1
|
Mariottini A, Lotti A, Damato V, Massacesi L. Challenges in Diagnosis of COVID-19 Pneumonia under Ocrelizumab and De-Risking Strategies in Multiple Sclerosis-The Elephant Is (Still) in the Room. Microorganisms 2024; 12:1941. [PMID: 39458251 PMCID: PMC11509757 DOI: 10.3390/microorganisms12101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Severe SARS-CoV-2 infections may still be observed in people bearing risk factors, such as the use of anti-CD20 monoclonal antibodies (mAbs), which are adopted in several autoimmune disorders including multiple sclerosis (MS). COVID-19 diagnosis is routinely based on nasopharyngeal swab testing, but suboptimal sensitivity for SARS-CoV-2 detection compared to bronchoalveolar lavage (BAL) may lead to misdiagnosis in some cases. Such diagnostic issues were described in a few MS patients receiving anti-CD20 mAbs, including middle-aged people and lacking information on subsequent MS therapeutic management, a debated topic as no evidence-based guidance on de-risking strategies is currently available. Here, we report the case of a young MS patient who developed severe COVID-19 pneumonia under treatment with the anti-CD20 mAb ocrelizumab, and who was finally diagnosed with SARS-CoV-2 by BAL despite repeatedly negative nasopharyngeal swabs. Ocrelizumab was then discontinued, and treatment with a sphingosine-1 phosphate receptor modulator was started, followed by maintenance of clinical and radiological MS stability. Challenges in diagnosing COVID-19 pneumonia in people without risk factors other than immunomodulatory treatment are hence discussed, as well as potential strategies for de-risking MS therapies. The latter topic is increasingly debated based on raising concerns for potential long-term safety issues of high-efficacy treatments, including anti-CD20 mAbs.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
- Neurology II Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Antonio Lotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Valentina Damato
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
- Neurology II Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
- Neurology II Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
2
|
Aiello A, Ruggieri S, Navarra A, Tortorella C, Vanini V, Haggiag S, Prosperini L, Cuzzi G, Salmi A, Quartuccio ME, Altera AMG, Meschi S, Matusali G, Vita S, Galgani S, Maggi F, Nicastri E, Gasperini C, Goletti D. Anti-RBD Antibody Levels and IFN-γ-Specific T Cell Response Are Associated with a More Rapid Swab Reversion in Patients with Multiple Sclerosis after the Booster Dose of COVID-19 Vaccination. Vaccines (Basel) 2024; 12:926. [PMID: 39204049 PMCID: PMC11359508 DOI: 10.3390/vaccines12080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
This study investigated the incidence and severity of SARS-CoV-2 breakthrough infections (BIs) and the time to swab reversion in patients with multiple sclerosis (PwMS) after the booster dose of COVID-19 mRNA vaccines. We enrolled 64 PwMS who had completed the three-dose mRNA vaccine schedule and had never experienced COVID-19 before. Among the 64 PwMS, 43.8% had BIs with a median time since the third vaccine dose of 155 days. BIs occurred more frequently in ocrelizumab-treated patients (64.7%). Patients with a relapsing-remitting MS course showed a reduced incidence of BIs compared with those with a primary-progressive disease (p = 0.002). Having anti-receptor-binding domain (RBD) antibodies represented a protective factor reducing the incidence of BIs by 60% (p = 0.042). The majority of BIs were mild, and the only severe COVID-19 cases were reported in patients with a high Expanded Disability Status Scale score (EDSS > 6). The median time for a negative swab was 11 days. Notably, fingolimod-treated patients take longer for a swab-negativization (p = 0.002). Conversely, having anti-RBD antibodies ≥ 809 BAU/mL and an IFN-γ-specific T cell response ≥ 16 pg/mL were associated with a shorter time to swab-negativization (p = 0.051 and p = 0.018, respectively). In conclusion, the immunological protection from SARS-CoV-2 infection may differ among PwMS according to DMTs.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| | - Serena Ruggieri
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy;
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
- Simple Operating Unit Technical Healthcare Professions , National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| | - Maria Esmeralda Quartuccio
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.M.); (G.M.); (F.M.)
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.M.); (G.M.); (F.M.)
| | - Serena Vita
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.V.); (E.N.)
| | - Simonetta Galgani
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.M.); (G.M.); (F.M.)
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (S.V.); (E.N.)
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy; (S.R.); (C.T.); (S.H.); (M.E.Q.); (S.G.); (C.G.)
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.A.); (V.V.); (G.C.); (A.S.); (A.M.G.A.)
| |
Collapse
|
3
|
Silva BA, Miglietta E, Casabona JC, Wenker S, Eizaguirre MB, Alonso R, Casas M, Lázaro LG, Man F, Portuondo G, Lopez Bisso A, Zavala N, Casales F, Imhoff G, Steinberg DJ, López PA, Carnero Contentti E, Deri N, Sinay V, Hryb J, Chiganer E, Leguizamon F, Tkachuk V, Bauer J, Ferrandina F, Giachello S, Henestroza P, Garcea O, Pascuale CA, Heitrich M, Podhajcer OL, Vinzón S, D’Alotto-Moreno T, Benatar A, Rabinovich GA, Pitossi FJ, Ferrari CC. Do immunosuppressive treatments influence immune responses against adenovirus-based COVID-19 vaccines in patients with multiple sclerosis? An Argentine multicenter study. Front Immunol 2024; 15:1431403. [PMID: 39224589 PMCID: PMC11366620 DOI: 10.3389/fimmu.2024.1431403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction There are no reports in LATAM related to longitudinal humoral and cellular response to adenovirus based COVID-19 vaccines in people with Multiple Sclerosis (pwMS) under different disease modifying therapies (DMTs) and neutralization of the Omicron and Wuhan variants of SARS-COV-2. Methods IgG anti- SARS-COV-2 spike titer were measured in a cohort of 101 pwMS under fingolimod, dimethyl fumarate, cladribine and antiCD20, as well as 28 healthy controls (HC) were measured 6 weeks after vaccination with 2nd dose (Sputnik V or AZD1222) and 3nd dose (homologous or heterologous schedule). Neutralizing capacity was against Omicron (BA.1) and Wuhan (D614G) variants and pseudotyped particles and Cellular response were analyzed. Results Multivariate regression analysis showed anti-cd20 (β= -,349, 95% CI: -3655.6 - -369.01, p=0.017) and fingolimod (β=-,399, 95% CI: -3363.8 - -250.9, p=0.023) treatments as an independent factor associated with low antibody response (r2 adjusted=0.157). After the 2nd dose we found a correlation between total and neutralizing titers against D614G (rho=0.6; p<0.001; slope 0.8, 95%CI:0.4-1.3), with no differences between DMTs. Neutralization capacity was lower for BA.1 (slope 0.3, 95%CI:0.1-0.4). After the 3rd dose, neutralization of BA.1 improved (slope: 0.9 95%CI:0.6-1.2), without differences between DMTs. A fraction of pwMS generated anti-Spike CD4+ and CD8+ T cell response. In contrast, pwMS under antiCD20 generated CD8+TNF+IL2+ response without differences with HC, even in the absence of humoral response. The 3rd dose significantly increased the neutralization against the Omicron, as observed in the immunocompetent population. Discussion Findings regarding humoral and cellular response are consistent with previous reports.
