1
|
Luu RK, Buehler MJ. BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-Inspired Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306724. [PMID: 38145334 PMCID: PMC10933662 DOI: 10.1002/advs.202306724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge is systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further strengthened with enhanced reasoning ability, as well as with Retrieval-Augmented Generation (RAG) to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model shows impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.
Collapse
Affiliation(s)
- Rachel K. Luu
- Laboratory for Atomistic and Molecular Mechanics (LAMM)Massachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM)Massachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- Center for Computational Science and EngineeringSchwarzman College of ComputingMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| |
Collapse
|
2
|
Houriet C, Damodaran V, Mascolo C, Gantenbein S, Peeters D, Masania K. 3D Printing of Flow-Inspired Anisotropic Patterns with Liquid Crystalline Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307444. [PMID: 38112236 DOI: 10.1002/adma.202307444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Anisotropic materials formed by living organisms possess remarkable mechanical properties due to their intricate microstructure and directional freedom. In contrast, human-made materials face challenges in achieving similar levels of directionality due to material and manufacturability constraints. To overcome these limitations, an approach using 3D printing of self-assembling thermotropic liquid crystal polymers (LCPs) is presented. Their high stiffness and strength is granted by nematic domains aligning during the extrusion process. Here, a remarkably wide range of Young's modulus from 3 to 40 GPa is obtained by utilizing directionality of the nematic flow the printing process. By determining a relationship between stiffness, nozzle diameter, and line width, a design space where shaping and mechanical performance can be combined is identified. The ability to print LCPs with on-the-fly width changes to accommodate arbitrary spatially varying directions is demonstrated. This unlocks the possibility to manufacture exquisite patterns inspired by fluid dynamics with steep curvature variations. Utilizing the synergy between this path-planning method and LCPs, functional objects with stiffness and curvature gradients can be 3D-printed, offering potential applications in lightweight sustainable structures embedding crack-mitigation strategies. This method also opens avenues for studying and replicating intricate patterns observed in nature, such as wood or turbulent flow using 3D printing.
Collapse
Affiliation(s)
- Caroline Houriet
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, Netherlands
| | - Vinay Damodaran
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, Netherlands
| | - Chiara Mascolo
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Silvan Gantenbein
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Daniël Peeters
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, Netherlands
| | - Kunal Masania
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
3
|
Stamm K, Dirks JH. Insect exoskeletons react to hypergravity. Proc Biol Sci 2023; 290:20232141. [PMID: 38052238 PMCID: PMC10697798 DOI: 10.1098/rspb.2023.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
A typical feature of biological materials is their ability to adapt to mechanical load. However, it is not known whether the cuticle exoskeleton, one of the most common biological structures, also shares this trait. Here, we show direct experimental evidence that prolonged exposure to hypergravity conditions affects the morphology and biomechanics of an insect exoskeleton. Locusts were raised for several weeks in a custom-designed centrifuge at various levels of hypergravity. Biomechanical measurements and X-ray microtomography show that up to 3 g load Young's modulus of the tibiae increased by about 67%. Higher gravitational loads however decreased the survival rate, body mass and endocuticle thickness. These results directly show that cuticle exoskeletons can react to hypergravity. This ability has so far only been known for bone endoskeletons and plants. Our findings thus add important context to the discussion on general ultimate factors in the evolution of adaptive biological materials and skeletal systems.
Collapse
Affiliation(s)
- Karen Stamm
- Biomimetics-Innovation-Centre, Hochschule Bremen–City University of Applied Sciences, Neustadtswall 30 28199, Bremen, Germany
| | - Jan-Henning Dirks
- Biomimetics-Innovation-Centre, Hochschule Bremen–City University of Applied Sciences, Neustadtswall 30 28199, Bremen, Germany
| |
Collapse
|
4
|
Nefjodovs V, Andze L, Andzs M, Filipova I, Tupciauskas R, Vecbiskena L, Kapickis M. Wood as Possible Renewable Material for Bone Implants-Literature Review. J Funct Biomater 2023; 14:266. [PMID: 37233376 PMCID: PMC10219062 DOI: 10.3390/jfb14050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Bone fractures and bone defects affect millions of people every year. Metal implants for bone fracture fixation and autologous bone for defect reconstruction are used extensively in treatment of these pathologies. Simultaneously, alternative, sustainable, and biocompatible materials are being researched to improve existing practice. Wood as a biomaterial for bone repair has not been considered until the last 50 years. Even nowadays there is not much research on solid wood as a biomaterial in bone implants. A few species of wood have been investigated. Different techniques of wood preparation have been proposed. Simple pre-treatments such as boiling in water or preheating of ash, birch and juniper woods have been used initially. Later researchers have tried using carbonized wood and wood derived cellulose scaffold. Manufacturing implants from carbonized wood and cellulose requires more extensive wood processing-heat above 800 °C and chemicals to extract cellulose. Carbonized wood and cellulose scaffolds can be combined with other materials, such as silicon carbide, hydroxyapatite, and bioactive glass to improve biocompatibility and mechanical durability. Throughout the publications wood implants have provided good biocompatibility and osteoconductivity thanks to wood's porous structure.
Collapse
Affiliation(s)
- Vadims Nefjodovs
- Faculty of Residency, Riga Stradins University, Dzirciema iela 16, LV-1007 Riga, Latvia
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia
| | - Laura Andze
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Martins Andzs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Inese Filipova
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Ramunas Tupciauskas
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Linda Vecbiskena
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia (L.V.)
| | - Martins Kapickis
- Microsurgery Centre of Latvia, Brivibas Gatve 410, LV-1024 Riga, Latvia
| |
Collapse
|
5
|
Carpenter JA, Saraw Z, Schwegler A, Magrini T, Kuhn G, Rafsanjani A, Studart AR. Hierarchical Porous Monoliths of Steel with Self-Reinforcing Adaptive Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207181. [PMID: 36373556 DOI: 10.1002/adma.202207181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Porous structures offer an attractive approach to reduce the amount of natural resources used while maintaining relatively high mechanical efficiency. However, for some applications the drop in mechanical properties resulting from the introduction of porosity is too high, which has limited the broader utilization of porous materials in industry. Here, it is shown that steel monoliths can be designed to display high mechanical efficiency and reversible self-reinforcing properties when made with porous architectures with up to three hierarchical levels. Ultralight steel structures that can float on water and autonomously adapt their stiffness are manufactured by the thermal reduction and sintering of 3D printed foam templates. Using distinct mechanical testing techniques, image analysis, and finite element simulations, the mechanisms leading to the high mechanical efficiency and self-stiffening ability of the hierarchical porous monoliths are studied. The design and fabrication of mechanically stable porous monoliths using iron as a widely available natural resource is expected to contribute to the future development of functional materials with a more sustainable footprint.
