radiation associated risks of cardiovascular disease in all groups exposed to radiation with individual radiation dose estimates. DESIGN Systematic review and meta-analysis. MAIN OUTCOME MEASURES Excess relative risk per unit dose (Gy), estimated by restricted maximum likelihood methods. DATA SOURCES PubMed and Medline, Embase, Scopus, Web of Science Core collection databases. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Databases were searched on 6 October 2022, with no limits on date of publication or language. Animal studies and studies without an abstract were excluded. RESULTS The meta-analysis yielded 93 relevant studies. Relative risk per Gy increased for all cardiovascular disease (excess relative risk per Gy of 0.11 (95% confidence interval 0.08 to 0.14)) and for the four major subtypes of cardiovascular disease (ischaemic heart disease, other heart disease, cerebrovascular disease, all other cardiovascular disease). However, interstudy heterogeneity was noted (P<0.05 for all endpoints except for other heart disease), possibly resulting from interstudy variation in unmeasured confounders or effect modifiers, which is markedly reduced if attention is restricted to higher quality studies or those at moderate doses (<0.5 Gy) or low dose rates (<5 mGy/h). For ischaemic heart disease and all cardiovascular disease, risks were larger per unit dose for lower dose (inverse dose effect) and for fractionated exposures (inverse dose fractionation effect). Population based excess absolute risks are estimated for a number of national populations (Canada, England and Wales, France, Germany, Japan, USA) and range from 2.33% per Gy (95% confidence interval 1.69% to 2.98%) for England and Wales to 3.66% per Gy (2.65% to 4.68%) for Germany, largely reflecting the underlying rates of cardiovascular disease mortality in these populations. Estimated risk of mortality from cardiovascular disease are generally dominated by cerebrovascular disease (around 0.94-1.26% per Gy), with the next largest contribution from ischaemic heart disease (around 0.30-1.20% per Gy). CONCLUSIONS Results provide evidence supporting a causal association between radiation exposure and cardiovascular disease at high dose, and to a lesser extent at low dose, with some indications of differences in risk between acute and chronic exposures, which require further investigation. The observed heterogeneity complicates a causal interpretation of these findings, although this heterogeneity is much reduced if only higher quality studies or those at moderate doses or low dose rates are considered. Studies are needed to assess in more detail modifications of radiation effect by lifestyle and medical risk factors. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020202036.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - David B Richardson
- Department of Environmental and Occupational Health, Irvine Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Soile Tapio
- Technische Universität München, Munich, Germany
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay aux Roses, France
| | | | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Vadim Chumak
- National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Victor K Ivanov
- Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk, Russia
| | - Lene H S Veiga
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - Kossi Abalo
- Department of Medicine Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
9
|
Samarth RM, Gandhi P, Chaudhury NK. Linear dose response of acrocentric chromosome associations to gamma irradiation in human lymphocytes. Strahlenther Onkol 2023; 199:182-191. [PMID: 35925202 DOI: 10.1007/s00066-022-01978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE The frequency of acrocentric chromosome associations (ACA) was studied to determine the possible dose-response relationship of gamma irradiation in human lymphocytes. METHODS Peripheral blood collected from three healthy donors was irradiated with 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 Gy of gamma radiation. Chromosomal preparations were made after 48 h of culture as per standard guidelines. The experiment was repeated three times, with a different donor each time. RESULTS The ACA frequency in irradiated lymphocytes increased with radiation dose. The D-G type of association was most prominent and showed a significant dose-dependent increase in frequency. The dose response of ACA frequency to radiation was found to be linear: ACA frequency = 0.2923 (±0.0276) + 0.1846 (±0.0307) × D (correlation coefficient r = 0.9442). As expected, dicentric chromosome (DC) frequencies followed the linear quadratic fit model, with DC frequency = 0.0015 (±0.0013) + 0.0220 (±0.0059) × D + 0.0215 (±0.0018) × D^2 (correlation coefficient r = 0.9982). A correlation curve was prepared for ACA frequency versus DC frequency, resulting in the regression equation y = 1.130x + 0.4051 (R2 = 0.7408; p = 0.0014). CONCLUSION Our results showed an increase in ACA frequency in irradiated lymphocytes with an increase in radiation dose; thus, ACA may serve as a candidate cytogenetic biomarker for radiation biodosimetry.
Collapse
Affiliation(s)
- Ravindra M Samarth
- Department of Research, ICMR-Bhopal Memorial Hospital & Research Centre (ICMR-BMHRC), Government of India, Raisen Bypass Road, 462038, Bhopal, India.
| | - Puneet Gandhi
- Department of Research, ICMR-Bhopal Memorial Hospital & Research Centre (ICMR-BMHRC), Government of India, Raisen Bypass Road, 462038, Bhopal, India
| | - Nabo Kumar Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine & Allied Sciences (INMAS), DRDO, 110054, Delhi, India
| |
Collapse
|
10
|
Liu XC, Zhou PK. Tissue Reactions and Mechanism in Cardiovascular Diseases Induced by Radiation. Int J Mol Sci 2022; 23:ijms232314786. [PMID: 36499111 PMCID: PMC9738833 DOI: 10.3390/ijms232314786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The long-term survival rate of cancer patients has been increasing as a result of advances in treatments and precise medical management. The evidence has accumulated that the incidence and mortality of non-cancer diseases have increased along with the increase in survival time and long-term survival rate of cancer patients after radiotherapy. The risk of cardiovascular disease as a radiation late effect of tissue damage reactions is becoming a critical challenge and attracts great concern. Epidemiological research and clinical trials have clearly shown the close association between the development of cardiovascular disease in long-term cancer survivors and radiation exposure. Experimental biological data also strongly supports the above statement. Cardiovascular diseases can occur decades post-irradiation, and from initiation and development to illness, there is a complicated process, including direct and indirect damage of endothelial cells by radiation, acute vasculitis with neutrophil invasion, endothelial dysfunction, altered permeability, tissue reactions, capillary-like network loss, and activation of coagulator mechanisms, fibrosis, and atherosclerosis. We summarize the most recent literature on the tissue reactions and mechanisms that contribute to the development of radiation-induced cardiovascular diseases (RICVD) and provide biological knowledge for building preventative strategies.
Collapse
|
11
|
Miller KB, Mi KL, Nelson GA, Norman RB, Patel ZS, Huff JL. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front Physiol 2022; 13:1008640. [PMID: 36388106 PMCID: PMC9640983 DOI: 10.3389/fphys.2022.1008640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 09/05/2023] Open
Abstract
Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.
Collapse
Affiliation(s)
| | | | - Gregory A. Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
| | - Zarana S. Patel
- NASA Johnson Space Center, Houston, TX, United States
- KBR Inc., Houston, TX, United States
| | - Janice L. Huff
- NASA Langley Research Center, Hampton, VA, United States
| |
Collapse
|
12
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
13
|
Lee SH, Jeong YJ, Park J, Kim HY, Son Y, Kim KS, Lee HJ. Low-Dose Radiation Affects Cardiovascular Disease Risk in Human Aortic Endothelial Cells by Altering Gene Expression under Normal and Diabetic Conditions. Int J Mol Sci 2022; 23:8577. [PMID: 35955709 PMCID: PMC9369411 DOI: 10.3390/ijms23158577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
High doses of ionizing radiation can cause cardiovascular diseases (CVDs); however, the effects of <100 mGy radiation on CVD remain underreported. Endothelial cells (ECs) play major roles in cardiovascular health and disease, and their function is reduced by stimuli such as chronic disease, metabolic disorders, and smoking. However, whether exposure to low-dose radiation results in the disruption of similar molecular mechanisms in ECs under diabetic and non-diabetic states remains largely unknown; we aimed to address this gap in knowledge through the molecular and functional characterization of primary human aortic endothelial cells (HAECs) derived from patients with type 2 diabetes (T2D-HAECs) and normal HAECs in response to low-dose radiation. To address these limitations, we performed RNA sequencing on HAECs and T2D-HAECs following exposure to 100 mGy of ionizing radiation and examined the transcriptome changes associated with the low-dose radiation. Compared with that in the non-irradiation group, low-dose irradiation induced 243 differentially expressed genes (DEGs) (133 down-regulated and 110 up-regulated) in HAECs and 378 DEGs (195 down-regulated and 183 up-regulated) in T2D-HAECs. We also discovered a significant association between the DEGs and the interferon (IFN)-I signaling pathway, which is associated with CVD by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein−protein network analysis, and module analysis. Our findings demonstrate the potential impact of low-dose radiation on EC functions that are related to the risk of CVD.