Collapse
Affiliation(s)
- Berenice Anabel Silva
- Multiple Sclerosis Unit, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Esteban Miglietta
- Carrera del Personal de Apoyo (CPA), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Juan Cruz Casabona
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Shirley Wenker
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Magdalena Casas
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | | | - Federico Man
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gustavo Portuondo
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Abril Lopez Bisso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Noelia Zavala
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Federico Casales
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Gastón Imhoff
- Neurology Deparment, Sanatorio de los Arcos, Buenos Aires, Argentina
| | - Dra Judith Steinberg
- Neurology Deparment, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Norma Deri
- Multiple Sclerosis Unit, Instituto de Asistencia Integral en Diabetes y patologías crónicas (DIABAID), Buenos Aires, Argentina
| | - Vladimiro Sinay
- Multiple Sclerosis Deparment, Fundación Favaloro, Hospital Universitario, Buenos Aires, Argentina
| | - Javier Hryb
- Neurology Deparment, Hospital General de Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Edson Chiganer
- Neurology Deparment, Hospital General de Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Felisa Leguizamon
- Neurology Deparment, Hospital General de Agudos Dr. Teodoro Álvarez, Buenos Aires, Argentina
| | - Verónica Tkachuk
- Neurology Deparment, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Johana Bauer
- Asociación Esclerosis Múltiple Argentina, Buenos Aires, Argentina
| | | | - Susana Giachello
- Asociación Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Paula Henestroza
- Asociación Lucha Contra la Esclerosis Múltiple, Buenos Aires, Argentina
| | - Orlando Garcea
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Carla Antonela Pascuale
- Carrera del Personal de Apoyo (CPA), Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Osvaldo L. Podhajcer
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sabrina Vinzón
- Laboratorio de Terapias Moleculares y Celulares, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Tomas D’Alotto-Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Alejandro Benatar
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Fernando J. Pitossi
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carina C. Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Conway S, Gupta S, Healy B, Chuang TY, Stazzone L, Sullivan J, Polgar-Turcsanyi M, Chitnis T, Houtchens M. Tixagevimab/Cilgavimab does not prevent COVID-19 in patients with multiple sclerosis and related disorders on B-cell depleting therapies. Mult Scler Relat Disord 2024; 87:105680. [PMID: 38795595 DOI: 10.1016/j.msard.2024.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Patients with MS and related disorders (pwMSARD) on B-cell depleting treatments have attenuated immune responses to vaccination and were eligible to receive tixagevimab/cilgavimab. OBJECTIVES Understand incidence and severity of COVID-19 in pwMSARD on B-cell depleting therapies who received tixagevimab/cilgavimab compared to an untreated group. METHODS We conducted a retrospective medical records review of adult pwMSARD on B-cell depleting treatments who received tixagevimab/cilgavimab between 1/2022-1/2023. PwMSARD on B-cell depleting treatments who did not served as a control group (CG). We compared COVID-19 incidence and severity within 6 months of tixagevimab/cilgavimab or rituximab/ocrelizumab infusion for the CG. RESULTS 210 patients were identified, 135 in the treatment group (TG) and 75 in the CG. In the TG, 24 (17.8 %) developed COVID-19 compared to 12 (16 %) in the CG. There was no difference in the odds of developing COVID-19 in an unadjusted logistic regression model (OR=1.14; 95 % CI: 0.53, 2.42; p = 0.74) or after adjusting for age and disease duration (OR=1.05; 95 % CI: 0.47, 2.37; p = 0.91). There was also no difference in COVID-19 severity between groups. CONCLUSIONS There was no difference in COVID-19 infection rates or severity in pwMSARD on B-cell depleting treatments who received tixagevimab/cilgavimab compared to those who remained untreated.
Collapse
Affiliation(s)
- Sarah Conway
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Saumya Gupta
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian Healy
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tzu-Ying Chuang
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lynn Stazzone
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - John Sullivan
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariann Polgar-Turcsanyi
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Maria Houtchens
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Millán-Pascual J, Valero-López G, Iniesta-Martinez F, Hellin-Gil MF, Jimenez-Veiga J, López-Tovar IA, Morales-Ortiz A, Meca-Lallana JE. Humoral Response to SARS-COV-2 Vaccination in Patients with Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Real-World Study. Neurol Ther 2024; 13:153-164. [PMID: 38097868 PMCID: PMC10787726 DOI: 10.1007/s40120-023-00572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024] Open
Abstract
INTRODUCTION The risk of SARS-CoV-2 infection or severe coronavirus disease 2019 (COVID-19) has been shown to increase in patients with multiple sclerosis (MS). Vaccination is recommended in this patient population, and the effect of disease-modifying treatments (DMTs) on response to vaccination should be considered. METHODS This prospective, observational, cross-sectional study investigated humoral response after COVID-19 vaccination as well as possible predictors for response in patients with MS and other neuroinflammatory diseases who received DMTs in routine clinical practice in Spain. Responses were compared versus those seen in healthy controls. RESULTS After vaccination against COVID-19, most patients with MS developed an immune response comparable to that of healthy individuals. However, approximately half of patients receiving a sphingosine-1-phosphate modulator (SP1-M, fingolimod or siponimod) or a B-cell-depleting agent (aCD20, ocrelizumab or rituximab) did not develop protective antibodies, although patients receiving other DMTs had humoral immune responses comparable to healthy controls. Lymphocyte count was not associated with reduced humoral response in patients receiving an SP1-M or aCD20, whereas, in patients receiving an aCD20 or SP1-M, older age was associated with lower anti-SARS-CoV-2 spike protein immunoglobulin G antibody levels. CONCLUSIONS Treatment with aCD20 or SP1-M therapies appears to be associated with a lower humoral response to vaccines against SARS-CoV-2. Vaccination prior to initiation of these DMTs should be recommended whenever possible.
Collapse
Affiliation(s)
- Jorge Millán-Pascual
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain.
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain.
| | - Gabriel Valero-López
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | - Francisca Iniesta-Martinez
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | - Maria Fuensanta Hellin-Gil
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | - Judith Jimenez-Veiga
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | | | - Ana Morales-Ortiz
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
| | - José E Meca-Lallana
- Multiple Sclerosis CSUR and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca University Hospital (IMIB-Arrixaca), Murcia, Spain
- Clinical Neuroimmunology and Multiple Sclerosis Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| |
Collapse
|
6
|
Marantos T, Kyriazopoulou E, Lekakis V, Voumvourakis KI, Tsiodras S. Immunogenicity and safety of vaccines in multiple sclerosis: A systematic review and meta-analysis. J Neurol Sci 2024; 456:122852. [PMID: 38142541 DOI: 10.1016/j.jns.2023.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Seroconversion rate of vaccines varies and requires further elucidation in patients with multiple sclerosis (MS) under treatment with disease-modifying therapies (DMTs). We aimed to investigate this in a systematic review and meta-analysis. METHODS MEDLINE(PubMed) and Cochrane databases were searched based on a pre-specified protocol (PROSPERO: CRD42020202018). Studies reporting on patients with MS, diagnosed with McDonald criteria getting vaccinated with any type of vaccine were included in the analysis. The primary endpoint was the incidence of patients being seropositive and experience adverse events after vaccination. Outcomes were expressed as proportions with respective 95% confidence interval (CI). Two reviewers independently screened and reviewed existing literature and assessed study quality with the Methodological index for non-randomized studies. RESULTS Of 295 articles, 45 studies were analyzed. Seroconversion after COVID-19 vaccines was 76% (95% CI, 70-80; I2 = 95%; 20 studies including 5601 patients. Protection was lower in patients treated with anti-CD20 antibodies and sphingosine-1-phosphate receptor (S1PR) modulators compared to untreated patients or treatment with other DMTs. Relapse occurred in 2% (95% CI, 1-3; I2 = 86%; 16 studies including 7235 patients). Seroconversion after seasonal influenza vaccines was 82% (95% CI, 65-91; I2 = 90%; 6 studies including 490 patients). Relapse rate was similar to this after COVID-19 vaccination. CONCLUSION The majority of MS patients vaccinated for COVID-19 or seasonal influenza mount an adequate immune response without safety concerns. Data on other vaccines are limited.
Collapse
Affiliation(s)
- Theodoros Marantos
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Evdoxia Kyriazopoulou
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Vasileios Lekakis
- Department of Gastroenterology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Sotirios Tsiodras
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| |
Collapse
|
7
|
Ferreras C, Hernández-Blanco C, Martín-Quirós A, Al-Akioui-Sanz K, Mora-Rillo M, Ibáñez F, Díaz-Almirón M, Cano-Ochando J, Lozano-Ojalvo D, Jiménez-González M, Goterris R, Sánchez-Zapardiel E, de Paz R, Guerra-García P, Queiruga-Parada J, Molina P, Briones ML, Ruz-Caracuel B, Borobia AM, Carcas AJ, Planelles D, Vicario JL, Moreno MÁ, Balas A, Llano M, Llorente A, Del Balzo Á, Cañada C, García MÁ, Calvin ME, Arenas I, Pérez de Diego R, Eguizábal C, Soria B, Solano C, Pérez-Martínez A. Results of phase 2 randomized multi-center study to evaluate the safety and efficacy of infusion of memory T cells as adoptive therapy in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia and/or lymphopenia (RELEASE NCT04578210). Cytotherapy 2024; 26:25-35. [PMID: 37897472 DOI: 10.1016/j.jcyt.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/05/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AIMS There are currently no effective anti-viral treatments for coronavirus disease 2019 (COVID-19)-hospitalized patients with hypoxemia. Lymphopenia is a biomarker of disease severity usually present in patients who are hospitalized. Approaches to increasing lymphocytes exerting an anti-viral effect must be considered to treat these patients. Following our phase 1 study, we performed a phase 2 randomized multicenter clinical trial in which we evaluated the efficacy of the infusion of allogeneic off-the-shelf CD45RA- memory T cells containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells from convalescent donors plus the standard of care (SoC) versus just the SoC treatment. METHODS Eighty-four patients were enrolled in three Spanish centers. The patients were randomized into the infusion of 1 × 106/kg CD45RA- memory T cells or the SoC. We selected four unvaccinated donors based on the expression of interferon gamma SARS-CoV-2-specific response within the CD45RA- memory T cells and the most frequent human leukocyte antigen typing in the Spanish population. RESULTS We analyzed data from 81 patients. The primary outcome for recovery, defined as the proportion of participants in each group with normalization of fever, oxygen saturation sustained for at least 24 hours and lymphopenia recovery through day 14 or at discharge, was met for the experimental arm. We also observed faster lymphocyte recovery in the experimental group. We did not observe any treatment-related adverse events. CONCLUSIONS Adoptive cell therapy with off-the-shelf CD45RA- memory T cells containing SAR-CoV-2-specific T cells is safe, effective and accelerates lymphocyte recovery of patients with COVID-19 pneumonia and/or lymphopenia. TRIAL REGISTRATION NCT04578210.