Collapse
Affiliation(s)
- Julia A Carpenter
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Zoubeir Saraw
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Alain Schwegler
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| | - Tommaso Magrini
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Gisela Kuhn
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8093, Switzerland
| | - Ahmad Rafsanjani
- Center for Soft Robotics, SDU Biorobotics, The Maersk McKinney Moller Institute, University of Southern Denmark, Odense, 5230, Denmark
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
6
|
Akabane C, Pabisch S, Wagermaier W, Roschger A, Tobori N, Okano T, Murakami S, Fratzl P, Weinkamer R. The effect of aging on the nanostructure of murine alveolar bone and dentin. J Bone Miner Metab 2021; 39:757-768. [PMID: 33839951 DOI: 10.1007/s00774-021-01227-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Alveolar bone, dentin, and cementum provide a striking example of structurally different collagen-based mineralized tissues separated only by periodontal ligament. While alveolar bone is strongly remodeled, this does not hold for dentin and cementum. However, additional dentin can be deposited on the inner surface of the pulp chamber also in older age. By investigating alveolar bone and molar of mice, the aim of our study is to detect changes in the mineral nanostructure with aging. MATERIALS AND METHODS Buccal-lingual sections of the mandible and first molar from C57BL/6 mice of three different age groups (young 5 weeks, adult 22 weeks and old 23 months) were characterized using synchrotron small and wide-angle X-ray scattering. Local average thickness and length of the apatite particles were mapped with several line scans covering the alveolar bone and the tooth. RESULTS In alveolar bone, a spatial gradient was seen to develop with age with the thickest and longest particles in the distal part of the bone. The mineral particles in dentin were found to be become thicker, but then decrease of average length from adult to old animals. The mineral particle characteristics of dentin close to the pulp chamber were not only different to the rest of the tooth, but also when comparing the different age groups and even between individual animals in the same age group. CONCLUSIONS These results indicated that mineral particle characteristics were found to evolve differently between molar and alveolar bone as a function of age.
Collapse
Affiliation(s)
- Chika Akabane
- Research & Development Headquarters, Lion Corporation, Tokyo, Japan.
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Silvia Pabisch
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Andreas Roschger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Physics of Materials, Paris-Lodron-University of Salzburg, Salzburg, Austria
| | - Norio Tobori
- Research & Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Tomomichi Okano
- Research & Development Headquarters, Lion Corporation, Tokyo, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
7
|
Tits A, Plougonven E, Blouin S, Hartmann MA, Kaux JF, Drion P, Fernandez J, van Lenthe GH, Ruffoni D. Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface. Sci Rep 2021; 11:16534. [PMID: 34400706 PMCID: PMC8367976 DOI: 10.1038/s41598-021-95917-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium
| | - Erwan Plougonven
- Chemical Engineering Department, University of Liège, Liège, Belgium
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery Unit, GIGA and Credec, University of Liege, Liege, Belgium
| | - Justin Fernandez
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | | | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium.
| |
Collapse
|
8
|
High-strength and multi-functional gypsum with unidirectionally porous architecture mimicking wood. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Eder M, Schäffner W, Burgert I, Fratzl P. Wood and the Activity of Dead Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001412. [PMID: 32748985 PMCID: PMC11468358 DOI: 10.1002/adma.202001412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/24/2020] [Indexed: 05/16/2023]
Abstract
Wood is a prototypical biological material, which adapts to mechanical requirements. The microarchitecture of cellulose fibrils determines the mechanical properties of woody materials, as well as their actuation properties, based on absorption and desorption of water. Herein it is argued that cellulose fiber orientation corresponds to an analog code that determines the response of wood to humidity as an active material. Examples for the harvesting of wood activity, as well as bioinspiration, are given.
Collapse
Affiliation(s)
- Michaela Eder
- Max‐Planck Institute of Colloids and InterfacesDepartment of BiomaterialsAm Mühlenberg 1Potsdam14476Germany
| | - Wolfgang Schäffner
- Institute of Cultural History and TheoryHumboldt Universität zu BerlinBerlin10117Germany
| | - Ingo Burgert
- ETH ZürichWood Materials ScienceZürich8093Switzerland
- EmpaCellulose & Wood Materials LaboratoryDübendorf8600Switzerland
| | - Peter Fratzl
- Max‐Planck Institute of Colloids and InterfacesDepartment of BiomaterialsAm Mühlenberg 1Potsdam14476Germany
| |
Collapse
|
10
|
Casari D, Michler J, Zysset P, Schwiedrzik J. Microtensile properties and failure mechanisms of cortical bone at the lamellar level. Acta Biomater 2021; 120:135-145. [PMID: 32428682 DOI: 10.1016/j.actbio.2020.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Bone features a remarkable combination of toughness and strength which originates from its complex hierarchical structure and motivates its investigation on multiple length scales. Here, in situ microtensile experiments were performed on dry ovine osteonal bone for the first time at the length scale of a single lamella. The micromechanical response was brittle and revealed larger ultimate tensile strength compared to the macroscale (factor of 2.3). Ultimate tensile strength for axial and transverse specimens was 0.35 ± 0.05 GPa and 0.13 ± 0.02 GPa, respectively. A significantly greater strength anisotropy relative to compression was observed (axial to transverse strength ratio of 2.7:1 for tension, 1.3:1 for compression). Fracture surface and transmission electron microscopic analysis suggested that this may be rationalized by a change in failure mode from fibril-matrix interfacial shearing for axial specimens to fibril-matrix debonding in the transverse direction. An improved version of the classic Hashin's composite failure model was applied to describe lamellar bone strength as a function of fibril orientation. Together with our experimental observations, the model suggests that cortical bone strength at the lamellar level is remarkably tolerant to variations of fibrils orientation of about ±30°. This study highlights the importance of investigating bone's hierarchical organization at several length scales for gaining a deeper understanding of its macroscopic fracture behavior. STATEMENT OF SIGNIFICANCE: Understanding bone deformation and failure behavior at different length scales of its hierarchical structure is fundamental for the improvement of bone fracture prevention, as well as for the development of multifunctional bio-inspired materials combining toughness and strength. The experiments reported in this study shed light on the microtensile properties of dry primary osteonal bone and establish a baseline from which to start further investigations in more physiological conditions. Microtensile specimens were stronger than their macroscopic counterparts by a factor of 2.3. Lamellar bone strength seems remarkably tolerant to variations of the sub-lamellar fibril orientation with respect to the loading direction (±30°). This study underlines the importance of studying bone on all length scales for improving our understanding of bone's macroscopic mechanical response.
Collapse
|
11
|
Zampetakis I, Dobah Y, Liu D, Woods B, Bezazi A, Perriman A, Scarpa F. Abnormal stiffness behaviour in artificial cactus-inspired reinforcement materials. BIOINSPIRATION & BIOMIMETICS 2020; 16:026004. [PMID: 33065569 DOI: 10.1088/1748-3190/abc1f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Cactus fibres have previously shown unusual mechanical properties in terms of bending and axial stiffness due to their hierarchical structural morphology. Bioinspiration from those cactus fibres could potentially generate architected materials with exciting properties. To that end we have built bioinspired artificial analogues of cactus fibres to evaluate their mechanical properties. We have generated 3D printed specimens from rendered models of the cactus structure using two different printing techniques to assess the reproducibility of the structural topology. Bioinspired additive manufactured materials with unusual mechanical properties constitute an ever-evolving field for applications ranging from novel wing designs to lightweight plant-inspired analogues. The cactus-inspired 3D printed specimens developed here demonstrate an unusually high bending to axial stiffness ratios regardless of the manufacturing method used. Moreover, when compared to their equivalent beam analogues the cactus specimens demonstrate a significant potential in terms of specific (weight averaged) flexural modulus. Imaging of the artificial cactus reinforcements has enabled the generation of a one-dimensional reduced order finite element model of the cactus structure, with a distribution of cross sections along the length that simulate the inertia and mechanical behaviour of the cactus topology. The novel bioinspired material structure shows an excellent reproducibility across different manufacturing methods and suggest that the tree-like topology of the cactus fibre could be very suited to applications where high bending to axial stiffness ratios are critical.