Collapse
Affiliation(s)
- Soo-Ho Lee
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Ye Ji Jeong
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Jeongwoo Park
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Hyun-Yong Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Yeonghoon Son
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Kwang Seok Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Hae-June Lee
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| |
Collapse
|
14
|
Thirumal R, Vanchiere C, Bhandari R, Jiwani S, Horswell R, Chu S, Chamaria S, Katikaneni P, Boerma M, Gopinathannair R, Olshansky B, Bailey S, Dominic P. The Inverse Correlation Between the Duration of Lifetime Occupational Radiation Exposure and the Prevalence of Atrial Arrhythmia. Front Cardiovasc Med 2022; 9:863939. [PMID: 35711353 PMCID: PMC9196104 DOI: 10.3389/fcvm.2022.863939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Advancements in fluoroscopy-assisted procedures have increased radiation exposure among cardiologists. Radiation has been linked to cardiovascular complications but its effect on cardiac rhythm, specifically, is underexplored. Methods Demographic, social, occupational, and medical history information was collected from board-certified cardiologists via an electronic survey. Bivariate and multivariable logistic regression analyses were performed to assess the risk of atrial arrhythmias (AA). Results We received 1,478 responses (8.8% response rate) from cardiologists, of whom 85.4% were male, and 66.1% were ≤65 years of age. Approximately 36% were interventional cardiologists and 16% were electrophysiologists. Cardiologists > 50 years of age, with > 10,000 hours (h) of radiation exposure, had a significantly lower prevalence of AA vs. those with ≤10,000 h (11.1% vs. 16.7%, p = 0.019). A multivariable logistic regression was performed and among cardiologists > 50 years of age, exposure to > 10,000 radiation hours was significantly associated with a lower likelihood of AA, after adjusting for age, sex, diabetes mellitus, hypertension, and obstructive sleep apnea (adjusted OR 0.57; 95% CI 0.38-0.85, p = 0.007). The traditional risk factors for AA (age, sex, hypertension, diabetes mellitus, and obstructive sleep apnea) correlated positively with AA in our data set. Cataracts, a well-established complication of radiation exposure, were more prevalent in those exposed to > 10,000 h of radiation vs. those exposed to ≤10,000 h of radiation, validating the dependent (AA) and independent variables (radiation exposure), respectively. Conclusion AA prevalence may be inversely associated with radiation exposure in Cardiologists based on self-reported data on diagnosis and radiation hours. Large-scale prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Rithika Thirumal
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Catherine Vanchiere
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Department of Internal Medicine, Temple University, Philadelphia, PA, United States
| | - Ruchi Bhandari
- Department of Epidemiology and Biostatistics, West Virginia University, Morgantown, WV, United States
| | - Sania Jiwani
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ronald Horswell
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - San Chu
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | | | - Pavan Katikaneni
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas Medical Center, Little Rock, AK, United States
| | - Rakesh Gopinathannair
- Department of Cardiology, Kansas City Heart Rhythm Institute, Overland Park, KS, United States
| | - Brian Olshansky
- Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Steven Bailey
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Paari Dominic
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
15
|
Gao J, Lan T, Zong X, Shi G, He S, Na Chen, Cui F, Tu Y. Analysis of circRNA-miRNA-mRNA Regulatory Network in Peripheral Blood of Radiation Workers. Dose Response 2022; 20:15593258221088745. [PMID: 35521437 PMCID: PMC9067054 DOI: 10.1177/15593258221088745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022]
Abstract
The health of radiation workers has always been our focus. Epidemiological investigation shows that long-term exposure to low-dose ionizing radiation can affect human health, especially cancer and cardiovascular disease, and there are many studies on it. However, up to now, there have been few reports on the research of blood and biological samples from radiation workers. In this study, radiation workers and healthy control groups were strictly screened, and the transcriptome of mRNA and circRNA was sequenced by extracting their peripheral venous blood. At the same time, appropriate data sets were selected in the GEO database for bioinformatics analysis, and circRNA-miRNA-mRNA network was constructed. We identified 9 different circular ribonucleic acids, 3 tiny ribonucleic acids, and 2 central genes (NOD 2 and IRF 7). These differentially expressed genes and non-coding RNA are closely related to ionizing radiation damage, and play an important role as biological markers. In conclusion, this study may provide new insights into the role of the circRNA-miRNA-mRNA regulatory network in the health of radiation workers, and provides a new strategy for the future study of radiation biology.
Collapse
Affiliation(s)
- Jin Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Tinxi Lan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Xumin Zong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Gensheng Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Shuqing He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
16
|
Xu P, Yi Y, Luo Y, Liu Z, Xu Y, Cai J, Zeng Z, Liu A. Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues. Mol Med Rep 2021; 24:842. [PMID: 34633055 PMCID: PMC8524410 DOI: 10.3892/mmr.2021.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Thoracic radiotherapy increases the risk of radiation‑induced heart damage (RIHD); however, the molecular mechanisms underlying these changes are not fully understood. The aim of the present study was to investigate the effects of radiation on the mouse heart using high‑throughput proteomics. Male C57BL/6J mice were used to establish a model of RIHD by exposing the entire heart to 16 Gy high‑energy X‑rays, and cardiac injuries were verified using a cardiac echocardiogram, as well as by measuring serum brain natriuretic peptide levels and conducting H&E and Masson staining 5 months after irradiation. Proteomics experiments were performed using the heart apex of 5‑month irradiated mice and control mice that underwent sham‑irradiation. The most significantly differentially expressed proteins were enriched in 'cardiac fibrosis' and 'energy metabolism'. Next, the cardiac fibrosis and changes to energy metabolism were confirmed using immunohistochemistry staining and western blotting. Extracellular matrix proteins, such as collagen type 1 α 1 chain, collagen type III α 1 chain, vimentin and CCCTC‑binding factor, along with metabolism‑related proteins, such as fatty acid synthase and solute carrier family 25 member 1, exhibited upregulated expression following exposure to ionizing radiation. Additionally, the myocardial mitochondria inner membranes were injured, along with a decrease in ATP levels and the accumulation of lactic acid in the irradiated heart tissues. These results suggest that the high doses of ionizing radiation used lead to structural remodeling, functional injury and fibrotic alterations in the mouse heart. Radiation‑induced mitochondrial damage and metabolic alterations of the cardiac tissue may thus be a pathogenic mechanism of RIHD.