Collapse
Affiliation(s)
- Cristina Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Clara Hernández-Blanco
- Internal Medicine Department, Hospital de Emergencias Enfermera Isabel Zendal, Madrid, Spain
| | | | - Karima Al-Akioui-Sanz
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Marta Mora-Rillo
- Infectious Diseases Unit, Internal Medicine Department, University Hospital La Paz, Hospital La Paz Institute for Health Research, IdiPAZ, Consorcio Centro de Investigación Biomédica en Red CIBER-Infec, Madrid, Spain
| | - Fátima Ibáñez
- Internal Medicine Department, Hospital Puerta de Hierro, Madrid, Spain
| | | | - Jordi Cano-Ochando
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Centro Nacional de Microbiologia, Instituto de Salud Carlos III, 28220 Madrid, Spain; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - María Jiménez-González
- Infectious Diseases Unit, Internal Medicine Department, University Hospital La Paz, Hospital La Paz Institute for Health Research, IdiPAZ, Consorcio Centro de Investigación Biomédica en Red CIBER-Infec, Madrid, Spain; Clinical Trials Unit (UCICEC) at Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Rosa Goterris
- Hematology Department, Hospital Clinico Universitario, Valencia, Spain
| | | | - Raquel de Paz
- Hematology Department, University Hospital La Paz, Madrid, Spain
| | - Pilar Guerra-García
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Pediatric Hemato-Oncology Department, University Hospital La Paz, Madrid, Spain
| | | | - Pablo Molina
- Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
| | | | - Beatriz Ruz-Caracuel
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Alberto M Borobia
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Clinical Trials Unit (UCICEC) at Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
| | - Antonio J Carcas
- Clinical Trials Unit (UCICEC) at Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain; Faculty of Medicine Universidad Autónoma de Madrid, Madrid, Spain
| | - Dolores Planelles
- Department of Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - José Luis Vicario
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Miguel Ángel Moreno
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Antonio Balas
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Marta Llano
- Infectious Diseases Department, Hospital de Emergencias Enfermera Isabel Zendal, Madrid, Spain
| | - Andrea Llorente
- Infectious Diseases Department, Hospital de Emergencias Enfermera Isabel Zendal, Madrid, Spain
| | - Álvaro Del Balzo
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - Carlos Cañada
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - Miguel Ángel García
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - María Elena Calvin
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - Isabel Arenas
- Emergency Unit, Internal Medicine Department, University Hospital La Paz, Madrid, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Cristina Eguizábal
- Research Unit, Basque Centre for Blood Transfusion and Human Tissues, Osakidetza, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Bernat Soria
- Health Research Institute-ISABIAL, Alicante University Hospital and Institute of Bioengineering, Miguel Hernández University, Alicante, Spain; University Pablo de Olavide, Sevilla, Spain
| | - Carlos Solano
- Hematology Department, Hospital Clinico Universitario, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pérez-Martínez
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain; Pediatric Hemato-Oncology Department, University Hospital La Paz, Madrid, Spain; Faculty of Medicine Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Algu P, Hameed N, DeAngelis T, Stern J, Harel A. Post-vaccination SARS-Cov-2 T-cell receptor repertoires in patients with multiple sclerosis and related disorders. Mult Scler Relat Disord 2023; 79:104965. [PMID: 37657307 DOI: 10.1016/j.msard.2023.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Attenuation in post-vaccination SARS-CoV-2 humoral responses has been demonstrated in people treated with either anti-CD20 therapies or sphingosine-1-phosphate (S1P) receptor modulators. In the setting of disease modifying therapy (DMT) use, humoral response may not correlate with effective immunity, and analysis of vaccine-mediated SARS-CoV-2-specific memory T-cell responses is crucial. While vaccination in patients treated with anti-CD20 agents leads to deficient antibody production, emerging data from live cell assays suggests intact T-cell responses to vaccination. We evaluated post-vaccination SARS-CoV-2 T-cell receptor (TCR) repertoires in DMT-treated patients using the ImmunoSeqR assay, an assay that does not require live cells. METHODS Adults 18-80 years old without prior COVID-19, with neuroimmune conditions, who had been vaccinated with two doses of Pfizer-BioNTech or Moderna mRNA vaccines at least 3 weeks and up to 6 months prior, were recruited. Whole blood was obtained for immunosequencing, and matched serum was obtained for humoral analysis. Immunosequencing of the CDR3 regions of human TCRβ chains was completed using the immunoSEQR Assay (Adaptive Biotechnologies). TCR sequences were mapped across a set of TCR sequences reactive to SARS-CoV-2. Clonal diversity (breadth) and frequency (depth) of TCRs specific to SARS-CoV-2 spike protein were calculated and relationships with clinical variables were assessed. RESULTS Forty patients were recruited into the study, aged 25-77, and 27 female. 37 had MS, 2 had neuromyelitis optica spectrum disorder (NMOSD), and 1 had hypophysitis. Subjects treated with anti-CD20 agents and S1P receptor modulators had severely attenuated humoral responses, but SARS-CoV-2-spike-specific TCR clonal depth and breadth were robust across all treatment classes except S1P modulators. No spike-specific or non-spike-specific SARS-CoV-2-associated TCRs were found in those treated with S1P modulators (p = 0.002 for both breadth and depth). Subjects treated with fumarates exhibited somewhat lower spike TCR breadth than subjects treated with other or no DMTs (median 2.27 × 10^-5 for fumarates and 4.96 × 10^-5 for all others, p = 0.008), but no statistically significant difference was demonstrated with spike TCR depth. No other significant associations with DMT type were found. We found no significant correlations between depth or breadth and age, duration of treatment, type of vaccination, or time interval since vaccination. CONCLUSION This is the first study to characterize post-vaccination SARS-CoV-2 TCR repertoires in DMT-treated individuals. We demonstrated a dichotomous response to SARS-CoV-2 vaccination in anti-CD20-treated patients, with severely attenuated humoral response but intact TCR depth and breadth. It is unclear to what degree each arm of the adaptive immune system impacts post-vaccine immunity, both from the standpoint of incidence of post-vaccine infections and that of infection severity, and further clinical studies are necessary. S1P modulator-treated subjects exhibited both severely attenuated humoral responses and absent spike-specific TCR depth and breadth, information which is crucial for counseling of patients on these agents. Our methodology can be used in larger studies to determine the benefit of repeated vaccination doses, including those that are modified to better target modern or seasonal variants, without the use of live cell assays.