Collapse
Affiliation(s)
- Ioannis Zampetakis
- Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - Yousef Dobah
- Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR Bristol, United Kingdom
| | - Dong Liu
- School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, BS8 1TL Bristol, United Kingdom
| | - Ben Woods
- Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR Bristol, United Kingdom
| | - Abderrezak Bezazi
- Laboratoire de Mécanique Appliquée des Nouveaux Matériaux (LMANM), Université 8 Mai 1945-Guelma, Algeria
| | - Adam Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR Bristol, United Kingdom
| |
Collapse
|
12
|
Cano M, Giner-Casares JJ. Biomineralization at fluid interfaces. Adv Colloid Interface Sci 2020; 286:102313. [PMID: 33181402 DOI: 10.1016/j.cis.2020.102313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Biomineralization is of paramount importance for life on Earth. The delicate balance of physicochemical interactions at the interface between organic and inorganic matter during all stages of biomineralization resembles an extremely high complexity. The coordination of this sophisticated biological machinery and physicochemical scenarios is certainly a wonderful show of nature. Understanding of the biomineralization processes is still far from complete. The recent advances in biomineralization research from the Colloid and Interface Science perspective are reviewed herein. The synergy between this two fields of research is demonstrated. The unique opportunities offered by purposefully designed fluid interfaces, mainly Langmuir monolayers are presented. Biomedical applications of biomineral-based nanostructures are discussed, showing their improved biocompatibility and on-demand delivery features. A brief guide to the array of state-of-the-art experimental techniques for unraveling the mechanisms of biomineralization using fluid interfaces is included. In summary, the fruitful and exciting crossroad between Colloid and Interface Science with Biomineralization is exhibited.
Collapse
|
13
|
Li D, Bu X, Xu Z, Luo Y, Bai H. Bioinspired Multifunctional Cellular Plastics with a Negative Poisson's Ratio for High Energy Dissipation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001222. [PMID: 32644270 DOI: 10.1002/adma.202001222] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Cellular plastics have been widely used in transportation, aerospace, and personal safety applications owing to their excellent mechanical, thermal, and acoustic properties. It is highly desirable to impart them with a complex porous structure and composition distribution to obtain specific functionality for various engineering applications, which is challenging with conventional foaming technologies. Herein, it is demonstrated that this can be achieved through the controlled freezing process of a monomer/water emulsion, followed by cryopolymerization and room temperature thawing. As ice is used as a template, this method is environmentally friendly and capable of producing cellular plastics with various microstructures by harnessing the numerous morphologies of ice crystals. In particular, a cellular plastic with a radially aligned structure shows a negative Poisson's ratio under compression. The rigid plastic shows a much higher energy dissipation capability compared to other materials with similar negative Poisson's ratios. Additionally, the simplicity and scalability of this approach provides new possibilities for fabricating high-performance cellular plastics with well-defined porous structures and composition distributions.
Collapse
Affiliation(s)
- Dewen Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaochen Bu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zongpu Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
14
|
Ziv E, Milgram J, Davis J, Soares A, Wilde F, Zaslansky P, Shahar R. Neither cortical nor trabecular: An unusual type of bone in the heavy-load-bearing lower pharyngeal jaw of the black drum (Pogonias cromis). Acta Biomater 2020; 104:28-38. [PMID: 31923720 DOI: 10.1016/j.actbio.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Durophagous fish consume a diet based primarily on hard-shelled animals, mainly mollusks. In order to successfully perform this task, they are equipped with an extra set of jaws located in their throat called pharyngeal jaws. Here we present the results of a study of the structure of the bony material of the exceptionally powerful lower pharyngeal jaws (LPJs) of the black drum Pogonias cromis which generate the highest biting forces documented in bony fishes. In particular, we studied the two long and slender struts that support the entire dental plate and teeth of the LPJ, in order to determine how this structure withstands the huge stresses it encounters repetitively and for long periods of time. We describe the hierarchical structure of the struts of lower pharyngeal jaw of P. cromis at a wide range of length scales, and show how it is adapted to successfully achieve its high mechanical performance. In particular, we show that the bone material of the strut is neither cortical nor cancellous, and although it is highly porous, its complex and layered three-dimensional arrangement of thick lamellae sheets, which are inter-connected by thin plates, is perfectly tailored to withstand extremely large but directionally-consistent forces. STATEMENT OF SIGNIFICANCE: The diet of some fish consists of hard food, like mollusks and shells. In order to accomplish the task of cracking this type of food, they have an extra set of bony jaws located in their throat, called pharyngeal jaws. Here we describe the hierarchical structural elements of these jaws which allow them to withstand huge forces repeatedly over long periods of time. Surprisingly, the structure is very porous, but its architectural design is superbly adapted to handle consistently-oriented forces. This structural motif defines a new bony material which is neither cortical nor cancellous.
Collapse
|
15
|
A Design and Fabrication Method for Wood-Inspired Composites by Micro X-Ray Computed Tomography and 3D Printing. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developments in 3D printing and CT scanning technologies have facilitated the imitation of natural wood structures. However, creating composites from the elementary features of anisotropic wood structures remains a new frontier. This paper aims to investigate the potential of constructing and 3D printing mechanically customizable composites by combining anisotropic elementary models reconstructed from the micro X-ray computed tomography (μ-CT) scanning of wood. In this study, an arbitrary region of interest selected from the μ-CT scanning of a sample of Manchurian walnut (Juglans mandshurica) was reconstructed into isosurfaces that constituted the 3D model of an elementary model. Elementary models were combined to form the wood-inspired composites in various arrangements. The surface and interior structures of the elementary model were found to be customizable through adjusting the image Threshold and Surface Quality Factors during 3D volume reconstruction. Compressional simulations and experiments performed on the elementary model (digital and 3D printed) revealed that its compressive behavior was wood-like and anisotropic. Numerical analysis established a preliminary link between the arrangements of elementary models and the compressive stiffness of respective composites, showing that it is possible to control the compressive behaviors of the composites through the design of specific elementary model arrangements.