Collapse
Affiliation(s)
- Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yali Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yijing Luo
- Department of Clinical Medicine, The First Clinical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Zhicheng Liu
- Department of Clinical Medicine, The First Clinical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yilin Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Chauhan V, Hamada N, Monceau V, Ebrahimian T, Adam N, Wilkins RC, Sebastian S, Patel ZS, Huff JL, Simonetto C, Iwasaki T, Kaiser JC, Salomaa S, Moertl S, Azimzadeh O. Expert consultation is vital for adverse outcome pathway development: a case example of cardiovascular effects of ionizing radiation. Int J Radiat Biol 2021; 97:1516-1525. [PMID: 34402738 DOI: 10.1080/09553002.2021.1969466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The circulatory system distributes nutrients, signaling molecules, and immune cells to vital organs and soft tissues. Epidemiological, animal, and in vitro cellular mechanistic studies have highlighted that exposure to ionizing radiation (IR) can induce molecular changes in cellular and subcellular milieus leading to long-term health impacts, particularly on the circulatory system. Although the mechanisms for the pathologies are not fully elucidated, endothelial dysfunction is proven to be a critical event via radiation-induced oxidative stress mediators. To delineate connectivities of events specifically to cardiovascular disease (CVD) initiation and progression, the adverse outcome pathway (AOP) approach was used with consultation from field experts. AOPs are a means to organize information around a disease of interest to a regulatory question. An AOP begins with a molecular initiating event and ends in an adverse outcome via sequential linkages of key event relationships that are supported by evidence in the form of the modified Bradford-Hill criteria. Detailed guidelines on building AOPs are provided by the Organisation for Economic Cooperation and Development (OECD) AOP program. Here, we report on the questions and discussions needed to develop an AOP for CVD resulting from IR exposure. A recent workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations brought together experts from the OECD to present the AOP approach and tools with examples from the toxicology field. As part of this workshop, four working groups were formed to discuss the identification of adverse outcomes relevant to radiation exposures and development of potential AOPs, one of which was focused on IR-induced cardiovascular effects. Each working group comprised subject matter experts and radiation researchers interested in the specific disease area and included an AOP coach. CONCLUSION The CVD working group identified the critical questions of interest for AOP development, including the exposure scenario that would inform the evidence, the mechanisms of toxicity, the initiating event, intermediate key events/relationships, and the type of data currently available. This commentary describes the four-day discussion of the CVD working group, its outcomes, and demonstrates how collaboration and expert consultation is vital to informing AOP construction.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Virginie Monceau
- Institute of Radiation and Nuclear Safety (IRSN), Radiotoxicology and Radiobiology Research Laboratory (LRTOX), Fontenay-Aux-Roses, France
| | - Teni Ebrahimian
- Institute of Radiation and Nuclear Safety (IRSN), Radiotoxicology and Radiobiology Research Laboratory (LRTOX), Fontenay-Aux-Roses, France
| | - Nadine Adam
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Bureau, Health Canada, Ottawa, Canada
| | - Soji Sebastian
- Radiobiology, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Zarana S Patel
- KBR Inc, Houston, TX, USA.,NASA Johnson Space Center, Houston, TX, USA
| | | | - Cristoforo Simonetto
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), Neuherberg, Germany
| | - Toshiyasu Iwasaki
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), Neuherberg, Germany
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Simone Moertl
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Omid Azimzadeh
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| |
Collapse
|
18
|
Oslina D, Rybkina V, Adamova G, Zhuntova G, Bannikova M, Azizova T. Biomarkers of Atherosclerotic Vascular Disease in Workers Chronically Exposed to Ionizing Radiation. HEALTH PHYSICS 2021; 121:92-101. [PMID: 33867435 DOI: 10.1097/hp.0000000000001416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
ABSTRACT It is well established that cohorts of individuals exposed to ionizing radiation demonstrate increased risks of cardio- and cerebrovascular diseases. However, mechanisms of these radiation-induced diseases developing in individuals exposed to ionizing radiation remain unclear. To identify biomarkers of the atherosclerotic vessel damage in workers chronically exposed to ionizing radiation, this study considered 49 workers of the Russian nuclear production facility-the Mayak Production Association (mean age of 68.73 ± 6.92 years)-and 38 unexposed individuals (mean age of 68.84 ± 6.20 y) who had never been exposed to ionizing radiation (control). All workers were chronically exposed to combined radiation (external gamma rays and internal alpha particles). The mean cumulative liver absorbed dose from external gamma-ray exposure was 0.18 ± 0.12 Gy; the mean cumulative liver absorbed dose from internal alpha-particles was 0.14 ± 0.21 Gy. Levels of biomarkers in blood serum of the study participants were measured using the ELISA method. Elevated levels of apolipoprotein B, superoxide dismutase, monocyte chemoattractant protein 1, vascular cell adhesion protein 1, and a decreased level of endothelin-1 were observed in blood serum of Mayak PA workers chronically exposed to combined radiation compared to control individuals. A significant positive correlation was demonstrated between the vascular cell adhesion protein 1 level and cumulative liver absorbed doses from external gamma radiation and internal alpha radiation. Findings of the study suggest that molecular changes in blood of individuals occupationally exposed to ionizing radiation (combined internal exposure to alpha particles and external exposure to gamma rays) may indicate dyslipidemia, oxidative stress, inflammation, and endothelial dysfunction involved in atherosclerosis development.
Collapse
Affiliation(s)
- Darya Oslina
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation, Ozyorskoe shosse 19, Ozyorsk Chelyabinsk Region, 456780 Russia
| | | | | | | | | | | |
Collapse
|
19
|
Choi YY, Kim A, Seong KM. Chronic radiation exposure aggravates atherosclerosis by stimulating neutrophil infiltration. Int J Radiat Biol 2021; 97:1270-1281. [PMID: 34032557 DOI: 10.1080/09553002.2021.1934750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation exposure is known to increase the risk of chronic inflammatory diseases, such as atherosclerosis, by modulating inflammation. METHODS To investigate the infiltration of leukocytes in radiation-aggravated atherosclerosis, we examined low-density lipoprotein receptor-deficient (Ldlr-/-) mice and C57BL/6j mice after exposure to 0.5 or 1 Gy radiation over 16 weeks. RESULTS We found that radiation exposure induced atherosclerosis development in Ldlr-/- mice, as demonstrated by increased lipid-laden plaque size, reactive oxygen species levels, and levels of the pro-inflammatory cytokines, IL-1β and TNF-α, in the aortas and spleens. Total plasma cholesterol, triglyceride, and LDL cholesterol levels were also increased by radiation exposure, along with cardiovascular risk. We also showed dose-dependent increases in neutrophils and monocytes that coincided with a reduction in lymphocytes in the spleens of Ldlr-/- mice. The correlation between the infiltration of leukocytes and cytokine production was also confirmed in the hearts and spleens of these mice. CONCLUSIONS We concluded that chronic radiation exposure increased the production of pro-inflammatory mediators, which was associated with the migration of neutrophils and inflammatory monocytes into sites of atherosclerosis. Thus, our data suggest that the accumulation of neutrophils and inflammatory monocytes, together with the reduction of lymphocytes, contribute to aggravated atherosclerosis in Ldlr-/- mice under prolonged exposure to radiation.
Collapse
Affiliation(s)
- You Yeon Choi
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| |
Collapse
|
20
|
X‑irradiation induces acute and early term inflammatory responses in atherosclerosis‑prone ApoE‑/‑ mice and in endothelial cells. Mol Med Rep 2021; 23:399. [PMID: 33786610 PMCID: PMC8025474 DOI: 10.3892/mmr.2021.12038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
Thoracic radiotherapy is an effective treatment for many types of cancer; however it is also associated with an increased risk of developing cardiovascular disease (CVD), appearing mainly ≥10 years after radiation exposure. The present study investigated acute and early term physiological and molecular changes in the cardiovascular system after ionizing radiation exposure. Female and male ApoE‑/‑ mice received a single exposure of low or high dose X‑ray thoracic irradiation (0.1 and 10 Gy). The level of cholesterol and triglycerides, as well as a large panel of inflammatory markers, were analyzed in serum samples obtained at 24 h and 1 month after irradiation. The secretion of inflammatory markers was further verified in vitro in coronary artery and microvascular endothelial cell lines after exposure to low and high dose of ionizing radiation (0.1 and 5 Gy). Local thoracic irradiation of ApoE‑/‑ mice increased serum growth differentiation factor‑15 (GDF‑15) and C‑X‑C motif chemokine ligand 10 (CXCL10) levels in both female and male mice 24 h after high dose irradiation, which were also secreted from coronary artery and microvascular endothelial cells in vitro. Sex‑specific responses were observed for triglyceride and cholesterol levels, and some of the assessed inflammatory markers as detailed below. Male ApoE‑/‑ mice demonstrated elevated intercellular adhesion molecule‑1 and P‑selectin at 24 h, and adiponectin and plasminogen activator inhibitor‑1 at 1 month after irradiation, while female ApoE‑/‑ mice exhibited decreased monocyte chemoattractant protein‑1 and urokinase‑type plasminogen activator receptor at 24 h, and basic fibroblast growth factor 1 month after irradiation. The inflammatory responses were mainly significant following high dose irradiation, but certain markers showed significant changes after low dose exposure. The present study revealed that acute/early inflammatory responses occurred after low and high dose thoracic irradiation. However, further research is required to elucidate early asymptomatic changes in the cardiovascular system post thoracic X‑irradiation and to investigate whether GDF‑15 and CXCL10 could be considered as potential biomarkers for the early detection of CVD risk in thoracic radiotherapy‑treated patients.