Collapse
Affiliation(s)
- Priyanka Algu
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| | - Natasha Hameed
- Northwell Multiple Sclerosis Center, 611 Northern Blvd, Great Neck, NY 11021, United States
| | - Tracy DeAngelis
- Neurological Associates of Long Island, 1991 Marcus Ave, New Hyde Park, NY 11042, United States
| | - Joel Stern
- Northwell Multiple Sclerosis Center, 350 Community Drive, Manhasset NY 11030, United States
| | - Asaff Harel
- Northwell Multiple Sclerosis Center, 130 East 77th Street, 8 Black Hall, NY 10075, United States.
| |
Collapse
|
9
|
Bar-Or A, Aburashed R, Chinea AR, Hendin BA, Lucassen E, Meng X, Stankiewicz J, Tullman MJ, Cross AH. Humoral immune response to COVID-19 mRNA vaccines in patients with relapsing multiple sclerosis treated with ofatumumab. Mult Scler Relat Disord 2023; 79:104967. [PMID: 37769429 DOI: 10.1016/j.msard.2023.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND There are limited data available regarding the impact of ofatumumab, an anti-CD20 B-cell-depleting monoclonal antibody for relapsing multiple sclerosis (RMS), on vaccination response. The study objective was to assess humoral immune response (HIR) to non-live coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccination in patients with RMS treated with ofatumumab. METHODS This was an open-label, single-arm, multicenter, prospective pilot study of patients with RMS aged 18-55 years who received 2 or 3 doses of a COVID-19 mRNA vaccine after ≥1 month of subcutaneous ofatumumab (20 mg/month) treatment. The primary endpoint was the proportion of patients achieving HIR, as defined by local laboratory severe acute respiratory syndrome coronavirus-2 qualitative immunoglobulin G assays. Assay No. 1 was ≥14 days after the second or third vaccine dose. Assay No. 2 was 90 days thereafter. RESULTS Of the 26 patients enrolled (median [range] age: 42 [27-54] years; median [range] ofatumumab treatment duration: 237 [50-364] days), HIR was achieved by 53.9% (14/26; 95% CI: 33.4 - 73.4%) at Assay No. 1 and 50.0% (13/26; 95% CI: 29.9 - 70.1%) at Assay No. 2. Patients who received 3 vaccine doses had higher HIR rates (Assay No. 1: 70.0% [7/10]; Assay No. 2: 77.8% [7/9]) than those who received 2 doses (Assay No. 1: 46.7% [7/15]; Assay No. 2: 42.9% [6/14]). Of patients aged <40 years without previous anti-CD20 therapy, HIR was achieved by 90.0% (9/10) at Assay No. 1 and 75.0% (6/8) at Assay No. 2. No serious adverse events were reported. CONCLUSION Patients with RMS treated with ofatumumab can mount HIRs following COVID-19 vaccination. A plain language summary, infographic and a short video summarizing the key results are provided in supplementary material. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT04847596 (https://clinicaltrials.gov/ct2/show/NCT04847596).
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology, and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rany Aburashed
- Insight Chicago Hospital and Medical Center, Chicago, IL, United States
| | | | - Barry A Hendin
- Center for Neurology and Spine, Phoenix, AZ, United States
| | | | - Xiangyi Meng
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - James Stankiewicz
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | | | - Anne H Cross
- Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Groß-Albenhausen E, Weier A, Velten M, Heider T, Chunder R, Kuerten S. Immune monitoring of SARS-CoV-2-specific T cell and B cell responses in patients with multiple sclerosis treated with ocrelizumab. Front Immunol 2023; 14:1254128. [PMID: 37841269 PMCID: PMC10569464 DOI: 10.3389/fimmu.2023.1254128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Since the development of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there has been significant interest in determining the effectiveness of SARS-CoV-2 vaccines in patients under immunomodulatory or immunosuppressive therapies. The aim of this study was to evaluate the impact of ocrelizumab, a monoclonal anti-CD20 antibody, on SARS-CoV-2-specific T cell and B cell responses in patients with relapsing-remitting multiple sclerosis (RRMS). Methods To this end, peripheral blood mononuclear cells (PBMCs) were isolated from n = 23 patients with RRMS. Of these patients, n = 17 were tested before (time point t0) and one month after (time point t1) their first dose of ocrelizumab. In addition, we studied n = 9 RRMS patients that got infected with SARS-CoV-2 over the course of ocrelizumab therapy (time point t2). PBMCs were also isolated from n = 19 age- and gender-matched healthy controls (HCs) after vaccination or infection with SARS-CoV-2, respectively. Interferon-γ (IFN-γ)/interleukin-2 (IL-2) and granzyme B (GzB)/perforin (PFN) double-color enzyme-linked immunospot (ELISPOT) assays or single-color ELISPOT assays were performed to measure SARS-CoV-2 antigen-specific T cell and B cell responses. Anti-viral antibody titers were quantified in the serum by chemiluminescence immunoassay. Results Our data indicate a significant difference in the SARS-CoV-2 specific IFN-γ (P = 0.0119) and PFN (P = 0.0005) secreting T cell compartment in the MS cohort at t0 compared to HCs. Following the first dose of ocrelizumab treatment, a significant decrease in the number of SARS-CoV-2 spike protein-specific B cells was observed (P = 0.0012). Infection with SARS-CoV-2 in MS patients under ocrelizumab therapy did not significantly alter their existing immune response against the virus. Kaplan-Meier survival analysis suggested that the spike S1 protein-specific immunoglobulin (Ig)G response might be a key parameter for predicting the probability of (re)infection with SARS-CoV-2. Discussion Our results call for a critical discussion regarding appropriate vaccination intervals and potential biomarkers for the prediction of (re)infection with SARS-CoV-2 in patients with MS receiving ocrelizumab. Unique identifier DRKS00029110; URL: http://apps.who.int/trialsearch/.
Collapse
Affiliation(s)
- Elina Groß-Albenhausen
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Zaloum SA, Wood CH, Tank P, Upcott M, Vickaryous N, Anderson V, Baker D, Chance R, Evangelou N, George K, Giovannoni G, Harding KE, Hibbert A, Ingram G, Jolles S, Kang AS, Loveless S, Moat SJ, Richards A, Robertson NP, Rios F, Schmierer K, Willis M, Dobson R, Tallantyre EC. Risk of COVID-19 in people with multiple sclerosis who are seronegative following vaccination. Mult Scler 2023; 29:979-989. [PMID: 37431627 PMCID: PMC10333979 DOI: 10.1177/13524585231185247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 04/22/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND People with multiple sclerosis (pwMS) treated with certain disease-modifying therapies (DMTs) have attenuated IgG response following COVID-19 vaccination; however, the clinical consequences remain unclear. OBJECTIVE To report COVID-19 rates in pwMS according to vaccine serology. METHODS PwMS with available (1) serology 2-12 weeks following COVID-19 vaccine 2 and/or vaccine 3 and (2) clinical data on COVID-19 infection/hospitalisation were included. Logistic regression was performed to examine whether seroconversion following vaccination predicted risk of subsequent COVID-19 infection after adjusting for potential confounders. Rates of severe COVID-19 (requiring hospitalisation) were also calculated. RESULTS A total of 647 pwMS were included (mean age 48 years, 500 (77%) female, median Expanded Disability Status Scale (EDSS) 3.5% and 524 (81%) exposed to DMT at the time of vaccine 1). Overall, 472 out of 588 (73%) were seropositive after vaccines 1 and 2 and 222 out of 305 (73%) after vaccine 3. Seronegative status after vaccine 2 was associated with significantly higher odds of subsequent COVID-19 infection (odds ratio (OR): 2.35, 95% confidence interval (CI): 1.34-4.12, p = 0.0029), whereas seronegative status after vaccine 3 was not (OR: 1.05, 95% CI: 0.57-1.91). Five people (0.8%) experienced severe COVID-19, all of whom were seronegative after most recent vaccination. CONCLUSION Attenuated humoral response to initial COVID-19 vaccination predicts increased risk of COVID-19 in pwMS, but overall low rates of severe COVID-19 were seen.
Collapse
Affiliation(s)
- Safiya A Zaloum
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Callum H Wood
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Pooja Tank
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Matthew Upcott
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Nicola Vickaryous
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Valerie Anderson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Randy Chance
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Centre for Oral Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nikos Evangelou
- Clinical Neurology, Academic Unit of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Katila George
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK/Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | | | - Aimee Hibbert
- Clinical Neurology, Academic Unit of Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Gillian Ingram
- Department of Neurology, Morriston Hospital, Swansea, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK/School of Medicine, Cardiff University, Cardiff, UK
| | - Angray S Kang
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Centre for Oral Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samantha Loveless
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Stuart J Moat
- Wales Newborn Screening Laboratory, Department of Medical Biochemistry, Immunology and Toxicology, University Hospital of Wales, Cardiff, UK/School of Medicine, Cardiff University, Cardiff, UK
| | - Aidan Richards
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK/Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Francesca Rios
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Klaus Schmierer
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | - Mark Willis
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK/Department of Neurology, Barts Health NHS Trust, London, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK/Department of Neurology, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
12
|
Holroyd KB, Conway SE. Central Nervous System Neuroimmunologic Complications of COVID-19. Semin Neurol 2023. [PMID: 37080234 DOI: 10.1055/s-0043-1767713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Autoimmune disorders of the central nervous system following COVID-19 infection include multiple sclerosis (MS), neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, autoimmune encephalitis, acute disseminated encephalomyelitis, and other less common neuroimmunologic disorders. In general, these disorders are rare and likely represent postinfectious phenomena rather than direct consequences of the SARS-CoV-2 virus itself. The impact of COVID-19 infection on patients with preexisting neuroinflammatory disorders depends on both the disorder and disease-modifying therapy use. Patients with MS do not have an increased risk for severe COVID-19, though patients on anti-CD20 therapies may have worse clinical outcomes and attenuated humoral response to vaccination. Data are limited for other neuroinflammatory disorders, but known risk factors such as older age and medical comorbidities likely play a role. Prophylaxis and treatment for COVID-19 should be considered in patients with preexisting neuroinflammatory disorders at high risk for developing severe COVID-19.