Collapse
|
16
|
Hauke F, Löwen H, Liebchen B. Clustering-induced velocity-reversals of active colloids mixed with passive particles. J Chem Phys 2020; 152:014903. [DOI: 10.1063/1.5128641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Frederik Hauke
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
17
|
Matrix-induced pre-strain and mineralization-dependent interfibrillar shear transfer enable 3D fibrillar deformation in a biogenic armour. Acta Biomater 2019; 100:18-28. [PMID: 31563691 DOI: 10.1016/j.actbio.2019.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
The cuticle of stomatopod is an example of a natural mineralized biomaterial, consisting of chitin, amorphous calcium carbonate and protein components with a multiscale hierarchical structure, and forms a protective shell with high impact resistance. At the ultrastructural level, cuticle mechanical functionality is enabled by the nanoscale architecture, wherein chitin fibrils are in intimate association with enveloping mineral and proteins. However, the interactions between these ultrastructural building blocks, and their coupled response to applied load, remain unclear. Here, we elucidate these interactions via synchrotron microbeam wide-angle X-ray diffraction combined with in situ tensile loading, to quantify the chitin crystallite structure of native cuticle - and after demineralization and deproteinization - as well as time-resolved changes in chitin fibril strain on macroscopic loading. We demonstrate chitin crystallite stabilization by mineral, seen via a compressive pre-strain of approximately 0.10% (chitin/protein fibre pre-stress of ∼20 MPa), which is lost on demineralization. Clear reductions of stiffness at the fibrillar-level following matrix digestion are linked to the change in the protein/matrix mechanical properties. Furthermore, both demineralization and deproteinization alter the 3D-pattern of deformation of the fibrillar network, with a non-symmetrical angular fibril strain induced by the chemical modifications, associated with loss of the load-transferring interfibrillar matrix. Our results demonstrate and quantify the critical role of interactions at the nanoscale (between chitin-protein and chitin-mineral) in enabling the molecular conformation and outstanding mechanical properties of cuticle, which will inform future design of hierarchical bioinspired composites. STATEMENT OF SIGNIFICANCE: Chitinous biomaterials (e.g. arthropod cuticle) are widespread in nature and attracting attention for bioinspired design due to high impact resistance coupled with light weight. However, how the nanoscale interactions of the molecular building blocks - alpha-chitin, protein and calcium carbonate mineral - lead to these material properties is not clear. Here we used X-ray scattering to determine the cooperative interactions between chitin fibrils, protein matrix and biominerals, during tissue loading. We find that the chitin crystallite structure is stabilized by mineral nanoparticles, the protein phase prestresses chitin fibrils, and that chemical modification of the interfibrillar matrix significantly disrupts 2D mechanics of the microfibrillar chitin plywood network. These results will aid rational design of advanced chitin-based biomaterials with high impact resistance.
Collapse
|
18
|
Zhang P, Chen PY, Wang B, Yu R, Pan H, Wang B. Evaluating the hierarchical, hygroscopic deformation of the Daucus carota umbel through structural characterization and mechanical analysis. Acta Biomater 2019; 99:457-468. [PMID: 31525536 DOI: 10.1016/j.actbio.2019.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022]
Abstract
Many physically immobile plants develop passive yet ingenious strategies for active seed dispersal through self-deformation in response to external stimuli, such as humidity. These hygroscopic deformations are usually driven by the internal heterogeneous architecture, which provides valuable, inspiring information for the development of novel actuating systems. The Daucus carota compound umbel is an interesting structure showing a distinct hygroscopic deformation that operates at hierarchical levels among these plants. Here, we investigate the structure of the primary and secondary rays of the umbel associated with their deformation through mechanical analyses. We reveal that through controlling both the cellulose microfibril angle (MFA) and lignification, the multi-level bending behavior of the umbel is achieved, which contributes to efficient seed protection and dispersal. The primary rays generally show more significant bending curvature changes than the secondary rays, and within each level, the outer rays exhibit a larger motion amplitude than the middle and inner rays. Mechanical testing and theoretical analysis support that adjusting the lignin content within the ray structure compensates for the effect of the small differences in cellulose MFA on its bending behavior, which contributes to the overall hygroscopic deformation. Findings also show that the primary outer ray can generate reaction forces that are more than 700 times its weight, which is higher than that for the pine cone scales. The new insights from this work are instructive for bioinspired designs of complex, self-deforming structures and devices. STATEMENT OF SIGNIFICANCE: The carrot (Daucus carota) compound umbels exhibit a unique hierarchical, hygroscopic deformation for seed dispersal among immobile plants. In this work, we elucidate that the multi-level bending behavior of the umbel is achieved through manipulating the cellulose microfibril angle (MFA) and lignification of the primary and secondary rays for the first time. We also discover that adjusting the degree of lignification compensates for the effect of small cellulose MFA differences on the bending behavior theoretically and experimentally. The primary outer rays deform in a highly efficient manner, in which reactions forces about more than 700 times its weight are generated. The findings presented are instructive for bioinspired designs of complex, self-deforming structures and devices.
Collapse
|
19
|
Bigoni D, Cavuoto R, Misseroni D, Paggi M, Ruffini A, Sprio S, Tampieri A. Ceramics with the signature of wood: a mechanical insight. Mater Today Bio 2019; 5:100032. [PMID: 32211602 PMCID: PMC7083766 DOI: 10.1016/j.mtbio.2019.100032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 10/27/2022] Open
Abstract
In an attempt to mimic the outstanding mechanical properties of wood and bone, a 3D heterogeneous chemistry approach has been used in a biomorphic transformation process (in which sintering is avoided) to fabricate ceramics from rattan wood, preserving its hierarchical fibrous microstructure. The resulting material (called biomorphic apatite [BA] henceforth) possesses a highly bioactive composition and is characterised by a multiscale hierarchical pore structure, based on nanotwinned hydroxyapatite lamellae, which is shown to display a lacunar fractal nature. The mechanical properties of BA are found to be exceptional (when compared with usual porous hydroxyapatite and other ceramics obtained from wood through sintering) and unique as they occupy a zone in the Ashby map previously free from ceramics, but not far from wood and bone. Mechanical tests show the following: (i) the strength in tension may exceed that in compression, (ii) failure in compression involves complex exfoliation patterns, thus resulting in high toughness, (iii) unlike in sintered porous hydroxyapatite, fracture does not occur 'instantaneously,' but its growth may be observed, and it exhibits tortuous patterns that follow the original fibrillar structure of wood, thus yielding outstanding toughness, (iv) the anisotropy of the elastic stiffness and strength show unprecedented values when situations of stresses parallel and orthogonal to the main channels are compared. Despite being a ceramic material, BA displays a mechanical behavior similar on the one hand to the ligneous material from which it was produced (therefore behaving as a 'ceramic with the signature of wood') and on the other hand to the cortical/spongy osseous complex constituting the structure of compact bone.
Collapse
Affiliation(s)
- D Bigoni
- DICAM, University of Trento, Via Mesiano 77, Trento, Italy
| | - R Cavuoto
- DICAM, University of Trento, Via Mesiano 77, Trento, Italy
| | - D Misseroni
- DICAM, University of Trento, Via Mesiano 77, Trento, Italy
| | - M Paggi
- IMT School for Advanced Studies Lucca, Italy
| | - A Ruffini
- CNR-ISTEC, Via Granarolo 64, Faenza, Italy
| | - S Sprio
- CNR-ISTEC, Via Granarolo 64, Faenza, Italy
| | - A Tampieri
- CNR-ISTEC, Via Granarolo 64, Faenza, Italy
| |
Collapse
|
20
|
Frey M, Biffi G, Adobes‐Vidal M, Zirkelbach M, Wang Y, Tu K, Hirt AM, Masania K, Burgert I, Keplinger T. Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802190. [PMID: 31131194 PMCID: PMC6524091 DOI: 10.1002/advs.201802190] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/25/2019] [Indexed: 05/24/2023]
Abstract
Elegant design principles in biological materials such as stiffness gradients or sophisticated interfaces provide ingenious solutions for an efficient improvement of their mechanical properties. When materials such as wood are directly used in high-performance applications, it is not possible to entirely profit from these optimizations because stiffness alterations and fiber alignment of the natural material are not designed for the desired application. In this work, wood is turned into a versatile engineering material by incorporating mechanical gradients and by locally adapting the fiber alignment, using a shaping mechanism enabled by reversible interlocks between wood cells. Delignification of the renewable resource wood, a subsequent topographic stacking of the cellulosic scaffolds, and a final densification allow fabrication of desired 3D shapes with tunable fiber architecture. Additionally, prior functionalization of the cellulose scaffolds allows for obtaining tunable functionality combined with mechanical gradients. Locally controllable elastic moduli between 5 and 35 GPa are obtained, inspired by the ability of trees to tailor their macro- and micro-structure. The versatility of this approach has significant relevance in the emerging field of high-performance materials from renewable resources.