Collapse
|
21
|
Alsbeih GA, Al-Hadyan KS, Al-Harbi NM, Bin Judia SS, Moftah BA. Establishing a Reference Dose-Response Calibration Curve for Dicentric Chromosome Aberrations to Assess Accidental Radiation Exposure in Saudi Arabia. Front Public Health 2021; 8:599194. [PMID: 33425838 PMCID: PMC7793750 DOI: 10.3389/fpubh.2020.599194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
In cases of nuclear and radiological accidents, public health and emergency response need to assess the magnitude of radiation exposure regardless of whether they arise from disaster, negligence, or deliberate act. Here we report the establishment of a national reference dose–response calibration curve (DRCC) for dicentric chromosome (DC), prerequisite to assess radiation doses received in accidental exposures. Peripheral blood samples were collected from 10 volunteers (aged 20–40 years, median = 29 years) of both sexes (three females and seven males). Blood samples, cytogenetic preparation, and analysis followed the International Atomic Energy Agency EPR-Biodosimetry 2011 report. Irradiations were performed using 320 kVp X-rays. Metafer system was used for automated and assisted (elimination of false-positives and inclusion of true-positives) metaphases findings and DC scoring. DC yields were fit to a linear–quadratic model. Results of the assisted DRCC showed some variations among individuals that were not statistically significant (homogeneity test, P = 0.66). There was no effect of age or sex (P > 0.05). To obtain representative national DRCC, data of all volunteers were pooled together and analyzed. The fitted parameters of the radiation-induced DC curve were as follows: Y = 0.0020 (±0.0002) + 0.0369 (±0.0019) *D + 0.0689 (±0.0009) *D2. The high significance of the fitted coefficients (z-test, P < 0.0001), along with the close to 1.0 p-value of the Poisson-based goodness of fit (χ2 = 3.51, degrees of freedom = 7, P = 0.83), indicated excellent fitting with no trend toward lack of fit. The curve was in the middle range of DRCCs published in other populations. The automated DRCC over and under estimated DCs at low (<1 Gy) and high (>2 Gy) doses, respectively, with a significant lack of goodness of fit (P < 0.0001). In conclusion, we have established the reference DRCC for DCs induced by 320 kVp X-rays. There was no effect of age or sex in this cohort of 10 young adults. Although the calibration curve obtained by the automated (unsupervised) scoring misrepresented dicentric yields at low and high doses, it can potentially be useful for triage mode to segregate between false-positive and near 2-Gy exposures from seriously irradiated individuals who require hospitalization.
Collapse
Affiliation(s)
- Ghazi A Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled S Al-Hadyan
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Najla M Al-Harbi
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sara S Bin Judia
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Belal A Moftah
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
The role of connexin proteins and their channels in radiation-induced atherosclerosis. Cell Mol Life Sci 2021; 78:3087-3103. [PMID: 33388835 PMCID: PMC8038956 DOI: 10.1007/s00018-020-03716-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.
Collapse
|
23
|
Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. Ionizing radiation-induced circulatory and metabolic diseases. ENVIRONMENT INTERNATIONAL 2021; 146:106235. [PMID: 33157375 PMCID: PMC10686049 DOI: 10.1016/j.envint.2020.106235] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
Risks to health are the prime consideration in all human situations of ionizing radiation exposure and therefore of relevance to radiation protection in all occupational, medical, and public exposure situations. Over the past few decades, advances in therapeutic strategies have led to significant improvements in cancer survival rates. However, a wide range of long-term complications have been reported in cancer survivors, in particular circulatory diseases and their major risk factors, metabolic diseases. However, at lower levels of exposure, the evidence is less clear. Under real-life exposure scenarios, including radiotherapy, radiation effects in the whole organism will be determined mainly by the response of normal tissues receiving relatively low doses, and will be mediated and moderated by systemic effects. Therefore, there is an urgent need for further research on the impact of low-dose radiation. In this article, we review radiation-associated risks of circulatory and metabolic diseases in clinical, occupational or environmental exposure situations, addressing epidemiological, biological, risk modelling, and systems biology aspects, highlight the gaps in knowledge and discuss future directions to address these gaps.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), MD, USA
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Mol, Belgium
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020; 6:33. [PMID: 33298950 PMCID: PMC7645687 DOI: 10.1038/s41526-020-00124-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
NASA's plans for space exploration include a return to the Moon to stay-boots back on the lunar surface with an orbital outpost. This station will be a launch point for voyages to destinations further away in our solar system, including journeys to the red planet Mars. To ensure success of these missions, health and performance risks associated with the unique hazards of spaceflight must be adequately controlled. These hazards-space radiation, altered gravity fields, isolation and confinement, closed environments, and distance from Earth-are linked with over 30 human health risks as documented by NASA's Human Research Program. The programmatic goal is to develop the tools and technologies to adequately mitigate, control, or accept these risks. The risks ranked as "red" have the highest priority based on both the likelihood of occurrence and the severity of their impact on human health, performance in mission, and long-term quality of life. These include: (1) space radiation health effects of cancer, cardiovascular disease, and cognitive decrements (2) Spaceflight-Associated Neuro-ocular Syndrome (3) behavioral health and performance decrements, and (4) inadequate food and nutrition. Evaluation of the hazards and risks in terms of the space exposome-the total sum of spaceflight and lifetime exposures and how they relate to genetics and determine the whole-body outcome-will provide a comprehensive picture of risk profiles for individual astronauts. In this review, we provide a primer on these "red" risks for the research community. The aim is to inform the development of studies and projects with high potential for generating both new knowledge and technologies to assist with mitigating multisystem risks to crew health during exploratory missions.
Collapse
Affiliation(s)
- Zarana S Patel
- KBR, Houston, TX, USA.
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA.
| | | | | | | | - Sara R Zwart
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Scott M Smith
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA
| | | |
Collapse
|
25
|
Aumalikova M, Bakhtin M, Кazymbet P, Zhumadilov К, Altaeva N, Ibrayeva D, Shishkina E. Site-specific concentration of uranium in urine of workers of the hydrometallurgical plant of Stepnogorsk mining and chemical combine. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:703-710. [PMID: 32970165 DOI: 10.1007/s00411-020-00874-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Radiation monitoring is an important radiation safety measure implemented at the hydrometallurgical plant of the Stepnogorsk mining and chemical combine (HMP SMCC, Republic of Kazakhstan). Follow-up of the workers and their regular medical examinations has laid the basis to create a cohort with the potential to be used in radiation epidemiology. The aim of current pilot study was to analyze the dose forming factors for workers of HMP SMCC. For this, bioassays samples collected from 54 workers employed at eight HMP workshops were measured using the "Agilent 7800 ICP-MS" mass spectrometer. Three years later, measurements were repeated for four workers with the highest concentrations of uranium in urine. The results of site-specific measurements of dose rates, long-lived alpha-particle activity concentrations and equivalent equilibrium volume activity of radon were derived from the archive of the HMP SMCC Service of Radiation and Toxic Safety and analyzed to fully evaluate the radiation situation at those workplaces. Maximum urine uranium concentrations were measured for workers at the extraction workshop and mechanical repair shop (up to 26.7 µg/L and 14.6 µg/L, respectively). Urinary uranium from workers employed at other sites was mainly (for about 72% of the samples) in the range of values that may occur in natural conditions (< 0.4 µg/L). A wide individual variability in uranium concentration in urine samples (from 60% to 200% of CV) was found. A linear dependence of cumulative effective dose on work experience was found with a slope of 7.5 mSv per year. This slope did not depend on working place. For the investigated workers, cumulative effective doses of workers were found in the range of low (< 100 mSv) and medium doses (100-500 mSv). It is concluded that the newly created cohort of HMP SMCC workers has the potential to improve the knowledge on health effects from low- and medium doses of ionizing radiation.
Collapse
Affiliation(s)
- Moldir Aumalikova
- L. N. Gumilyov Eurasian National University, Munaitpasova Str. 13, 010008, Nur-Sultan, Kazakhstan.
- Institute of Radiobiology and Radiation Protection NJSC "Astana Medical University", Beibitshilik Str. 49, 010000, Nur-Sultan, Kazakhstan.