Collapse
Affiliation(s)
- Kathryn B Holroyd
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sarah E Conway
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Sainz de la Maza S, Walo-Delgado PE, Rodríguez-Domínguez M, Monreal E, Rodero-Romero A, Chico-García JL, Pariente R, Rodríguez-Jorge F, Ballester-González R, Villarrubia N, Romero-Hernández B, Masjuan J, Costa-Frossard L, Villar LM. Short- and Long-Term Humoral and Cellular Immune Responses to SARS-CoV-2 Vaccination in Patients with Multiple Sclerosis Treated with Disease-Modifying Therapies. Vaccines (Basel) 2023; 11:vaccines11040786. [PMID: 37112698 PMCID: PMC10145338 DOI: 10.3390/vaccines11040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND This study aimed to evaluate short- and long-term humoral and T-cell-specific immune responses to SARS-CoV-2 vaccines in patients with multiple sclerosis (MS) treated with different disease-modifying therapies (DMTs). METHODS Single-center observational longitudinal study including 102 patients with MS who consecutively received vaccination against SARS-CoV-2. Serum samples were collected at baseline and after receiving the second dose of the vaccine. Specific Th1 responses following in vitro stimulation with spike and nucleocapsid peptides were analyzed by quantifying levels of IFN-γ. Serum IgG-type antibodies against the spike region of SARS-CoV-2 were studied by chemiluminescent microparticle immunoassay. RESULTS Patients undergoing fingolimod and anti-CD20 therapies had a markedly lower humoral response than those treated with other DMTs and untreated patients. Robust antigen-specific T-cell responses were detected in all patients except those treated with fingolimod, who had lower IFN-γ levels than those treated with other DMTs (25.8 pg/mL vs. 868.7 pg/mL, p = 0.011). At mid-term follow-up, a decrease in vaccine-induced anti-SARS-CoV-2 IgG antibodies was observed in all subgroups of patients receiving DMTs, although most patients receiving induction DMTs or natalizumab and non-treated patients remained protected. Cellular immunity was maintained above protective levels in all DMT subgroups except the fingolimod subgroup. CONCLUSIONS SARS-CoV-2 vaccines induce robust and long-lasting humoral and cell-mediated specific immune responses in most patients with MS.
Collapse
Affiliation(s)
- Susana Sainz de la Maza
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Paulette Esperanza Walo-Delgado
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Mario Rodríguez-Domínguez
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER en Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Alexander Rodero-Romero
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Juan Luis Chico-García
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Roberto Pariente
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Fernando Rodríguez-Jorge
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Rubén Ballester-González
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| | - Beatriz Romero-Hernández
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER en Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Lucienne Costa-Frossard
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Universidad de Alcalá, 28034 Madrid, Spain
| | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), 28034 Madrid, Spain
| |
Collapse
|
14
|
Conway S, Saxena S, Baecher-Allan C, Krishnan R, Houtchens M, Glanz B, Saraceno TJ, Polgar-Turcsanyi M, Bose G, Bakshi R, Bhattacharyya S, Galetta K, Kaplan T, Severson C, Singhal T, Stazzone L, Zurawski J, Paul A, Weiner HL, Healy BC, Chitnis T. Preserved T cell but attenuated antibody response in MS patients on fingolimod and ocrelizumab following 2nd and 3rd SARS-CoV-2 mRNA vaccine. Mult Scler J Exp Transl Clin 2023; 9:20552173231165196. [PMID: 37057191 PMCID: PMC10086198 DOI: 10.1177/20552173231165196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
Background There is limited knowledge about T cell responses in patients with multiple sclerosis (MS) after 3 doses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine. Objectives Assess the SARS-CoV-2 spike antibody and T cell responses in MS patients and healthy controls (HCs) after 2 doses (2-vax) and 3 doses (3-vax) of SARS-CoV-2 mRNA vaccination. Methods We studied seroconversion rates and T cell responses by flow cytometry in HC and MS patients on fingolimod or ocrelizumab. Results After 2-vax, 8/33 (24.2%) patients in ocrelizumab group, 5/7 (71.4%) in fingolimod group, and 29/29 (100%) in HC group (P = 5.7 × 10-11) seroconverted. After 3-vax, 9/22 (40.9%) patients in ocrelizumab group, 19/21 (90.5%) in fingolimod group, and 7/7 (100%) in HC group seroconverted (P = 0.0003). The percentage of SARS-CoV-2 peptide reactive total CD4+ T cells increased in HC and ocrelizumab group but not in fingolimod group after 2-vax and 3-vax (P < 0.0001). The percentage of IFNγ and TNFα producing total CD4+ and CD8+ T cells increased in fingolimod group as compared to HC and ocrelizumab group after 2-vax and 3-vax (P < 0.0001). Conclusions MS patients on ocrelizumab and fingolimod had attenuated humoral responses, but preserved cytokine producing T cell responses compared to HCs after SARS-CoV-2 mRNA vaccination. Clinical Trials Registration NCT05060354.
Collapse
Affiliation(s)
- Sarah Conway
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shrishti Saxena
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Clare Baecher-Allan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rajesh Krishnan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Maria Houtchens
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bonnie Glanz
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Taylor J Saraceno
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariann Polgar-Turcsanyi
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Gauruv Bose
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shamik Bhattacharyya
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kristin Galetta
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tamara Kaplan
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher Severson
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lynn Stazzone
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan Zurawski
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Torres P, Sancho-Saldaña A, Gil Sánchez A, Peralta S, Solana MJ, Bakkioui S, González-Mingot C, Quibus L, Ruiz-Fernández E, San Pedro-Murillo E, Brieva L. A prospective study of cellular immune response to booster COVID-19 vaccination in multiple sclerosis patients treated with a broad spectrum of disease-modifying therapies. J Neurol 2023; 270:2380-2391. [PMID: 36933032 PMCID: PMC10024306 DOI: 10.1007/s00415-023-11575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Most people with Multiple Sclerosis (pwMS) are subjected to immunomodulatory disease-modifying treatments (DMTs). As a result, immune responses to COVID-19 vaccinations could be compromised. There are few data on cellular immune responses to the use of COVID-19 vaccine boosters in pwMS under a broad spectrum of DMTs. METHODS In this prospective study, we analysed cellular immune responses to SARS-CoV-2 mRNA booster vaccinations in 159 pwMS with DMT, including: ocrelizumab, rituximab, fingolimod, alemtuzumab, dimethyl fumarate, glatiramer acetate, teriflunomide, natalizumab and cladribine. RESULTS DMTs, and particularly fingolimod, interact with cellular responses to COVID-19 vaccination. One booster dose does not increase cellular immunity any more than two doses, except in the cases of natalizumab and cladribine. SARS-CoV-2 infection combined with two doses of vaccine resulted in a greater cellular immune response, but this was not observed after supplementary booster jabs. Ocrelizumab-treated pwMS who had previously received fingolimod did not develop cellular immunity, even after receiving a booster. The time after MS diagnosis and disability status negatively correlated with cellular immunity in ocrelizumab-treated pwMS in a booster dose cohort. CONCLUSIONS After two doses of SARS-CoV-2 vaccination, a high response yield was achieved, except in patients who had received fingolimod. The effects of fingolimod on cellular immunity persisted for more than 2 years after a change to ocrelizumab (which, in contrast, conserved cellular immunity). Our results confirmed the need to find alternative protective measures for fingolimod-treated people and to consider the possible failure to provide protection against SARS-CoV-2 when switching from fingolimod to ocrelizumab.