Collapse
Affiliation(s)
- Marion Frey
- Wood Materials ScienceDepartment of Civil, Environmental and Geomatic EngineeringETH Zürich8093ZürichSwitzerland
- Cellulose & Wood MaterialsFunctional MaterialsEMPA8600DübendorfSwitzerland
| | - Giulia Biffi
- Wood Materials ScienceDepartment of Civil, Environmental and Geomatic EngineeringETH Zürich8093ZürichSwitzerland
| | - Maria Adobes‐Vidal
- Wood Materials ScienceDepartment of Civil, Environmental and Geomatic EngineeringETH Zürich8093ZürichSwitzerland
- Cellulose & Wood MaterialsFunctional MaterialsEMPA8600DübendorfSwitzerland
| | - Meri Zirkelbach
- Wood Materials ScienceDepartment of Civil, Environmental and Geomatic EngineeringETH Zürich8093ZürichSwitzerland
- Design and ArtsLucerne University of Applied Sciences and Arts6020EmmenSwitzerland
| | - Yaru Wang
- Wood Materials ScienceDepartment of Civil, Environmental and Geomatic EngineeringETH Zürich8093ZürichSwitzerland
- Cellulose & Wood MaterialsFunctional MaterialsEMPA8600DübendorfSwitzerland
| | - Kunkun Tu
- Wood Materials ScienceDepartment of Civil, Environmental and Geomatic EngineeringETH Zürich8093ZürichSwitzerland
- Cellulose & Wood MaterialsFunctional MaterialsEMPA8600DübendorfSwitzerland
| | - Ann M. Hirt
- Institute for GeophysicsDepartment of Earth SciencesETH Zürich8093ZürichSwitzerland
| | - Kunal Masania
- Complex MaterialsDepartment of MaterialsETH Zürich8093ZürichSwitzerland
| | - Ingo Burgert
- Wood Materials ScienceDepartment of Civil, Environmental and Geomatic EngineeringETH Zürich8093ZürichSwitzerland
- Cellulose & Wood MaterialsFunctional MaterialsEMPA8600DübendorfSwitzerland
| | - Tobias Keplinger
- Wood Materials ScienceDepartment of Civil, Environmental and Geomatic EngineeringETH Zürich8093ZürichSwitzerland
- Cellulose & Wood MaterialsFunctional MaterialsEMPA8600DübendorfSwitzerland
| |
Collapse
|
21
|
Liu Z, Zhang Y, Zhang M, Tan G, Zhu Y, Zhang Z, Ritchie RO. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials. Acta Biomater 2019; 86:96-108. [PMID: 30639350 DOI: 10.1016/j.actbio.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Seeking strategies to enhance the overall combinations of mechanical properties is of great significance for engineering materials, but still remains a key challenge because many of these properties are often mutually exclusive. Here we reveal from the perspective of materials science and mechanics that adaptive structural reorientation during deformation, which is an operating mechanism in a wide variety of composite biological materials, functions more than being a form of passive response to allow for flexibility, but offers an effective means to simultaneously enhance rigidity, robustness, mechanical stability and damage tolerance. As such, the conflicts between different mechanical properties can be "defeated" in these composites merely by adjusting their structural orientation. The constitutive relationships are established based on the theoretical analysis to clarify the effects of structural orientation and reorientation on mechanical properties, with some of the findings validated and visualized by computational simulations. Our study is intended to give insight into the ingenious designs in natural materials that underlie their exceptional mechanical efficiency, which may provide inspiration for the development of new man-made materials with enhanced mechanical performance. STATEMENT OF SIGNIFICANCE: It is challenging to attain certain combinations of mechanical properties in man-made materials because many of these properties - for example, strength with toughness and stability with flexibility - are often mutually exclusive. Here we describe an effective solution utilized by natural materials, including wood, bone, fish scales and insect cuticle, to "defeat" such conflicts and elucidate the underlying mechanisms from the perspective of materials science and mechanics. We show that, by adaptation of their structural orientation on loading, composite biological materials are capable of developing enhanced rigidity, strength, mechanical stability and damage tolerance from constrained flexibility during deformation - combinations of attributes that are generally unobtainable in man-made systems. The design principles extracted from these biological materials present an unusual yet potent new approach to guide the development of new synthetic composites with enhanced combinations of mechanical properties.
Collapse
|
22
|
Multiscale designs of the chitinous nanocomposite of beetle horn towards an enhanced biomechanical functionality. J Mech Behav Biomed Mater 2019; 91:278-286. [DOI: 10.1016/j.jmbbm.2018.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/04/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
23
|
Eder M, Amini S, Fratzl P. Biological composites-complex structures for functional diversity. Science 2018; 362:543-547. [PMID: 30385570 DOI: 10.1126/science.aat8297] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The bulk of Earth's biological materials consist of few base substances-essentially proteins, polysaccharides, and minerals-that assemble into large varieties of structures. Multifunctionality arises naturally from this structural complexity: An example is the combination of rigidity and flexibility in protein-based teeth of the squid sucker ring. Other examples are time-delayed actuation in plant seed pods triggered by environmental signals, such as fire and water, and surface nanostructures that combine light manipulation with mechanical protection or water repellency. Bioinspired engineering transfers some of these structural principles into technically more relevant base materials to obtain new, often unexpected combinations of material properties. Less appreciated is the huge potential of using bioinspired structural complexity to avoid unnecessary chemical diversity, enabling easier recycling and, thus, a more sustainable materials economy.
Collapse
Affiliation(s)
- Michaela Eder
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany.
| |
Collapse
|
24
|
Liu Z, Zhang Z, Ritchie RO. On the Materials Science of Nature's Arms Race. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705220. [PMID: 29870573 DOI: 10.1002/adma.201705220] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Indexed: 05/05/2023]
Abstract
Biological material systems have evolved unique combinations of mechanical properties to fulfill their specific function through a series of ingenious designs. Seeking lessons from Nature by replicating the underlying principles of such biological materials offers new promise for creating unique combinations of properties in man-made systems. One case in point is Nature's means of attack and defense. During the long-term evolutionary "arms race," naturally evolved weapons have achieved exceptional mechanical efficiency with a synergy of effective offense and persistence-two characteristics that often tend to be mutually exclusive in many synthetic systems-which may present a notable source of new materials science knowledge and inspiration. This review categorizes Nature's weapons into ten distinct groups, and discusses the unique structural and mechanical designs of each group by taking representative systems as examples. The approach described is to extract the common principles underlying such designs that could be translated into man-made materials. Further, recent advances in replicating the design principles of natural weapons at differing lengthscales in artificial materials, devices and tools to tackle practical problems are revisited, and the challenges associated with biological and bioinspired materials research in terms of both processing and properties are discussed.