| | - Meirat Bakhtin
- Institute of Radiobiology and Radiation Protection NJSC "Astana Medical University", Beibitshilik Str. 49, 010000, Nur-Sultan, Kazakhstan
| | - Polat Кazymbet
- Institute of Radiobiology and Radiation Protection NJSC "Astana Medical University", Beibitshilik Str. 49, 010000, Nur-Sultan, Kazakhstan
| | - Кassym Zhumadilov
- L. N. Gumilyov Eurasian National University, Munaitpasova Str. 13, 010008, Nur-Sultan, Kazakhstan
| | - Nursulu Altaeva
- Department of Molecular Biology, Histology, Cytology and Genetics NJSC "Astana Medical University", Beibitshilik Str. 49, 010000, Nur-Sultan, Kazakhstan
| | - Danara Ibrayeva
- L. N. Gumilyov Eurasian National University, Munaitpasova Str. 13, 010008, Nur-Sultan, Kazakhstan
- Institute of Radiobiology and Radiation Protection NJSC "Astana Medical University", Beibitshilik Str. 49, 010000, Nur-Sultan, Kazakhstan
| | - Elena Shishkina
- Ural Research Center for Radiation Medicine, Vorovsky Str. 68A, 454076, Chelyabinsk, Russia
- Chelyabinsk State University, Bratiev Kashirinykh St 129, 454001, Chelyabinsk, Russia
| |
Collapse
|
26
|
Shin E, Lee S, Kang H, Kim J, Kim K, Youn H, Jin YW, Seo S, Youn B. Organ-Specific Effects of Low Dose Radiation Exposure: A Comprehensive Review. Front Genet 2020; 11:566244. [PMID: 33133150 PMCID: PMC7565684 DOI: 10.3389/fgene.2020.566244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Kyeongmin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
27
|
Peralta AA, Link MS, Schwartz J, Luttmann-Gibson H, Dockery DW, Blomberg A, Wei Y, Mittleman MA, Gold DR, Laden F, Coull BA, Koutrakis P. Exposure to Air Pollution and Particle Radioactivity With the Risk of Ventricular Arrhythmias. Circulation 2020; 142:858-867. [PMID: 32795087 PMCID: PMC7484430 DOI: 10.1161/circulationaha.120.046321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Individuals are exposed to air pollution and ionizing radiation from natural sources through inhalation of particles. This study investigates the association between cardiac arrhythmias and short-term exposures to fine particulate matter (particulate matter ≤2.5 µm aerodynamic diameter; PM2.5) and particle radioactivity. METHODS Ventricular arrhythmic events were identified among 176 patients with dual-chamber implanted cardioverter-defibrillators in Boston, Massachusetts between September 2006 and June 2010. Patients were assigned exposures based on residential addresses. Daily PM2.5 levels were estimated at 1-km×1-km grid cells from a previously validated prediction model. Particle gross β activity was used as a surrogate for particle radioactivity and was measured from several monitoring sites by the US Environmental Protection Agency's monitoring network. The association of the onset of ventricular arrhythmias (VA) with 0- to 21-day moving averages of PM2.5 and particle radioactivity (2 single-pollutant models and a 2-pollutant model) before the event was examined using time-stratified case-crossover analyses, adjusted for dew point and air temperatures. RESULTS A total of 1,050 VA were recorded among 91 patients, including 123 sustained VA among 25 of these patients. In the single-pollutant model of PM2.5, each interquartile range increase in daily PM2.5 levels for a 21-day moving average was associated with 39% higher odds of a VA event (95% CI, 12%-72%). In the single-pollutant model of particle radioactivity, each interquartile range increase in particle radioactivity for a 2-day moving average was associated with 13% higher odds of a VA event (95% CI, 1%-26%). In the 2-pollutant model, for the same averaging window of 21 days, each interquartile range increase in daily PM2.5 was associated with an 48% higher odds of a VA event (95% CI, 15%-90%), and each interquartile range increase of particle radioactivity with a 10% lower odds of a VA event (95% CI, -29% to 14%). We found that with higher levels of particle radioactivity, the effect of PM2.5 on VAs is reduced. CONCLUSIONS In this high-risk population, intermediate (21-day) PM2.5 exposure was associated with higher odds of a VA event onset among patients with known cardiac disease and indication for implanted cardioverter-defibrillator implantation independently of particle radioactivity.
Collapse
Affiliation(s)
- Adjani A. Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Mark S. Link
- UTSouthwestern Medical Center, Department of Internal Medicine, Division of Cardiology, Cardiac Arrhythmia Service, Dallas, TX
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Douglas W. Dockery
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Annelise Blomberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Murray A. Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Cardiovascular Epidemiology Research Unit, Beth Israel Deaconess Medical Center, Boston, MA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
28
|
Ramadan R, Vromans E, Anang DC, Goetschalckx I, Hoorelbeke D, Decrock E, Baatout S, Leybaert L, Aerts A. Connexin43 Hemichannel Targeting With TAT-Gap19 Alleviates Radiation-Induced Endothelial Cell Damage. Front Pharmacol 2020; 11:212. [PMID: 32210810 PMCID: PMC7066501 DOI: 10.3389/fphar.2020.00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence indicates an excess risk of late occurring cardiovascular diseases, especially atherosclerosis, after thoracic cancer radiotherapy. Ionizing radiation (IR) induces cellular effects which may induce endothelial cell dysfunction, an early marker for atherosclerosis. In addition, intercellular communication through channels composed of transmembrane connexin proteins (Cxs), i.e. Gap junctions (direct cell-cell coupling) and hemichannels (paracrine release/uptake pathway) can modulate radiation-induced responses and therefore the atherosclerotic process. However, the role of endothelial hemichannel in IR-induced atherosclerosis has never been described before. MATERIALS AND METHODS Telomerase-immortalized human Coronary Artery/Microvascular Endothelial cells (TICAE/TIME) were exposed to X-rays (0.1 and 5 Gy). Production of reactive oxygen species (ROS), DNA damage, cell death, inflammatory responses, and senescence were assessed with or without applying a Cx43 hemichannel blocker (TAT-Gap19). RESULTS We report here that IR induces an increase in oxidative stress, cell death, inflammatory responses (IL-8, IL-1β, VCAM-1, MCP-1, and Endothelin-1) and premature cellular senescence in TICAE and TIME cells. These effects are significantly reduced in the presence of the Cx43 hemichannel-targeting peptide TAT-Gap19. CONCLUSION Our findings suggest that endothelial Cx43 hemichannels contribute to various IR-induced processes, such as ROS, cell death, inflammation, and senescence, resulting in an increase in endothelial cell damage, which could be protected by blocking these hemichannels. Thus, targeting Cx43 hemichannels may potentially exert radioprotective effects.
Collapse
Affiliation(s)
- Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Els Vromans
- Centre for Environmental Health Sciences, Hasselt University, Hasselt, Belgium
| | - Dornatien Chuo Anang
- Biomedical Research Institute and Transnational University of Limburg, Hasselt University, Hasselt, Belgium
| | - Ines Goetschalckx
- Protein Chemistry, Proteomics and Epigenetic Signaling Group, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Hoorelbeke
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Elke Decrock
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
29
|
Aristizábal JM. Riesgo cardiovascular relacionado con la radiación ionizante. REVISTA COLOMBIANA DE CARDIOLOGÍA 2020. [DOI: 10.1016/j.rccar.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Schöllnberger H, Kaiser JC, Eidemüller M, Zablotska LB. Radio-biologically motivated modeling of radiation risks of mortality from ischemic heart diseases in the Canadian fluoroscopy cohort study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:63-78. [PMID: 31781840 DOI: 10.1007/s00411-019-00819-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Recent analyses of the Canadian fluoroscopy cohort study reported significantly increased radiation risks of mortality from ischemic heart diseases (IHD) with a linear dose-response adjusted for dose fractionation. This cohort includes 63,707 tuberculosis patients from Canada who were exposed to low-to-moderate dose fractionated X-rays in 1930s-1950s and were followed-up for death from non-cancer causes during 1950-1987. In the current analysis, we scrutinized the assumption of linearity by analyzing a series of radio-biologically motivated nonlinear dose-response models to get a better understanding of the impact of radiation damage on IHD. The models were weighted according to their quality of fit and were then mathematically superposed applying the multi-model inference (MMI) technique. Our results indicated an essentially linear dose-response relationship for IHD mortality at low and medium doses and a supra-linear relationship at higher doses (> 1.5 Gy). At 5 Gy, the estimated radiation risks were fivefold higher compared to the linear no-threshold (LNT) model. This is the largest study of patients exposed to fractionated low-to-moderate doses of radiation. Our analyses confirm previously reported significantly increased radiation risks of IHD from doses similar to those from diagnostic radiation procedures.
Collapse
Affiliation(s)
- Helmut Schöllnberger
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Division UR-Environmental Radioactivity, Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Jan Christian Kaiser
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Markus Eidemüller
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| |
Collapse
|
31
|
Gramatyka M, Sokół M. Radiation metabolomics in the quest of cardiotoxicity biomarkers: the review. Int J Radiat Biol 2020; 96:349-359. [PMID: 31976800 DOI: 10.1080/09553002.2020.1704299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Ionizing radiation is a risk factor to the whole organism, including the heart. Cardiac damage is considered to be a late effect of radiation exposure. While the acute cardiotoxicity of high doses is well characterized, the knowledge about nature and magnitude of the cardiac risk following lower doses exposure is incomplete. It has been shown that the cardiotoxic effects of radiation are source-, dose- and time-dependent. This paper provides an overview on these dependencies with regard to the molecular responses at the cellular and tissue levels. Main focus is put on the Nuclear Magnetic Resonance (NMR)-based and Mass Spectrometry (MS)-based metabolomic approaches in search of toxicity markers of relatively small doses of radiation.Conclusions: Available literature indicates that radiation exposure affects metabolites associated with: energy production, degradation of proteins and cell membranes, expression of proteins and stress response. Such effects are common for both animal and human studies. However, the specific metabolic response depends on several factors, including the examined organ. Radiation metabolomics can be used to explain the mechanisms of development of radiation-induced heart disease and to find an organ-specific biomarker of radiation exposure. The main aim of this review was to collect the information on the human cardiotoxicity biomarkers. In addition it also summarizes results of the studies on the metabolic responses to ionizing radiation for other organs, as well as the comparative data concerning animal studies.