Collapse
Affiliation(s)
- Pascual Torres
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
| | - Agustín Sancho-Saldaña
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
- Department of Neurology, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Anna Gil Sánchez
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
| | - Silvia Peralta
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
- Department of Neurology, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Maria José Solana
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
- Department of Neurology, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Sofian Bakkioui
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
| | - Cristina González-Mingot
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
- Department of Neurology, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Laura Quibus
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain
- Department of Neurology, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | - Emilio Ruiz-Fernández
- Department of Neurology, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain
| | | | - Luis Brieva
- Neuroimmunology Group, Department of Medicine, University of Lleida (UdL)-IRBLleida, 25198, Lleida, Spain.
- Department of Neurology, Hospital Universitari Arnau de Vilanova, 25198, Lleida, Spain.
| |
Collapse
|
16
|
Kaido M, Kajiyama Y, Sasaki S, Saitou T, Esa Y, Watanabe Y, Fujimura H, Kobayashi J. [Antibody production capacity after COVID-19 vaccination in immune-mediated neuromuscular diseases under immunotherapy]. Rinsho Shinkeigaku 2023; 63:145-151. [PMID: 36843085 DOI: 10.5692/clinicalneurol.cn-001825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The post-vaccination antibody response in patients with immune-mediated neuromuscular diseases under immuno-suppressive therapy has not been sufficiently verified. The Japanese Society of Neurology has stated that coronavirus disease 2019 (COVID-19) vaccination should be given priority in patients with immunotherapy-associated neuromuscular diseases; however, data on antibody production to a novel mRNA vaccine are scarce in these patients. In this study, we aimed to measure residual antibody titers after the second dose and produced antibodies after the third dose of SARS-CoV-2 mRNA vaccine in 25 patients with neuromuscular diseases under immuno-suppressive therapy (disease group). We compared the disease group antibody titers with those of 829 healthy employees in our hospital (control group). The disease group included 17 patients with myasthenia gravis, 4 with multiple sclerosis, 3 with inflammatory muscle disease, and 1 with chronic inflammatory demyelinating polyneuropathies. Seven cases of the disease group showed negative antibody levels (<15.0 s/co) before the third vaccination, and antibody titers in the positive cases ranged from 16.9 to 4,589.0 s/co. Three of the seven antibody-negative cases turned positive after the third vaccination, and all but one of the antibody-positive cases showed a booster effect, with antibody titers after the third dose ranging from 245.1 to 85,374.0 s/co (1.0 to 885.0 times higher than those before vaccination). Although the immune response in the disease group was modest compared to the control group, in which antibody titers after the third vaccination ranged from 67.8 to 150,000 s/co (0.9 to 5,402.1 times higher than those before vaccination), the result indicated that a constant immune response was achieved under immuno-suppressive therapy. Even in the control group, three participants tested negative for residual antibody before the third inoculation, and four of the antibody-positive participants (27.7-24,054.0 s/co) lacked a booster effect after the third vaccination.
Collapse
Affiliation(s)
- Misako Kaido
- Department of Clinical genetics, Sakai City Medical Center.,Department of Neurology, Sakai City Medical Center
| | - Yuta Kajiyama
- Department of Neurology, Sakai City Medical Center.,Department of Neurology, Osaka University Graduate School of Medicine
| | - Shinya Sasaki
- Department of Clinical Laboratory, Sakai City Medical Center
| | - Takako Saitou
- Department of Clinical Laboratory, Sakai City Medical Center
| | - Yoshiki Esa
- Department of Neurology, Sakai City Medical Center
| | | | | | | |
Collapse
|
17
|
Jaber A, Patel M, Sylvester A, Yarussi M, Kalina JT, Mendoza JP, Avila RL, Tremblay MA. COVID-19 Vaccine Response in People with Multiple Sclerosis Treated with Dimethyl Fumarate, Diroximel Fumarate, Natalizumab, Ocrelizumab, or Interferon Beta Therapy. Neurol Ther 2023; 12:687-700. [PMID: 36792812 PMCID: PMC9931564 DOI: 10.1007/s40120-023-00448-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Some multiple sclerosis (MS) disease-modifying therapies (DMTs) impair responses to vaccines, emphasizing the importance of understanding COVID-19 vaccine immune responses in people with MS (PwMS) receiving different DMTs. METHODS This prospective, open-label observational study enrolled 45 participants treated with natalizumab (n = 12), ocrelizumab (n = 16), fumarates (dimethyl fumarate or diroximel fumarate, n = 11), or interferon beta (n = 6); ages 18-65 years inclusive; stable on DMT for at least 6 months. Responder rates, anti-SARS-CoV-2 spike receptor-binding domain IgG (anti-RBD) geometric mean titers (GMTs), antigen-specific T cells, and vaccination-related adverse events were evaluated at baseline and 8, 24, 36, and 48 weeks after first mRNA-1273 (Moderna) dose. RESULTS At 8 weeks post vaccination, all natalizumab-, fumarate-, and interferon beta-treated participants generated detectable anti-RBD IgG titers, compared to only 25% of the ocrelizumab cohort. At 24 and 36 weeks post vaccination, natalizumab-, fumarate-, and interferon beta-treated participants continued to demonstrate detectable anti-RBD IgG titers, whereas participants receiving ocrelizumab did not. Anti-RBD GMTs decreased 81.5% between 8 and 24 weeks post vaccination for the non-ocrelizumab-treated participants, with no significant difference between groups. At 36 weeks post vaccination, ocrelizumab-treated participants had higher proportions of spike-specific T cells compared to other treatment groups. Vaccine-associated side effects were highest in the ocrelizumab arm for most symptoms. CONCLUSIONS These results suggest that humoral response to mRNA-1273 COVID-19 vaccine is preserved and similar in PwMS treated with natalizumab, fumarate, and interferon beta, but muted with ocrelizumab. All DMTs had preserved T cell response, including the ocrelizumab cohort, which also had a greater risk of vaccine-related side effects.
Collapse
Affiliation(s)
- Aliya Jaber
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Meera Patel
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Andrew Sylvester
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | - Mary Yarussi
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA
| | | | | | | | - Matthew A Tremblay
- Multiple Sclerosis Comprehensive Care Center, RWJ Barnabas Health, Livingston, NJ, USA.
| |
Collapse
|
18
|
Dimou A. Areas of Uncertainty in SARS-CoV-2 Vaccination for Cancer Patients. Vaccines (Basel) 2022; 10:vaccines10122117. [PMID: 36560527 PMCID: PMC9784623 DOI: 10.3390/vaccines10122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Early in the COVID-19 pandemic, it was recognized that infection with SARS-CoV-2 is associated with increased morbidity and mortality in patients with cancer; therefore, preventive vaccination in cancer survivors is expected to be particularly impactful. Heterogeneity in how a neoplastic disease diagnosis and treatment interferes with humoral and cellular immunity, however, poses a number of challenges in vaccination strategies. Herein, the available literature on the effectiveness of COVID-19 vaccines among patients with cancer is critically appraised under the lens of anti-neoplastic treatment optimization. The objective of this review is to highlight areas of uncertainty, where more research could inform future SARS-CoV-2 immunization programs and maximize benefits in the high-risk cancer survivor population, and also minimize cancer treatment deviations from standard practices.
Collapse
Affiliation(s)
- Anastasios Dimou
- Division of Medical Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Hypogammaglobulinemia is associated with reduced antibody response after anti-SARS-CoV-2 vaccination in MS patients treated with antiCD20 therapies. Neurol Sci 2022; 43:5783-5794. [PMID: 35918574 PMCID: PMC9345744 DOI: 10.1007/s10072-022-06287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
Abstract
Background Methods Results Conclusion
Collapse
|
20
|
Kister I, Curtin R, Pei J, Perdomo K, Bacon TE, Voloshyna I, Kim J, Tardio E, Velmurugu Y, Nyovanie S, Valeria Calderon A, Dibba F, Stanzin I, Samanovic MI, Raut P, Raposo C, Priest J, Cabatingan M, Winger RC, Mulligan MJ, Patskovsky Y, Silverman GJ, Krogsgaard M. Hybrid and vaccine-induced immunity against SAR-CoV-2 in MS patients on different disease-modifying therapies. Ann Clin Transl Neurol 2022; 9:1643-1659. [PMID: 36165097 PMCID: PMC9538694 DOI: 10.1002/acn3.51664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To compare "hybrid immunity" (prior COVID-19 infection plus vaccination) and post-vaccination immunity to SARS CoV-2 in MS patients on different disease-modifying therapies (DMTs) and to assess the impact of vaccine product and race/ethnicity on post-vaccination immune responses. METHODS Consecutive MS patients from NYU MS Care Center (New York, NY), aged 18-60, who completed primary COVID-19 vaccination series ≥6 weeks previously were evaluated for SARS CoV-2-specific antibody responses with electro-chemiluminescence and multiepitope bead-based immunoassays and, in a subset, live virus immunofluorescence-based microneutralization assay. SARS CoV-2-specific cellular responses were assessed with cellular stimulation TruCulture IFNγ and IL-2 assay and, in a subset, with IFNγ and IL-2 ELISpot assays. Multivariate analyses examined associations between immunologic responses and prior COVID-19 infection while controlling for age, sex, DMT at vaccination, time-to-vaccine, and vaccine product. RESULTS Between 6/01/2021 and 11/11/2021, 370 MS patients were recruited (mean age 40.6 years; 76% female; 53% non-White; 22% with prior infection; common DMT classes: ocrelizumab 40%; natalizumab 15%, sphingosine-1-phosphate receptor modulators 13%; and no DMT 8%). Vaccine-to-collection time was 18.7 (±7.7) weeks and 95% of patients received mRNA vaccines. In multivariate analyses, patients with laboratory-confirmed prior COVID-19 infection had significantly increased antibody and cellular post-vaccination responses compared to those without prior infection. Vaccine product and DMT class were independent predictors of antibody and cellular responses, while race/ethnicity was not. INTERPRETATION Prior COVID-19 infection is associated with enhanced antibody and cellular post-vaccine responses independent of DMT class and vaccine type. There were no differences in immune responses across race/ethnic groups.