Collapse
Affiliation(s)
- Zengqian Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Zhefeng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
25
|
Yu ZL, Yang N, Zhou LC, Ma ZY, Zhu YB, Lu YY, Qin B, Xing WY, Ma T, Li SC, Gao HL, Wu HA, Yu SH. Bioinspired polymeric woods. SCIENCE ADVANCES 2018; 4:eaat7223. [PMID: 30105307 PMCID: PMC6086613 DOI: 10.1126/sciadv.aat7223] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/29/2018] [Indexed: 05/19/2023]
Abstract
Woods provide bioinspiration for engineering materials due to their superior mechanical performance. We demonstrate a novel strategy for large-scale fabrication of a family of bioinspired polymeric woods with similar polyphenol matrix materials, wood-like cellular microstructures, and outstanding comprehensive performance by a self-assembly and thermocuring process of traditional resins. In contrast to natural woods, polymeric woods demonstrate comparable mechanical properties (a compressive yield strength of up to 45 MPa), preferable corrosion resistance to acid with no decrease in mechanical properties, and much better thermal insulation (as low as ~21 mW m-1 K-1) and fire retardancy. These bioinspired polymeric woods even stand out from other engineering materials such as cellular ceramic materials and aerogel-like materials in terms of specific strength and thermal insulation properties. The present strategy provides a new possibility for mass production of a series of high-performance biomimetic engineering materials with hierarchical cellular microstructures and remarkable multifunctionality.
Collapse
Affiliation(s)
- Zhi-Long Yu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ning Yang
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Chuan Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Zhi-Yuan Ma
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yu-Yang Lu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Bing Qin
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Yi Xing
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Tao Ma
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Si-Cheng Li
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Ling Gao
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Segmehl JS, Studer V, Keplinger T, Burgert I. Characterization of Wood Derived Hierarchical Cellulose Scaffolds for Multifunctional Applications. MATERIALS 2018; 11:ma11040517. [PMID: 29597312 PMCID: PMC5951363 DOI: 10.3390/ma11040517] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
Functional materials of high porosity and hierarchical structure, based on renewable building blocks, are highly demanded for material applications. In this regard, substantial progress has been made by functionalizing micro- and nano-sized cellulose followed by its reassembly via bottom-up approaches. However, bottom-up assembly processes are still limited in terms of upscaling and the utilization of these building blocks presupposes the disassembly of the plant feedstock inherit hierarchical cellulose scaffold. To maintain the three-dimensional structure, delignification processes from pulp and paper production were recently adapted for the treatment of bulk wood. Yet, a detailed chemical analysis and the determination of macroscopic swelling/shrinkage parameters for the scaffolds, necessary for a systematic design of cellulose scaffold based materials, are still missing. Here, acidic bleaching and soda pulping were used for producing cellulose scaffolds, for functional materials under retention of their inherent hierarchical structure. Spatially resolved chemical investigations on thin sections by Raman microscopy provided detailed information on the induced alterations at the cell wall level, revealing significant differences in dependence of the chemistry of the pre-treatment. An adaption to bulk wood samples proved the applicability of these treatments at larger scales and volumetric alterations at different atmospheric conditions indicated the effect of the altered porosity of the scaffolds on their hygroscopic behaviour.
Collapse
Affiliation(s)
- Jana S Segmehl
- Wood Materials Science, Institute for Building Materials (IfB), ETH Zürich, Stefano Franscini-Platz 3, 8093 Zürich, Switzerland.
- Applied Wood Materials Laboratory, EMPA-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Vanessa Studer
- Wood Materials Science, Institute for Building Materials (IfB), ETH Zürich, Stefano Franscini-Platz 3, 8093 Zürich, Switzerland.
- Applied Wood Materials Laboratory, EMPA-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Tobias Keplinger
- Wood Materials Science, Institute for Building Materials (IfB), ETH Zürich, Stefano Franscini-Platz 3, 8093 Zürich, Switzerland.
- Applied Wood Materials Laboratory, EMPA-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials (IfB), ETH Zürich, Stefano Franscini-Platz 3, 8093 Zürich, Switzerland.
- Applied Wood Materials Laboratory, EMPA-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
27
|
Abstract
Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.
Collapse
Affiliation(s)
- Nicholas A Yaraghi
- Materials Science and Engineering Program, University of California, Riverside, California 92521, USA;
| | - David Kisailus
- Materials Science and Engineering Program, University of California, Riverside, California 92521, USA; .,Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
28
|
Abstract
A novel experimental setup is presented to reveal damage mechanisms in bast fibers. 3D imaging at submicronic scale based on X-ray micro-tomography is combined with in-situ tensile experiments of both elementary fibers and bundles. The results reveal that the relevant scale that drives failure of hemp lignocellulosic fibers is submicronic. In-situ tensile experiments assisted by X-ray micro-tomography shows complex damage mechanisms involving the constitutive sub-layer structure, fiber extraction defects like kink bands, and the tubular porosity of the natural fiber.
Collapse
|
29
|
Wang B, Meyers MA. Seagull feather shaft: Correlation between structure and mechanical response. Acta Biomater 2017; 48:270-288. [PMID: 27818305 DOI: 10.1016/j.actbio.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 12/26/2022]
Abstract
Flight feathers are unique among a variety of keratinous appendages in that they are lightweight, stiff and strong. They are designed to withstand aerodynamic forces, but their morphology and structure have been oversimplified and thus understudied historically. Here we present an investigation of the shaft from seagull primary feathers, elucidate the hierarchical fibrous and porous structure along the shaft length, and correlate the tensile and nanomechanical properties to the fiber orientation. An analysis of the compressive behavior of the rachis based on a square-section model shows a good fit with experimental results, and demonstrates the synergy between the cortex and medulla. Flexural properties of the shaft along the shaft length, analyzed as a sandwich composite, reveal that although all flexural parameters decrease towards the distal shaft, the specific equivalent flexural modulus and strength increase by factors of 2 and 3, respectively. The failure mode in flexure for all specimens is buckling on the compressive surface, whereas the foamy medulla prevents destructive axial cracking and introduces important toughening mechanisms: crack deflection, fiber bridging, and microcracking. STATEMENT OF SIGNIFICANCE Using mechanics principles, we analyze the feather shaft as a composite beam and demonstrate that the flexural strength is extraordinary, considering its weight and tailored along the length. The cross section changes from circular in the proximal base to square/rectangular in the distal end. We also discovered that the composite design, a solid shell enclosing a foam core, produces synergistic strengthening and toughening to the feather at a minimum of weight.
Collapse
Affiliation(s)
- Bin Wang
- University of California, San Diego, La Jolla, CA 92093-0411, USA
| | | |
Collapse
|
30
|
Wang L, Chen D, Jiang K, Shen G. New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev 2017; 46:6764-6815. [DOI: 10.1039/c7cs00278e] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Materials based on biological materials are becoming increasingly competitive and are likely to be critical components in flexible electronic devices.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- P. R. China
| | - Di Chen
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Kai Jiang
- Institute & Hospital of Hepatobiliary Surgery
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA
- Chinese PLA Medical School
- Chinese PLA General Hospital
- Beijing 100853
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing 100083
- China
| |
Collapse
|
31
|
Djumas L, Molotnikov A, Simon GP, Estrin Y. Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry. Sci Rep 2016; 6:26706. [PMID: 27216277 PMCID: PMC4877644 DOI: 10.1038/srep26706] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/05/2016] [Indexed: 01/24/2023] Open
Abstract
Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking.