Collapse
Affiliation(s)
- Michalina Gramatyka
- Department of Medical Physics, Maria Sklodowska-Curie Memorial Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie Memorial Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
32
|
Seibold P, Auvinen A, Averbeck D, Bourguignon M, Hartikainen JM, Hoeschen C, Laurent O, Noël G, Sabatier L, Salomaa S, Blettner M. Clinical and epidemiological observations on individual radiation sensitivity and susceptibility. Int J Radiat Biol 2019; 96:324-339. [PMID: 31539290 DOI: 10.1080/09553002.2019.1665209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: To summarize existing knowledge and to understand individual response to radiation exposure, the MELODI Association together with CONCERT European Joint Programme has organized a workshop in March 2018 on radiation sensitivity and susceptibility.Methods: The workshop reviewed the current evidence on this matter, to inform the MELODI Strategic Research Agenda (SRA), to determine social and scientific needs and to come up with recommendations for suitable and feasible future research initiatives to be taken for the benefit of an improved medical diagnosis and treatment as well as for radiation protection.Results: The present paper gives an overview of the current evidence in this field, including potential effect modifiers such as age, gender, genetic profile, and health status of the exposed population, based on clinical and epidemiological observations.Conclusion: The authors conclude with the following recommendations for the way forward in radiation research: (a) there is need for large (prospective) cohort studies; (b) build upon existing radiation research cohorts; (c) use data from well-defined cohorts with good exposure assessment and biological material already collected; (d) focus on study quality with standardized data collection and reporting; (e) improve statistical analysis; (f) cooperation between radiobiology and epidemiology; and (g) take consequences of radiosensitivity and radiosusceptibility into account.
Collapse
Affiliation(s)
- Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anssi Auvinen
- Faculty of Social Sciences, Tampere University, Tampere, Finland.,STUK - Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Dietrich Averbeck
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DRF, Fontenay-aux-Roses Cedex, France
| | - Michel Bourguignon
- Department of Biophysics, Université Paris Saclay (UVSQ), Versailles, France
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.,Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Christoph Hoeschen
- Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University, Magdeburg, Germany
| | - Olivier Laurent
- Laboratoire d'épidémiologie des Rayonnements Ionisants, Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LEPID, BP17, 92260, Fontenay aux Roses, France
| | - Georges Noël
- Département Universitaire de Radiothérapie, Centre Paul-Strauss, Unicancer, Strasbourg cedex, France
| | - Laure Sabatier
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DRF, Fontenay-aux-Roses Cedex, France
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University of Mainz, Mainz, Germany
| |
Collapse
|
33
|
Gomolka M, Blyth B, Bourguignon M, Badie C, Schmitz A, Talbot C, Hoeschen C, Salomaa S. Potential screening assays for individual radiation sensitivity and susceptibility and their current validation state. Int J Radiat Biol 2019; 96:280-296. [PMID: 31347938 DOI: 10.1080/09553002.2019.1642544] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: The workshop on 'Individual Radiosensitivity and Radiosusceptibility' organized by MELODI and CONCERT on Malta in 2018, evaluated the current state of assays to identify sensitive and susceptible subgroups. The authors provide an overview on potential screening assays detecting individuals showing moderate to severe early and late radiation reactions or are at increased risk to develop cancer upon radiation exposure.Conclusion: It is necessary to separate clearly between tissue reactions and stochastic effects such as cancer when comparing the existing literature to validate various test systems. Requirements for the assays are set up. The literature is reviewed for assays that are reliable and robust. Sensitivity and specificity of the assays are regarded and scrutinized for modifying factors. Accuracy of an assay system is required to be more than 90% to balance risks of adverse reactions against risk to fail to cure the cancer. No assay/biomarker is in routine use. Assays that have shown predictive potential for radiosensitivity include SNPs, the RILA assay, and the pATM assay. A tree of risk guideline for radiologists is provided to assist medical treatment decisions. Recommendations for effective research include the setup of common retrospective and prospective cohorts/biobanks to validate current and future tests.
Collapse
Affiliation(s)
- Maria Gomolka
- Federal Office for Radiation Protection, Neuherberg, Germany
| | - Benjamin Blyth
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department Centre for Radiation, Chemical and Environmental Hazards Public Health England, Didcot, United Kingdom
| | - Annette Schmitz
- Institut de Radiobiologie Cellulaire et Moléculaire, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Paris, France
| | - Christopher Talbot
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christoph Hoeschen
- Faculty of Electrical Engineering and Information Technology, Institute for Medical Technology, Otto-von-Guericke-University, Magdeburg, Germany
| | | |
Collapse
|
34
|
Ramadan R, Vromans E, Anang DC, Decrock E, Mysara M, Monsieurs P, Baatout S, Leybaert L, Aerts A. Single and fractionated ionizing radiation induce alterations in endothelial connexin expression and channel function. Sci Rep 2019; 9:4643. [PMID: 31217426 PMCID: PMC6584668 DOI: 10.1038/s41598-019-39317-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is an effective treatment for most tumor types. However, emerging evidence indicates an increased risk for atherosclerosis after ionizing radiation exposure, initiated by endothelial cell dysfunction. Interestingly, endothelial cells express connexin (Cx) proteins that are reported to exert proatherogenic as well as atheroprotective effects. Furthermore, Cxs form channels, gap junctions and hemichannels, that are involved in bystander signaling that leads to indirect radiation effects in non-exposed cells. We here aimed to investigate the consequences of endothelial cell irradiation on Cx expression and channel function. Telomerase immortalized human Coronary Artery/Microvascular Endothelial cells were exposed to single and fractionated X-rays. Several biological endpoints were investigated at different time points after exposure: Cx gene and protein expression, gap junctional dye coupling and hemichannel function. We demonstrate that single and fractionated irradiation induce upregulation of proatherogenic Cx43 and downregulation of atheroprotective Cx40 gene and protein levels in a dose-dependent manner. Single and fractionated irradiation furthermore increased gap junctional communication and induced hemichannel opening. Our findings indicate alterations in Cx expression that are typically observed in endothelial cells covering atherosclerotic plaques. The observed radiation-induced increase in Cx channel function may promote bystander signaling thereby exacerbating endothelial cell damage and atherogenesis.
Collapse
Affiliation(s)
- Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
- Department of Basic and Applied Medical Sciences, Physiology group, Ghent University, Ghent, Belgium
| | - Els Vromans
- Centre for Environmental Health Sciences, Hasselt University, Hasselt, Belgium
| | - Dornatien Chuo Anang
- Biomedical Research Institute and transnational university of Limburg, Hasselt University, Hasselt, Belgium
| | - Elke Decrock
- Department of Basic and Applied Medical Sciences, Physiology group, Ghent University, Ghent, Belgium
| | - Mohamed Mysara
- Microbiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Pieter Monsieurs
- Microbiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Physiology group, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium.
| |
Collapse
|
35
|
Schofield PN, Kulka U, Tapio S, Grosche B. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int J Radiat Biol 2019; 95:861-878. [DOI: 10.1080/09553002.2019.1589026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paul N. Schofield
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | | |
Collapse
|
36
|
Al Rashida VJM, Wang X, Myers OB, Boyce TW, Kocher E, Moreno M, Karr R, Ass'ad N, Cook LS, Sood A. Greater Odds for Angina in Uranium Miners Than Nonuranium Miners in New Mexico. J Occup Environ Med 2019; 61:1-7. [PMID: 30601436 PMCID: PMC6541557 DOI: 10.1097/jom.0000000000001482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of this study was to test the hypothesis that uranium miners in New Mexico (NM) have a greater prevalence of cardiovascular disease than miners who extracted the nonuranium ore. METHODS NM-based current and former uranium miners were compared with nonuranium miners by using cross-sectional standardized questionnaire data from the Mining Dust in the United States (MiDUS) study from 1989 to 2016. RESULTS Of the 7215 eligible miners, most were men (96.3%). Uranium miners (n = 3151, 43.7%) were older and diabetic, but less likely to currently smoke or use snuff (P ≤ 0.001 for all). After adjustment for covariates, uranium miners were more likely to report angina (odds ratio 1.51, 95% confidence interval 1.23 to 1.85) than nonuranium miners. CONCLUSION Our data suggest that along with screening for pulmonary diseases, uranium industry workers should be screened for cardiovascular diseases.