Collapse
Affiliation(s)
- Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Ryan Curtin
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Jinglan Pei
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Katherine Perdomo
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Tamar E. Bacon
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Iryna Voloshyna
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Joseph Kim
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Ethan Tardio
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Samantha Nyovanie
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Andrea Valeria Calderon
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Fatoumatta Dibba
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Igda Stanzin
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Marie I. Samanovic
- NYU Langone Vaccine Center, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Pranil Raut
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | | | | | | | - Mark J. Mulligan
- NYU Langone Vaccine Center, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Yury Patskovsky
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Gregg J. Silverman
- Division of Rheumatology, Department of MedicineNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| |
Collapse
|
21
|
Etemadifar M, Nouri H, Pitzalis M, Idda ML, Salari M, Baratian M, Mahdavi S, Abhari AP, Sedaghat N. Multiple sclerosis disease-modifying therapies and COVID-19 vaccines: a practical review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:986-994. [PMID: 35688629 DOI: 10.1136/jnnp-2022-329123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
Abstract
Studies among people with multiple sclerosis (pwMS) receiving disease-modifying therapies (DMTs) have provided adequate evidence for an appraisal of COVID-19 vaccination policies among them. To synthesise the available evidence addressing the effect of MS DMTs on COVID-19 vaccines' immunogenicity and effectiveness, following the Cochrane guidelines, we systematically reviewed all observational studies available in MEDLINE, Scopus, Web of Science, MedRxiv and Google Scholar from January 2021 to January 2022 and extracted their relevant data. Immunogenicity data were then synthesised in a quantitative, and other data in a qualitative manner. Evidence from 28 studies suggests extensively lower B-cell responses in sphingosine-1-phosphate receptor modulator (S1PRM) treated and anti-CD20 (aCD20) treated, and lower T-cell responses in interferon-treated, S1PRM-treated and cladribine-treated pwMS-although most T cell evidence currently comprises of low or very low certainty. With every 10-week increase in aCD20-to-vaccine period, a 1.94-fold (95% CI 1.57 to 2.41, p<0.00001) increase in the odds of seroconversion was observed. Furthermore, the evidence points out that B-cell-depleting therapies may accelerate postvaccination humoral waning, and boosters' immunogenicity is predictable with the same factors affecting the initial vaccination cycle. Four real-world studies further indicate that the comparative incidence/severity of breakthrough COVID-19 has been higher among the pwMS treated with S1PRM and aCD20-unlike the ones treated with other DMTs. S1PRM and aCD20 therapies were the only DMTs reducing the real-world effectiveness of COVID-19 vaccination among pwMS. Hence, it could be concluded that optimisation of humoral immunogenicity and ensuring its durability are the necessities of an effective COVID-19 vaccination policy among pwMS who receive DMTs.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hosein Nouri
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Maristella Pitzalis
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council (CNR), Cagliari, Italy
| | - Maria Laura Idda
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council (CNR), Cagliari, Italy
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Baratian
- Clinical Research Developement Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepide Mahdavi
- Clinical Research Developement Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Amir Parsa Abhari
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Nahad Sedaghat
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran .,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| |
Collapse
|
22
|
Moccia M, Buonomo AR, Scotto R, Viceconte G, Nobile M, Lanzillo R, Brescia Morra V, Gentile I. Monoclonal antibodies for mild-to-moderate COVID-19 in multiple sclerosis: A case series. J Neurol Sci 2022; 439:120306. [PMID: 35689866 PMCID: PMC9159779 DOI: 10.1016/j.jns.2022.120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/17/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
We reported on five people with MS, using immunodepleting disease modifying treatments (anti-CD20 monoclonal antibodies and sphingosine-one-phosphate modulators) and with reduced COVID-19 vaccine response, who had mild-to-moderate symptomatic COVID-19, and were treated with anti-SARS-CoV-2 monoclonal antibodies. In particular, we showed the possibility to use monoclonal antibodies to speed-up recovery from COVID-19 in MS, in the absence of any COVID-19 residuals or MS changes (e.g., relapses or disability).
Collapse
Affiliation(s)
- Marcello Moccia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Naples, Italy.
| | - Antonio Riccardo Buonomo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Naples, Italy; Department of Clinical Medicine and Surgery, Section of Infectious Diseases, Federico II University, Naples, Italy
| | - Riccardo Scotto
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, Federico II University, Naples, Italy
| | - Giulio Viceconte
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, Federico II University, Naples, Italy
| | - Mariano Nobile
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, Federico II University, Naples, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Naples, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, Federico II University, Naples, Italy
| |
Collapse
|
23
|
Gombolay GY, Dutt M, Tyor W. Immune responses to SARS-CoV-2 vaccination in multiple sclerosis: a systematic review/meta-analysis. Ann Clin Transl Neurol 2022; 9:1321-1331. [PMID: 35852423 PMCID: PMC9349877 DOI: 10.1002/acn3.51628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Responses to SARS-CoV-2 vaccination in patients with MS (pwMS) varies by disease-modifying therapies (DMTs). We perform a meta-analysis and systematic review of immune response to SARS-CoV-2 vaccines in pwMS. METHODS Two independent reviewers searched PubMed, Google Scholar, and Embase from January 1, 2019-December 31, 2021, excluding prior SARS-CoV-2 infections. The meta-analysis of observational studies in epidemiology (MOOSE) guidelines were applied. The data were pooled using a fixed-effects model. RESULTS Eight-hundred sixty-four healthy controls and 2203 pwMS from 31 studies were included. Antibodies were detected in 93% healthy controls (HCs), and 77% pwMS, with >93% responses in all DMTs (interferon-beta, glatiramer acetate, cladribine, natalizumab, dimethyl fumarate, alemtuzumab, and teriflunomide) except for 72% sphingosine-1-phosphate modulators (S1PM) and 44% anti-CD20 monoclonal antibodies (mAbs). T-cell responses were detected in most anti-CD20 and decreased in S1PM. Higher antibody response was observed in mRNA vaccines (99.7% HCs) versus non-mRNA vaccines (HCs: 72% inactivated virus; pwMS: 86% vector, 59% inactivated virus). A multivariate logistic regression model to predict vaccine response demonstrated that mRNA versus non-mRNA vaccines had a 3.4 odds ratio (OR) for developing immunity in anti-CD20 (p = 0.0052) and 7.9 OR in pwMS on S1PM or CD20 mAbs (p < 0.0001). Antibody testing timing did not affect antibody detection. CONCLUSION Antibody responses are decreased in S1PM and anti-CD20; however, cellular responses were positive in most anti-CD20 with decreased T cell responses in S1PM. mRNA vaccines had increased seroconversion rates compared to non-RNA vaccines. Further investigation in how DMTs affect vaccine immunity are needed.