Collapse
Affiliation(s)
- Lee Djumas
- Department of Materials Science and Engineering Monash University, Victoria, 3800, Australia
| | - Andrey Molotnikov
- Department of Materials Science and Engineering Monash University, Victoria, 3800, Australia
| | - George P. Simon
- Department of Materials Science and Engineering Monash University, Victoria, 3800, Australia
| | - Yuri Estrin
- Department of Materials Science and Engineering Monash University, Victoria, 3800, Australia
- Laboratory of Hybrid Nanostructured Materials, NUST MISiS, Moscow 119490 Russia
| |
Collapse
|
32
|
Van Meerbeek IM, Mac Murray BC, Kim JW, Robinson SS, Zou PX, Silberstein MN, Shepherd RF. Morphing Metal and Elastomer Bicontinuous Foams for Reversible Stiffness, Shape Memory, and Self-Healing Soft Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2801-2806. [PMID: 26872152 DOI: 10.1002/adma.201505991] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/18/2015] [Indexed: 06/05/2023]
Abstract
A metal-elastomer-foam composite that varies in stiffness, that can change shape and store shape memory, that self-heals, and that welds into monolithic structures from smaller components is presented.
Collapse
Affiliation(s)
- Ilse M Van Meerbeek
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Benjamin C Mac Murray
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jae Woo Kim
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sanlin S Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Perry X Zou
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Meredith N Silberstein
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Robert F Shepherd
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
33
|
Wang B, Walther A. Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure. ACS NANO 2015; 9:10637-46. [PMID: 26372330 DOI: 10.1021/acsnano.5b05074] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced molecular interactions. Herein, we develop a facile, waterborne self-assembly pathway to mimic the multiscale cuticle structure of the crustacean armor by combining hard reinforcing cellulose nanocrystals (CNCs) with soft poly(vinyl alcohol) (PVA). We show iridescent CNC nanocomposites with cholesteric liquid-crystal structure, in which different helical pitches and photonic band gaps can be realized by varying the CNC/PVA ratio. We further show that multilayered crustacean-mimetic materials with tailored periodicity and layered cuticular structure can be obtained by sequential preparation pathways. The transition from a cholesteric to a disordered structure occurs for a critical polymer concentration. Correspondingly, we find a transition from stiff and strong mechanical behavior to materials with increasing ductility. Crack propagation studies using scanning electron microscopy visualize the different crack growth and toughening mechanisms inside cholesteric nanocomposites as a function of the interstitial polymer content for the first time. Different extents of crack deflection, layered delamination, ligament bridging, and constrained microcracking can be observed. Drawing of highly plasticized films sheds light on the mechanistic details of the transition from a cholesteric/chiral nematic to a nematic structure. The study demonstrates how self-assembly of biobased CNCs in combination with suitable polymers can be used to replicate a hierarchical biological structure and how future design of these ordered multifunctional nanocomposites can be optimized by understanding mechanistic details of deformation and fracture.
Collapse
Affiliation(s)
- Baochun Wang
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Andreas Walther
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstr. 50, 52056 Aachen, Germany
| |
Collapse
|
34
|
Lazo N, Vodenitcharova T, Hoffman M. Optimized bio-inspired stiffening design for an engine nacelle. BIOINSPIRATION & BIOMIMETICS 2015; 10:066008. [PMID: 26531222 DOI: 10.1088/1748-3190/10/6/066008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.
Collapse
Affiliation(s)
- Neil Lazo
- ARC Centre of Excellence for Design in Light Metals, School of Materials Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
| | | | | |
Collapse
|
35
|
de Obaldia EE, Jeong C, Grunenfelder LK, Kisailus D, Zavattieri P. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling. J Mech Behav Biomed Mater 2015; 48:70-85. [DOI: 10.1016/j.jmbbm.2015.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 12/26/2022]
|
36
|
Liu Z, Jiao D, Meyers M, Zhang Z. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder--the peacock's tail coverts shaft and its components. Acta Biomater 2015; 17:137-51. [PMID: 25662166 DOI: 10.1016/j.actbio.2015.01.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/27/2014] [Accepted: 01/26/2015] [Indexed: 01/14/2023]
Abstract
Feather shaft, which is primarily featured by a cylinder filled with foam, possesses a unique combination of mechanical robustness and flexibility with a low density through natural evolution and selection. Here the hierarchical structures of peacock's tail coverts shaft and its components are systematically characterized from millimeter to nanometer length scales. The variations in constituent and geometry along the length are examined. The mechanical properties under both dry and wet conditions are investigated. The deformation and failure behaviors and involved strengthening, stiffening and toughening mechanisms are analyzed qualitatively and quantitatively and correlated to the structures. It is revealed that the properties of feather shaft and its components have been optimized through various structural adaptations. Synergetic strengthening and stiffening effects can be achieved in overall rachis owing to increased failure resistance. This study is expected to aid in deeper understandings on the ingenious structure-property design strategies developed by nature, and accordingly, provide useful inspiration for the development of high-performance synthetic foams and foam-filled materials.
Collapse
|
37
|
Studart AR. Biologically Inspired Dynamic Material Systems. Angew Chem Int Ed Engl 2015; 54:3400-16. [DOI: 10.1002/anie.201410139] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 12/20/2022]
|
38
|
|
39
|
Han Z, Yin W, Zhang J, Niu S, Ren L. Active anti-erosion protection strategy in tamarisk (Tamarix aphylla). Sci Rep 2013; 3:3429. [PMID: 24305989 PMCID: PMC3852142 DOI: 10.1038/srep03429] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/19/2013] [Indexed: 11/13/2022] Open
Abstract
Plants have numerous active protection strategies for adapting to complex and severe environments. These strategies provide endless inspiration for extending the service life of materials and machines. Tamarisk (Tamarix aphylla), a tree that thrives in raging sandstorm regions, has adapted to blustery conditions by evolving extremely effective and robust erosion resistant characteristics. However, the relationships among its surface cracks, internal histology and biomechanics, such as cracks, rings, cells, elasticity modulus and growth stress, which account for its erosion resistance, remain unclear. This present study reveals that the directionally eccentric growth rings of tamarisk, which are attributed to reduced stress and accelerated cell division, promote the formation of surface cracks. The windward rings are more extensive than the leeward side rings. The windward surfaces are more prone to cracks, which improves erosion resistance. Our data provide insight into the active protection strategy of the tamarisk against wind–sand erosion.
Collapse
Affiliation(s)
- Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
| | | | | | | | | |
Collapse
|
40
|
Parratt K, Yao N. Nanostructured Biomaterials and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2013; 3:242-271. [PMID: 28348334 PMCID: PMC5327884 DOI: 10.3390/nano3020242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 02/04/2023]
Abstract
Some of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly impact chemical and mechanical properties of natural and man-made materials. Now that these can be imaged and quantified, substantial advances have been made in the fields of biomimetics, tissue engineering, and drug delivery. For the first time, scientists can determine the importance of nanograins and nanoasperities in nacre, direct the nucleation of apatite and the growth of cells on nanostructured scaffolds, and pass drugs tethered to nanoparticles through the blood-brain barrier. This review examines some of the most interesting materials whose nanostructure and hierarchical organization have been shown to correlate directly with favorable properties and their resulting applications.