Collapse
Affiliation(s)
- Vanessa J M Al Rashida
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico (Drs al Rashida, Wang, Myers, Boyce, Kocher, Assad, Cook, Sood); Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (Dr al Rashida); and Black Lung Program, Miners' Colfax Medical Center, Raton, New Mexico (Moreno, Karr, Dr Sood)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Elgart SR, Little MP, Chappell LJ, Milder CM, Shavers MR, Huff JL, Patel ZS. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts. Sci Rep 2018; 8:8480. [PMID: 29855508 PMCID: PMC5981602 DOI: 10.1038/s41598-018-25467-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/17/2018] [Indexed: 12/04/2022] Open
Abstract
Understanding space radiation health effects is critical due to potential increased morbidity and mortality following spaceflight. We evaluated whether there is evidence for excess cardiovascular disease or cancer mortality in early NASA astronauts and if a correlation exists between space radiation exposure and mortality. Astronauts selected from 1959-1969 were included and followed until death or February 2017, with 39 of 73 individuals still alive at that time. Calculated standardized mortality rates for tested outcomes were significantly below U.S. white male population rates, including all-cardiovascular disease (n = 7, SMR = 33; 95% CI, 14-65) and all-cancer (n = 7, SMR = 43; 95% CI, 18-83), as anticipated in a healthy worker population. Space radiation doses for cohort members ranged from 0-78 mGy. No significant associations between space radiation dose and mortality were found using logistic regression with an internal reference group, adjusting for medical radiation. Statistical power of the logistic regression was <6%, remaining <12% even when expected risk level or observed deaths were assumed to be 10 times higher than currently reported. While no excess radiation-associated cardiovascular or cancer mortality risk was observed, findings must be tempered by the statistical limitations of this cohort; notwithstanding, this small unique cohort provides a foundation for assessment of astronaut health.
Collapse
Affiliation(s)
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, DHHS, NIH, Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | | | - Cato M Milder
- NASA Lyndon B. Johnson Space Center, Houston, Texas, USA
| | - Mark R Shavers
- KBRwyle, Science and Space Operations, Houston, Texas, USA
| | | | - Zarana S Patel
- KBRwyle, Science and Space Operations, Houston, Texas, USA.
| |
Collapse
|
39
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
40
|
Nyhan MM, Coull BA, Blomberg AJ, Vieira CLZ, Garshick E, Aba A, Vokonas P, Gold DR, Schwartz J, Koutrakis P. Associations Between Ambient Particle Radioactivity and Blood Pressure: The NAS (Normative Aging Study). J Am Heart Assoc 2018; 7:e008245. [PMID: 29545261 PMCID: PMC5907574 DOI: 10.1161/jaha.117.008245] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/13/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND The cardiovascular effects of low-level environmental radiation exposures are poorly understood. Although particulate matter (PM) has been linked to cardiovascular morbidity and mortality, and elevated blood pressure (BP), the properties promoting its toxicity remain uncertain. Addressing a knowledge gap, we evaluated whether BP increased with higher exposures to radioactive components of ambient PM, herein referred to as particle radioactivity (PR). METHODS AND RESULTS We performed a repeated-measures analysis of 852 men to examine associations between PR exposure and BP using mixed-effects regression models. As a surrogate for PR, we used gross β activity, measured by the US Environmental Protection Agency's radiation monitoring network. Higher PR exposure was associated with increases in both diastolic BP and systolic BP, for exposures from 1 to 28 days. An interquartile range increase in 28-day PR exposure was associated with a 2.95-mm Hg increase in diastolic BP (95% confidence interval, 2.25-3.66; P<0.001) and a 3.94-mm Hg increase in systolic BP (95% confidence interval, 2.62-5.27; P<0.001). For models including both PR and PM ≤2.5 µm, the PR-BP associations remained stable and significant. For models including PR and black carbon or PR and particle number, the PR-BP associations were attenuated; however, they remained significant for many exposure durations. CONCLUSIONS This is the first study to demonstrate the potential adverse effects of PR on both systolic and diastolic BPs. These were independent and similar in magnitude to those of PM ≤2.5 µm, black carbon, and particle number. Understanding the effects of particle-bound radionuclide exposures on BP may have important implications for environmental and public health policy.
Collapse
Affiliation(s)
- Marguerite M Nyhan
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
| | - Brent A Coull
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
| | | | - Carol L Z Vieira
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
| | - Eric Garshick
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, MA
| | - Abdulaziz Aba
- Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Pantel Vokonas
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, MA
| | - Diane R Gold
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Joel Schwartz
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA
| | - Petros Koutrakis
- Harvard T.H. Chan School of Public Health Harvard University, Boston, MA
| |
Collapse
|
41
|
Rage E, Caër-Lorho S, Laurier D. Low radon exposure and mortality among Jouac uranium miners: an update of the French cohort (1946-2007). JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:92-108. [PMID: 28925920 DOI: 10.1088/1361-6498/aa8d97] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
After the extension of the French cohort of uranium miners with the inclusion of workers employed in the Jouac mines, this article seeks to describe the new Jouac cohort and to estimate mortality risks, as well as to quantify their relation to radon exposure in this extended cohort. The Jouac cohort includes 458 miners hired by the Société des Mines de Jouac between 1957 and 2001. There is no measurement of radon exposure before 1978 and so no data were available. Consequently, only the post-1977 Jouac cohort (n = 314) has been included in the French cohort, creating an extended cohort of 5400 French uranium miners followed up from 1946 to 2007. Mortality analyses computed the standardised mortality ratios (SMRs). Excess relative risks (ERRs) were assessed using Poisson regression models. No evidence of a significant excess risk of overall mortality (n = 66, SMR = 0.93; 95% CI = 0.72-1.19) or any specific mortality was observed in the Jouac cohort. In the extended cohort, overall mortality did not increase, but a significant excess of deaths was observed for all cancers (SMR = 1.11, 95% CI = 1.03-1.19), lung cancer (SMR = 1.32, 95% CI = 1.14-1.51), and kidney cancer (SMR = 1.58, 95% CI = 1.01-2.35). Cumulative exposure to radon was 3.9 working level month (WLM) and 35.1 WLM in the post-1977 Jouac and extended cohorts, respectively. Cumulative radon exposure was significantly associated with an excess risk of death from lung cancer (ERR/100 WLM = 0.73, 95% CI = 0.32-1.33) and from cerebrovascular diseases (ERR/100 WLM = 0.42 95% CI = 0.04-1.04). In conclusion, the Jouac cohort is still a young cohort and its inclusion leads to slight modifications compared to previous analyses of the French cohort. The already known relation between radon exposure and lung cancer death as well as the excess risk of death from cerebrovascular diseases persisted in the extended cohort.
Collapse
Affiliation(s)
- Estelle Rage
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE, SESANE, LEPID, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
42
|
Kreuzer M, Auvinen A, Cardis E, Durante M, Harms-Ringdahl M, Jourdain JR, Madas BG, Ottolenghi A, Pazzaglia S, Prise KM, Quintens R, Sabatier L, Bouffler S. Multidisciplinary European Low Dose Initiative (MELODI): strategic research agenda for low dose radiation risk research. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:5-15. [PMID: 29247291 PMCID: PMC5816101 DOI: 10.1007/s00411-017-0726-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/10/2017] [Indexed: 05/05/2023]
Abstract
MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).
Collapse
Affiliation(s)
- M Kreuzer
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, BfS, Neuherberg, Germany.
| | - A Auvinen
- University of Tampere, Tampere, Finland
- STUK, Helsinki, Finland
| | - E Cardis
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - M Durante
- Institute for Fundamental Physics and Applications, TIFPA, Trento, Italy
| | - M Harms-Ringdahl
- Centre for Radiation Protection Research, Stockholm University, Stockholm, Sweden
| | - J R Jourdain
- Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses, France
| | - B G Madas
- Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| | - A Ottolenghi
- Physics Department, University of Pavia, Pavia, Italy
| | - S Pazzaglia
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - K M Prise
- Queens University Belfast, Belfast, UK
| | - R Quintens
- Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | - L Sabatier
- French Atomic Energy Commission, CEA, Paris, France
| | | |
Collapse
|
43
|
Schofield PN, Kondratowicz M. Evolving paradigms for the biological response to low dose ionizing radiation; the role of epigenetics. Int J Radiat Biol 2017; 94:769-781. [PMID: 29157078 DOI: 10.1080/09553002.2017.1388548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE In the late 1990s, it had become clear that the long-standing paradigm for the action of radiation on living cells and organisms did not have sufficient power to explain the observed effects of low dose ionizing radiation. The purpose of this commentary is to examine the experiments that lead up to the modification of the classic paradigm consequent on these observations, their historical precedents, and the development of our understanding of the role of epigenetics in low dose radiation effects. RESULTS AND CONCLUSIONS We discuss how parallel advances in epigenetics from developmental biology and cancer studies, and the discovery of epigenetic modifications of chromatin, such as DNA methylation, impacted on the development of an epigenetic paradigm for low dose effects. We also assess the impact of technology development in supporting the paradigm shift. We then examine recent accumulated data on epigenetic modification in response to irradiation since that shift took place, and identify areas where bringing together data from developmental biology and cancer might answer some of the paradoxes and contradictions in this data. We predict that further paradigm shifts are imminent.