Collapse
Affiliation(s)
- Grace Y. Gombolay
- Department of Pediatrics, Division of Pediatric NeurologyEmory University School of Medicine and Children's Healthcare of Atlanta1400 Tulle Road NE, 8 FloorAtlantaGeorgia30329USA
| | - Monideep Dutt
- Department of Pediatrics, Division of Pediatric NeurologyEmory University School of Medicine and Children's Healthcare of Atlanta1400 Tulle Road NE, 8 FloorAtlantaGeorgia30329USA
| | - William Tyor
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta VA Medical CenterDecaturGeorgiaUSA
| |
Collapse
|
24
|
Cords L, Knapp M, Woost R, Schulte S, Kummer S, Ackermann C, Beisel C, Peine S, Johansson AM, Kwok WWH, Günther T, Fischer N, Wittner M, Addo MM, Huber S, Schulze zur Wiesch J. High and Sustained Ex Vivo Frequency but Altered Phenotype of SARS-CoV-2-Specific CD4 + T-Cells in an Anti-CD20-Treated Patient with Prolonged COVID-19. Viruses 2022; 14:1265. [PMID: 35746736 PMCID: PMC9228841 DOI: 10.3390/v14061265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Here, we longitudinally assessed the ex vivo frequency and phenotype of SARS-CoV-2 membrane protein (aa145-164) epitope-specific CD4+ T-cells of an anti-CD20-treated patient with prolonged viral positivity in direct comparison to an immunocompetent patient through an MHC class II DRB1*11:01 Tetramer analysis. We detected a high and stable SARS-CoV-2 membrane-specific CD4+ T-cell response in both patients, with higher frequencies of virus-specific CD4+ T-cells in the B-cell-depleted patient. However, we found an altered virus-specific CD4+ T-cell memory phenotype in the B-cell-depleted patient that was skewed towards late differentiated memory T-cells, as well as reduced frequencies of SARS-CoV-2-specific CD4+ T-cells with CD45RA- CXCR5+ PD-1+ circulating T follicular helper cell (cTFH) phenotype. Furthermore, we observed a delayed contraction of CD127- virus-specific effector cells. The expression of the co-inhibitory receptors TIGIT and LAG-3 fluctuated on the virus-specific CD4+ T-cells of the patient, but were associated with the inflammation markers IL-6 and CRP. Our findings indicate that, despite B-cell depletion and a lack of B-cell-T-cell interaction, a robust virus-specific CD4+ T-cell response can be primed that helps to control the viral replication, but which is not sufficient to fully abrogate the infection.
Collapse
Affiliation(s)
- Leon Cords
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Maximilian Knapp
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Robin Woost
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sophia Schulte
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Silke Kummer
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Christin Ackermann
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Claudia Beisel
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | | | - William Wai-Hung Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA; (A.M.J.); (W.W.-H.K.)
| | - Thomas Günther
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
| | - Nicole Fischer
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Marylyn Martina Addo
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Samuel Huber
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| |
Collapse
|
25
|
Weber MS, Buttmann M, Meuth SG, Dirks P, Muros-Le Rouzic E, Eggebrecht JC, Hieke-Schulz S, Leemhuis J, Ziemssen T. Safety, Adherence and Persistence in a Real-World Cohort of German MS Patients Newly Treated With Ocrelizumab: First Insights From the CONFIDENCE Study. Front Neurol 2022; 13:863105. [PMID: 35614917 PMCID: PMC9126090 DOI: 10.3389/fneur.2022.863105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Real-world relapsing multiple sclerosis (RMS) and primary progressive MS (PPMS) populations may be more diverse than in clinical trials. Here, we present a first analysis of safety, adherence and persistence data from a real-world cohort of patients newly treated with ocrelizumab. Methods CONFIDENCE (ML39632, EUPAS22951) is an ongoing multicenter, non-interventional post authorization safety study assessing patients with RMS or PPMS newly treated with ocrelizumab or other disease-modifying therapies for up to 10 years. For this analysis, patients newly treated with ocrelizumab were analyzed in subgroups by MS phenotype and age over a mean ~1 year of exposure totaling 2,329 patient years [PY]). Results At data cutoff (14 October 2020), 1,702 patients with RMS and 398 patients with PPMS were treated with ≥1 dose of ocrelizumab. At baseline, the mean ages (SD) of patients with RMS and PPMS were 41.59 (11.24) and 50.95 (9.88) years and the mean EDSS (Expanded Disability Status Scale) was 3.18 (1.87) and 4.41 (1.59), respectively. The most common adverse events (AEs) and serious AEs across both phenotypes were infections and infestations, with infection SAE rates of 2.8 events/100 PY and 1.5 events/100 PY in patients with RMS and PPMS, respectively. Across all phenotypes, ocrelizumab persistence was 92% at 24 months; median time between doses was ~6 months. Conclusions The ocrelizumab safety profile observed in the CONFIDENCE real-world MS population was consistent to the one observed in pivotal clinical trials. High treatment persistence and adherence were observed. Trial Registration ML39632, EUPAS22951
Collapse
Affiliation(s)
- Martin S Weber
- Department of Neurology, Institute of Neuropathology, University Medicine Göttingen, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | | | - Sven G Meuth
- Clinic of Neurology, Heinrich-Heine University, Düsseldorf, Germany
| | - Petra Dirks
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | | | | | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Neurological Clinic, Carl Gustav Carus University Clinic, University of Technology, Dresden, Germany
| |
Collapse
|
26
|
Conte WL, Golzarri-Arroyo L. Tixagevimab and Cilgavimab (Evusheld) boosts antibody levels to SARS-CoV-2 in patients with multiple sclerosis on b-cell depleters. Mult Scler Relat Disord 2022; 63:103905. [PMID: 35661563 PMCID: PMC9123743 DOI: 10.1016/j.msard.2022.103905] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Background and objectives B-cell-depleting therapies may affect the development of a protective immune response following vaccination against SARS-CoV-2. It is important to have a different strategy for creating immunity in this patient population. The objective of this study was to evaluate whether Evusheld (tixagevimab co-packaged with cilgavimab) affects the antibody response to SARS-CoV-2 following an attenuated response to the vaccines against SARS-CoV-2 in patients on b-cell depleters who have multiple sclerosis. Methods This was a single-center cohort study performed at Methodist Hospitals in Merrillville, IN, USA. It included patients with multiple sclerosis treated with ocrelizumab and ofatumumab. Patients had already received the mRNA vaccinations against SARS-CoV-2 and had demonstrated an attenuated response on baseline antibody testing. All participants received 150 mg of Evusheld. Follow-up antibody levels were measured at least two weeks following Evusheld injections. Results All patients (100%) developed the highest level of antibodies possible at least two weeks following Evusheld injections. Discussion In this study, patients with MS who had an attenuated antibody response to the COVID-19 vaccines due to exposure to b-cell depleters now had the highest antibody response possible after receiving Evusheld. This is important as it provides a different strategy for protection against COVID-19.
Collapse
Affiliation(s)
- William L Conte
- Comprehensive MS Center, Methodist Hospitals, Merrillville, IN 46410, United States of America; School of Medicine, Indiana University, Bloomington, IN, United States of America.
| | - Lilian Golzarri-Arroyo
- Department of Epidemiology and Biostatistics, School of Public Heath Bloomington, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
27
|
Vardhana S, Baldo L, Morice WG, Wherry EJ. Understanding T-cell responses to COVID-19 is essential for informing public health strategies. Sci Immunol 2022; 7:eabo1303. [PMID: 35324269 DOI: 10.1126/sciimmunol.abo1303] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Durable T-cell responses to SARS-CoV-2 antigens after infection or vaccination improve immune-mediated viral clearance. To date, population-based surveys of COVID-19 adaptive immunity have focused on testing for IgG antibodies that bind spike protein and/or neutralize the virus. Deployment of existing methods for measuring T-cell immunity could provide a more complete profile of immune status, informing public health policies and interventions.
Collapse
Affiliation(s)
- Santosha Vardhana
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lance Baldo
- Adaptive Biotechnologies, Seattle, Washington, USA
| | - William G Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - E John Wherry
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Golshani M, Hrdý J. Multiple Sclerosis Patients and Disease Modifying Therapies: Impact on Immune Responses against COVID-19 and SARS-CoV-2 Vaccination. Vaccines (Basel) 2022; 10:vaccines10020279. [PMID: 35214735 PMCID: PMC8876554 DOI: 10.3390/vaccines10020279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
This article reviews the literature on SARS-CoV-2 pandemic and multiple sclerosis (MS). The first part of the paper focuses on the current data on immunopathology of SARS-CoV-2 and leading vaccines produced against COVID-19 infection. In the second part of the article, we discuss the effect of Disease Modifying Therapies (DMTs) on COVID-19 infection severity or SARS-CoV-2 vaccination in MS patients plus safety profile of different vaccine platforms in MS patients.
Collapse
Affiliation(s)
| | - Jiří Hrdý
- Correspondence: ; Tel.: +420-224968509
| |
Collapse
|