Collapse
Affiliation(s)
- Kirsten Parratt
- Princeton Institute for the Science and Technology of Materials, Princeton Imaging and Analysis Center, Princeton University, 120 Bowen Hall, Princeton, NJ 08544, USA.
| | - Nan Yao
- Princeton Institute for the Science and Technology of Materials, Princeton Imaging and Analysis Center, Princeton University, 120 Bowen Hall, Princeton, NJ 08544, USA.
| |
Collapse
|
41
|
Tan Y, Yildiz UH, Wei W, Waite JH, Miserez A. Layer-by-layer polyelectrolyte deposition: a mechanism for forming biocomposite materials. Biomacromolecules 2013; 14:1715-26. [PMID: 23600626 DOI: 10.1021/bm400448w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Complex coacervates prepared from poly(aspartic acid) (polyAsp) and poly-l-histidine (polyHis) were investigated as models of the metastable protein phases used in the formation of biological structures such as squid beak. When mixed, polyHis and polyAsp form coacervates whereas poly-l-glutamic acid (polyGlu) forms precipitates with polyHis. Layer-by-layer (LbL) structures of polyHis-polyAsp on gold substrates were compared with those of precipitate-forming polyHis-polyGlu by monitoring with iSPR and QCM-D. PolyHis-polyAsp LbL was found to be stiffer than polyHis-polyGlu LbL with most water evicted from the structure but with sufficient interfacial water remaining for molecular rearrangement to occur. This thin layer is believed to be fluid and like preformed coacervate films, capable of spreading over both hydrophilic ethylene glycol as well as hydrophobic monolayers. These results suggest that coacervate-forming polyelectrolytes deserve consideration for potential LbL applications and point to LbL as an important process by which biological materials form.
Collapse
Affiliation(s)
- Yerpeng Tan
- Biomolecular Science and Engineering Program, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | | | | | | | | |
Collapse
|
42
|
Speirs M, Humbeeck J, Schrooten J, Luyten J, Kruth J. The Effect of Pore Geometry on the Mechanical Properties of Selective Laser Melted Ti-13Nb-13Zr Scaffolds. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.procir.2013.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Seidl BHM, Reisecker C, Hild S, Griesshaber E, Ziegler A. Calcite distribution and orientation in the tergite exocuticle of the isopods Porcellio scaber and Armadillidium vulgare (Oniscidea, Crustacea). Z KRIST-CRYST MATER 2012. [DOI: 10.1524/zkri.2012.1567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The crustacean cuticle is a bio-composite consisting of hierarchically organized chitin-protein fibres, reinforced with calcite, amorphous calcium carbonate and phosphates. Comparative studies revealed that the structure and composition of tergite cuticle of terrestrial isopods is adapted to the habitat of the animals, and to their behavioural patterns to avoid predation. In this contribution we use FE-SEM, polarized SCμ-RSI and EBSD to investigate micro- and nano-patterns of mineral phase distribution and crystal orientation within the tergite cuticle of the two terrestrial isopod species Armadillidium vulgare and Porcellio scaber. The results show that the proximal regions of the exocuticle contain both calcite and ACC, with ACC located within the pore canals. Calcite forms hierarchically organised mesocrystalline aggregates of similar crystallographic orientation. Surprisingly, c-axis orientation preference is horizontal in regard to the local cuticle surface for both species, in contrast to mollusc and brachiopod shell structures in which the c-axis is always perpendicular to the shell surface. The overall sharpness of calcite crystal orientation is weak compared to that of mollusc shells. However, there are considerable differences in texture sharpness between the two isopod species. In the thick cuticle of the slow-walking A. vulgare calcite is more randomly oriented resulting in more isotropic mechanical properties of the cuticle. In contrast, the rather thin and more flexible cuticle of the fast- running P. scaber texture sharpness is stronger with a preference of c-axis orientation being parallel to the bilateral symmetry-plane of the animal, leading to more anisotropic mechanical properties of the cuticle. These differences may represent adaptations to different external and/or internal mechanical loads the cuticle has to resist during predatory attempts.
Collapse
|
44
|
Genetic engineering in biomimetic composites. Trends Biotechnol 2012; 30:191-7. [DOI: 10.1016/j.tibtech.2012.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 11/22/2022]
|
45
|
Skedros JG, Knight AN, Farnsworth RW, Bloebaum RD. Do regional modifications in tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone tracts for habitual bending? Analysis in the context of trabecular architecture of deer calcanei. J Anat 2012; 220:242-55. [PMID: 22220639 DOI: 10.1111/j.1469-7580.2011.01470.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Calcanei of mature mule deer have the largest mineral content (percent ash) difference between their dorsal 'compression' and plantar 'tension' cortices of any bone that has been studied. The opposing trabecular tracts, which are contiguous with the cortices, might also show important mineral content differences and microscopic mineralization heterogeneity (reflecting increased hemi-osteonal renewal) that optimize mechanical behaviors in tension vs. compression. Support for these hypotheses could reveal a largely unrecognized capacity for phenotypic plasticity - the adaptability of trabecular bone material as a means for differentially enhancing mechanical properties for local strain environments produced by habitual bending. Fifteen skeletally mature and 15 immature deer calcanei were cut transversely into two segments (40% and 50% shaft length), and cores were removed to determine mineral (ash) content from 'tension' and 'compression' trabecular tracts and their adjacent cortices. Seven bones/group were analyzed for differences between tracts in: first, microscopic trabecular bone packets and mineralization heterogeneity (backscattered electron imaging, BSE); and second, trabecular architecture (micro-computed tomography). Among the eight architectural characteristics evaluated [including bone volume fraction (BVF) and structural model index (SMI)]: first, only the 'tension' tract of immature bones showed significantly greater BVF and more negative SMI (i.e. increased honeycomb morphology) than the 'compression' tract of immature bones; and second, the 'compression' tracts of both groups showed significantly greater structural order/alignment than the corresponding 'tension' tracts. Although mineralization heterogeneity differed between the tracts in only the immature group, in both groups the mineral content derived from BSE images was significantly greater (P < 0.01), and bulk mineral (ash) content tended to be greater in the 'compression' tracts (immature 3.6%, P = 0.03; mature 3.1%, P = 0.09). These differences are much less than the approximately 8% greater mineral content of their 'compression' cortices (P < 0.001). Published data, suggesting that these small mineralization differences are not mechanically important in the context of conventional tests, support the probability that architectural modifications primarily adapt the tracts for local demands. However, greater hemi-osteonal packets in the tension trabecular tract of only the mature bones (P = 0.006) might have an important role, and possible synergism with mineralization and/or microarchitecture, in differential toughening at the trabeculum level for tension vs. compression strains.
Collapse
Affiliation(s)
- John G Skedros
- Bone and Joint Research Laboratory, Veterans Affairs Medical Center, Salt Lake City, Utah 84107, USA.
| | | | | | | |
Collapse
|
46
|
Saito N, Haneda H. Hierarchical structures of ZnO spherical particles synthesized solvothermally. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2011; 12:064707. [PMID: 27877457 PMCID: PMC5090672 DOI: 10.1088/1468-6996/12/6/064707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/13/2012] [Accepted: 12/05/2011] [Indexed: 06/06/2023]
Abstract
We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.
Collapse
|