Collapse
Affiliation(s)
- Paul N Schofield
- a Department of Physiology, Development, and Neuroscience , University of Cambridge , Cambridge , UK
| | - Monika Kondratowicz
- a Department of Physiology, Development, and Neuroscience , University of Cambridge , Cambridge , UK
| |
Collapse
|
44
|
Zhivin S, Guseva Canu I, Davesne E, Blanchardon E, Garsi JP, Samson E, Niogret C, Zablotska LB, Laurier D. Circulatory disease in French nuclear fuel cycle workers chronically exposed to uranium: a nested case–control study. Occup Environ Med 2017; 75:270-276. [DOI: 10.1136/oemed-2017-104575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/28/2017] [Accepted: 10/18/2017] [Indexed: 01/25/2023]
Abstract
ObjectivesThere is growing evidence of an association between low-dose external γ-radiation and circulatory system diseases (CSDs), yet sparse data exist about an association with chronic internal uranium exposure and the role of non-radiation risk factors. We conducted a nested case–control study of French AREVA NC Pierrelatte nuclear workers employed between 1960 and 2005 to estimate CSD risks adjusting for major CSD risk factors (smoking, blood pressure, body mass index, total cholesterol and glycaemia) and external γ-radiation dose.MethodsThe study included 102 cases of death from CSD and 416 controls individually matched on age, gender, birth cohort and socio-professional status. Information on CSD risk factors was collected from occupational medical records. Organ-specific absorbed doses were estimated using biomonitoring data, taking into account exposure regime and uranium physicochemical properties. External γ-radiation was measured by individual dosimeter badges. Analysis was conducted with conditional logistic regression.ResultsWorkers were exposed to very low radiation doses (mean γ-radiation dose 2 and lung uranium dose 1 mGy). A positive but imprecise association was observed (excess OR per mGy 0.2, 95% CI 0.004 to 0.5). Results obtained after adjustment suggest that uranium exposure might be an independent CSD risk factor.ConclusionsOur results suggest that a positive association might exist between internal uranium exposure and CSD mortality, not confounded by CSD risk factors. Future work should focus on numerous uncertainties associated with internal uranium dose estimation and on understanding biological pathway of CSD after protracted low-dose internal radiation exposure.
Collapse
|
45
|
First mortality analysis in the French cohort of uranium millers (F-Millers), period 1968–2013. Int Arch Occup Environ Health 2017; 91:23-33. [DOI: 10.1007/s00420-017-1254-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023]
|
46
|
Azimzadeh O, Subramanian V, Ständer S, Merl-Pham J, Lowe D, Barjaktarovic Z, Moertl S, Raj K, Atkinson MJ, Tapio S. Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways. Int J Radiat Biol 2017; 93:920-928. [DOI: 10.1080/09553002.2017.1339332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Vikram Subramanian
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Susanne Ständer
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, München, Germany
| | - Donna Lowe
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Zarko Barjaktarovic
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Simone Moertl
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Ken Raj
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Radiation Biology, Technical University Munich, Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
47
|
Simonetto C, Azizova TV, Barjaktarovic Z, Bauersachs J, Jacob P, Kaiser JC, Meckbach R, Schöllnberger H, Eidemüller M. A mechanistic model for atherosclerosis and its application to the cohort of Mayak workers. PLoS One 2017; 12:e0175386. [PMID: 28384359 PMCID: PMC5383300 DOI: 10.1371/journal.pone.0175386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/24/2017] [Indexed: 12/24/2022] Open
Abstract
We propose a stochastic model for use in epidemiological analysis, describing the age-dependent development of atherosclerosis with adequate simplification. The model features the uptake of monocytes into the arterial wall, their proliferation and transition into foam cells. The number of foam cells is assumed to determine the health risk for clinically relevant events such as stroke. In a simulation study, the model was checked against the age-dependent prevalence of atherosclerotic lesions. Next, the model was applied to incidence of atherosclerotic stroke in the cohort of male workers from the Mayak nuclear facility in the Southern Urals. It describes the data as well as standard epidemiological models. Based on goodness-of-fit criteria the risk factors smoking, hypertension and radiation exposure were tested for their effect on disease development. Hypertension was identified to affect disease progression mainly in the late stage of atherosclerosis. Fitting mechanistic models to incidence data allows to integrate biological evidence on disease progression into epidemiological studies. The mechanistic approach adds to an understanding of pathogenic processes, whereas standard epidemiological methods mainly explore the statistical association between risk factors and disease outcome. Due to a more comprehensive scientific foundation, risk estimates from mechanistic models can be deemed more reliable. To the best of our knowledge, such models are applied to epidemiological data on cardiovascular diseases for the first time.
Collapse
Affiliation(s)
- Cristoforo Simonetto
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| | - Tamara V. Azizova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Zarko Barjaktarovic
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| | - Johann Bauersachs
- Hannover Medical School, Department of Cardiology and Angiology, Hannover, Germany
| | - Peter Jacob
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| | - Reinhard Meckbach
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| | - Helmut Schöllnberger
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| | - Markus Eidemüller
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| |
Collapse
|
48
|
Salomaa S, Jourdain JR, Kreuzer M, Jung T, Repussard J. Multidisciplinary European low dose initiative: an update of the MELODI program. Int J Radiat Biol 2017; 93:1035-1039. [DOI: 10.1080/09553002.2017.1281463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sisko Salomaa
- University of Eastern Finland, Kuopio and STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Jean-René Jourdain
- IRSN, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Michaela Kreuzer
- German Federal Office for Radiation Protection, BfS, Neuherberg, Germany
| | - Thomas Jung
- German Federal Office for Radiation Protection, BfS, Neuherberg, Germany
| | - Jacques Repussard
- IRSN, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| |
Collapse
|
49
|
Luo L, Yan C, Urata Y, Hasan AS, Goto S, Guo CY, Zhang S, Li TS. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice. Sci Rep 2017; 7:40959. [PMID: 28098222 PMCID: PMC5241868 DOI: 10.1038/srep40959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs.
Collapse
Affiliation(s)
- Lan Luo
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Al Shaimaa Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Chang-Ying Guo
- Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, PR China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, PR China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
50
|
El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, El-Wahab SA, Yahea D, Hussein GM, Atrees MS. Magnetic graphene based nanocomposite for uranium scavenging. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:370-379. [PMID: 27776855 DOI: 10.1016/j.jhazmat.2016.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Magnetic graphene based ferberite nanocomposite was tailored by simple, green, low cost and industrial effective method. The microstructure and morphology of the designed nanomaterials were examined via XRD, Raman, FTIR, TEM, EDX and VSM. The prepared nanocomposites were introduced as a novel adsorbent for uranium ions scavenging from aqueous solution. Different operating conditions of time, pH, initial uranium concentration, adsorbent amount and temperature were investigated. The experimental data shows a promising adsorption capacity. In particular, a maximum value of 455mg/g was obtained within 60min at room temperature with adsorption efficiency of 90.5%. The kinetics and isotherms adsorption data were fitted with the pseudo-second order model and Langmuir equation, respectively. Finally, the designed nanocomposites were found to have a great degree of sustainability (above 5 times of profiteering) with a complete maintenance of their parental morphology and adsorption capacity.
Collapse
Affiliation(s)
| | | | - Amr A Nada
- Egyptian Petroleum Research Institute, 11727, Cairo, Egypt
| | - Fouad Zahran
- Faculty of Science, Helwan University, 11795, Cairo, Egypt.
| | | | - Dena Yahea
- Faculty of Science, Ain shams University, Cairo, Egypt
| | - G M Hussein
- Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo, Egypt
| | - M S Atrees
- Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo, Egypt
| |
Collapse
|